
Wind River Workbench
for On-Chip Debugging

COMMAND REFERENCE

®

2.6.1

Wind River Workbench for On-Chip Debugging Command Reference

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation under the following directory:
installDir/product_name/3rd_party_licensor_notice.pdf.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Workbench for On-Chip Debugging Command Reference , 2.6.1

19 Mar 07
Part #: DOC-15985-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

1 Introduction .. 1

1.1 Overview .. 1

2 Operational Modes ... 3

2.1 The Operational Modes of Wind River Emulators .. 3

3 Low-Level Commands ... 5

3.1 Low-Level Commands ... 5

3.1.1 Inline Assembler (ASM) .. 5

3.1.2 Boot Line Parameters (BL) .. 6

BL ADD REGISTER ... 7
BL ADD STRUCTURE ... 7
BL DELETE ... 8
BL DISPLAY .. 8
BL INIT .. 9
BL MODIFY ... 9
BL UPLOAD ... 9

3.1.3 Breakpoint Disable (BD) .. 9

3.1.4 Breakpoint Enable (BE) .. 10

3.1.5 Block Fill (BF) .. 11

3.1.6 Block Move (BM) .. 12

Wind River Workbench for On-Chip Debugging
Command Reference , 2.6.1

iv

3.1.7 Cache Access Command (CA) ... 12

CA dis ... 13
CA dump -i .. 14
CA dump -d .. 14
CA dump addr -il .. 15
CA dump addr -dl ... 15
CA read -i .. 16
CA search start_addr..end_addr -i .. 17
CA search start_addr..end_addr -d ... 17
CA -s ... 17
CA diff -i .. 17
CA diff -d ... 18

3.1.8 Configure Parameters (CF) ... 18

3.1.9 Configure Register Groups (CF GRP) ... 19

3.1.10 Chip Selects (CS) ... 20

3.1.11 Chip Selects —Target (CST) .. 22

3.1.12 Display Breakpoint (DB) ... 22

3.1.13 Display Configuration (DC) ... 23

3.1.14 Diagnostic Function (DF) .. 24

Simple RAM Test: Single Pass — DF 0 Command 24
Simple RAM Test: Continuous — DF1 Command 25
Complete RAM Test: Single Pass — DF 2 Command 25
Complete RAM Test: Continuous — DF 3 Command 26
CRC Test — DF 4 Command .. 27
Scope Loop: Read from Location — DF 5 Command 27
Scope Loop: Write to Location — DF 6 Command 28
Scope Loop: Write and Complement — DF 7 Command 28
Scope Loop: Write Rotating Value — DF 8 Command 29
Scope Loop: Write Then Read — DF 9 Command 29
Bus Test: Address — DF A Command .. 30
Bus Test: Data — DF D Command ... 30

3.1.15 Disassemble (DI) ... 31

3.1.16 Disassemble Without Opcode (DIO) ... 31

3.1.17 Disassemble with Code Coverage (DIP) ... 32

3.1.18 Display Memory (DM) .. 34

3.1.19 Display Memory Double (DMD) ... 36

 Contents

v

3.1.20 Display Registers (DR) .. 37

3.1.21 Display Trace Non-Real-Time (DT) ... 38

3.1.22 Display License Key String (ESTKEY) .. 38

3.1.23 Display License Key Support Information (ESTKEY DISPLAY) 39

3.1.24 Fast Step (FS) ... 39

3.1.25 Fast Step Next (FSN) .. 40

3.1.26 Start Code Execution (GO) .. 41

3.1.27 Start Performance Analysis (GOP) .. 43

3.1.28 Synchronized Start Code Execution (GOS) .. 44

3.1.29 Halt (HA) ... 45

3.1.30 Synchronized Halt (HALTS) ... 45

3.1.31 Help Command (HE) ... 45

3.1.32 Hardware Interface Configuration (HIC) ... 47

3.1.33 Internal Code Breakpoint (IHBC) .. 48

3.1.34 Internal Data Breakpoint (IHBD) ... 49

3.1.35 Initialize System (IN) ... 50

3.1.36 Initialize Communications Only (INN) .. 50

3.1.37 Initialize and Trap Exceptions (INE) ... 51

3.1.38 Memory Modify (MM) .. 53

3.1.39 Memory Modify — Double (MMD) .. 54

3.1.40 Memory Management Unit (MMU) .. 55

Memory Management Unit — Add (MMUA) 55
Memory Management Unit — List (MMUL) 56
Memory Management Unit — Delete (MMUD) 57

3.1.41 Linux Virtual Memory Management (MMUOS) 58

MMUOS ADD .. 58
MMUOS DELETE .. 58
MMUOS DISPLAY ... 58
MMUOS SET ... 59

3.1.42 Performance Analysis (PF) ... 59

Wind River Workbench for On-Chip Debugging
Command Reference , 2.6.1

vi

3.1.43 Project Upload (PJ UPLOAD) ... 61

3.1.44 Remove Software Breakpoint (RB) .. 61

3.1.45 Initialize Communications with Multiple Processors (RST or RSTIN) 62

3.1.46 Only Initialize Communications with Multiple Processors (RSTINN) 63

3.1.47 Initialize and Trap Exceptions for Multiple Processors (RSTINE) 63

3.1.48 Set Breakpoint (SB) ... 64

3.1.49 Set Breakpoint —Temporary (SBT) .. 66

3.1.50 System Configuration (SC) ... 67

3.1.51 System Configuration Add/Delete (SCA/SCD) 71

Deleting Custom Registers (SCD) .. 72

3.1.52 System Configuration —Target (SCT) ... 72

3.1.53 System Configuration Group Add (SCGA) .. 74

3.1.54 System Configuration Group Delete (SCGD) 76

3.1.55 Synchronize Cores (SCTRL) .. 77

3.1.56 Set Verbose On (SET VERBOSE ON) ... 78

3.1.57 Show History (SH) ... 83

3.1.58 Single-Step Instruction(s) (SI) ... 84

3.1.59 Set Memory (SM) .. 85

3.1.60 Set Memory Double (SMD) ... 86

3.1.61 Set Register (SR) .. 87

3.1.62 Search for String (SS) ... 88

3.1.63 SY Commands .. 88

SY .. 89
SY BAT ... 90
SY BS .. 90
SY CHAIN ... 90
SY CMD value .. 91
SY PCI .. 91
System Program (SY PROG) ... 91
SY REV ... 92
SYNC or SY PROMPT .. 92
System Map (SY MAP) .. 92

 Contents

vii

3.1.64 Trace Disable (TD) .. 93

3.1.65 Target Diagnostic Functions (TDF) .. 93

3.1.66 Target Diagnostic Function, Double (TDFD) 96

3.1.67 Trace Enable (TE) .. 96

3.1.68 TF Flash Configure Command (TF) .. 97

Target Flash Configure (TF CONF) ... 97
Target Flash Configure - Size (TF CONF SIZE) 98
Target Flash Device (TF DEVICE) .. 99
Target Flash Erase (TF ERASE) .. 100
Target Flash Test (TF TEST) .. 101
Target Flash Timeout (TF TIMEOUT) ... 102
Target Flash Upload Sector (TF UPLOAD SECTOR) 103

3.1.69 Trigger On Breakpoint (TRG) ... 103

3.1.70 Trigger Pulse Out (TRGOUT) ... 104

4 Scripting Commands ... 105

4.1 Introduction ... 105

4.2 Initialization Commands .. 106

4.2.1 LOADREG ... 106

4.2.2 LOADSIMREG ... 106

4.2.3 SAVEEMULATORREG .. 106

4.2.4 SAVESIMREG ... 107

4.2.5 SCUPLOAD .. 107

4.2.6 SAVETARGETREG ... 107

4.2.7 SCTUPLOAD .. 107

4.2.8 SAVENVRAM ... 107

4.2.9 RESTORENVRAM ... 108

4.3 Download Commands ... 108

4.3.1 LOAD ... 108

4.3.2 DOWNLOAD ... 108

Wind River Workbench for On-Chip Debugging
Command Reference , 2.6.1

viii

4.3.3 DOWN ... 108

4.3.4 LOADVERIFY ... 108

4.3.5 LOADANDVERIFY ... 109

4.3.6 VERIFYONLY ... 109

4.3.7 VERIFY ... 109

4.3.8 LOADMACRO ... 109

4.3.9 LOADMACROS ... 109

4.3.10 FLASHIT .. 110

4.3.11 UPLOADBIN .. 110

4.3.12 SETBLOCK .. 110

4.3.13 BLOCKSIZE .. 110

4.3.14 BLOCK ... 110

4.4 Breakpoint Commands .. 111

4.4.1 BREAKENABLE ... 111

4.4.2 BREAKDISABLE .. 111

4.4.3 BREAKDELETE .. 111

4.4.4 BREAKIN ... 111

4.5 Complex Breakpoint Commands .. 111

4.5.1 SETSB ... 112

4.5.2 SETHBC ... 112

4.5.3 SETHBD ... 113

4.5.4 SETHBDR .. 113

4.5.5 SETHBDW ... 113

4.5.6 SETIHBC .. 113

4.5.7 SETIHBD .. 113

4.5.8 SETIHBDR ... 114

4.5.9 SETIHBDW .. 114

4.6 Run/Step Commands ... 114

 Contents

ix

4.6.1 G .. 114

4.6.2 H ... 114

4.6.3 ISTEP .. 114

4.6.4 ISTEPOV .. 115

4.6.5 PLAY .. 115

4.6.6 RUNTO .. 115

4.6.7 SETPC .. 115

4.6.8 STEP ... 116

4.6.9 STEPOV ... 116

4.6.10 STEPOUT ... 116

4.6.11 WAIT .. 116

4.7 Memory Commands .. 117

4.7.1 DUMPMEM .. 117

4.7.2 APPENDMEM .. 117

5 Wind River ICE Network Operation Commands 119

5.1 Wind River ICE SX Network Command Reference .. 119

5.1.1 APPLOAD ... 119

5.1.2 ARP .. 120

5.1.3 BKM .. 121

5.1.4 BOOTLOG ... 122

5.1.5 CAT ... 123

5.1.6 COMTAP ... 124

5.1.7 DATE .. 125

5.1.8 DEFRAG .. 126

5.1.9 DIR .. 126

5.1.10 DISPLAY .. 127

5.1.11 ETHSETUP .. 127

Wind River Workbench for On-Chip Debugging
Command Reference , 2.6.1

x

5.1.12 HELP .. 128

5.1.13 IFCONFIG ... 129

5.1.14 NETINFO ... 130

5.1.15 NETSTAT ... 130

5.1.16 PING ... 132

5.1.17 PSTAT ... 132

5.1.18 QUERY ... 133

5.1.19 RESET ... 134

5.1.20 ROUTE ... 134

5.1.21 RUNTIME .. 135

5.1.22 SYSLOG ... 135

5.1.23 TELNET ... 136

5.1.24 UNLOAD ... 136

5.1.25 VERSION ... 137

1

 1
Introduction

1.1 Overview

This manual provides a reference guide for all low-level Wind River ICE SX and
Wind River Probe commands. The commands are listed alphabetically and include
descriptions, syntax information, and examples. Note that some commands apply
only to certain emulators; those that are specific to one emulator are so marked, for
example Wind River ICE SX Only.

The Wind River ICE SX emulator provides Ethernet support and allows for remote
operation on any TCP/IP network. Network operation has its own subset of
commands, which are described in5. Wind River ICE Network Operation Commands.

Wind River ICE SX and Wind River Probe use a standard ASCII protocol with
XON/XOFF flow control.There are two 512-character buffers, one for commands
and the other for responses. A command is not interpreted until a termination
character is received. At most, only two commands are stored in the character
buffer at a given time: the command that is executing, and the one that is about to
be executed.

Character processing is case insensitive, with the exception of code and data
symbols. A command name is at least two characters in length. Most commands
can accept optional arguments or parameters. A space character is used as the
delimiting character between command names and arguments.

Wind River Workbench
Command Reference , 2.6.1

2

3

 2
Operational Modes

2.1 The Operational Modes of Wind River Emulators

Wind River emulators can operate in any one of four main operational modes.
Each mode is easily identified by the command prompt that is displayed on your
host or terminal screen.

Background Mode: >BKM>

When the >BKM> prompt displays, Background mode is both enabled and active,
meaning that no code is currently executing and the target is stopped. At the
prompt, users can enter and execute any valid Wind River low-level commands.
You can enter Background mode any time you connect to your target, any time you
use the IN or INN command, or any time you stop your target from running by
typing Ctrl+C or Ctrl+X. Your target is also placed in Background mode any time
a software breakpoint is hit.

Target Running in Real-Time: >RUN>

The >RUN> prompt only displays after you issue a GO command. The target
executes application code in Real-Time; Background mode is enabled, but not
currently active.

In > RUN > mode, you can enter commands to capture a target snapshot. A
snapshot is a view of the data on your target retrieved by the debugger by
instantaneously forcing the target into Background mode and then returning it to
Real-Time execution.

Wind River Workbench
Command Reference , 2.6.1

4

Error Mode: >ERR>

Error mode occurs when the unit fails to establish debug mode communications.
There are several possible reasons for this; see the Establishing Communications
chapter of your emulator’s Hardware Reference for more information.

Profiling Mode: >PFA>

The >PFA> profiling prompt indicates that the emulator is profiling your code (the
performance analysis features are activated with Graphics mode turned off). To
return to a >BKM> prompt, type Ctrl+C or Ctrl+X. In Profiling mode, you can type
a DIP command to view the performance data.

Network Mode: >NET>

(Wind River ICE SX only)

The >NET> prompt appears in the Terminal view of Wind River Workbench when
you have made a serial connection to the Wind River ICE SX,or in a Telnet window
when you have made a remote connection. Type BKM at the >NET> prompt to
bring up a >BKM> prompt, and type Ctrl + D to return to the >NET> prompt.

5

 3
Low-Level Commands

3.1 Low-Level Commands

The following commands are commands that can be used in the OCD Command
Shell in Wind River Workbench. They are listed alphabetically, and each command
includes a description, syntax, and example where relevant.

Most of these commands are valid only at a >BKM> prompt. However, any
commands that supply version information are also valid at an >ERR> prompt.

3.1.1 Inline Assembler (ASM)

Use the ASM command to write to memory using instructions instead of opcode.

Syntax

There are three different ways to use this command. Use the first syntax to specify
the start address and the instruction on the same line.

ASM start_addr instruction

start_addr — The address to write to.

instruction — The instruction used to write to that address.

Use the second syntax to specify only a start address, and then you are placed into
ASM mode where you can enter instructions on sequential lines of memory.

ASM start_addr

start_addr — The address to begin writing at.

Wind River Workbench
Command Reference , 2.6.1

6

The third syntax requires no parameters, and merely places you into ASM mode,
taking the address of your PC as the start address.

ASM

Entering a period (.) at the >ASM> prompt returns you to a >BKM> prompt.

ASM> .

Examples

The first example displays memory at 0 and then uses the first syntax for the ASM
command. Then the code is disassembled at 0.

>BKM>dm 0
00000000: 0000 0000 0000 0000 0000 0000 0000 0000
>BKM>asm 0 addi r2,r2,0x1
>BKM>di 0 1
$00000000 : 0x38420001 :ppc addi R2,R2,0x1

The second example places the emulator into ASM mode, at starting address 20.
Entering a period (.) at the >ASM> prompt returns you to a >BKM> prompt. Then
the code is disassembled at 20.

>BKM>asm 20
$00000020 : 0x00000000 :ppc dc.l 0x0 ASM> addi r2,r2,0x1
$00000024 : 0x00000000 :ppc dc.l 0x0 ASM> .
>BKM>di 20 1
$00000020 : 0x38420001 :ppc addi R2,R2,0x1
>BKM>

The third example places the emulator into ASM mode, taking the current address
of the PC as the starting address. The code is then disassembled at the starting
address of the PC, in this case 50.

>BKM>asm
$00000050 : 0x00000000 :ppc dc.l 0x0 ASM> addi
r2,r2,0x1
$00000054 : 0x00000000 :ppc dc.l 0x0 ASM> .
>BKM>di 50 1
$00000050 : 0x38420001 :ppc addi R2,R2,0x1
>BKM>

See also the DM (Display Memory) and DI (Disassemble) commands.

3.1.2 Boot Line Parameters (BL)

The Boot Line (BL) commands are used to set Linux structures and registers. There
are several BL commands with various functions, as described below.

3 Low-Level Commands
3.1 Low-Level Commands

7

3

BL ADD REGISTER

This command will enter and present a menu prompting for additional entries for
items to be added into the REGISTER table held in NVRAM. Sequentially, each
entry field will be prompted with the current contents. A new value may be
entered. An RTN/ENTER will keep the existing value and advance to the next field.
To exit the menu, type a period.

Information can be added to the BL ADD REGISTER command to add a new item
at the end of the REGISTER table without going through the menu:

Syntax:

BL ADD REGISTER description type value

description is an ASCII string representing the name of the entry.

type should be left blank. REGISTER table entries have UINT32 type by default.

value is an ASCII string containing a Hex value or a string that is resolved and
loaded dynamically.

Example:

>BKM>BL ADD REGISTER R6 E(R3) + S(0:19) + S(1)

R6 is the CPU Register selected; E(R3) stands for the value of the entry called R3 in
the REGISTER table; S(0:19) is the sum of the sizes of entries 0 through 19 in the
STRUCTURE table; and S(1) is the size of entry 1 in the STRUCTURE table.

All these arguments must be valid. That is, if there is no entry called R3 in the
REGISTER table, the BL ADD REGISTER command will abort and return a syntax
error.

BL ADD STRUCTURE

This command will enter and present a menu prompting for additional entries for
items to be added into the STRUCTURE table held in NVRAM. Sequentially, each
entry field will be prompted with the current contents. A new value may be

NOTE: To use the BL commands you must have both the CF BL and CF MMU
options set to ENABLE.

Wind River Workbench
Command Reference , 2.6.1

8

entered. An RTN/ENTER will keep the existing value and advance to the next field.
To exit the menu, type a period.

Information can be added to the BL ADD STRUCTURE command to add a new
item at the end of the STRUCTURE table without going through the menu:

Syntax:

BL ADD STRUCTURE description type value

description is an ASCII string representing the name of the entry.

type can be U32 for UINT32, U16 for UINT16, U8 for UINT8, and char for CHAR.

value--the entered value must comply with the specified type.

Example:

>BKM>BL ADD STRUCTURE MemSize U32 0x04000000

BL DELETE

Use this command to delete the REGISTER and STRUCTURE tables held in
NVRAM.

Syntax:

BL DELETE [REGISTER,STRUCTURE]

Entering BL DELETE without specifying a table will delete both tables.

BL DISPLAY

Use this command to display the REGISTER and STRUCTURE tables held in
NVRAM.

Syntax:

BL DISPLAY [REGISTER,STRUCTURE]

Entering BL DISPLAY without specifying a table will display both tables.

3 Low-Level Commands
3.1 Low-Level Commands

9

3

BL INIT

This command will load the BL parameters into target memory and registers
without performing an IN command. This is useful in cases where the bootROM is
run to initialize the target board and the emulator is used to establish the boot line
parameters.

BL MODIFY

This command will display and prompt to modify the field contained in the
specified entry item. Menus are similar to the ADD command menus. Press ENTER
to go on to the next menu item without modifying the current value. Type a period
(.) to exit.

Syntax:

BL MODIFY [REGISTER, STRUCTURE] entryIndex

BL UPLOAD

Use this command to upload and display the STRUCTURE and REGISTER tables
held in NVRAM in playback-command format. This enables the user to cut and
paste into a host-resident file for later playback as an emulator command-script
file. This same file can be concatenated with the typical target initialization register
file normally used to set up the primitives of the target.

Syntax:

BL UPLOAD [REGISTER, STRUCTURE]

Entering BL UPLOAD without specifying a table will upload and display both
tables.

3.1.3 Breakpoint Disable (BD)

This command disables all or one of the currently enabled software breakpoints. If
a breakpoint is disabled, it is not installed in target memory prior to execution.
Using the BD command allows the emulator to remember the breakpoint for future
use, unlike the RB (remove breakpoint) command, which deletes the breakpoint
entirely.

Wind River Workbench
Command Reference , 2.6.1

10

Syntax

BD address

address — The address where the breakpoint is installed. Use the DB command to
display the address. Previously defined symbol names are allowed for address. If
address is not specified, the BD command will disable ALL breakpoints.

Example

The following example disables a breakpoint at address EA0000. First, display all
breakpoints, including the current status. Then disable the breakpoint. Finally,
verify the status of the breakpoint by issuing a DB command. Notice the status
change of the cmp flags.

>BKM>DB
1. 0Ea0000 data mask = 000ff cmp_flags = enabled Word_cmp_BEQ
>BKM>BD EA0000
>BKM>DB
1. 0EA0000 data mask = 000ff cmp_flags = disabled Word_cmp_BEQ
>BKM>

Refer to SB (set breakpoint) command and DB (display breakpoints) command for
information on those commands.

3.1.4 Breakpoint Enable (BE)

This command enables all or one of the currently disabled software breakpoints.

Syntax

BE address

address — This is the address where the breakpoint is installed (use the DB
command to display the address). Previously defined symbol names are allowed
for address. If address is not specified, the BE command will enable all breakpoints.

Example

For this example, enable the breakpoint at address EA0000, which was previously
disabled. First, display all breakpoints and their status. Then enable the
breakpoint. Finally verify the status of the breakpoint by issuing a DB command.
Notice the status change of the cmp_flags.

>BKM>DB
1. 0EA0000 data mask = 000ff cmp_flags = disabled Word_cmp_BEQ
>BKM>BE EA0000
>BKM>DB

3 Low-Level Commands
3.1 Low-Level Commands

11

3

1. 0EA0000 data mask = 000ff cmp_flags = enabled Word_cmp_BEQ
BKM>

See the SB (set breakpoint) command and the DB (display breakpoints) command
for more information.

3.1.5 Block Fill (BF)

This command fills a block of units from start_addr to end_addr with data.

Syntax

BFunit start_addr end_addr data

unit — This can be either B (byte), W (word), or L (long). If no unit is specified, the
default is W (word).

start_addr — This is the address at which to begin filling.

end_addr — This is the end of the address range to fill.

data — This is a data pattern to be placed into the block range specified.

start_addr and end_addr can be previously defined symbols.

Example 1

In this example, fill a block of memory, 32 bytes (20 Hex) in length with a word of
data = 4121. First, display memory contents. Then fill the block and verify the
command.

BKM>DM 1000 20
001000 0000 0000 0000 0000 0000 0000 0000 0000
001010 0000 0000 0000 0000 0000 0000 0000 0000
>BKM>BF 1000 1020 4121
>BKM>DM 1000 20
001000 4121 4121 4121 4121 4121 4121 4121 4121
001010 4121 4121 4121 4121 4121 4121 4121 4121
>BKM>

Example 2

In this example, change the command unit size from the last example of a word to
a size L (long):

>BKM>DM 1000 20
001000 0000 0000 0000 0000 0000 0000 0000 0000
001010 0000 0000 0000 0000 0000 0000 0000 0000
>BKM>BFL 1000 1020 4121
>BKM>DM 1000 20

Wind River Workbench
Command Reference , 2.6.1

12

001000 0000 4121 0000 4121 0000 4121 0000 4121 ..A!..A!..A!..A!..A!
001010 0000 4121 0000 4121 0000 4121 0000 4121 ..A!..A!..A!..A!..A!
BKM>

See also the information provided on the DM (display memory) command.

3.1.6 Block Move (BM)

The BM command copies blocks of data from one address to another.

Syntax

BMunit source_start_addr source_end_addr dest_start_addr

unit — This can be either B (byte), W (word), or L (long.) By default it is set to W
(word).

source_start_addr — Start address of the memory to move.

source_end_addr — End address of memory to move.

dest_start_addr — Start address of the location where the memory is moving to.

Previously defined symbols can be used for any of the above addresses.

Example

In this example, move a 32 byte (20 Hex) block from one area of memory to another.
Memory is displayed before and after the move.

>BKM>DM 1000 20

001000 5448 4953 2049 5320 4120 5445 5354 2121 THIS IS A TEST!!
001010 0000 0000 0000 0000 0000 0000 0000 0000
BKM>BM 1000 1010 1010
BKM>DM 1000 20

001000 5448 4953 2049 5320 4120 5445 5354 2121 THIS IS A TEST!!
001010 5448 4953 2049 5320 4120 5445 5354 2121 THIS IS A TEST!!
BKM>

See also DM (display memory) command.

3.1.7 Cache Access Command (CA)

The Cache Access (CA) commands are used to view and alter the state of the
Instruction and Data caches of the processors. Note that certain CA commands are

3 Low-Level Commands
3.1 Low-Level Commands

13

3

processor specific, as indicated in the command descriptions. There are several CA
commands with various functions, as described in the sections that follow.

Syntax

CA

Issuing the CA command without any arguments lists all of the Cache Access
commands and their syntax.

Example

>BKM>ca
CA dis : Disassemble all VALID I cache data.
CA dump <sw> : Display ALL cache sets for I, D or L caches.
CA dump <addr> <sw> : Display the appropriate cache SET for all

WAYs.
CA dump <addr> -il : Display true target i-cache tags and data

directly.
CA dump <addr> -dl : Display true target d-cache tags and data

directly.
CA dump <addr> -ll : Display true target L2-cache tags directly.
CA read <sw> : Display VALID cache sets for I, D or L caches.
CA search <addr..addr> <sw> : Searches for <addr> in the I, D or L caches.
CA enable <sw> : Enables both or just I or D caches.
CA disable <sw> : Disables both or just I or D caches.
CA inv <sw> : Invalidate both or just I or D caches.
CA -s : Display the state for both caches.
CA diff <sw> : Display differences between Cache and memory.

SW -d data, -i instruction cache only, -l L2 cache, -l3 L3 cache>BKM>

The CA commands that appear above are described in the following sections.

CA dis

This command displays all valid lines in the instruction cache in a disassembly
format. The example displays all the cache information related to where this data
was obtained from in the cache, and what the instructions are for each line.

Example:

>BKM>ca dis
Way0 Set 000 $00005000 : 0x48000005 :ppc bl 0x5004
[V,LRU 4] $00005004 : 0x7C6802A6 :ppc mflr R3

$00005008 : 0x3C801122 :ppc lis R4,0x1122
$0000500c : 0x60843344 :ppc ori R4,R4,0x3344
$00005010 : 0x90830040 :ppc stw R4,0x40(R3)
$00005014 : 0xB0830050 :ppc sth R4,0x50(R3)
$00005018 : 0x98830060 :ppc stb R4,0x60(R3)

Wind River Workbench
Command Reference , 2.6.1

14

$0000501c : 0x80A30040 :ppc lwz R5,0x40(R3)
Way0 Set 001 $00005020 : 0xA0A30050 :ppc lhz R5,0x50(R3)
[V,LRU 4] $00005024 : 0x88A30060 :ppc lbz R5,0x60(R3)

$00005028 : 0x7C0004AC :ppc sync
$0000502c : 0x4BFFFFD4 :ppc b 0x5000
$00005030 : 0x80020010 :ppc lwz R0,0x10(R2)
$00005034 : 0x80000000 :ppc lwz R0,0x0(R0)
$00005038 : 0x80010000 :ppc lwz R0,0x0(R1)
$0000503c : 0x80081082 :ppc lwz R0,0x1082(R8)

CA dump -i

This command displays all of the processor instruction cache lines regardless of the
state of each line. This example shows a processor with an instruction cache
structure that has 5 WAYS and 128 sets per WAY. The entry at way0/set0 is marked
as valid with the /v flag, and all other entries are marked as invalid /i.

Example:

>BKM>CA dump -i
Set Way0 Way1 Way2 Way3 Way4
000 0x00005000/v 0x3C332000/i 0x57FFB000/i 0xB24FC000/i 0xDEE20000/i
001 0xFFFFF020/i 0xFFFFF020/i 0xFFFFF020/i 0x1DAF8020/i 0xE7B28020/i
002 0xAAFE9040/i 0x5BC1D040/i 0x5213E040/i 0x53788040/i 0xC875D040/i
003 0xCC7EC060/i 0x2D662060/i 0x952F6060/i 0x1BB7D060/i 0x18093060/i
004 0xD91BB080/i 0x5A2AB080/i 0x6BDE3080/i 0xED2A2080/i 0x51E43080/i
005 0xD27950A0/i 0x98C0E0A0/i 0x4E5E00A0/i 0x094B40A0/i 0x3A5290A0/i
006 0x3BB400C0/i 0x347A20C0/i 0xA36180C0/i 0xA23300C0/i 0x5099A0C0/i
etc
126 0xD27950A0/i 0x98C0E0A0/i 0x4E5E00A0/i 0x094B40A0/i 0x3A5290A0/i
127 0x3BB400C0/i 0x347A20C0/i 0xA36180C0/i 0xA23300C0/i 0x5099A0C0/i
>BKM>

CA dump -d

This command displays all of the processor data cache lines regardless of the state
of each line. This example shows a processor with a data cache structure that has 4
WAYS and 128 sets per WAY. The entry at way0/set2 and set3 are marked as valid
with the /v flag, and all other entries are marked as invalid /i. There is a second
flag associated with the data cache. This flag indicates if the data is dirty (most
recent) or clean (same as memory). If the entry is marked as clean with the /c flag,
then contents in the cache and the contents in memory are the same. If the entry is
valid and it is marked as dirty with a /d flag, then the data in the cache is the most
recently used data and the value in memory is no longer valid.

3 Low-Level Commands
3.1 Low-Level Commands

15

3

Example:

>BKM>CA dump -d
Set Way0 Way1 Way2 Way3
000 0xE17AF000/i/c 0x80517000/i/d 0xCEF44000/i/c 0x37ECB000/i/d
001 0xBAF43020/i/c 0x56560020/i/d 0x384A2020/i/c 0x0A27A020/i/d
002 0x00005040/v/d 0x79F9B040/i/c 0xCB2BC040/i/d 0x80A73040/i/c
003 0x00005060/v/d 0x2F6B2060/i/c 0xED936060/i/d 0x58252060/i/c
004 0xCA098080/i/d 0x7CD4C080/i/c 0xC3BAD080/i/d 0x63B2C080/i/c
005 0xEF70F0A0/i/c 0x1AF4B0A0/i/c 0x1016A0A0/i/d 0x525E00A0/i/c
006 0xF9D5D0C0/i/d 0x458F20C0/i/d 0xAF17F0C0/i/c 0xAE8B70C0/i/c
etc
125 0xD27DFFA0/i/d 0xD8C3FFA0/i/d 0x1D8B9FA0/i/c 0x7B3D3FA0/i/d
126 0x58F00FC0/i/c 0xC5AE3FC0/i/d 0x4512CFC0/i/c 0x9B7ACFC0/i/c
127 0xE94B6FE0/i/d 0x3CECFFE0/i/d 0x6EE65FE0/i/c 0xC14DDFE0/i/d

CA dump addr -il

This command displays all of the possible ways that a specified address could be
found in the instruction cache. The -il switch is used to indicate a long format for
the instruction cache. This example shows all WAYS for set0. The address TAG of
0x5000 is marked as valid, and all other ways are marked as invalid.

Example:

CA dump addr -dl

This command displays all of the possible WAYS where a specified address could
be found in the data cache. The -dl switch is used to indicate a long format for the

Figure 3-1 CA dump 5000 -il

Wind River Workbench
Command Reference , 2.6.1

16

data cache. This example shows all 8 WAYS for set2. The address TAG of 0x5040 is
marked as valid, and all other WAYS are marked as invalid.

Example:

CA read -i

This command displays only the processor instruction cache lines that are valid.
This example shows that TAG address 0x5000 from way0/set0 is the only valid
entry found. The LRU flag indicates the Least Recently Used WAY is way0.

Example:

>BKM>ca read -i
Set/Way Tag
000/000 0x00005000/lru 0
CA read -d

This command displays only the processor data cache lines that are valid. This
example shows that TAG address 0x5040 and 0x5060 are the only valid entries
found.

>BKM>CA read -d
Set/Way Tag[status]: Data+0 Data+4 Data+8 Data+C Data+10
Data+14 Data+18 Data+1C
002/000 0x00005040[d]:0x80001000 0x11223344 0x00000400 0x00000402 0x08004000
0x33440000 0x00080080 0x00000000
003/000 0x00005060[d]:0x00001000 0x44000C02 0x00100400 0x00000000 0x08000000
0x00000000 0x00400000 0x00000010
>BKM>

Figure 3-2 CA dump 5040 -dl

3 Low-Level Commands
3.1 Low-Level Commands

17

3

CA search start_addr..end_addr -i

This command searches the instruction cache for valid cache lines. The command
expects a starting and ending range. The example shows a search of the instruction
cache starting from address 0x5000 to 0x6000, and has found 2 valid cache lines
within this address range.

>BKM>CA search 5000..6000 -i
Set/Way Tag
008/000 0x00005100
009/000 0x00005120
>BKM>

CA search start_addr..end_addr -d

This command searches the data cache for valid cache lines. The command expects
a starting and ending range. This example shows a search of the data cache starting
from address 0x5000 to 0x6000, and has found 2 valid cache lines within this
address range.

>BKM>ca search 5000..6000 -d
Set/Way Tag
010/000 0x00005140
011/000 0x00005160
>BKM>

CA -s

This command displays the state of each cache. L2 and L3 caches are level 2 and 3
caches found in the high end PowerPC processors.

>BKM>ca -s
Instruction Cache: Enabled
Data Cache : Enabled
L2 Cache : Disabled
L3 Cache : Disabled
>BKM>

CA diff -i

This command displays all differences between the instruction cache and main
memory for all valid cache lines. This example displays one cache line where the
top values are the cache values, and the bottom values are main memory content.
The dash lines indicate that there were no differences found.

Wind River Workbench
Command Reference , 2.6.1

18

>BKM>CA diff -i
Set/Way Tag Tag+00 Tag+04 Tag+08 Tag+0C
Tag+10 Tag+14 Tag+18 Tag+1C
001/000 0x00005020 0xA0A30050 0x88A30060 0x7C0004AC 0x4BFFFFD4
0x80020010 0x80000000 0x80010000 0x80081082
---------- ---------- ---------- ---------- 0x00020080 0x00000400
0x00010000 0x00081100
>BKM>

CA diff -d

This command displays all differences between the data cache and main memory
for all valid cache lines. This example displays one cache line where the top values
are the cache values, and the bottom values are main memory content. The dash
lines indicate that there were no differences found.

>BKM>CA diff -d
Set/Way Tag Tag+00 Tag+04 Tag+08 Tag+0C Tag+10
Tag+14 Tag+18 Tag+1C
002/000 0x00005040 0x80001000 0x11223344 0x00000400 0x00000402
0x08004000 0x33440000 0x00080080 0x00000000
---------- 0xAABBCCDD 0x00000000 0x00000000 0xFFFFFFFE 0xFFFFFFFE
0x00100100 ----------
>BKM

3.1.8 Configure Parameters (CF)

The CF command is a low-level ASCII command that configures important
emulator and system-level parameters. The CF parameter table remains set until
modified with subsequent CF commands.

For any given processor, entering a CF command without parameters at any
>BKM> prompt will list all of the executable CF options for the processor type you
are using. The following example shows available CF command options and
parameters for an MPC 8260 board.

To make a change to any of these values, type CF and the CF command option you
wish to modify, followed by the specific parameter you wish to configure, all on
the same command line.

For example, to configure your system for a MPC8245 target, you would type

BKM>CF TAR 8245

You can use the CF command from the > BKM > or >ERR> prompt, but not from
either a > RUN > or a >TRC> prompt.

3 Low-Level Commands
3.1 Low-Level Commands

19

3

Although the options vary depending on your target architecture, typing CF at the
>BKM> prompt will provide a list of the options that are available for your target.

The CF options that are available vary widely from target to target. For descriptions
of the CF options for the target architectures that are currently supported by Wind
River, see the Wind River Workbench On-Chip Debugging Configuration Options
Reference.

3.1.9 Configure Register Groups (CF GRP)

Use this command to enable or disable register groups.

Syntax

cf grp

Figure 3-3 CF Options View

NOTE: Some of the CF options may be the same from target to target. Be aware,
however, that there are options that are unique to specific processor families. Be
sure to refer to the section that is appropriate for the target that you are using.

Wind River Workbench
Command Reference , 2.6.1

20

Example

>BKM>cf grp
Group (CF GRP (M/S) Name = ENABLED/DISABLED
SYS-CFG (0=Disable 1=Enable) Enabled >

The name of the first register group is displayed, along with its current status
(either ENABLED or DISABLED).

Type 0 to disable the group or 1 to enable it.

To leave the setting as it is and advance to the next register group, press the ENTER
key without typing 0 or 1. Continue through the list of register groups enabling
and disabling them as required.

When all register groups are enabled or disabled, type CF UPLOAD GROUP at the
>BKM> prompt. This displays a list of all of the register groups on your target with
their current settings as shown below:

>BKM>cf upload group
CF GRP SYS-CFG ENABLED ; GROUP
CF GRP INT0 ENABLED ; GROUP
CF GRP INT1 ENABLED ; GROUP
CF GRP GLOBAL_ACK ENABLED ; GROUP
CF GRP CS0-5 ENABLED ; GROUP
CF GRP SDRAM ENABLED ; GROUP
CF GRP REAL_TIME_CLOCK DISABLED ; GROUP
CF GRP PINT_TIMERS DISABLED ; GROUP
CF GRP DMA_TIMERS DISABLED ; GROUP
CF GRP PWM DISABLED ; GROUP
CF GRP EDMA_CTRL DISABLED ; GROUP
CF GRP EDMA_CHAN0-3 DISABLED ; GROUP
CF GRP EDMA_CHAN4-7 DISABLED ; GROUP
CF GRP EDMA_CHAN8-11 DISABLED ; GROUP
CF GRP EDMA_CHAN12-15 DISABLED ; GROUP

>BKM>

3.1.10 Chip Selects (CS)

This command gives you a table-driven method for setting up the chip-selects for
your processor. This table is stored in non-volatile memory and is automatically
downloaded to the proper target location (via Background Mode memory sets)
after every initialization sequence (IN command). To initialize Background Mode
communications without writing the chip-select table and SIM registers (SC
commands), use the INN command.

NOTE: This command is processor dependent and not available across all families.

3 Low-Level Commands
3.1 Low-Level Commands

21

3

Syntax

CS arg

arg — This is the specific chip-select to modify.

If no arg is specified, the emulator will present a table of all of the chip selects.

Example

When the emulator is configured for an MPC 8260 target, a CS command with no
arguments will display the following:

>BKM>cf tar 8260
>BKM>cs
Name BA AM AT ATM PS PARE WP MS V CSNT/SAM ACS BI SCY SETA TRLX
CS0 FFC00000 FFC00000 0 0 16 No RW GP Y Normal 1/2 Y 6ws Int. Norm
CS1 00000000 00000000 0 0 32 No RW GP Y Normal 0 N 0ws Int. Norm
CS2 00000000 FFC00000 0 0 32 No RW UB Y I.M.AMB 0 N 0ws Int. Norm
CS3 00000000 00000000 0 0 32 No RW GP N Normal 0 N 0ws Int. Norm
CS4 00000000 00000000 0 0 32 No RW GP N Normal 0 N 0ws Int. Norm
CS5 00000000 00000000 0 0 32 No RW GP N Normal 0 N 0ws Int. Norm
CS6 00000000 00000000 0 0 32 No RW GP N Normal 0 N 0ws Int. Norm
CS7 00000000 00000000 0 0 32 No RW GP N Normal 0 N 0ws Int. Norm

The above chip-select table shows the factory default settings. To modify any of
these chip-selects, type the CS command followed by the name of the specific
chip-select to modify. The emulator displays the following for the CS0 example,
one line at a time, which shows you the options and current settings, and then
prompts you to make individual changes.

>BKM>cs cs0
00000000 -> FFFF8000 | Base Register = FFC00000 >
00000000 -> FFFF8000 | Address Mask = FFC00000 >
0 -> 7 | Address Type = 0 >
0 -> 7 | Address Type Mask = 0 >
(0-2)=32, 8, 16 bits / 3=Rsvd | Port Size = 16 Bits >
0 = Disabled, 1 = Enabled | Parity Enable = Disabled >
0 = Read/Write, 1 = Read Only | Write Protect = Read/Write >
(0-3) = GPCM, Rsvd, UPMA, UPMB | Machine Select = GPCM >
0 = Not Valid, 1 = Valid | Valid state = Valid >
(0-3)=Norm, Rsvd, 1/4 clk, 1/2 clk | Address/CS Setup = 1/2 clk >

After you use the CS command to make a change in the emulator’s chip select
table, issue an IN command in order to download the table, and thus the changes
to the target.

Wind River Workbench
Command Reference , 2.6.1

22

3.1.11 Chip Selects —Target (CST)

The CST command is similar to the CS command in that it displays a table of
chip-selects. The difference is that the CST command provides a snapshot view of
the chip-selects that are currently set on your target (rather than in the emulator).
This is a useful command because it allows you to see whether or not your target
is still synchronized with the chip-select table that you have programmed into
your emulator.

If your target is no longer synchronized with your emulator chip-select table, an IN
command will cause the target chip-select values to be overwritten by the ones
stored in the emulator.

Syntax

CST

There are no parameters associated with this command.

Example

The following example displays a target chip-select table for a Wind River 8260
reference design.

See also the information provided on the CS command.

3.1.12 Display Breakpoint (DB)

This command displays all software breakpoints and their status. The status
includes whether the break is enabled or disabled, and the conditions on which to

Figure 3-4 Chip Select Table

3 Low-Level Commands
3.1 Low-Level Commands

23

3

break. For viewing convenience, each breakpoint is assigned a number. In
addition, after a breakpoint has occurred, a flag indicates which breakpoint has
interrupted code execution.

Syntax

DB

Response: addr break_conditions status

addr — the address at which the breakpoint is set

break_conditions — conditional information that can be set using the SB command
(such as running through code count number of times before hitting the
breakpoint)

status — states whether the breakpoint is enabled or disabled

Example

>BKM>db
Software Code Breakpoints

1. 00040418 count = 0001 actual = 0000 enabled
2. 0004042C count = 0001 actual = 0000 enabled
3. 0004044C count = 0001 actual = 0000 enabled
4. 00040494 count = 0001 actual = 0000 enabled
!INFO! - [msg82001] No internal hardware breakpoints installed
>BKM>

See also the SB (Set Breakpoint) command for more information.

3.1.13 Display Configuration (DC)

This command displays the current hardware and firmware levels that your
emulator is using.

Syntax

DC

Example

>BKM>dc
Firm Rev = vn1.0m
UJD Rev = 1.0h
PDI Version 1.1 WIND POWER ICE PPC82XX (type = 0x30)
>BKM>

Wind River Workbench
Command Reference , 2.6.1

24

3.1.14 Diagnostic Function (DF)

This command runs a pre-written emulator diagnostic function. This section
describes the build-in diagnostic functions supported by the emulator which are
run from a >BKM> prompt, using the low-level command language built in to the
emulator, rather than using a graphical user interface. Their primary function is to
expose memory problems, both in RAM and ROM, as well as any download
problems.

The following pages serve as a reference for the available diagnostics, all of which
are accessed with the same command prefix:

DF Diagnostic_Function_Code

For greater detail on the functions performed by each test, type HE DF
Diagnostic_Function_Code at the >BKM> prompt in the OCD Command Shell.

Simple RAM Test: Single Pass — DF 0 Command

The DF 0 command runs a simple RAM test for a single pass.

Syntax

DFunits 0 args

units — The units can be either B (byte), W (word), or L (long). By default, this
parameter is set to Word.

args — This is an address range, spanning from begin_addr to end_addr.

Example 1

A simple RAM test is executed on a 128 word memory space. There will be no
errors.

>BKM>DFW 0 00000 000FF
simple ram test running
test complete
>BKM>

Example 2

A simple RAM test is executed on a 128 word memory space. There will be a bad
memory bit 12 at address 0000E. A bit will be stuck low.

>BKM>DFW 0 00000 000FF
memory failure: $0000E=$4555 not $5555 complete

3 Low-Level Commands
3.1 Low-Level Commands

25

3

Simple RAM Test: Continuous — DF1 Command

The DF 1 command runs a simple RAM test continuously. This test can be stopped
by typing Ctrl+C.

Syntax

DFunits 1 args

units — These can be either B (Byte), L (Long), or W (Word). By default, this
parameter is set to Word.

args — This parameter requires an address range from begin_addr to end_addr.

Example 1

A simple RAM Test is executed continuously on a 128 word memory space. There
are no errors.

>BKM>DFW 1 00000 000FF
!ABORT! - [msg72000] User Command Abort
>BKM>

Example 2

A simple RAM test is executed continuously on a 128 word memory space. There
is a bad memory bit 12 at address 0000E. A bit is stuck low.

>BKM>DFW 1 00000 000FF
memory failure: $0000E=$4555 not $5555
PASS# = 1
memory failure: $0000E=$4555 not $5555
PASS# = 2
UNTIL ^C

Complete RAM Test: Single Pass — DF 2 Command

The DF 2 command runs a complete RAM Test for a single pass.

Syntax

DFunits 2 args

units — This parameter can be either B (Byte), W (Word), or L (Long). By default, it
is set to Word.

args — This is an address range that is specified from begin_addr to end_addr.

Wind River Workbench
Command Reference , 2.6.1

26

Example 1

A complete RAM test is executed on a 128 word memory space. There are no
errors.

>BKM>DFW 2 00000 000FF
complete ram test running
test complete
>BKM>

Example 2

A complete RAM test is executed on a 128 word memory space. There is a bad
memory bit 12 at address 0000E. A bit is stuck low.

BKM>DFW 2 00000 000FF
memory failure: $0000E=$efff not $ffff memory failure:
$0000E-$0000 not $1000
complete
BKM>

Complete RAM Test: Continuous — DF 3 Command

The DF 3 command runs a complete RAM test continuously. This test can be
stopped by typing Ctrl+C.

Syntax

DFunits 3 args

units — This parameter can be either B (byte), W (word), or L (long).

args — This is an address range, specified from begin_addr to end_addr

Example 1

A complete RAM test is executed continuously on a 128 word memory space.
There are no errors.

>BKM>DFW 3 00000 000FF
complete ram test running
>BKM>

Example 2

A complete RAM test is executed on a 128 word memory space. There is a bad
memory bit 12 at address 0000E. A bit is stuck low.

>BKM>DFB 3 00000 000FF
complete ram test running

3 Low-Level Commands
3.1 Low-Level Commands

27

3

memory failure: $0000F=$ef not $ff memory failure:
$0000F=$00 not $10
PASS# = 1
memory failure: $0000F=$ef not $ff memory failure:
$0000F=$00 not $10
PASS# = 2
.
.
UNTIL ^C

CRC Test — DF 4 Command

The DF 4 command runs a CRC Test over a specified range of memory.

Syntax

DF 4 args

args — An address range, specified from begin_addr to end_addr.

Example

A CRC Test is executed on a 128 word memory space.

>BKM>df 4 00000 000FF
CRC-16 test running
Completed... CRC-16 Value = 166D
>BKM>

Scope Loop: Read from Location — DF 5 Command

The scope loop routines are useful when troubleshooting with an oscilloscope.
Read/write continuously from/to an address and Write Then Read data are
supported routines.

The DF 5 command consecutively reads from the specified address. This test can be
stopped by typing Ctrl+X.

Syntax

DFunit 5 args

unit — This parameter can be either B (byte), W (word), or L (long)

args — This specifies a base address base_addr.

Wind River Workbench
Command Reference , 2.6.1

28

Example

Scope Loop reading a location.

>BKM>df 5 E800000
DF 5 reading a location press ^X to abort
>BKM>

Scope Loop: Write to Location — DF 6 Command

The DF 6 command consecutively writes a specified pattern to the address
specified. This test can be stopped by typing Ctrl+X.

Syntax

DFunit 6 args

unit — This parameter can be either B (byte), W (word), or L (long).

args — This parameter consists of a base address base_addr and a hex string
hex_string.

Example

Scope loop writing data to a location.

>BKM>df 6 e800000 5555
DF 6 Writing a location press ^X to abort
>BKM>

Scope Loop: Write and Complement — DF 7 Command

The DF 7 command consecutively writes a pattern to the address specified and
then writes its complement. This test can be stopped by typing Ctrl+X.

Syntax

DFunit 7 args

unit — This parameter can be either B (byte), W (word), or L (long).

args — This parameter consists of a base address base_addr and a hex string
hex_string.

Example

Scope loop writing data then its complement to a location.

3 Low-Level Commands
3.1 Low-Level Commands

29

3

>BKM>DF 7 E80000 5555
DF 7 writing value then complementing press ^x to abort
>BKM>

Scope Loop: Write Rotating Value — DF 8 Command

The DF 8 command writes a pattern to the address specified and rotates the
pattern. The test can be stopped by typing Ctrl+X.

Syntax

DFunit 8 args

unit — This parameter can be either B (byte), W (word), or L (long).

args — This parameter consists of a base address base_addr and a hex string
hex_string

Example

Scope Loop writing rotating data to a location.

>BKM>df 8 e800000 0001
DF 8 Writing Rotating Value On Location press ^X to abort
>BKM>

Scope Loop: Write Then Read — DF 9 Command

The DF 9 command consecutively writes a specified pattern to the address
specified and then reads it back. This test can be stopped by typing Ctrl+X.

Syntax

DFunit 9 args

unit — This parameter can be either B (byte), W (word), or L (long).

args — This parameter consists of a base address base_addr and a hex string
hex_string

Example

Scope Loop writing data to a location, and then reading it back.

BKM>DF 9 E80000 5555
DF 9 Writing and reading location press ^x to abort
>BKM>

Wind River Workbench
Command Reference , 2.6.1

30

Bus Test: Address — DF A Command

The DF A command tests the address bus for the purpose of locating system shorts
on your target board.

Syntax

DFunit A start_address

This command must be executed at the > BKM > prompt.

unit — This parameter can be either B (byte), W (word), or L (long). Do not leave a
space between DF and unit.

Example

>BKM>df a 1000 2000
Address Bus Test at 00001000 to 00002000. Bus size 16 bits
.........................
TEST PASSED
>BKM>

Bus Test: Data — DF D Command

The DF D command tests the data bus for the purpose of locating system shorts on
your target board.

Syntax

DFunit D address

This command must be executed at the > BKM > prompt.

unit — This parameter can be either B (byte), W (word), or L (long). By default, this
option is set to Word. Do not leave a space between DF and unit.

address — This is the address of the data bus to test.

Example

>BKM>df d 100
Data bus test at 00000100 size 16 bits
.................................
TEST PASSED
>BKM>

3 Low-Level Commands
3.1 Low-Level Commands

31

3

3.1.15 Disassemble (DI)

This command disassembles the target code beginning at a specified address or
code symbol. If no address or symbol is given, DI disassembles code starting at the
program counter. DI disassembles one screen of opcodes (20 lines) as a default, or
you can include an optional count parameter. Pressing ENTER immediately
following a DI command disassembles the next count or page of instructions in
memory.

Syntax

DI hex_addr count

hex_addr — This is an address in target memory at which to begin disassembling.
hex_addr may also be a previously defined code symbol. The default for hex_addr is
the program counter.

count — This is the number of instructions (in hex) that you wish to disassemble.
The default is one screen, or approximately 20 lines.

Pressing ENTER immediately following a DI command repeats the command for
the next count instructions.

Example

In this example, eight lines of code located at address 10000 are disassembled. The
display shows the address, the opcodes, and the disassembled instructions.

>BKM>di 40400 8
$00040400 : 0x3D600004 :ppc lis R11, 0x4
$00040404 : 0x382B2800 :ppc addi R1, R11, 0x2800
$00040408 : 0x3DA00005 :ppc lis R13, 0x5
$0004040C : 0x39AD9720 :ppc addi R13, R13, -0x68e0
$00040410 : 0x3C400005 :ppc lis R2, 0x5
$00040414 : 0x38429720 :ppc addi R2, R2, -0x68e0
$00040418 : 0x48000165 :ppc bl 0x4057c
$0004041C : 0x48000000 :ppc b 0x4041c
>BKM>

See also the SI (Single Step) command.

3.1.16 Disassemble Without Opcode (DIO)

As with the DI command, this command disassembles the target code beginning
at a specified address or code symbol. The difference between the DI command
and the DIO command is that with the DIO command, no opcode row value is
displayed. If no address or symbol is given, DIO disassembles code starting at the

Wind River Workbench
Command Reference , 2.6.1

32

program counter. DIO disassembles one screen (20 lines) as a default, or you can
include an optional count parameter. Pressing ENTER immediately following a
DIO command disassembles the next count or page of instructions in memory.

Syntax

DIO hex_addr count

hex_addr — This is an address in target memory at which to begin disassembling.
hex_addr may also be a previously defined code symbol. The default for hex_addr is
the program counter.

count — This is the number of instructions (in hex) to disassemble. The default is
one screen, or approximately 20 lines.

Pressing ENTER immediately following a DIO command repeats the command for
the next count instructions.

Example

>BKM>DIO 40400 8
$00040400 lis R11, 0x4
$00040404 addi R1, R11, 0x2800
$00040408 lis R13, 0x5
$0004040C addi R2, R2, -0x68e0
$00040410 lis R2, 0x5
$00040414 addi R2, R2, -0x68e0
$00040418 bl 0x4057c
$0004041C b 0x4041c
>BKM>

See also the DI (Disassemble) and the SI (Single Step) commands.

3.1.17 Disassemble with Code Coverage (DIP)

This command disassembles the target code and shows the corresponding
profiling data for each instruction. After each instruction, the emulator displays
the number of samples that were taken in which the program counter (at the time
of the sample) is equal to the value of the particular disassembled instruction. The
DIP command disassembles starting at either the program counter, a specified addr,
or a previously defined code symbol, for count number of instructions. The default
count is one page of disassembled instructions.

Also included in the DIP output are symbol boundaries and tabulated profile
information for each symbol. The sum of the number of hits and percentages on
the instructions inside each symbol boundary will equal the hits and percentages
shown for the symbol. The numbers shown are accumulated over total profile

3 Low-Level Commands
3.1 Low-Level Commands

33

3

time, and not for the last sample period, which can be shown by utilizing the PFA
graphical display.

Syntax

DIP hex_addr count

hex_addr — address or symbol in target memory to begin disassembling. The
program counter is the default.

count — This is the number of instructions (in hex) that you wish to disassemble.
The default is one screen.

Pressing ENTER immediately following a DIP command repeats the command for
the next count instructions.

Example

In this example, disassemble code while displaying instruction-level profiling
data, starting at the address of addone (a previously defined symbol). In addition to
the number of hits and percentages shown for each instruction, the DIP command
tallies the total hits for each symbol encountered during the disassembly.

BKM>dip addone

addone 1389

(0.148%0

00008242 link.w a6,#$0 641 (0.068%)
00008246 move.w $8(a6),d0 F1 (0.07%)
0000824A addq.w #$1,d0 107 (0.011%)
0000824C unlk a6 351 (0.037%)

NOTE: In order to have meaningful output with the DIP command, first run your
code under the PFA profiling (see PF RUN command for additional information).
Then use the DIP command.

NOTE: If no samples were taken on a particular instruction, no data will be shown
for the number of hits and percentage of time.

NOTE: Percentages are calculated to two decimal places, unlike the PFA graphical
display, where percentages are calculated using integer math.

Wind River Workbench
Command Reference , 2.6.1

34

0000824E rts 219 (0.023%)

main 591014 (63.279%)

00008250 link.w a6,#$FFFE
00008254 lea.l $84(a5),a2
00008258 moveq.l #$11,d1
0000825A move.l d1,(a2)
0000825C bra.w $82EE
00008260 move.b $C(a5),d1 220 (0.023%)
00008264 dc.w $49C1 104 (0.011%)
00008266 cmp.l (a2),d1 72 (0.07%)
00008268 bge.w $826E 289 (0.030%)
0000826C clr.l d2 67 (0.07%)
0000826E clr.w d3 78 (0.08%)
BKM>

3.1.18 Display Memory (DM)

This command returns the contents of the memory location(s) requested. The
command will display not only the address and the Hex data, but also the ASCII
representation of that data. In addition, using the syntax indicated below, the DM
command allows both memory-relative and register-relative addressing.

Syntax

DMunit args

unit — This parameter can be either B (byte), W (word), L (long), or S (string). By
default, this is set to Word. Do not leave a space between DM and unit.

args — base_addr number_of_units. Leave a space between base_addr and
number_of_units.

base_addr may be a previously defined symbol.

number_of_units is a hex value. This argument is optional.

■ If unit is set to B (byte), W (word), or L (long), and you do not enter a value
for number_of_units, then number_of_units defaults to 8.

■ If unit is set to S (string), and you do not enter a value for number_of_units,
then number_of_units defaults to 90 (5A in hex.)

■ If unit is set to S (string), and you do enter a value for number_of_units, then
the number of characters you specify are displayed unless a null character
(0x00) is encountered first. A null character will always terminate the
output.

3 Low-Level Commands
3.1 Low-Level Commands

35

3

Response: addr hex_data ascii_data

The DM command can also take an indirect address and a register-relative address
as parameters. The syntax is as follows:

DMunit (*addr) number_of_units
DMunit (offset register) number_of_units

Example 1

In this example, display 32 (20 Hex) words of memory starting at location 200010:

>BKM>DM 200010 20
00200010: FFFF DFFF FFFF FFFF FFFF FFFF FFFF FFFF
00200020: FFFF FFFE FFFF FFFD FFFF FFFF FFFF FFFF
00200030: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
00200040: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
>BKM>

Example 2

In this example, display five bytes of memory starting at location 300300:

>BKM>dmb 300300 5
00300300: FF FF FF FF FF
>BKM>

Example 3

In this example, display 50 bytes of memory at the relative-register address of 1116:

>BKM>dmb (*1116) 50
00000100: FD F0 BF AC B7 7C FA BF 9A 7C 4E 74 BA EC 3B FF.....|...|Nt..;.
00000110: FC FC FD EF 4F F8 9F F5 FF DC FF FF BA 7C B2 39....O........|.9
00000120: 7B 70 A7 85 EE FC F7 2F DA FC 67 C6 7D F4 FF FE {p...../..g.}...
00000130: E8 7C FE ED 9F F8 3B FE E7 7C F5 BE DF BC 7F 8F .|....;..|......
00000140: 87 D8 B2 6F F9 FC B3 FF DB 8C ED BF EF F4 FE 6D ...o...........m
>BKM>

Example 4

In this example, display 10 bytes of memory at the memory-relative address of A2:

>BKM>dmb (a2) 10
00001064: 00 08 00 1E 00 00 46 45 42 00 00 00 00 00 00 00 00FEB....

BKM>dr a2

00001068: 00 00 46 45 42 00 00 00 00 00 00 00 00 00 00 00 00 ..FEB.......
BKM>

Wind River Workbench
Command Reference , 2.6.1

36

3.1.19 Display Memory Double (DMD)

The DMD command is only for relevant architectures. This command obtains data
via full 64-bit read operations.

Syntax

DMD args

args — base_addr number_of_units; a previously defined symbol may be used for
base_addr.

Response: addr hex_data ascii_data

The DMD command can also take an indirect address and a register-relative
address as parameters. The syntax is as follows:

DMD (*addr) number_of_units

DMD [offset] (register) number_of_units

Example 1

In this example, display memory starting at location 200010:

>BKM>dmd 200010 20
00200010: FFFFDFFFFFFFFFFF FFFFFFFFFFFFFFFF
00200020: FFFFFFFEFFFFFFFD FFFFFFFFFFFFFFFF
00200030: FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF
00200040: FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF
00200050: FFFFFFFFFFFFFFFF FDFFFFFDFFFFFFBF
00200060: FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF
00200070: FFFFFFFFFFFFFFFF FFFFFFFFFFFFFF7F
00200080: FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFE
00200090: FFFFFFFFFFFFFFF7 FFFFFFFFFFFFFFFF
002000A0: FFFFFFFFFFFFFFFF F7FFFFFFFFFFFFFD
002000B0: FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF
002000C0: FFFFFFFFDFFFFFFF FFFFFFFFFFFFFFFF
002000D0: FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF
002000E0: FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF
002000F0: FFFFFFFBFFFFFFFF FFFFFFFFFFFFFFFF
00200100: FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF
>BKM>

Example 2

In this example, display memory at the relative-register address of 1116:

>BKM>dmd (*1116) 100
00000000: 9421FFE090610008 9041000000000000 .!...a...A......
00000010: 0000000000000000 0000000000000000
00000020: 0000000000000000 0000000000000000
00000030: 0000000000000000 0000000000000000

3 Low-Level Commands
3.1 Low-Level Commands

37

3

3.1.20 Display Registers (DR)

The DR command displays the contents of a particular register or registers. To
display all registers, enter DR ALL. If no arguments are specified, then the general
purpose registers for most processor families will be displayed/returned. The
active stack is flagged with an asterisk *.

Syntax

DR options

options can be either reg_name, the name of the register you wish to display the
value for, or group_name, the name of the register group whose registers you want
to display. If you do not specify an option then all of the registers are displayed.
You can specify more than one register at a time, leaving a space between each
reg_name or group_name.

Response: option = value

Example 1

Displaying all registers with the DR ALL command would take up too much space
here. In this example, the DR command is used to display all general purpose
registers.

>BKM>dr
R00 = 00E17F2C R01 = 00EFFF30 R02 = 00E07FF0 R03 = 00000001
R04 = 00000000 R05 = 00EFFF38 R06 = 00000001 R07 = 00EFFF3C
R08 = 000D1788 R09 = 00000008 R10 = 00000000 R11 = 00000000
R12 = 00000000 R13 = 00E22C00 R14 = 00E2847C R15 = 00000000
R16 = 00000000 R17 = 00E294F8 R18 = E396FFBE R19 = ADAEF77B
R20 = 762EFEDD R21 = F813F3A2 R22 = F3E71E7F R23 = A836CDEE
R24 = 7B7F9EFE R25 = 593A65BF R26 = 2513F4FB R27 = E2FB608F
R28 = EC6DCFDF R29 = A9F275EB R30 = 00E23144 R31 = 00E24310
CR = 20000000 MSR = 00009042 LR = 00E19870 SRR0 = 00E1986C
SRR1 = 00009002 SPRG0 = 00000000 SPRG1 = 00000000 SPRG2 = 00000000
SPRG3 = 00000000 XER = 00000300 CTR = 00000000 PC = 00E198BC
>BKM>

Example 2

In this example, set values in some registers. Then display these registers in a
different order:

>BKM>SR R00 1000000 R03 120000 R08 1234 R16 55
>BKM>DR R08 R16 R00 R03
R08 = 00001234 R16 = 00000055 R00 = 01000000 R03 = 00120000
>BKM>

See also the SR (Set Register) command.

Wind River Workbench
Command Reference , 2.6.1

38

3.1.21 Display Trace Non-Real-Time (DT)

The DT command is used to display both real-time and non-real-time trace. The
options for the DT command are different for the real-time modes.

The non-real-time trace buffer only has valid history if tracing was previously
enabled, either directly with the Trace Enable command or indirectly by setting a
data breakpoint, for example. The trace buffer contains PC-only history
information.

Syntax

DT arg1 arg2 num

arg1 — This can be specified as either B (backwards), or F (forwards). By default
this option is set to B.

arg2 — This option is set to F - full trace with data movements.

num — This is the number of locations to be displayed. By default, this is 20 lines
of information.

Example

In this example, the non-real-time trace display of three instructions that were
executed are shown:

BKM>DTB 3

19. 00ea6070 2080 move.b d1,(a0)
18. 00ea6074 10BC00AA move.l #$AA,(a0)
17. 00ea6076 2210 move.l (a0),d1
BKM>

See also the CF (Configure) and the TE (Trace Enable) commands.

3.1.22 Display License Key String (ESTKEY)

The ESTKEY command displays the actual encrypted license key string for your
emulator.

Syntax

ESTKEY

Example

>BKM>estkey

3 Low-Level Commands
3.1 Low-Level Commands

39

3

AC1WXYJNB140G7C6GFD3H28DBK909VUODBO (*) Main Key
>BKM>

3.1.23 Display License Key Support Information (ESTKEY DISPLAY)

The ESTKEY DISPLAY command returns the current Wind River license support
information.

Syntax

ESTKEY DISPLAY

Example

Below is an example of this command executed on a Wind River ICE SX unit.

>BKM>estkey display
Key In Use: Main Key

FLEXLM licensing: Enabled
Serial Number: W0000000

Group Id: 0
>BKM>

3.1.24 Fast Step (FS)

The Fast Step command allows you to step continuously through a specified code
range. To use this command, first make sure that your PC is within the code range
that you specify for fast stepping. If you do not specify a code range to Fast Step
through, the FS command reverts to a simple single step, stepping one instruction
at the current program counter.

Syntax

FS start_address end_address

In this case, start_address and end_address specify the address range for the
debugger to continue stepping until the program counter is outside the range.

Both start_address and end_address are optional parameters.

If neither parameter is specified, the FS command reverts to a simple single step,
stepping one instruction at the current program counter.

If only one parameter is given with the FS command, for example:

FS end_address

Wind River Workbench
Command Reference , 2.6.1

40

...then the start_address is taken as the current program counter. In this case, FS
steps until it is outside of the range of the current program counter, and the
end_address is given.

Examples

In the following examples, memory is at 5000 and the current program counter is
at 5000.

BKM>FS
@5004
BKM>FS 500E
@5010
BKM>FS 500E 5010
@5004
BKM>

3.1.25 Fast Step Next (FSN)

The Fast Step Next command is similar to a Fast Step in that it lets you step
continuously through a specified code range. The difference between them is that
instead of stepping into each line of code, FSN steps over each line. To use this
command, first make sure that your PC is within the code range that you specify
for fast stepping. If you do not specify a code range to Fast Step through, the FSN
command reverts to a simple step over command, stepping over one instruction at
the current program counter.

Syntax

FSN start_address end_address

In this case, start_address and end_address specify the address range for the
debugger to continue stepping until the program counter is outside of the range.

Both start_address and end_address are optional parameters.

If neither parameter is specified, the FSN command reverts to a step over, stepping
one instruction at the current program counter.

If only one parameter is given with the FSN command, for example:

FS end_address

then the start_address is taken as the current program counter. In this case, FSN
steps until it is outside of the range of the current program counter, and the
end_address is given.

3 Low-Level Commands
3.1 Low-Level Commands

41

3

Example

>BKM>fsn
@00040d88
>BKM>fsn 40d84 40e7c
>RUN>
@000406c8
>BKM>

See the FS command for more information.

3.1.26 Start Code Execution (GO)

The GO command deactivates debug mode and begins executing user code on the
target. Code execution continues until either a breakpoint occurs, the system is
reset, a double bus fault occurs, or you stop the target by typing Ctrl+C or Ctrl+X.
If breakpoints are enabled, a BKMD instruction is inserted into the target code at
each breakpoint address (TRAP instructions are used in simulation). This allows
real-time execution of target code and still allows for breakpoints to be set.

If the location where execution begins contains a breakpoint, then that breakpoint
is temporarily disabled until the program is stepped off of the breakpoint. If an
assertion has been set then, the GO command enables the trace buffer and checks
for break conditions after each instruction is executed. After the GO command is
issued, the emulator displays the >RUN> prompt, indicating that the target is
running in real-time.

Syntax

GO flag addr

flag — This parameter can be set to either T (Trace Enabled), or D (Trace Disabled.
By default, this is set to no change.

The flag argument is a way to combine the Trace Enable or Trace Disable
commands with the GO command. This is optional, and if it is not specified, then
there is no change to the trace conditions previously set. The tracing mode will
remain in effect until it is specifically changed by another GO command or by the
Trace Enable or Trace Disable commands.

addr — This parameter is the hex address where execution mode will resume.

Example 1

In this example, examine the instructions located at address 10000. Set a breakpoint
and verify that it is the only condition set up. Disable tracing. Finally, issue the GO

Wind River Workbench
Command Reference , 2.6.1

42

command, allowing Execution Mode to operate in Real-Time. Notice the prompts
that are displayed:

BKM>DI 10000 8
00100000 2200 move.l D0,D1
00100002 4282 clr.l D2
00100004 D401 add.b 1,D2
00100006 E289 lsr.l 1,D1
00100008 66FA bne.b $10004
0010000A E20A lsr.b #1,D2
0010000C 55C2 scs D2
0010000E 60FE bra.b $1000E

BKM>SB 1000E

BKM>DB

Code Break-Points

1. 01000E count = 0001 actual = 0000 enabled

BKM>GO 10000

.RUN>

!BREAK! - Breakpoint at 001000E

BKM>

Example 2

In this example, assume only one address breakpoint is set at location 1000E. First,
issue a GO command with trace enabled. Once the breakpoint is taken, issue
another GO command from the same place. Finally, explicitly disable tracing and
issue the GO command again. Notice that tracing is still enabled for the second GO
command:

BKM>GOT 10000

TRC>

!BREAK! - Code Breakpoint at 001000E

BKM>GO 10000

TRC>

!BREAK! - Code Breakpoint at 001000E

BKM>GOD 10000

RUN>

BREAK! - Breakpoint at 001000E

3 Low-Level Commands
3.1 Low-Level Commands

43

3

BKM>

See also DI (Disassemble) command, SB (Set Breakpoint) command, DB (Disable
Breakpoints) command, TE (Trace Enable) command, and TD (Trace Disable)
command.

3.1.27 Start Performance Analysis (GOP)

This command starts execution of the target system with Performance Profiling
activated. You can only issue a GOP command while the target is in Background
Mode. The GOP command begins the sampling process from the specified address
or code symbol. Issuing a GOP command automatically opens the PFA graphic
display (histogram) if the graphics switch is turned on in the PF command. If the
graphics switch is turned off, the GOP command issues the >PFA> prompt. At this
prompt, issue a DIP (Disassemble with Code Coverage) command to view the code
profiling information by disassemble instruction or by symbol, respectively.

Syntax

GOP addr

By default, addr is a program counter. A previously defined symbol may be
substituted for addr.

Examples

Table 3-1 GOP Examples

BKM>GOP Starts profiling at the current program counter and opens the PFA
histogram and chart display.

BKM>GOP 1000 Starts profiling at 1000 and opens the PFA display if the graphics are
on in the PF command.

BKM>GOP main Starts execution and profiling at main and issues the >PFA> prompt
if graphics are turned off.

NOTE: The GOP command only operates from a stopped system (>BKM> prompt).
To start performance analysis from a running system (>RUN> prompt), use the
PF RUN command.

Wind River Workbench
Command Reference , 2.6.1

44

3.1.28 Synchronized Start Code Execution (GOS)

Syntax

GOS

Resume code execution for the group of cores defined by the SCTRL command.
The resume operation is synchronized on the same edge of the JTAG clock signal.

This command also activates hardware polling and the low latency breakpoint
cross-triggering as configured by the SCTRL command.

This is a multi-core command and is only supported for the Wind River ICE SX.

See also the HALTS and SCTRL commands.

NOTE: You must disable any active breakpoints before executing the GOP
command. Use the DB (Disable Breakpoints) command or RB (Remove
Breakpoints) command.

NOTE: Performance Analysis does not operate in Trace mode. You must explicitly
disable tracing (using the TD command).

NOTE: The GOP command either directly opens the PFA graphic display or issues
the >PFA> prompt, depending on whether or not the graphics switch is turned on
or off in the PF command (option 5). If graphics are turned on, the GOP command
opens the display with parameters (PFA range, graph type, sampling period) that
are currently set in non-volatile memory. To change these parameters, use the PF
command, or change them from within the graphic display.

NOTE: From the >PFA> prompt, use the DIP command to disassemble code with
profiling data. Additionally, issue a DM, SM, DR, SR, or DI command in the form
of a special target snapshot from the >PFA> prompt. You cannot issue a trace,
breakpoint, or configuration command.

NOTE: Enter Ctrl+C from the >PFA> prompt to discontinue profiling, stop the
target, and return to a >BKM> prompt. Exiting the graphic display with the F9 key
returns you to the >PFA> prompt, so you must use Ctrl+C to stop the code
profiling.

3 Low-Level Commands
3.1 Low-Level Commands

45

3

3.1.29 Halt (HA)

Syntax

HA, HALT, or Ctrl+C

When entering background mode fails due to a register value set incorrectly by a
software application, the emulator will wait for the amount of time set in the
CF TOUT option before issuing a non-maskable break to the target. If this occurs,
the following message is displayed:

>RUN>
!BREAK! - [msg12007] User forced halt; PC = 0x000142F0
>BKM>

You can stop the target running by typing HA or HALT at the >RUN> or >TRC>
prompt. You can also stop the target or a command that is currently executing by
typing Ctrl+C or Ctrl+X.

3.1.30 Synchronized Halt (HALTS)

Syntax

HALTS

Halt code execution for the group of cores defined by the SCTRL command. The
halt operation is synchronized on the same edge of the JTAG clock signal.

This is a multi-core command and is only supported for the Wind River ICE SX.

See also the GOS and SCTRL commands.

3.1.31 Help Command (HE)

The HE command displays the emulator’s help menu. The menu shows the syntax
of the command set. You can see additional help for each command by typing the
command name as an argument.

Syntax

HE command

command is the command for which help will be displayed.

Entering HE with no arguments displays all available help.

Wind River Workbench
Command Reference , 2.6.1

46

Example 1

Display all commands:

>BKM>he
==== MISCELLANEOUS === = SOFTWARE BREAKPOINTS = == REGISTERS & MEMORY =
SH: Show History DB: Display Breakpoints DR: Display Registers
CF: Configure BD: Disable Breakpoints SR: Set Registers
CS: Chip Selects BE: Enable Breakpoints DM: Display Memory
TF: Target Flash RB: Remove Breakpoints MM: Memory Modify
IN: Initialize SB: Set Code Breakpoint SM: Set Memory
SC: System Configuration BF: Block Memory Fill

BM: Block Memory Move
SS: Search for String

===== EXECUTION ======= = STEPPING & DISASSEMBLY = ====== TRACING ======
GO : Start Execution SI : Step Instructions TD: Trace Disable
^C/^X: Stop Execution FSN: Step Over TE: Trace Enable
HALT : Stop Execution DI : Disassemble Code DT: Display Trace
DF : Run Diagnostics FS : Fast Step In SB: Set a Trace Point

ST : Stack Trace
STO: Step Out
ASM: Inline Assembler

= HARDWARE BREAKPOINTS = == PERFORMANCE ANALYSIS==
HBC :Set HB on Code PF : Perforemance Analysis
HBD :Set HB on Data DIP: Dis. with Perf. Anal.
HBTC:Set HB on N Cycle
For Help on a specific command, type: HE {command}{parm1}{cr}

>BKM>

Example 2

In this example, display help for the ASM command:

>BKM>he asm
Command Description Syntax
======= =================== =====================================
ASM Inline Assembler Form 1 ASM <start_addr> <instruction>

Form 2 ASM <start_addr>
then <instruction>.
or <enter>.......Skip this addr
or <.>...........Stop

Form 3 ASM <no addr>
takes the PC as the starting addr.

>BKM>

3 Low-Level Commands
3.1 Low-Level Commands

47

3

3.1.32 Hardware Interface Configuration (HIC)

(Wind River Probe only)

Use the HIC command to change the properties of the Wind River Probe electrical
interface.

Syntax

HIC

Entering HIC with no arguments returns a list of all user-changeable electrical
properties:

>BKM>hic
Clock Frequency in KHz CLKK[25...100000] = 16000
Clock Phase CLKPHASE[-180..+900] = 0
Clock External synchronization RTCK[ENABLE,DISABLE] = DISABLE
CLK Drive Strength CLKSTRENGTH[1..4] = 2
TMS Drive Strength TMSSTRENGTH[1..2] = 1
TDI Drive Strength TDISTRENGTH[1..2] = 1
Target Interface voltage Override VOLTAGE[3.3V,2.5V,1.8V,VIO] = VIO
Target Interface termination voltage TERMVOLTAGE[2.5V-3.3V,1.8V-2.5V] =
2.5V-3.3V
CLK Termination CLKTERM[ACTIVE_HI,ACTIVE_LO,PASSIVE] = ACTIVE_HI
TMS Termination TMSTERM[ACTIVE_HI,ACTIVE_LO,PASSIVE] = ACTIVE_HI
TDI Termination TDITERM[ACTIVE_HI,ACTIVE_LO,PASSIVE] = ACTIVE_HI
TDO Termination TDOTERM[ACTIVE_HI,ACTIVE_LO,PASSIVE] = ACTIVE_HI
GPIO0 Termination GPIO0TERM[ACTIVE_HI,ACTIVE_LO,PASSIVE] = ACTIVE_HI
GPIO1 Termination GPIO1TERM[ACTIVE_HI,ACTIVE_LO,PASSIVE] = ACTIVE_HI
GPIO2 Termination GPIO2TERM[ACTIVE_HI,ACTIVE_LO,PASSIVE] = PASSIVE
GPIO3 Termination GPIO3TERM[ACTIVE_HI,ACTIVE_LO,PASSIVE] = PASSIVE
GPIO4 Termination GPIO4TERM[ACTIVE_HI,ACTIVE_LO,PASSIVE] = PASSIVE
GPIO5 Termination GPIO5TERM[ACTIVE_HI,ACTIVE_LO,PASSIVE] = PASSIVE
GPIO6 Termination GPIO6TERM[ACTIVE_HI,ACTIVE_LO,PASSIVE] = PASSIVE
GPIO7 Termination GPIO7TERM[ACTIVE_HI,ACTIVE_LO,PASSIVE] = PASSIVE
GPIO Output Enable Value (GPIO7..GPIO0) GPIOXOE[VALUE] = 0x01
GPIO Output Value (GPIO7..GPIO0) GPIOXOV[VALUE] = 0x03
GPIO Intput Value (GPIO7..GPIO0) = 0x27
>BKM>

Example

In this example, set the strength of the TCK signal to 4.

>BKM> HIC TCKSTRENGTH 4

When all parameters are configured, you can save the configuration in XML
format using the command HIC BRDDUMP:

>BKM>hic brddump
<‘ CLKK>16000</CLKK>
<CLKPHASE>0</CLKPHASE>
<RTCK>DISABLE</RTCK>

Wind River Workbench
Command Reference , 2.6.1

48

<CLKSTRENGTH>2</CLKSTRENGTH>
<TMSSTRENGTH>1</TMSSTRENGTH>
<TDISTRENGTH>1</TDISTRENGTH>
<VOLTAGE>VIO</VOLTAGE>
<TERMVOLTAGE>2.5V-3.3V</TERMVOLTAGE>
<CLKTERM>ACTIVE_HI</CLKTERM>
<TMSTERM>ACTIVE_HI</TMSTERM>
<TDITERM>ACTIVE_HI</TDITERM>
<TDOTERM>ACTIVE_HI</TDOTERM>
<GPIO0TERM>ACTIVE_HI</GPIO0TERM>
<GPIO1TERM>ACTIVE_HI</GPIO1TERM>
<GPIO2TERM>PASSIVE</GPIO2TERM>
<GPIO3TERM>PASSIVE</GPIO3TERM>
<GPIO4TERM>PASSIVE</GPIO4TERM>
<GPIO5TERM>PASSIVE</GPIO5TERM>
<GPIO6TERM>PASSIVE</GPIO6TERM>
<GPIO7TERM>PASSIVE</GPIO7TERM>
<GPIOXOE>0x01</GPIOXOE>
<GPIOXOV>0x03</GPIOXOV>
<GPIOXIV>0x27</GPIOXIV>

>BKM>

Copy this output to a board file that you can use for every connection.

3.1.33 Internal Code Breakpoint (IHBC)

The IHBC command is used to set an internal hardware breakpoint on code
execution. This command initializes a program counter comparator with the
address of the breakpoint. The processor breaks prior to executing the instruction
at the breakpoint address.

Unlike software breakpoints (which require the emulator to overwrite the
breakpoint instruction with a HALT or Software Emulation Exception Instruction
and can only be set in read/write memory), internal hardware breakpoints can be
used to set breakpoints in read only memory (Flash or ROM).

This command is only supported with microprocessors that have program counter
comparators.

Syntax

IHCB addr

addr — This is the address of the instruction.

3 Low-Level Commands
3.1 Low-Level Commands

49

3

Example

Set an internal code breakpoint at address 0x1000.

>BKM>ihbc 1000
>BKM>

3.1.34 Internal Data Breakpoint (IHBD)

The IHBD command is used to set an internal hardware breakpoint on data
accesses. The command initializes an address comparator with the address of the
breakpoint. This command may have a data argument, and can be further
qualified when the operand access is a read or write.

The IHBD command is only supported with microprocessors that have address
and data comparators.

Syntax

IHBD optional_qualifier addr optional_data

optional_qualifier — This parameter is either R (read), W (write), or it can be left
without any qualifier, which permits any access.

addr — This parameter is the address of the operand.

optional_data — This parameter is optional, and you can use it to specify a condition
that you want met before a break occurs. Using this option you can cause the target
to break only when a specified value is read or written at the address specified in
addr.

Examples

Set an internal breakpoint at address 0x1000 and break on any access (read or
write) to this address.

BKM>ihbd 1000

Set an internal data breakpoint on any read to address 0x1000.

BKM>ihbdr 1000

Set an internal data breakpoint on any write to address 0x1000.

BKM>ihbdw 1000

Set an internal data breakpoint on a read of value of 0x00000003 at address 0x1000.

BKM>ihbdr 1000 00000003

Wind River Workbench
Command Reference , 2.6.1

50

3.1.35 Initialize System (IN)

The IN command attempts to initialize Background Mode communications. Once
proper communications are established, the emulator transfers the chip-select
table (modifiable with the CS command) and the stored register settings (which
can be modified with the SC command) to the target system using the emulator.
The IN command is automatically sent after every emulator power-up or reset. To
initialize Background Mode communications without writing the chip-select table
and register settings to the target, use the INN command.

Syntax

IN

This command initializes and downloads the chip-select and register settings, and
initializes communications with your target.

Initialization Messages

The emulator goes through the following sequence after the IN command is issued,
assuming that it is able to properly establish background mode communications
with the target:

>BKM>in

Wind River ICE Initialization Sequence.
Copyright (c) Wind River Systems, Inc., 1999-2004. All rights reserved.

Support Expires....... 5/17/07
Target Processor...... MPC8260
Wind River ICE Group ID#= 0
Wind River ICE Serial#= W0000000 Firmware= vn2.3a
Type CF For a Menu of Configuration Options
Initializing Background Debug Mode..............Successful
>BKM>

3.1.36 Initialize Communications Only (INN)

The INN command is similar to the IN command in that it places a target in
background mode. The difference is that the INN command does not download
any of the register settings or the chip-select settings that are stored in the emulator.
The INN command only places the target in background mode. If you use this

NOTE: The information displayed at an IN command varies slightly depending on
the type of system you are using. For example, the support expiry date and the
target processor may be different than what is displayed here.

3 Low-Level Commands
3.1 Low-Level Commands

51

3

command, your target settings and the settings stored in the emulator may not be
the same. The next time you power on your emulator, an IN command is
automatically performed and so your target settings are overwritten by the
emulator settings. Make sure that you are aware of this issue and try to keep your
target settings and the emulator settings in sync at all times.

Syntax

INN

Initialization Messages

The emulator goes through the same sequence as the IN command when the INN
command is issued, assuming that it is able to properly establish communications
with your target:

>BKM>inn

Wind River ICE Initialization Sequence.
Copyright (c) Wind River Systems, Inc., 1999-2004. All rights reserved.

Support Expires....... 5/17/07
Target Processor...... MPC8260
Wind River ICE Group ID#= 0
Wind River ICE Serial#= W0000000 Firmware= vn2.3a
Type CF For a Menu of Configuration Options
Initializing Background Debug Mode..............Successful
>BKM>

See the IN command for more information about initializing your system.

3.1.37 Initialize and Trap Exceptions (INE)

The INE command is a special initialization command which allows the emulator
to trap and decode exceptions that are not properly handled by the application
code. You may only use this command from a > BKM > prompt or >ERR> prompt.
The INE command cannot be used as a target snapshot.

The INE command performs the standard initialization sequence (refer to the IN
command for more information), including chip-select and register download. If
valid communications are established with the target, the INE command also
initializes all exception vectors, not including the restart vector at the first eight
longs, by writing a general exception address in each location in the exception
vector table.

After initializing with the INE command and issuing a GO command, if you hit a
breakpoint, the emulator determines if the breakpoint was at the location pointed

Wind River Workbench
Command Reference , 2.6.1

52

to by the general exception. This is the address at the end of the event to which all
uninitialized vectors point. If the target breaks at this location, the emulator
uploads the exception stack frame from the target and decodes it for you.

If you take the general exception and stopped at a breakpoint at the end of the
event, the emulator displays:

■ A !BREAK! - Exception Trap Handler message
■ The location in memory of the exception stack frame
■ The program counter where the exception took place and/or the faulted

address, if they are not the same
■ The exception type and vector offset
■ The target registers at the time of the exception

The INE command assumes that the vector table is located at 0, unless you include
a non-zero VBR as an optional parameter. If your vector table is in ROM, you can
use the INE command by giving it an arbitrary RAM-based VBR, and then
manually changing the VBR using the Set Register command (SR VBR
RAM_Address).

You only need to use the INE command once after system power-up because the
installed vectors remain loaded.

Syntax

INE VBR_addr

VBR_addr — this is an optional parameter that specifies a non-zero VBR.

Examples

RUN>
!BREAK! - Exception trap handler

Exception Stack Frame Starts at $0000F4E8
Faulted Address = $0000FB90
Current Instruction Program Counter = $000500E

Table 3-2 INE Examples

BKM>INE Initializes Background Mode communications (displays the emulator
banner), downloads the chip-select table and registers, sets all exception
vectors (except the restart vector) to an address just after the EVT, and
sets a breakpoint at that address. The VBR is assumed to be zero.

BKM>GO If a bus error occurs after code starts executing (GO), the emulator traps
the error and decodes the exception stack frame.

3 Low-Level Commands
3.1 Low-Level Commands

53

3

Special Status Word = 0225
Bus Error - Exception vector offset = 0008
(Displays Registers at the time of the Bus Error)

3.1.38 Memory Modify (MM)

Use the MM command to modify memory without a read verify.

Using the syntax described below, the MM command allows both memory-relative
and register-relative addressing.

The MM command differs from the SM command in that the MM command only
modifies the memory at a specified address; it does not read back the value to
verify that it wrote correctly.

Syntax

MMunit base_addr data

unit — This can be either B (byte), W (word), or L (long). By default, the option is
set to word. Do not leave a space between MM and unit.

base_addr — This is the beginning address of the memory that you want to modify.

data — This is the data to be written to the address specified by base_addr.

The Memory Modify command can also take an indirect address and a
register-relative address as parameters. The syntax is as follows:

MM(*addr) data

Example 1

In this example, set a word at 1000 to 0C, set a long at 0FFE to 100, and set a byte
at FB0 to 0A:

BKM>MM 1000 0C
BKM>DM 1000

00001000: 000C 4E00 4645 4200 4D41 5200 4150 5200 ..N.FEB.MAR.APR.
BKM>MML 0FFE 100
BKM>DM 0FFE

00000FFE: 0000 0100 4E00 4645 4200 4D41 5200 4150 ..N.FEB.MAR.APR
BKM>MMB FB0 0A
BKM>DM FB0

00000FB0: 0A00 0000 0000 0000 0000 0000 0000 0000

Example 2

In this example, modify the memory at the relative-register address of 1116:

Wind River Workbench
Command Reference , 2.6.1

54

>BKM>mm (*1116) 1234
>BKM>dm (*1116)
00000000: 1234 FFE0 9061 0008 9041 000C 7C7A 02A6 .4...a...A..|z..
>BKM>

3.1.39 Memory Modify — Double (MMD)

The MMD command is for specific architectures. This command modifies memory
via full 64-bit read operations.

Syntax

MMD args

args — base_addr data; a previously defined symbol may be used for base_addr.

Response: addr hex_data ascii_data

The Memory Modify Double command can also take an indirect address and a
register-relative address as parameters. The syntax is as follows:

MMD (*addr) number_of_units

Example 1

In this example, modify the memory starting at location 200010, and then display
it using the DMD command:

>BKM>mmd 100020 1234
>BKM>dmd 100020
00100020: 0000000000001234 7C6802A6906100184|h...a..|
00100030: 4800001D00E07FF0 00E22C0000E2852C H.........,....,
00100040: 00E02B1800000000 00E02A9C7C4802A6 ..+.......*.|H..
00100050: 80620008BC830010 9003000080810000 .b..............
>BKM>

Example 2

In this example, modify memory at the relative-register address of 1116 and
display it using the DMD command:

>BKM>mmd (*1116) 1234
>BKM>dmd (*1116)
00000000: 0000000000001234 9041000C7C7A02A64.A..|z..
00000010: 7C5B02A690610010 904100147C6000A6 |[...a...A..|`..
00000020: 0000000000001234 7C6802A6906100184|h...a..
00000030: 4800001D00E07FF0 00E22C0000E2852C H.........,....,
>BKM>

See also the DMD command.

3 Low-Level Commands
3.1 Low-Level Commands

55

3

3.1.40 Memory Management Unit (MMU)

The Memory Management Unit commands allow you to add and manipulate data
included in the MMU table. MMU commands are not available for all processors. If
your processor does support MMU commands, you need to enable the MMU
configuration option. See the CF command for more information on enabling the
MMU commands.

MMU Commands

Each of the commands is described in the sections that follow.

Memory Management Unit — Add (MMUA)

This command lets you add an entry to the table in your Wind River emulator.

Syntax

There are two ways that you can add an entry to your table. The first way is to enter
all of the data on the same line, as shown.

MMUA logical_address physical_address mask

logical_address — This is the virtual address that the applications use to locate a
device on your target.

physical_address — This is the physical location of the device on your target.

NOTE: Use of this command requires an MMU-enabled license.

NOTE: These MMU commands only set up the Memory Management table on the
emulator unit. They do not set up this information on the target. Any information
programmed into the Memory Management table should correspond to the
information that your code is setting up on the target.

Table 3-3 MMU Commands

MMUA Add an entry to the MMU table.

MMUL Displays the MMU table.

MMUD Deletes entries from the table, either one at a time or all at once.

Wind River Workbench
Command Reference , 2.6.1

56

The second method is to type MMUA and press ENTER.

MMUA

This method prompts you for each of the required parameters (logical_address,
physical_address, and mask).

Examples

The first example illustrates adding an entry to the MMU table in the emulator
using the MMUA logical_address physical_address mask syntax. The table is then
displayed using the MMUL command.

>BKM>mmua c000000 0 ff000000
>BKM>mmul
Index | Logical | Physical | Mask
------|--------------|--------------|-------------
01 | 0x0c000000 | 0x00000000 | 0xff000000
>BKM>

The second example illustrates adding an entry to the MMU table in the emulator
using the MMU ENTER syntax.

>BKM>mmua
Logical Address :d0000000
Physical Address :100
Mask :ff000000
>BKM>mmul
Index| Logical | Physical | Mask
-----|------------|--------------|-------------
01 | 0x0c000000| 0x00000000 | 0xff000000
02 | 0x0d000000| 0x00000100 | 0xff000000
>BKM>

See also the MMUL command.

Memory Management Unit — List (MMUL)

This command displays the MMU table, showing any entries that are included in it.

Syntax

MMUL

NOTE: The entry labelled 01 in the table is only included if you added the line to
the table using the syntax in the first example. If you only worked through the
second example, the line labelled 02 will be labelled 01, and will be the only entry
in the table.

3 Low-Level Commands
3.1 Low-Level Commands

57

3

No parameters are required for this command.

Example

This example displays the MMU table:

>BKM>mmul
Index | Logical | Physical | Mask
------|--------------|--------------|-------------
01 | 0x0c000000 | 0x00000000 | 0xff000000
02 | 0x0d000000 | 0x00000100 | 0xff000000
>BKM>

See also the MMUA command.

Memory Management Unit — Delete (MMUD)

This command deletes an entry in the MMU table.

Syntax

MMUD IndexNumber

IndexNumber — This is the index number of the line that you want to delete from
your MMU table. The index number is visible in the first column of the MMU table.

Entering MMUD without specifying an index number will delete the entire table.

Example

The following example displays the MMU table with two entries in it, deletes the
second entry, and displays the MMU table again, this time with only one entry.

>BKM>mmul
Index | Logical | Physical | Mask
------|--------------|--------------|-------------
01 | 0x0c000000 | 0x00000000 | 0xff000000
02 | 0x0d000000 | 0x00000100 | 0xff000000
>BKM>mmud 2
>BKM>mmul
Index | Logical | Physical | Mask
------|--------------|--------------|-------------
01 | 0x0c000000 | 0x00000000 | 0xff000000

See also the MMUL command and the MMUA command.

Wind River Workbench
Command Reference , 2.6.1

58

3.1.41 Linux Virtual Memory Management (MMUOS)

The MMUOS commands allow the user to define and manage a set of
addresses/offsets (symbols) to the Linux Page Directories, which the MMU engine
of the emulator firmware (and associated plugin) uses to acquire the necessary
information for Linux Virtual Memory Management emulation.

There are several MMUOS commands with various functions, as described below.

MMUOS ADD

This command adds an MMUOS entry to the list.

Currently used TYPE defines are:

String: define the MMUOS entry as a string.

Constant: define the MMUOS entry as a constant hexadecimal based value.

Syntax:

MMUOS ADD

MMUOS DELETE

This command deletes an entry from the MMUOS list.

Syntax:

MMUOS DELETE Name

Name is the entry you want to delete. If you do not specify an entry, this command
will delete the entire MMUOS list.

MMUOS DISPLAY

This command displays the MMUOS list.

NOTE: To use the MMUOS commands, you must have the CF MMU option set to
ENABLE.

3 Low-Level Commands
3.1 Low-Level Commands

59

3

Syntax:

MMUOS DISPLAY

Example:

NAME | TYPE | VALUE

pidhash | Constant | 0xc01ab094
swapper_pg_dir | Constant | 0xc01ab094
kernelsp | Constant | 0x00000000
TASK_PId_Offset | Constant | 0x00000080
TASK_THREAD_Offset | Constant | 0x00000270
TASK_HNEXT_Offset | Constant | 0x000000b4
THREAD_PGDIR_Offset | Constant | 0x0000000c
HOOK_PageAlloc | Constant | 0xffffffff

MMUOS SET

This command sets the value of an entry on the MMUOS list.

Syntax:

MMUOS SET Entry Value

Entry is the entry you want to change.

Value is the value you want to change the entry to.

3.1.42 Performance Analysis (PF)

The PF command lets you specify performance analysis parameters (code profiling
start and end range, graph type, display update mode, sample period and sample
rate, and graphics on/off mode). These parameters are stored in non-volatile
memory. When you start the PFA graphic display, it defaults to the settings last
specified with the PF command, or last set inside the PFA display using the
function keys.

Appending the RUN argument to the PF command causes the PFA profiling to start
from a running system. You must have a > RUN > prompt in order to use the PF
RUN command. Use the GOP command if you want to start performance profiling
from a stopped state (>BKM> prompt).

Syntax

PF RUN

Wind River Workbench
Command Reference , 2.6.1

60

The optional RUN keyword starts performance profiling and opens the PFA
display for a target system currently running in Real-Time (>RUN> prompt) with
no breakpoints installed.

If the RUN keyword is not included, the emulator prompts you for a set of
performance analysis parameters that are the defaults every time you start PFA
with the PF RUN or GOP commands.

Examples

1.....Performance Range = 000A0000-000DFFFF
2.....Graph Type = sample last period/manual screen update
3.....Period = 1 Second
4.....Number of Samples/Sec = 2K/sec
5.....Graphic Display = ON
6.....RUN
enter number to edit or 6 to start >

Table 3-4 PF Examples

>RUN>PF RUN Starts profiling from a running system and starts the PFA
histogram and chart display.

>BKM>PF Prompts you to input the start-up performance analysis
parameters as shown below.

NOTE: Disable active breakpoints and tracing before using the PF RUN command.
Use the BD (Breakpoint Disable) or RB (Remove Breakpoints) and DT (Disable
Trace) commands.

NOTE: The maximum performance analysis range is 256K; only symbols that are
mapped into the specified range will be shown in the PFA display. Use the PFA
range to filter out data symbols.

NOTE: You can profile your code without using the graphics display. If you execute
a PF RUN or GOP command with graphics off, the emulator issues a > PFA >
prompt, signaling that the unit is sampling your code. From the > PFA > prompt,
you may use the DIP command to disassemble code with profiling data.
Additionally, you may issue a DM, SM, DR, SR, or DI command in the form of a
special target snapshot from the >PFA> prompt. You may not issue a trace,
breakpoint, or configuration command.

3 Low-Level Commands
3.1 Low-Level Commands

61

3

See also the GOP (Start Performance Analysis) command, and the DIP
(Disassemble with Code Coverage) command for more information.

3.1.43 Project Upload (PJ UPLOAD)

The PJ UPLOAD command displays all of the project settings that are currently
loaded on your target board.

Syntax

PJ UPLOAD

Example

Output for the PJ UPLOAD command is several pages long, so only the first few
lines of the command are shown here.

>BKM>PJ UPLOAD
REM ***
REM CF CONFIGURATION
REM ***
CF TAR 8260 ; OPERATION
CF SB SB ; OPERATION
CF VECTOR HIGH ; OPERATION
..contd.

3.1.44 Remove Software Breakpoint (RB)

The RB command deletes a software breakpoint from a specified address. If no
arguments are specified, then all breakpoints are removed.

Syntax

RB addr

addr — This is the address of the breakpoint to remove.

If no addr is specified, then all breakpoints are removed.

NOTE: Enter Ctrl+C from the >PFA> prompt to discontinue profiling, stop the
target, and return to a >BKM> prompt.

NOTE: Choosing Option 6, RUN, is equivalent to using the PF RUN command.

Wind River Workbench
Command Reference , 2.6.1

62

Example

In this example, some previously set up breakpoints are displayed. Then the
breakpoint at address 10000 is removed. Finally, the removal of the breakpoint is
verified. Notice that the second code breakpoint becomes the first breakpoint after
the RB command is issued.

>BKM>db
Software Code Breakpoints
1. 00010000 count = 0001 actual = 0000 enabled
2. 00010010 count = 0001 actual = 0000 enabled
!INFO! - [msg82001] No internal hardware breakpoints installed
>BKM>RB 10000
>BKM>db
Software Code Breakpoints
1. 00010010 count = 0001 actual = 0000 enabled
!INFO! - [msg82001] No internal hardware breakpoints installed
>BKM>

See also the DB (Display Breakpoints) command.

3.1.45 Initialize Communications with Multiple Processors (RST or RSTIN)

(Wind River ICE SX only)

This command is for use during multi-core debugging. If you are debugging
multiple processors on your scan chain, you can only use the IN command to
initialize one processor at a time. The RST or RSTIN command will initialize all of
the processors included on the scan chain simultaneously. The RST command
attempts to initialize Background Mode communications for each processor on the
scan chain. Once proper communications have been established,
Wind River ICE SX transfers the Chip Select Table (which can be modified with the
CS command) and the stored register settings (which can be modified with the SC
command) to the target system via Background Mode. To initialize Background
Mode communications for multiple processors without writing the Chip Select
Table and register settings, use the RSTINN command.

Syntax

RST

or

RSTIN

See the IN command for more information.

3 Low-Level Commands
3.1 Low-Level Commands

63

3

3.1.46 Only Initialize Communications with Multiple Processors (RSTINN)

(Wind River ICE SX only)

This command is for use during multi-core debugging. If you are debugging
multiple processors on your scan chain, you can only use the INN command to put
one processor at a time into background mode. The RSTINN command will put all
of the processors included on the scan chain into background mode
simultaneously. The RSTINN command is similar to the RST or RSTIN commands
in that it places all of the processors on the scan chain in background mode. The
difference is that the RSTINN command does not download any of the register
settings or the chip-select settings that are stored in the Wind River ICE SX unit.
The RSTINN command only places the target in background mode. If you use this
command, your target settings and the settings stored in Wind River ICE SX may
not be the same. Make sure that you are aware of this issue and try to keep your
target settings and Wind River ICE SX settings in sync at all times.

Syntax

RSTINN

See also the RST command and the INN command.

3.1.47 Initialize and Trap Exceptions for Multiple Processors (RSTINE)

(Wind River ICE SX only)

This command is for use during multi-core debugging. The RSTINE command is
similar to the INE command, a special initialization command that allows
Wind River ICE SX to trap and decode exceptions that are not properly handled by
the application code. The difference is that the RSTINE command performs the INE
command on all of the processors in your scan chain simultaneously.

You can only use this command from a >BKM> prompt or an >ERR> prompt. The
RSTINE command cannot be used as a target snapshot.

The RSTINE command performs the standard Background Mode initialization
sequence (see the RST command for more information), including chip-select and
SC register download. If valid Background Mode communications are established,
the RSTINE command also initializes all exception vectors, not including the
restart vector at the first eight longs, by writing a general exception address in each
location in the exception vector table.

Wind River Workbench
Command Reference , 2.6.1

64

This address always points to the address immediately following the vector table.
At this address,Wind River ICE SX sets a software breakpoint by inserting a BGND
(Background Mode) instruction.

After initializing with the RSTINE command and issuing a GO command, if you
hit a breakpoint, Wind River ICE SX will determine if the breakpoint was at the
location pointed to by the general exception. This is the address at the end of the
event to which all uninitialized vectors point. If the target has broken at this
location, Wind River ICE SX will upload the exception stack frame from the target
and decode it for you.

If you have taken the general exception and stopped at a breakpoint at the end of
the event, Wind River ICE SX will display:

■ A !BREAK! - Exception Trap Handler message

■ The location in memory of the exception stack frame

■ The Program Counter where the exception took place and/or the faulted
address, if they are not the same

■ The exception type and vector offset

■ The target system’s registers at the time of the exception

The RSTINE command assumes that the vector table is located at 0, unless you
include a non-zero VBR as an optional parameter. If your vector table is in ROM,
you can use the RSTINE feature by giving it an arbitrary RAM-based VBR, and
then manually changing the VBR using the Set Register command (SR
VBRRAM_address).

You only need to use the RSTINE command once after system power-up because
the installed vectors will remain loaded.

Syntax

RSTINE VBR_addr

VBR_addr = this is an optional parameter that specifies a non-zero VBR.

3.1.48 Set Breakpoint (SB)

The SB command is used to set software breakpoints. These breakpoints can be
standard software breakpoints or conditional breakpoints. Set a breakpoint by
specifying only the address of the breakpoint, or add a second parameter count so
that the break occurs only when the specified address is encountered count times.

3 Low-Level Commands
3.1 Low-Level Commands

65

3

The following is a list of the conditions that may be checked using the conditional
SB command:

■ Check an address or data register for a specific value

■ Check a memory location for a particular value

When entering the Execution Mode, the mode of operation message displayed by
the GO command only indicates the mode that was started. If a conditional
breakpoint is encountered during Execution Mode, the following message is
returned:

!BREAK! - Breakpoint at location

Syntax

For setting a standard breakpoint:

SB addr

addr — the address where the breakpoint is set.

For setting a conditional breakpoint and checking a register value:

SB addr count IF (R# == value)

addr — This is the address where the breakpoint is set.

count — This is an optional parameter, and it causes a break only when the
specified address has been encountered count times.

R# — This is number of the register to be checked, such as R9.

value — This is the value that the data in the register must be equal to for the
breakpoint to be hit.

For setting a conditional breakpoint and checking a memory location:

SB addr count IF (*data == value)

addr — This is the address where the breakpoint is set.

count — This is an optional parameter, and it causes a break only when the
specified address is encountered count times.

*data — This is the address of the data to be checked.

value — This is the value that the data at the specified address must be equal to for
the breakpoint to be hit.

Wind River Workbench
Command Reference , 2.6.1

66

For setting a conditional breakpoint to enable/disable tracing:

SB addr count > TE

addr — This is the address at which the breakpoint is set.

count — This is an optional parameter, and it causes a break only when the
specified address has been encountered count times.

Example

In this example, set a conditional breakpoint to trace a specific subroutine
execution. First, set a conditional breakpoint that enables tracing during the
subroutine. Also set a conditional breakpoint that disables tracing at the end of that
subroutine. Finally, issue the GO command. Begin by displaying the code that will
execute. Notice that when entering Execution Mode, the code will be running in
real-time. Only during the subroutine will the code not run in real-time.

BKM>DI 6000 5
00060000 7003 moveq.l #3,D1
00060002 7201 moveq.l #1.D1
00060004 D4006FF8 bsr.w $7000
00060008 E289 move.l D0,D1
0006000A D401 add.b D1,D2

BKM>DI 7000 4
0007000 D081 add.l D1,D0
0007002 E289 move.l D0,D1
0007004 D401 add.b D1,D2
0007006 4E75 rts

BKM>SB 7000 > TE
BKM>SB 7006 > TD
BKM>SB 600A
BKM>GO 6000
RUN>
!BREAK! - Breakpoint at 600A
BKM>DTB

4. 0007000 D081 add.l D1,D0
3. 0007002 E289 move.l D0,D1
2. 0007004 D401 add.b D1,D2
1. 0007006 4E75 rts

BKM>

See also the GO command, DI (Disassemble) command, and DT (Display Trace
Buffer) command.

3.1.49 Set Breakpoint —Temporary (SBT)

The SBT command sets a temporary breakpoint in your code. Once the breakpoint
is encountered the first time, it disappears. In terms of syntax and usage, the SBT

3 Low-Level Commands
3.1 Low-Level Commands

67

3

command can be used in exactly the same way as the SB command. See the SB
command for more information about the syntax and use of this command.

3.1.50 System Configuration (SC)

Use the SC command to view and modify all of the internal registers in your
system. The SC command operates on a host data file which retains register values,
and it works with the SC GRP command in that the SC GRP command is needed to
enable/disable register groups (including chip selects and register settings).

If there are multiple processors included in your scan chain, the SC command will
apply to the first processor included in your scan chain. The System Configuration
settings for the second processor can be used by replacing SC with SC[1], and the
settings for the third processor can be used by replacing SC with SC[2]. In the
sections that follow describing all of the SC commands, make the replacement to
SC[1] or SC[2] so that you can access the correct processor on your scan chain.

The following table lists the many features and options supported by the SC
command.

Table 3-5 Features and Options Supported by the SC Command

SC Lists all the values stored in the host data file that belong to
currently active groups.

SC reg_name Prompts the user for input by first displaying the location and
value of the specified register.

SC reg_name value Allows the user to specify a value for a register without being
prompted for the input.

SC UPLOAD Uploads all of the current settings that are stored in the
emulator to the host. This includes values for all registers, both
the enabled and the disabled groups.

SC ASM This command generates the assembly code for the enabled
groups that would be required to initialize the registers during
run time. This code may be captured by the host, assembled,
and linked in with the rest of the system boot code.

SC DEFAULT Resets all of the emulator settings in the host data file to the
default factory settings.

Wind River Workbench
Command Reference , 2.6.1

68

The SC command allows users to display the current register settings and target
settings stored in the emulator. To display the current data file settings at the
prompt, type SC. The emulator displays the internal registers, which include the
name of the register, its target address, and the value stored in the emulator. These
values are displayed by group, and only those groups that are enabled using the
CF GRP command are displayed.

Syntax

SC

Example

The following example displays the configuration settings for an 8260 target.

>BKM>sc
****************** SIU *****************
IMMR 0F0101A8 0F000000 SIUMCR 0F010000 0E240000
SYPCR 0F010004 FFFFFFC3 SWSR 0F01000E 0000
BCR 0F010024 00000000 PPC_ACR 0F010028 02
PPC_ALRH 0F01002C 01234567 PPC_ALRL 0F010030 89ABCDEF
LCL_ACR 0F010034 02 LCL_ALRH 0F010038 01234567
LCL_ALRL 0F01003C 89ABCDEF TESCR1 0F010040 80020000
TESCR2 0F010044 00000000 LTESCR1 0F010048 00000000
LTESCR2 0F01004C 00000000 PDTEA 0F010050 00000000
PDTEM 0F010054 00 LDTEA 0F010058 00000000
LDTEM 0F01005C 00
------ CR for more information ------
****************** MEMC *****************
OR0 0F010104 FE000856 BR0 0F010100 FE000801
OR1 0F01010C FF000010 BR1 0F010108 FC001801
OR2 0F010114 FF000C80 BR2 0F010110 00000041
OR3 0F01011C FF000C80 BR3 0F010118 01000041
OR4 0F010124 FFC01480 BR4 0F010120 04001861
OR5 0F01012C FFFF03F6 BR5 0F010128 22000801
OR6 0F010134 FE000856 BR6 0F010130 E0001801
OR7 0F01013C FFFF03F6 BR7 0F010138 21000801
OR8 0F010144 00000000 BR8 0F010140 00000000
OR9 0F01014C FFFF0000 BR9 0F010148 60000081
OR10 0F010154 FFFF0000 BR10 0F010150 700000A1
OR11 0F01015C FFFF0000 BR11 0F010158 800000C1
MAR 0F010168 00000200 MAMR 0F010170 00000000
MBMR 0F010174 00000000 MCMR 0F010178 00000000
MPTPR 0F010184 3200 MDR 0F010188 00000000
PSDMR 0F010190 418F48BA LSDMR 0F010194 00000000
PURT 0F010198 08 PSRT 0F01019C 0E
LURT 0F0101A0 00 LSRT 0F0101A4 00
PCIBR0 0F0101AC 00000000 PCIBR1 0F0101B0 00000000
PCIMSK0 0F0101C4 00000000 PCIMSK1 0F0101C8 00000000
------ CR for more information ------
****************** ESTSDRAM *****************
SDRMR 0F010C94 0000 SDPSRT 0F01019C 0E
PSDMR1 0F010190 016EB452 PSDMR2 0F010190 016EB452

3 Low-Level Commands
3.1 Low-Level Commands

69

3

PSDMR3 0F010190 296EB452 MEM1 00000000 FF
PSDMR4 0F010190 296EB452 PSDMR5 0F010190 096EB452
MEM2 00000000 FF MEM3 00000001 FF
MEM4 00000002 FF MEM5 00000003 FF
MEM6 00000004 FF MEM7 00000005 FF
MEM8 00000006 FF MEM9 00000007 FF
PSDMR6 0F010190 096EB452 PSDMR7 0F010190 196EB452
MEM10 00000000 FF PSDMR8 0F010190 596EB452
PSDMR9 0F010190 418F48BA
------ CR for more information ------
****************** ESTLSDRAM *****************
SDLSRT 0F0101A4 0E LSDMR1 0F010194 2886A552
MEM11 04000000 FF LSDMR2 0F010194 0886A552
MEM12 04000000 FF MEM13 04000001 FF
MEM14 04000002 FF MEM15 04000003 FF
MEM16 04000004 FF MEM17 04000005 FF
MEM18 04000006 FF MEM19 04000007 FF
LSDMR3 0F010194 1886A552 MEM20 04000000 FF
LSDMR4 0F010194 4086A552
>BKM>

Modifying Values with the SC Command

Any register can be modified by typing the SC command followed by the name of
the register you want to modify. To set a value in Immediate Mode, the register
name followed by a value will load the value into the host data file and then the
emulator. By specifying the register name without a value, the emulator will
prompt you for the new value by displaying the current settings and asking for
input. You may also specify the form with which to input data. The default data
input format is hex, but if you include a /B at the end of the command line, the
input can be in binary format.

Syntax

SC regname /b

regname — the name of the register to be modified

/b — this is an optional parameter. If you do not include it, the data you enter for
a register is in hex format. If you do include it, the data you enter for the register is
in binary.

Example

To modify the module configuration register SYPCR in binary form, type:

>BKM>SC SYPCR /B
11111111110000110000000000000000
SYPCR 0F010004 FFFFFFC3>

Wind River Workbench
Command Reference , 2.6.1

70

The > positions the cursor just over the first bit of the SYPCR, and you can specify
each bit by typing a 1 or a 0, or by pressing the spacebar. The spacebar indicates
that you do not want to change the current setting of that bit. You have the option
of modifying all of the bits, or changing only one or two bits by using the spacebar.

Uploading the Emulator Settings

To upload the settings that are stored in the emulator to your host computer, use
the SC UPLOAD command.

Syntax

SC UPLOAD

Generating Assembly Code using the SC Command

The SC command can be used to turn all of your system configuration settings into
assembly code. The assembly code that is generated may need to be edited to suit
your specific programming needs, but the SC ASM command provides a starting
point for generating assembly code that can be inserted into the code that you are
using to bring up your board, such as a Board Support Package (BSP).

Syntax

SC ASM

Example

The following example shows how the SC ASM command can be used.

>BKM>sc asm
lis r4,0x0F00
ori r4,r4,0x0000 # r4 is the IMMR Base Address
lis r12,0x0000 # r12 is the SDRAM Base Address
lis r3,0x0E24 # SIUMCR
ori r3,r3,0x0000
lis r7,0x0001
ori r7,r7,0x0000
stwx r3,r7,r4
lis r3,0xFFFF # SYPCR
ori r3,r3,0xFFC3
lis r7,0x0001
ori r7,r7,0x0004
stwx r3,r7,r4
li r3,0x0000 # SWSR
....

3 Low-Level Commands
3.1 Low-Level Commands

71

3

Restoring the Default Configuration Settings (SC DEFAULT)

The SC DEFAULT command restores the default configuration settings for your
processor.

Syntax

SC DEFAULT

3.1.51 System Configuration Add/Delete (SCA/SCD)

The SCA command is used to add custom registers to the existing set of system
configuration registers. Custom registers can be any memory mapped peripheral
register. Custom registers will be initialized with the IN command if the custom
register group is enabled (CF GRP command). Custom registers are initialized in
the sequence that they are originally created with the SCA command. The size
(byte, word, or long word) of the register is determined by the number bytes in the
value argument. Custom registers can be saved in the emulator with the SC SAVE
command.

Syntax

SCA name_addr_value

name = The name of the register.

addr = The address of the register.

value = The initial value of the register.

Examples

Create a custom register called IO1 at address 0x1000. Initialize this byte size
register with a value of 0xde.

SCA IO1 1000 DE

Create a custom register called IO2 at address 0x1010. Initialize this word size
register with a value of 0x0.

SCA IO2 1010 0000

! CAUTION: This command causes any register settings or configuration options on
your target to be overwritten by the emulator. Make sure that you save these
settings to a file before issuing the SC DEFAULT command if you wish to preserve
them.

Wind River Workbench
Command Reference , 2.6.1

72

Create a custom register called IO3 at address 0x1020. Initialize this long word size
register with a value of 0x12345678.

SCA IO3 1020 12345678

Save these registers into the emulator NVRAM.

SC SAVE

Deleting Custom Registers (SCD)

The SCD command is used to delete custom registers.

Syntax

SCD name

name = The name of the register.

Example

Delete custom register IO3.

SCD IO3

Use the command SC UPLOAD CUSTOM to view the newly created registers.

3.1.52 System Configuration —Target (SCT)

The SCT command behaves similarly to the SC command, except that it affects only
the system configuration settings on the target. It allows you to view and modify
all of the internal registers on the target.

If you use the SCT command to configure your target, be aware that any time you
issue an IN command or power cycle the emulator, all of your target values get
overwritten by the information that is stored in the emulator. For that reason it is
best to make sure that your target settings and the settings stored in the emulator
are the same whenever possible.

The following table lists the many features and options supported by the SCT
command.

3 Low-Level Commands
3.1 Low-Level Commands

73

3

Most of the SCT commands work similarly to the SC commands described in
3.1.50 System Configuration (SC), p.67. The only difference is that with the SCT
commands the information is being taken from or added to the target rather than
the emulator. See the SC commands for syntax.

The SCT DIFF command is different from the other commands described in the SC
section. The SCT DIFF command displays both the values stored in the emulator
data file and the target values that differ.

Syntax

SCT DIFF

Example

The following example shows output from the SCT DIFF command.

Table 3-6 Features and Options Supported by the SCT Command

SCT Lists all the current target settings for the enabled groups. Any
value displayed that differs from the value stored in the
emulator is highlighted with an asterisk.

SCT COPY Copies the values that are stored on the target into the
emulator.

SCT regname Prompts the user for input by first displaying the current
target settings. Entering a value changes the value on the target
but not in the emulator.

SCT regname value Sets the target register to the value specified.

SCT DIFF This command displays the differences between the current
target values and the values stored in the host data file.

SCT UPLOAD Uploads the current target values to the host.

SCT ASM Generates assembly code for the target settings.

Wind River Workbench
Command Reference , 2.6.1

74

3.1.53 System Configuration Group Add (SCGA)

This command is used to create registers within a specified register group. The
register group may be one that already exists, in which case the new register is just
added to it, or if the register group does not exist it is created with the new register
in it. Up to 32 custom register groups can be created, a total of 960 custom registers.

Syntax

SCGA GroupName RegisterName Address Data Options

GroupName — This is the name of the register group that the new register is added
to.

RegisterName — This is the name of the register that you are creating.

Address — This is the address where the new register is located.

Data — This is the data that is stored in the register you are creating.

Figure 3-5 SCT DIFF Command

3 Low-Level Commands
3.1 Low-Level Commands

75

3

Options — There are many options associated with the SCGA command. Table 3-7
describes them.

Table 3-7 SCGA Options

Option Name Description

/cpur This option specifies that the register you are creating is a CPU core
register (that is, SPR, or other non-memory mapped register.)

/hide This option means that the register is not visible when an SC or DR
command is executed. It is only visible when an SC/SCG UPLOAD
command is issued.

/lendian This option signifies that the register you are creating is a little-endian
register. It will only work on targets that are able to switch between
little-endian and big-endian modes.

/memr This option signifies that the register is a memory mapped register. It is
the default for self-defined registers.

/no_in This option means that the register you are creating does not get set on
the target during an IN sequence.

/r, /rw These options specify Read Only and Read/Write registers. The default
is /rw.

/Sz:B, /Sz:W, /S
z:L, /Sz:D

These options force the size of the register to either Byte (8 bits), Word
(16 bits), Long (32 bits), or Double (64 bits). The default register size is
determined by the amount of characters used to specify the default
value.

/va_dr This option is used on anchor registers to make them available on a DR
command.

/w, /rw These options are Write and Read/Write flags. The default is /rw.

/wo This option defines a fixed value register. That register is not affected by
an SCT COPY command.

/w(nwf) This option specifies a write cycle (next write first.) It indicates that to
write a value to the register, you need to write the following register
value to the target first.

/r(nwf) This option specifies a read cycle (next write first.) It indicates that to
read a register, you need to write the following register value to the
target first.

Wind River Workbench
Command Reference , 2.6.1

76

Example

The first example creates a new group called SIM_MMU, with a core register
SIM_IBATOL included in it.

>BKM>SCGA SIM_MMU SIM_IBATOL 4014 00000004 /cpur
>BKM>

The second example describes the /w(nwf) option. In this case, a register called
PCICMD is created in register group MPC_PCI, however the option specifies that
the register cannot be written to unless a write to the register ADDR_04, located in
the same register group, is performed first.

SCGA MPC_PCI PCICMD 80000CFC 0600 /w(nwf) /r(nwf)
SCGA MPC_PCI ADDR_04 80000CF8 04000080 /wo /hide

See also the SCGD command.

3.1.54 System Configuration Group Delete (SCGD)

This command allows you to delete specific registers in a group or all registers in
a group.

Syntax

There are two ways to use this command. The first way causes all of the registers
included in a register group to be deleted. The register group will still be available.

SCGD Groupname

Groupname — This is the name of the register group that the registers are to be
deleted from.

This second way to use the SCGD command is to specify a register within a register
group to delete. In that case, only the specified register is deleted.

SCGD Groupname Regname

Groupname — This is the name of the group where the register to delete is located.

/r(nwa) This option specifies a write cycle (next write after.) It indicates that to
write a value to this register, you need to write the next register value to
the target afterwards.

Table 3-7 SCGA Options

Option Name Description

3 Low-Level Commands
3.1 Low-Level Commands

77

3

Regname — This is the name of the register to delete from register group
Groupname.

Example

>BKM> SCGD SIM_MMU SIM_IBATOL
>BKM>

See also the SCGA command.

3.1.55 Synchronize Cores (SCTRL)

Syntax

SCTRL [designator|ALL] [ENABLE|DISABLE] [ALL|GO|HALT|TRIGGER]

This command allows you to configure a group of cores for synchronized
operation. This is a multi-core command and is only supported for the
Wind River ICE SX.

designator is the identification of the core you want to use, as specified in the board
descriptor file. This option can also be set to ALL, meaning that all Microprocessor
type devices being debugged at this time will be synchronized. For information on
board descriptor files, see the Wind River Workbench On-Chip Debugging Guide:
Board Descriptor Files.

Specify ENABLE to enable synchronized activity; specify DISABLE to disable it.

Specify GO to synchronize cores only on GO operations.

Specify HALT to synchronize cores only on HALT operations.

Specify ALL to synchronize cores on both GO and HALT operations.

The TRIGGER option is not currently used.

Example

SCTRL ALL ENABLE ALL

This command groups all Microprocessor-type devices on the scan chain for all
synchronized actions.

See also the GOS and HALTS commands.

Wind River Workbench
Command Reference , 2.6.1

78

3.1.56 Set Verbose On (SET VERBOSE ON)

The SET VERBOSE ON command puts the emulator in verbose mode, which is
useful when diagnosing communication problems with your target. When the
emulator is not able to place your target in Background Mode after initialization, a
failure message is displayed:

Initializing Background Debug Mode...... Failed

Additional information about the failure may be obtained by using the verbose
mode at the > ERR > prompt. When in verbose mode, a number of pass/fail
diagnostic messages are displayed as the emulator attempts to place the target in
Background Mode. Using verbose mode will help you to diagnose why your target
cannot be placed in Background Mode.

Initialization Tests for JTAG Targets

Using JTAG communications, the following output occurs when a
SET VERBOSE ON command is issued followed by an IN command:

>BKM>set verbose on
>BKM>in

Wind River ICE Initialization Sequence.
Copyright (c) Wind River Systems, Inc., 1999-2004. All rights reserved.

Support Expires.......5/17/07
Target Processor...... MPC8260
Wind River ICE Group ID#=0
Wind River ICE Serial#=W0000000 Firmware= vp2.3a
Type CF For a Menu of Configuration Options
Testing Communications to Hardware Interface......Passed
Checking Paddle Board.............................Passed
Driving HRESET to be High.........................Passed
Driving HRESET to be Low..........................Passed
Waiting HRESET Low Acknowledge..................Passed
Attempting JTAG communication.....................Passed
Waiting for HRESET to be released.................Passed
Testing for target STOP State.....................Passed
Comparing target CPU with CF setting..............Passed
Waiting for HRESET High Acknowledge.............Passed
Checking IR length..............................Passed
Testing JTAG Communication........................Passed
Attempting to Locate IMMR register................Passed
Loading Internal Registers........................Passed
Testing JTAG Communication........................Passed
Attempting to restore CPU context.................Passed
>BKM>

NOTE: The tests described may vary depending on your target architecture.

3 Low-Level Commands
3.1 Low-Level Commands

79

3

The following is a brief description of the tests with some possible reasons why
each test would fail.

Testing Communications to Hardware Interface

This tests the hardware connectivity, and examines the communications path
between the host and the emulator. If the test fails, ensure that you have the power
properly connected and turned on, that the emulator is correctly connected to the
host computer, and that your emulator hardware is properly connected to the
target.

Checking Paddle Board

If this test fails, verify that the paddle board is correctly connected to the emulator
unit. If it fails, it is likely that there is a problem with this paddle board. Verify that
the connection between the paddle board and the unit is secure, and that all of the
pins are intact.

Driving HRESET to be High

This function tests the RESET signal of the JTAG connector to verify that it is high.
The emulator is not driving the RESET signal during this test, so the target must
drive the RESET signal via a pull-up resistor. If this test fails, check to see if the
target board has a pull-up resistor on the RESET signal to the HRESET pin of the
JTAG connector. Also, check the target board reset logic and verify that it is not
continually driving RESET low.

Driving HRESET to be Low

The RESET signal is a bi-directional signal for your unit. The emulator drives the
RESET signal low and clocks it back in to verify that it is low. If this test fails, you
may have contention on your reset signal. Check to see if a device on your target
board is continually driving reset high. Verify that the device on your target board
that is driving the RESET signal is an open collector device with a pull-up resistor.

Attempting JTAG communication

During this test, the emulator stops the processor and attempts to establish JTAG
communications. If this fails, check to see that your hardware is connected
properly, and that the tests preceding this one passed accordingly. It is also possible
that there is contention on your board.

Wind River Workbench
Command Reference , 2.6.1

80

Waiting for HRESET to be released

The emulator only drives RESET low for a specified period of time. After RESET is
driven low for the allotted time, it tri-states the RESET driver and clocks the RESET
signal back in to see if the RESET signal went high. It continues to check for RESET
to go high until is sees it go high or until you type Ctrl+X. If this test fails, check to
see if your target board reset logic is still driving the RESET signal low. Also check
that your target board has a pull-up resistor to drive RESET high.

Testing for target STOP State

This test verifies that the processor stopped during the preceding JTAG
Communications test by polling the processor status. If the target is still running,
this test fails.

Comparing Target CPU With CF Setting

This test verifies that you are properly configured for the appropriate target
processor by comparing the processor type on your target with the processor type
specified in your board file. If the test fails, use the CF TAR command to properly
configure your target. For example, if this test fails and you are using an MPC8260
board, execute a CF TAR 8260 command sequence in the OCD Command Shell.

Testing JTAG Communication

This tests the JTAG communication using a slow internal clock rate.

Attempting to Locate IMMR register

This test only completes for PowerPC 82xx targets. It attempts to verify the location
of the IMMR register, which serves as a pointer to all of the other registers. If it fails,
none of the internal registers are accessible. If the test fails, check the reset
configuration word, located in the Flash, and ensure that it is set to the correct
value.

Loading Internal Registers

Once background communications are established, the emulator downloads
register values from the debugger NV-RAM to the target. It will only download
register values for those register groups that are enabled. The CF GRP command
can be used to view and change the groups that are enabled. If this test fails, verify
that your register values are correct.

3 Low-Level Commands
3.1 Low-Level Commands

81

3

Testing JTAG Communication

This test examines the JTAG Communication between the emulator and the target
using the internal clock rate for which the emulator is configured. If this test fails,
use the CF CLK command to lower the internal clock rate.

Attempting to restore CPU context

This test restores the processor scan chains.

Initialization Tests for BDM Targets

Using BDM communications, the following output occurs when a
SET VERBOSE ON command is issued followed by an IN command:

>BKM>set verbose on
>BKM>in

Wind River ICE Initialization Sequence.
Copyright (c) Wind River Systems, Inc., 1999-2004. All rights reserved.

Support Expires.......5/17/07
Target Processor...... MPC860
Wind River ICE Group ID#=0
Wind River ICE Serial#=W0000000 Firmware= vp2.3a
Type CF For a Menu of Configuration Options
Testing Wind River ICE Communication...........Passed
Driving HRESET to be High...................Passed
Driving HRESET to be Low....................Passed
Waiting for HRESET to be Released...........Passed
Testing for target FREEZE State.............Passed
Attempting to Enable Background Mode........Passed
Testing BDM Communication...................Passed
Loading Internal Registers..................Passed
Testing BDM Communication...................Passed
Initializing CPU registers..................Passed
>BKM>

Here is a brief description of the tests with reasons why each test might fail.

Testing Communication

This item checks the hardware connectivity, and examines the communications
path between the host and the emulator. If this fails, ensure that power is properly
connected and turned on, that the emulator is correctly connected to the host
computer, and that your emulator hardware is properly connected to the target.

Driving HRESET to be High

This function tests the RESET signal of the BDM connector to verify that it is high.
The emulator is not driving the RESET signal during this test, so the target must

Wind River Workbench
Command Reference , 2.6.1

82

drive the RESET signal via a pull-up resistor. If this test fails, check to see if the
target board has a pull-up resistor on the RESET signal to the HRESET pin of the
BDM connector. Also, check the target board reset logic and verify that it is not
continually driving reset low.

Driving HRESET to be Low

The RESET signal is a bi-directional signal for your unit. The emulator drives the
RESET signal low and clocks it back in to verify that it is low. If this test fails, you
may have contention on your RESET signal. Check to see if a device on your target
board is continually driving RESET high. Verify that the device on your target
board that is driving the RESET signal is an open collector device with a pull-up
resistor.

Waiting for HRESET to be Released

The emulator only drives RESET low for a specified period of time. After the
debugger has driven RESET low for the allotted time, it tri-states the RESET driver
and clocks the RESET signal back in to see if the signal went high. It continues to
check for RESET to go high until is sees it go high or until you type Ctrl+X. If this
test fails, check to see if your target board reset logic is still driving the RESET
signal low. Also check that your target board has a pull-up resistor to drive RESET
high.

Testing for target FREEZE State

This test determines whether or not the processor is in Freeze state. The emulator
monitors the VFLS signals to see if the processor is frozen. These signals are high
if the processor is in the Freeze state. If the Freeze signal is being used instead of
the VFLS signals, then the emulator checks that the Freeze signal is high. This test
usually fails if the Hardware Reset Configuration word is incorrect. Verify that bits
D9 and D10 of the Reset Configuration Word are driven high and bits D11 and D12
are driven low during the reset. Bits D9 and D10 select the VFLS functionality on
the appropriate multifunction pins.

Attempting to Enable Background Mode

The emulator checks to make sure the processor is in background mode. The
emulator also initializes registers in accordance with its CF parameters.

Testing BDM Communication

The emulator tests the serial communications channel by writing a test pattern to
register R00 and then reading register R00 to verify that the write was correct.

3 Low-Level Commands
3.1 Low-Level Commands

83

3

Loading Internal Registers

The emulator initializes the internal target registers. This test is not performed if an
INN command is used to initialize the target. The emulator initializes all registers
in enabled register groups. Register groups can be enabled or disabled with the
CF GRP command.

Testing BDM Communication

The emulator test the serial communication channel a second time by writing a test
pattern to register R00 and then reading register R00 to verify that the write was
correct. This test is repeated because the debug port may be inadvertently disabled
by the previous tests. If this test fails, check to make sure that the initial value for
the SUIMCR register does not disable the debug port.

Initializing CPU registers

The emulator initializes CPU registers that are loaded. If this fails, check your
register values.

3.1.57 Show History (SH)

The emulator automatically logs all of its command responses and error messages
in an internal buffer. The SH command allows you to display this text buffer, thus
displaying a history of the command responses.

Essentially, any ASCII characters that the emulator transmits to a host PC, either in
direct communication mode or as a response to a source-level debugger command,
are logged in this buffer. The system does not log commands that were received
from the host, only responses. In most cases, the emulator echoes back the received
command before it processes it, so that this echo of the original command is in the
history buffer.

Binary interfaces to source-level debuggers denote a special case of the SH
command. The emulator does not log its binary response to the source-level
debugger command; however, before the unit sends its binary packet to the host,
it logs the ASCII equivalent response in the history buffer. This can be extremely
useful in trapping target problems that may be hidden by the source debugger
interface. For example, the target may take a double bus fault, but the emulator has
no way to communicate this specific problem to the host debugger. The SH
command allows you to view the output history log, which in this case lets you
display the entire ASCII double bus fault message as you would have seen it had
you been in direct ASCII communication mode.

Wind River Workbench
Command Reference , 2.6.1

84

The emulator uses a 2K circular text buffer to log the history. The SH command
allows you to display the log backward (B) or forward (F) in the buffer. The default
is to display the log backward. The SH command also takes the number of lines
you wish to display as an optional parameter. If you use this parameter, the SH
command displays that number of lines forward or backward from the current
buffer pointer. The SH command, without the lines parameter, resets the buffer
pointer to the very last command that was logged. A carriage return immediately
following an SH command displays the next page of the buffer, either forward or
backward, depending on the previous SH command. The SH command is valid
from a > BKM >, > ERR >, >RUN> or >TRC> prompt.

Syntax

SHdirection number_of_lines

direction — This determines whether you display the log forward (F) or backward
(B). By default this option is set to B. Do not leave a space between SH and the
direction parameter.

number_of_units — This specifies the number of logged ASCII lines you wish to
display.

A carriage return immediately following a SH command repeats the SH command,
while updating the buffer pointer either forward or backward.

Examples

3.1.58 Single-Step Instruction(s) (SI)

The Single-Step command steps the emulator count number of target instructions.
The default count is one instruction. There are optional arguments for displaying
registers and disassembling the last instruction that was just executed.

Table 3-8 SH Examples

>BKM>SH Resets the buffer pointer to the last command that
was logged and displays a full page of the log,
backward.

>BKM>ENTER Displays the next page of the log, backwards.

>BKM>SHF 8 Displays the next eight lines in the buffer, forward.

3 Low-Level Commands
3.1 Low-Level Commands

85

3

Syntax

SIarg1arg2 count

arg1 — This argument is the DR command, which displays all registers.

arg2 — This argument is the DI command, which disassembles the last instruction
executed.

count — This is the number of target instructions to execute.

Note that the positions of arg1 and arg2 can be reversed with no difference in the
output.

Example

In this example, single-step the target for one instruction. View the contents of the
registers and the instruction that was executed.

BKM>SIDIDR
D0 = 00000000 D1 = 00000000 D2 = 00000000 D3 = 00000000
D4 = 00000000 D5 = 00000000 D6 = 00000000 D7 = 00000000
A0 = 00200000 A1 = 00000000 A2 = 00000000 A3 = 00000000
A4 = 00000000 A5 = 00000000 A6 = 00000000 A7 = 00000000
USP= 00000000 SSP= 00000000 PC = 00000000 SR = 0000
VBR= 00000000 SFC = 0000 DFC = 0000

MOVE.W #$7F00,(A0)
BKM>

3.1.59 Set Memory (SM)

This command sets memory with data in byte, word (default), or long format,
starting at addr.

Using the syntax indicated below, the SM command allows both memory-relative
and register-relative addressing.

The SM command differs from the MM command in that the MM command only
modifies the memory at a specified address whereas the SM command reads back
the value to verify that it wrote correctly.

Syntax

SMunit base_addr data1 optional_data2 optional_dataN

unit — This parameter can be either B (byte), W (word), or L (long). By default, this
option is set to Word.

addr — This parameter is the target address at which to begin setting data.

Wind River Workbench
Command Reference , 2.6.1

86

data — This parameter can be one or more Hex strings of data in units.

The Set Memory command can also take an indirect address and a register-relative
address as parameters. The syntax is as follows:

SM(*addr)

Example 1

In this example, display the contents of memory both before and after setting three
bytes of memory to the specified values:

BKM>DMB 200010 3
200010: FF 0F 00
BKM>SMB 200010 0B 7F 34
BKM>DMB 200010 3
200010: 0B 7F 34
BKM>

There is also an optional Task Identifier (tid=) field for Linux. The Task Identifier
relates the address to the Linux Process Identifier. Some PowerPC targets (such as
the PPC405) employ a PID register, which is not the same as the Linux pid and tid.
When you need to cross reference a Linux User Space address, assuming the
MMUL tables have been preset to know the PIDs for a given operating system, you
may enter a relative address with the value to access the correct physical address
on the target. Up to five (0,1,2...4) PID cross-referenced addresses (in the MMUL
table) are allowed.

Example 2:

>BKM>sml tid=1 5500 12345678

In this example, the TID is 1, the Logical Address is 0x5500, and the value is
12345678.

See also the DM (Display Memory) command and the MM (Memory Modify)
command.

3.1.60 Set Memory Double (SMD)

The SMD command is for supported architectures. This command is similar to the
SM command in that it sets memory with data starting at addr. However, it will
write data with full 64-bit write operations.

NOTE: Linux assigns TIDs as needed. Use the Linux command ps –a at a Linux
shell to get the list of Process IDs for all user processes.

3 Low-Level Commands
3.1 Low-Level Commands

87

3

Using the syntax indicated below, the SMD command allows both
memory-relative and register-relative addressing.

Syntax

SMD addr data

addr — This is the base address at which to start adding data.

data — This is the data to be added.

Example

The following example first reads the memory at location 200010, then writes some
data to the location, and then reads it again.

>BKM>dmd 200010 3
00200010: FFFFDFFFFFFFFFFF FFFFFFFFFFFFFFFF
00200020: FFFFFFFFFFFFFFFD
>BKM>smd 200010 0B 7F 34
>BKM>dmd 200010 3
00200010: 000000000000000B 000000000000007F
00200020: 00000000000000344........
>BKM>

3.1.61 Set Register (SR)

The SR command sets the register reg_name to the values designated by hex_string.
The all parameter is useful when clearing all of the registers.

Syntax

SR reg_name1 data1 reg_nameX dataX

reg_name1 — The name of the first register to have data added to it.

data1 — The data to add to reg_name1.

The reg_nameX dataX can be repeated for as many registers as you want to modify
at one time.

The other syntax that can be used for this command is shown below.

Example

In this example, display registers R00 and R01. Then modify the values of those
registers using the SR command, then display them again to verify their contents.

Wind River Workbench
Command Reference , 2.6.1

88

>BKM>dr r00 r01
R00 = 00000000 R01 = 00001234
>BKM>sr r00 12345678 r01 88888888
>BKM>dr r00 r01
R00 = 12345678 R01 = 88888888
>BKM>

See also the DR (Display Registers) command.

3.1.62 Search for String (SS)

The Search for String command allows you to search for a string in memory. The
string may be an ASCII string or Hex data. The search begins at strt_addr and ends
at end_addr. If the string exists more than once in the block of memory, pressing
ENTER continues the search.

Syntax

SSunit strt_addr end_addr string

unit — This parameter can be either H (hex) or A (ASCII). By default, this option is
set to ASCII.

strt_addr — This option is the starting address of the search.

end_addr — This option is the ending address of the search.

string — This is the string to search for.

Example

In this example, search for the ASCII string hello between 10000H and 12000H.
Find one string and continue the search until all of the locations are checked. There
is only one occurrence of this string in the memory that is searched.

BKM>SSA 10000 12000 hello
String found at 1000f
BKM>cr
String not found
BKM>

3.1.63 SY Commands

The following SY commands are low-level system commands used to provide
detailed control and diagnostic information obtained via the JTAG scan chain
information.

3 Low-Level Commands
3.1 Low-Level Commands

89

3

SY

For PowerPC processors, entering SY with no arguments lists all available SY
commands and their syntax. These will vary by target processor. The following
example shows the output displayed after an SY command on a PPC750FX target.

>BKM>sy
0. SYNC : Synchronize the emulator with the target.
1. REV : Display the PVR Register value.
2. pci mapa : Poll all 32 devices on the MAP_A bus.
3. pci mapb : Poll all 32 devices on the MAP_B bus.
4. pci rega : Display the MAP_A PCI bridge Registers.
5. pci regb : Display the MAP_B PCI bridge Registers.
6. JTAG stat : Display all types of status for multiple devices
7. JTAG rd : Read the Boundary scan chain for this device
8. JTAG ID : Read the device ID for this device
9. JTAG sca : Analyze the topology of a mutiple device chain
10. JTAG wr<v><l><c><d> : Write BSDL bit <v> to level <l> control <c>

direction <d>.
11. BS hrst : Display Boundary Info while HRESET is asserted
12. BS : Display Boundary Information.

13. BKM bsdl : Toggle the BSDL external pins.
14. BKM : Toggle the JTAG external pins.
15. PROMPT : Force the prompt to BKM mode.
16. CHAIN : Display the length of the SELECTED chain.
17. MAP : Display CS mapping.
18. PROG1 {ADDR} : Download basic program to target at ADDR.
19. PROG2 {ADDR} : Download read/write program to target at ADDR.
20. PROG3 {ADDR} : Download exception program to target at ADDR.
21. CMD {-l} <v> : Issue a COP command v = COP command, -l = loop.
22. BIST {-l} <v> : Issue a JTAG command v = COP command, -l = loop.
23. BAT : Display the BAT registers formatted.
24. RSTCONF <val><size><Ftype><PSpan> : Program the PQII Conf Word.
25. REPORT : Display COP/JTAG -> Core Information.
26. CLAMP INIT : Freeze the cores clocks and release HRESET
27. CLAMP : Freeze the cores clocks and hold HRESET
28. CONNECT : Synchronize the emulator with the TAP controller
29. READFPU : Display Floating Point Registers
30. UMM <addr> <v> : Unaligned Modify Memory Long (32bit only).
31. FREERUN <addr> : Run the processor without trapping exceptions.
32. HRESET LOW : Assert and HOLD the HRESET signals.
33. HRESET HIGH : Release the HRESET signal.
34. 107 sdram : Initialize MPC107 for SDRAM using mapB.
35. CACHE L1 : Display L1 cache data
36. CACHE L2 : Display L2 cache data
37. CACHE L3 : Display L3 cache data

NOTE: Some JTAG diagnostic commands are specific for different processors, and
do not necessarily support them all. Refer to command descriptions for
information on which processors each command supports.

Wind River Workbench
Command Reference , 2.6.1

90

38. PQII <immr location> : Fined the IMMR and disable the watchdog timer.
>BKM>

SY BAT

This command obtains the BAT registers and formats them to determine memory
blocks, sizes, and configurations. It is for use with PowerPC processors.

Name PageIndex BaseAddress Size W I M G Access Protection
IBAT0 fff00000 fff00000 16MEG 0 1 0 0 Supr & User Read Only
IBAT1 00000000 00000000 128MEG 0 0 1 0 Supr & User Read/Write
IBAT2 fe000000 fe000000 16MEG 0 1 0 0 Supr & User Read/Write
IBAT3 00000000 00000000 128K 0 0 0 0 Disabled
DBAT0 fff00000 fff00000 16MEG 0 1 0 0 Supr & User Read Only
DBAT1 00000000 00000000 128MEG 0 1 1 0 Supr & User Read/Write
DBAT2 fe000000 fe000000 16MEG 0 1 0 0 Supr & User Read/Write
DBAT3 00000000 00000000 128K 0 0 0 0 Disabled

SY BS

Scans out the boundary scan chain and displays most signals and their logic state.
For use with PowerPC processors. The (s) indicates a static signal read directly
from the pin. All others are based on the last clock before the processor has
stopped, as shown below.

Scan Address = ffffffff
QREQ = LOW QACK(s) = LOW
MCP(s) = HGH SRESET(s) = HGH
HRESET(s) = HGH CKSTPIN(s) = HGH
INT (S) = LOW AACK(s) = HGH
ABB = HGH DBB = HGH
DBG(s) = HGH DBDIS(s) = HGH
TS = HGH TA(s) = HGH
TEA(s) = HGH BR = HGH
BG(s) = LOW GBL = HGH
DRTRY(s) = HGH ARTRY = HGH
SMI(s) = HGH TLBSYNC = HGH
CKSTPOUT = LOW
PLL0..3(s) = 4 133Mhz
TSIZ = 0
TTx = 1f

SY CHAIN

This command scans and counts each bit throughout the scan chain to determine
its exact length. This is helpful to determine which processor you are working

3 Low-Level Commands
3.1 Low-Level Commands

91

3

with. Some PowerPC processors have scan chains that are not supported. This will
be the quickest indication that the processor and emulator are not compatible. The
command can be used with PowerPC processors.

Chain Length in bit = 7488

SY CMD value

This command provides a way to send JTAG commands directly to the JTAG
interface. The value(s) are any of the JTAG commands supported by the processor
you are working with. For use with PowerPC processors.

CPU is Stopped, BIST is Complete

SY PCI

Displays the MPC 106 configuration registers in big endian mode. This command
also displays the current map being used. For use with PowerPC processors.

Using MAP b........
Device and Vendor ID = 00021057 Memory Starting Address = ffff0800
Memory Ending Address = ffff0f07 Processor Configure #1 = ff341c48
Processor Configure #2 = 00000000 Memory Configure #1 = ffb80003
Memory Configure #2 = 0000020c Memory Configure #3 = 02300000
Memory Configure #4 = 25402220 Memory Bank Enable = 03
PCI Status/Command = 00800006 Power Management = dd000000
PCI Error Address = 00000000

System Program (SY PROG)

The SY PROG command is used to write a tight loop of code at a given address.
This command is used to see if the processor is operational (can execute code out
of internal RAM, for example). The SY PROG1 command writes a tight loop
consisting of NOPs followed by a branch back. The SY PROG2 command writes a
tight loop to load and store instructions.

This command is only supported for PowerPC microprocessors.

Syntax

SY PROGn

n = 1, 2

Wind River Workbench
Command Reference , 2.6.1

92

Examples

Write a NOP loop to internal RAM, located at 0x2000 offset from IMMR register
(0xff000000):

BKM>sy prog1 ff002000

Write Load/Store loop to external RAM located at 0x40000:

BKM>sy prog2 40000

SY REV

This command scans out the PVR register of the processor and formats the value
into the product name and revision. For use with PowerPC processors.

Example

>BKM>sy rev
Part PVR Value = 0x70000202, IBM 750FX2 Revision 2.2
>BKM>

SYNC or SY PROMPT

When the emulator enters error mode, the JTAG interface can re-synchronize and
then the scan chain can be read. In some cases, this information can help diagnose
the reason for an error condition. This can be used with PowerPC processors.

Example

>BKM>sy prompt
Synchronization Complete. Current PC = 0xfff00100
>BKM>

System Map (SY MAP)

The SY MAP command provides the chip select start and end addresses for each
chip select when using the emulator with a PowerPC 8xx target.

Syntax

SY MAP

3 Low-Level Commands
3.1 Low-Level Commands

93

3

Example

BKM> sy map
IMMR = FF000000 -> FF003FFF
CS0 = FFF00000 -> FFFFFFFF
CS1 = FFE00000 -> FFE7FFFF
CS2 = 30000000 -> 3000FFFF
CS3 = 04000000 -> 0407FFFF
CS4 = 00000000 -> 003FFFFF
CS5 = DISABLED..
CS6 = DISABLED..
CS7 = DISABLED..
BKM>

3.1.64 Trace Disable (TD)

The TD command disables the non-real-time software trace. Software trace is
disabled by default. Note that software trace is automatically activated (and a
>TRC> prompt appears) if you set a software breakpoint on ROM code or a
software data breakpoint.

Syntax

TD

No parameters are required for this command.

3.1.65 Target Diagnostic Functions (TDF)

The target diagnostic functions are similar to the diagnostic functions (DF
commands) described previously in this chapter. The difference is that in this case,
the diagnostics are run directly on the target instead of through the emulator.

Typing TDF LIST at the >BKM> prompt displays a list of all of the available target
diagnostic functions. Typing TDF VERSION displays the versions of each of the
target diagnostic functions.

The code that runs the diagnostic will be loaded at the memory address indicated
by the CF WSPACE configuration option. Make sure you are not trying to test the
same memory area that you are specifying in CF WSPACE.

There are five target diagnostic function tests available.

TDF 0 — Single-pass Simple Memory Test

This diagnostic function runs a simple RAM test through a single pass only.

Wind River Workbench
Command Reference , 2.6.1

94

Syntax

TDFunit 0 startaddress endaddress

unit — This can be either B (Byte), W (Word), or L (Long).

startaddress — This is the address where the diagnostic test is to start.

endaddress — This is the address where the diagnostic test is to finish.

Example

>BKM>tdf 0 1000 1100
Single-pass Simple Memory Test loaded. Now executing TDF.
Test Complete
>BKM>

TDF 1 — Continuous Single Memory Test

The TDF 1 command runs a simple RAM test continuously. This test can be
stopped by typing Ctrl+X.

Syntax

TDFunit 1 startaddress endaddress

unit — This can be either B (Byte), W (Word), or L (Long).

startaddress — This is the address where the diagnostic test is to start.

endaddress — This is the address where the diagnostic test is to finish.

Example

>BKM>TDF 1 1000 1100
Continuous Simple Memory Test loaded. Now executing TDF.
test looping press ^X to abort pass count 1
test looping press ^X to abort pass count 2
test looping press ^X to abort pass count 3
test looping press ^X to abort pass count 4
test looping press ^X to abort pass count 5
test looping press ^X to abort pass count 6
test looping press ^X to abort pass count 7
test looping press ^X to abort pass count 8
test looping press ^X to abort pass count 9
test looping press ^X to abort pass count 10
test looping press ^X to abort pass count 11
test looping press ^X to abort pass count 12
test looping press ^X to abort pass count 13
test looping press ^X to abort pass count 14
test looping press ^X to abort pass count 15
test looping press ^X to abort pass count 16
test looping press ^X to abort pass count 17
>BKM>

3 Low-Level Commands
3.1 Low-Level Commands

95

3

TDF 2 — Complete Memory Test, Single Pass

The TDF 2 command runs a complete RAM Test for a single pass.

Syntax

TDFunit 2 startaddress endaddress

unit — This can be either B (Byte), W (Word), or L (Long).

startaddress — This is the address where the diagnostic test is to start.

endaddress — This is the address where the diagnostic test is to finish.

Example

>BKM>TDF 2 1000 1100
Single-pass Complete Memory Test loaded. Now executing
TDF.
Test Complete
>BKM>

TDF 3 — Complete Memory Test, Continuous

The TDF 3 command runs a complete RAM Test continuously.

Syntax

TDFunit 3 startaddress endaddress

unit — This can be either B (Byte), W (Word), or L (Long).

startaddress — This is the address where the diagnostic test is to start.

endaddress — This is the address where the diagnostic test is to finish.

Example

>BKM>tdf 3 1000 1100
Continuous Complete Memory Test loaded. Now executing TDF.
test looping press ^X to abort pass count 1
test looping press ^X to abort pass count 2
test looping press ^X to abort pass count 3
test looping press ^X to abort pass count 4
test looping press ^X to abort pass count 5
test looping press ^X to abort pass count 6
test looping press ^X to abort pass count 7
test looping press ^X to abort pass count 8
test looping press ^X to abort pass count 9
>BKM>

Wind River Workbench
Command Reference , 2.6.1

96

TDF 4 — CRC Test

The TDF 4 command runs a CRC test over a specified range of memory.

Syntax

TDFunit 4 startaddress endaddress

unit — This can be either B (Byte), W (Word), or L (Long).

startaddress — This is the address where the diagnostic test is to start.

endaddress — This is the address where the diagnostic test is to finish.

Example

>BKM>tdf 4 1000 1100
CRC-16 Test loaded. Now executing TDF.
Completed... CRC-16 Value = 101
>BKM>

3.1.66 Target Diagnostic Function, Double (TDFD)

The TDFD command is for JTAG processors only. This command performs the
same functions as the TDF commands with full 64-bit read/write operations.

Syntax

The syntax for the TDFD command is the same as the syntax for all of the other TDF
commands, except that the unit option is not available since the unit is already set
to double with this command.

TDFD testnumber startaddress endaddress

testnumber — This is the number of the diagnostic test you wish to run. There are
five target diagnostic tests available, labelled 0 - 4.

startaddress — This is the address where the diagnostic test is to start.

endaddress — This is the address where the diagnostic test is to finish.

See the TDF commands for more information.

3.1.67 Trace Enable (TE)

The TE command enables the non real-time software trace. Software trace is
disabled by default. Note that software trace is automatically activated (a >TRC>

3 Low-Level Commands
3.1 Low-Level Commands

97

3

prompt appears) if you set a software breakpoint on ROM code or a software data
breakpoint.

Syntax

TE

No arguments are required for this command. See also the CF (Configure)
command.

3.1.68 TF Flash Configure Command (TF)

The TF commands are associated with programming flash memory. There are a
number of usable TF commands, each with specific functions, as described in this
section.

Target Flash Configure (TF CONF)

Use the TF CONF command to configure the emulator for flash programming and
erasing. This command allows you to specify the device type, target RAM
workspace, and base address. The actual erase and program instructions are
downloaded into the RAM workspace. The target processor then executes the
erase and program algorithms out of the RAM workspace.

Syntax

There are two different ways to use the TF CONF command. The first way is to use
the following syntax.

TF CONF

With this syntax, you are prompted to specify the start address of the RAM
workspace, and the start address of the flash bank on your target.

The syntax for the second method of using the TF CONF command is as follows:

TF CONF device_number RAM_workspace_address workspace_size base_address

device_number — This selects a device from a list of available devices. This is the
same number that is used with the TF DEVICE command.

NOTE: To use this command syntax to configure the emulator for flash
programming, first use the TF DEVICE command to specify the flash device on
your target and the TF CONF SIZE command to specify the RAM workspace size.

Wind River Workbench
Command Reference , 2.6.1

98

RAM_workspace_address — This is the base address for the target RAM workspace.

workspace_size — This is the size (in bytes) required for the erase and program
algorithm in RAM.

base_address — The is the base address (in hex) of the Flash device.

Example

The first example assumes that flash device AMD 29F040 (512x8) 4 devices is
selected using the TF DEVICE command, and uses the TF CONF syntax. Select
0xff002000 for the RAM workspace. The base address of the flash should be
0xffc00000.

>BKM>tf conf
- BDM TFlash programming Interface Settings -
Current device selected : AMD 29F040 (512 x 8) 4 Devices
Start of work space in target : 00000000 > 0FF00200
Start address of the flash : FFFFFFFF > FFC00000
>BKM>

The second example uses the TF CONF device_number RAM_workspace_address
workspace_size base_address syntax. The device number for the AMD 29F030 (512x8)
4 devices is 12, the RAM workspace address is 0xFF002000, the workspace size is
1968 bytes, and the flash base address is 0xFFD00000.

>BKM>TF CONF 12 FF002000 1968 FFD00000
12 FF002000 1912 FFD00000
>BKM>

See also the TF DEVICE command and the TF CONF SIZE command.

Target Flash Configure - Size (TF CONF SIZE)

Use the TF CONF SIZE command to specify the RAM workspace size. This is the
size (in hex) required for the erase and program algorithm in RAM.

Syntax

TF CONF SIZE size_in_hex

Example

>BKM>TF CONF SIZE 0xFFFFFFFF
>BKM>

3 Low-Level Commands
3.1 Low-Level Commands

99

3

Target Flash Device (TF DEVICE)

Use the TF DEVICE command to select the particular flash device for erasing and
programming that is included on your target.

Syntax

TF DEVICE

When you enter this command, Workbench displays a list of all available flash
devices, each with a corresponding device number. You can find your device on
the list and enter the device number that appears beside it.

Example

Display the device list.

>BKM>tf device
00: AMD 29LV004T (512 x 8) 2 Devices
01: AMD 29LV004B (512 x 8) 1 Device
02: AMD 29LV004B (512 x 8) 2 Devices
03: AMD 29LV004B (512 x 8) 4 Devices
04: AMD 29LV008BT(1024 x 8) 1 Device
05: AMD 29LV008BB(1024 x 8) 4 Devices
06: AMD 29F010 (128 x 8) 1 Device
07: AMD 29F010 (128 x 8) 2 Devices
08: AMD 29F010 (128 x 8) 4 Devices
09: AMD 29F010 (128 x 8) 8 Devices
10: AMD 29F040 (512 x 8) 1 Device
11: AMD 29F040 (512 x 8) 2 Devices
12: AMD 29F040 (512 x 8) 4 Devices -> Selected <-
13: AMD 29F040 (512 x 8) 8 Devices
14: AMD 29F080/81(1024 x 8) 1 Device
15: AMD 29F080/81(1024 x 8) 2 Devices
16: AMD 29F080/81(1024 x 8) 4 Devices
17: AMD 29F080/81(1024 x 8) 8 Devices
18: AMD 29F016/17(2048 x 8) 1 Device
19: AMD 29F016/17(2048 x 8) 2 Devices
20: AMD 29F016/17(2048 x 8) 4 Devices
21: AMD 29F016/17(2048 x 8) 8 Devices
-> More <-

Keep pressing ENTER to display additional pages of flash devices. At the end of
the list, Workbench displays a New Choice > prompt.

286: ATMEL 49BV16xT (1024 x 16) 2 Devices
287: ATMEL 49BV6416T(4096 x 16) 1 Device
288: ATMEL 49BV6416 (4096 x 16) 1 Device
289: SST 39xF016 (2048 x 8) 1 Device
290: SST 39xF016 (2048 x 8) 2 Devices
291: SST 39xF040 (512 x 8) 1 Device
292: SST 39xF040 (512 x 8) 2 Devices
293: SST 39xF160 (1024 x 16) 1 Device

Wind River Workbench
Command Reference , 2.6.1

100

294: SST 39xF160 (1024 x 16) 2 Devices
295: STM M58BW016BB(512 x 32) 1 Device
296: STM M58BW016BT(512 x 32) 1 Device
297: FrSc 5554H7Fv135(256 x 64) 1 Device
298: Toshiba 58FVB641(8192 x 8) 1 Device
299: Toshiba 58FVT641(8192 x 8) 1 Device
300: Toshiba 58FVT641(4096 x 16) 1 Device
301: Toshiba 58FVT641(4096 x 16) 2 Devices
New Choice >

At the New Choice > prompt, enter the number of your selection and press ENTER.
This specifies your flash device.

Target Flash Erase (TF ERASE)

Use the TF ERASE command to erase a flash device. Prior to using the TF ERASE
command, configure the emulator properly for flash programming using the
TF DEVICE, TF CONF, and TF TIMEOUT commands. The erase algorithm is
downloaded into RAM workspace (which is specified using the TF CONF
command) on the target.

Syntax

TF ERASE optional_addr1 optional_addr2

optional_addr1 — This is the first address to erase (it must be a sector boundary)

optional_addr2 — This is the last address to erase (it must be a sector boundary)

If no optional addresses are given, the entire flash device is erased.

Examples

Erase the entire flash device, which was configured previously using the TF CONF
and TF DEVICE commands.

BKM>tf erase
AMD 29F016 (2048 x 8) 2 Devices
Erasing Flash(s)...Done
BKM>

Erase the flash devices from sector boundary address 0xFFC00000 to 0xFFD00000

BKM>tf erase ffc00000 ffd00000
AMD 29F016 (2048 x 8) 2 Devices
Erasing Flash(s)...Done
BKM>

See also the TF CONF, TF DEVICE, and TF TIMEOUT commands.

3 Low-Level Commands
3.1 Low-Level Commands

101

3

Target Flash Test (TF TEST)

Use the TF TEST command to test erasing and programming target flash. The
benefit of TF TEST is that a file is not required to program flash. Instead, the
emulator directly programs a 0x2ff Byte test pattern into the target flash. The
TF TEST command downloads the erase and program algorithms into RAM
workspace (as determined by the TF CONF command). After downloading these
algorithms, execute the erase/program algorithms with the GO command. The
processor executes a software breakpoint when the algorithm completes.

The test pattern is *WRS_FLASH*_ (ASCII format) repeated for 0x2ff bytes.

Syntax

TF TEST
GO addr

addr — This is the start address of the erase and/or program algorithm.

Example

Test erasing and programming target flash:

BKM>tf test
The flash algorithm : AMD 29F080/81 (1024 x 8) 4Devices
has been loaded. The remaining Workspace is filled with a pattern
Flash to be programmed starts at = $E0000000
End of current flash device selected at = $E03FFFFF
End of the workspace is at = $00000EA0
Programming algorithm starts at (PC set to this address) = $0000002C
Erase algorithm starts at = $0000001C
Work space starts at = $00000000
Work space ends at = $00000EA0
Test pattern starts at = $000004A0

BKM>go 0000001c
RUN>
!HALT! - [msg90004] Unexpected software breakpoint encountered; PC=00000298

BKM>dm e0000000
E0000000: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

BKM>tf test
The flash algorithm : AMD 29F080/81 (1024 x 8) 4Devices
has been loaded. The remaining Workspace is filled with a pattern
Flash to be programmed starts at = $E0000000
End of current flash device selected at = $E03FFFFF
End of the workspace is at = $00000EA0
Programming algorithm starts at (PC set to this address) = $0000002C
Erase algorithm starts at = $0000001C
Work space starts at = $00000000
Work space ends at = $00000EA0

Wind River Workbench
Command Reference , 2.6.1

102

Test pattern starts at = $000004A0
BKM>go 0000002c
RUN>
!HALT! - [msg90004] Unexpected software breakpoint encountered; PC=0xFF0023DC
BKM>dm e0000000
E0000000: 2A45 5354 5F46 4C41 5348 2A5F 2A45 5354 *WRS_FLASH*_*WRS
BKM>
E0000010: 5F46 4C41 5348 2A5F 2A45 5354 5F46 4C41 _FLASH*_*WRS_FLA
BKM>
E0000020: 5348 2A5F 2A45 5354 5F46 4C41 5348 2A5F SH*_*WRS_FLASH*_
BKM>
E0000030: 2A45 5354 5F46 4C41 5348 2A5F 2A45 5354 *WRS_FLASH*_*WRS
BKM>
E0000040: 5F46 4C41 5348 2A5F 2A45 5354 5F46 4C41 _FLASH*_*WRS_FLA
BKM>
E0000050: 5348 2A5F 2A45 5354 5F46 4C41 5348 2A5F SH*_*WRS_FLASH*_
BKM>
E0000060: 2A45 5354 5F46 4C41 5348 2A5F 2A45 5354 *WRS_FLASH*_*WRS

Target Flash Timeout (TF TIMEOUT)

The TF TIMEOUT command determines the amount of time in seconds that
Wind River Workbench waits when erasing flash. Larger flash devices require a
longer timeout period.

Syntax

TF TIMEOUT optional_seconds

optional_seconds — This is the time in seconds that Wind River Workbench waits
when erasing flash.

If no parameter is specified, this command shows you the present value for
timeout. Timeout values for both erase timeout and program timeout are
displayed.

The TF TIMEOUT command only allows you to modify the erase timeout value.
The erase timeout value can be any number of seconds between 1 and 500. The
program timeout value can be any number of seconds between 1 and 8. To modify
the program timeout value, use the following syntax:

TF PROGTIMEOUT seconds

Examples

Set the erase timeout period to 30 seconds.

>BKM>tf timeout 30
>BKM>

3 Low-Level Commands
3.1 Low-Level Commands

103

3

Set the progtimeout period to 6 seconds.

>BKM>tf progtimeout 6
>BKM>

Check the present timeout periods.

>BKM>tf timeout
erasetimeout is 30 seconds
progtimeout is 6 seconds
>BKM>

Target Flash Upload Sector (TF UPLOAD SECTOR)

This command provides a list of the starting addresses of all of the different sectors
of your flash device based on the flash algorithm that you have specified.

Syntax

TF UPLOAD SECTOR

Example

>BKM>tf upload sector
Sector 0 : 0x00000000
Sector 1 : 0x00040000
Sector 2 : 0x00080000
Sector 3 : 0x000C0000
Sector 4 : 0x00100000
Sector 5 : 0x00140000
Sector 6 : 0x00180000
Sector 7 : 0x001C0000
>BKM>

3.1.69 Trigger On Breakpoint (TRG)

(Wind River ICE SX only)

This command allows you to set a trigger on a breakpoint. You can use the TRG
command to set a trigger that will be executed when the CPU hits an internal
hardware or software code breakpoint.

Syntax

[SB, IHBC] breakAddress > TRG

SB sets the system to trigger on a software breakpoint.

IHBC sets the system to trigger on an internal hardware breakpoint.

Wind River Workbench
Command Reference , 2.6.1

104

breakAddress = the breakpoint address.

Example

In the following example, a conditional software breakpoint is set at address 41244.
After 100 executions of code at this address, the target will break, at which point
the unit will set the trigger out signal based on the parameters set in the CF
options. An internal hardware breakpoint is also set at 40578 and when this is hit,
it will break and set trigger out in the same manner as above.

BKM > SB 41244 100 > TRG
BKM > IHBC 40578 > TRG
BKM > DB

Software Code Breakpoints
1. 00041233 count = 0100 actual = 0000 enabled Trigger is ENABLED

Hardware Breakpoints
2. HBC 00040578 BRK enabled (i0.0) Trigger is ENABLED

BKM > GO 40400
RUN >
!BREAK! - [msg11001] Internal hardware breakpoint; PC = 0x00040578
BKM > GO

RUN >
!BREAK! - [msg12000] Software breakpoint; PC = 0x00041244
BKM >

3.1.70 Trigger Pulse Out (TRGOUT)

(Wind River ICE SX only)

This command generates a pulse on the Out pin of the Trigger port on the
Wind River ICE SX unit. It can be used to trigger devices such as oscilloscopes and
logic analyzers.

The pulse that is generated has a fixed width and an amplitude of 3.3 volts. The
pulse can have either a positive or a negative amplitude, which is set using the
CF TRGOUT command and setting it to either PULSEHI or PULSELO. PULSEHI
triggers a pulse with a positive amplitude, and PULSELO triggers a pulse with a
negative amplitude.

Syntax

TRGOUT

See also the CF command.

105

 4
Scripting Commands

4.1 Introduction 105

4.2 Initialization Commands 106

4.3 Download Commands 108

4.4 Breakpoint Commands 111

4.5 Complex Breakpoint Commands 111

4.6 Run/Step Commands 114

4.7 Memory Commands 117

4.1 Introduction

The commands described in this chapter can be included in a script, which you can
then run in Wind River Workbench using the following steps:

1. In the Workbench toolbar, select Window > Show View > OCD Command
Shell.

2. In the OCD Command Shell, click the Settings button.

The Settings dialog appears.

3. Enter the full path to your script in the PlayBack File field, or click Browse to
navigate to a desired script.

Wind River Workbench
Command Reference , 2.6.1

106

4. Click OK.

You are returned to the OCD Command Shell.

5. In the OCD Command Shell, click the Playback File button.

Workbench runs the specified script.

4.2 Initialization Commands

4.2.1 LOADREG

Syntax

LOADREG filename

Load register values from a saved register file to the emulator NVRAM.

4.2.2 LOADSIMREG

Same as LOADREG.

4.2.3 SAVEEMULATORREG

Syntax

SAVEEMULATORREG filename

Upload all register values from the emulator NVRAM to a specified file. This
command saves values for all registers, from both enabled and disabled register
groups.

Bear in mind that the register values on the target may not be identical to the
register values in the emulator NVRAM. To compare the register values on the
target with the register values in the emulator NVRAM, use the command
SCT DIFF.

4 Scripting Commands
4.2 Initialization Commands

107

4

4.2.4 SAVESIMREG

Same as SAVEEMULATORREG.

4.2.5 SCUPLOAD

Same as SAVEEMULATORREG.

4.2.6 SAVETARGETREG

Syntax

SAVETARGETREG filename

Upload all register values from the target to a file. This command saves values for
all registers, from both enabled and disabled register groups.

Bear in mind that the register values on the target may not be identical to the
register values in the emulator NVRAM. To compare the register values on the
target with the register values in the emulator NVRAM, use the command
SCT DIFF.

4.2.7 SCTUPLOAD

Same as SAVETARGETREG.

4.2.8 SAVENVRAM

Syntax

SAVENVRAM filename

Run a PJ UPLOAD command and save the output to the specified file. The
PJ UPLOAD command returns the emulator’s current configuration settings and
the state of register groups (enabled or disabled), as well as Memory Management
Unit (MMU) and boot line (BL) information, if available.

This command returns information only from the emulator NVRAM; it does not
return information from the target.

Wind River Workbench
Command Reference , 2.6.1

108

4.2.9 RESTORENVRAM

Syntax

RESTORENVRAM filename

Set the emulator’s configuration options and other project settings to the values
from the specified file. Use this command to restore the emulator NVRAM to
settings you have previously saved using the SAVENVRAM command.

4.3 Download Commands

4.3.1 LOAD

Syntax

LOAD filename offset

Load the specified file to target memory. offset is a value in hex added to the
address built into the image.

4.3.2 DOWNLOAD

Same as LOAD.

4.3.3 DOWN

Same as LOAD.

4.3.4 LOADVERIFY

Syntax

LOADVERIFY filename offset

Downloads a specified file to the target and verifies all memory writes to the target.
offset is a value in hex added to the address built into the image.

4 Scripting Commands
4.3 Download Commands

109

4

4.3.5 LOADANDVERIFY

Same as LOADVERIFY.

4.3.6 VERIFYONLY

Syntax

VERIFYONLY filename offset

Verifies the specified file against target memory. This command does not
download the specified file. offset is a value in hex added to the address built into
the image.

4.3.7 VERIFY

Same as VERIFYONLY.

4.3.8 LOADMACRO

Syntax

LOADMACRO filename

Loads all macros coded in the specified file. This command allows only one
filename.

4.3.9 LOADMACROS

Syntax

LOADMACROS filename_1, filename_2, ...

Loads all macros coded in the specified files. This command allows multiple
filenames. Separate filenames with a space, a comma, and another space.

Wind River Workbench
Command Reference , 2.6.1

110

4.3.10 FLASHIT

Syntax

FLASHIT filename offset

Program the specified file to flash memory with the specified offset.

4.3.11 UPLOADBIN

Syntax

UPLOADBIN filename start_addr end_addr [append]

Upload a raw binary file to the specified filename over the range bounded by
start_addr and end_addr. Use the argument append to upload the data without
overwriting any previously existing data in the specified file.

The command is a byte-oriented access request; that is, the order of bytes in the file
is the same as the order of bytes in memory.

4.3.12 SETBLOCK

Syntax

SETBLOCK number

Set the size of the download.

number is the number of kilobytes used on download. The default is 2.

4.3.13 BLOCKSIZE

Same as SETBLOCK.

4.3.14 BLOCK

Same as SETBLOCK.

4 Scripting Commands
4.4 Breakpoint Commands

111

4

4.4 Breakpoint Commands

4.4.1 BREAKENABLE

Enable all breakpoints.

4.4.2 BREAKDISABLE

Disable all breakpoints.

4.4.3 BREAKDELETE

Delete all breakpoints.

4.4.4 BREAKIN

Syntax

BREAKIN symbol or address

Set a breakpoint at the specified symbol or address.

4.5 Complex Breakpoint Commands

The nine commands in this section all use the same syntax, which take the
following four arguments: specifier, action, data, and [firmware_command].

specifier - This can be any of the following:

■ symbol_name

■ function_name

■ filename:line_number

■ address

Wind River Workbench
Command Reference , 2.6.1

112

■ (address)

■ start_address . . end_address

action - This can be any of the following:

■ TE (Trace Enable)

■ TD (Trace Disable)

■ TC (Trace Around Here)

■ BRK (Break Here)

■ TRIG (Trigger Trace Here)

■ EXTRIG

data - This is a numeric value. Leading zeroes indicate the size of the data
comparison. It can also take the format xx/xxxx/xxxxxx/xxxxxxxx.

[firmware_command] -- This syntax is allowed, but the functionality is not
supported in Workbench. That is, using a firmware command as an argument here
will not cause an error, but Workbench will not execute the command.

4.5.1 SETSB

Syntax

SETSB specifier action data

Set a software breakpoint at the specified location.

4.5.2 SETHBC

Syntax

SETHBC specifier action data

Set a hardware code breakpoint at the specified location.

NOTE: Implementation of these commands varies between processor families.
Depending on which processor you are using, you may not have access to all types
of internal hardware breakpoints.

4 Scripting Commands
4.5 Complex Breakpoint Commands

113

4

4.5.3 SETHBD

Syntax

SETHBD specifier action data

Set a hardware data breakpoint at the specified location.

4.5.4 SETHBDR

Syntax

SETHBDR specifier action data

Set a hardware data breakpoint on any read to the specified location.

4.5.5 SETHBDW

Syntax

SETHBDW specifier action data

Set a hardware data breakpoint on any write to the specified location.

4.5.6 SETIHBC

Syntax

SETIHBC specifier action data

Set an internal hardware code breakpoint at the specified location.

4.5.7 SETIHBD

Syntax

SETIHBD specifier action data

Set an internal hardware data breakpoint at the specified location.

Wind River Workbench
Command Reference , 2.6.1

114

4.5.8 SETIHBDR

Syntax

SETIHBDR specifier action data

Set an internal hardware data breakpoint on any read to the specified location.

4.5.9 SETIHBDW

Syntax

SETIHBDR specifier action data

Set an internal hardware data breakpoint on any write to the specified location.

4.6 Run/Step Commands

4.6.1 G

Send a GO command to the emulator to start the target running.

4.6.2 H

Send a HALT command to the emulator to stop the target CPU and force the target
into background mode. Also updates all open Workbench views.

4.6.3 ISTEP

Step one assembly-language instruction.

Syntax

ISTEP count

4 Scripting Commands
4.6 Run/Step Commands

115

4

ISTEP will always step at least one instruction, so count is the number of steps
beyond one you want to step. For example, the command ISTEP 5 will step six
times.

4.6.4 ISTEPOV

Step over one assembly-language instruction.

Syntax

ISTEPOV count

count is the number of times Workbench will step over.

4.6.5 PLAY

Play back commands from the required file.

Syntax

PLAY filename

4.6.6 RUNTO

Direct the emulator to step over branches. A temporary breakpoint is set at the next
instruction and a GO command is issued. If a branch condition exists, all code in
the branch will be executed before the breakpoint is taken.

Syntax

RUNTO symbol or address

Example

RUNTO main.c#65

4.6.7 SETPC

Set the Program Counter to a specified symbol or address.

Wind River Workbench
Command Reference , 2.6.1

116

Syntax

SETPC symbol or address

4.6.8 STEP

Step a source line into a function.

Syntax

STEP count

count is the number of times Workbench will step.

4.6.9 STEPOV

Step a source line over a function.

Syntax

STEPOV count

count is the number of times Workbench will step over.

4.6.10 STEPOUT

Step to the first line outside of the current function.

4.6.11 WAIT

Display an hourglass for the indicated number of seconds. Takes one argument,
which is the number of seconds to wait before continuing; the limit is 10.

Syntax

WAIT number_of_seconds

NOTE: For previous users of visionCLICK: in visionCLICK, the WAIT command
could be set to any number of seconds. Workbench manages its backend
differently, so the WAIT command is limited to ten seconds.

4 Scripting Commands
4.7 Memory Commands

117

4

4.7 Memory Commands

4.7.1 DUMPMEM

Syntax

DUMPMEM filename addr number_of_elements element_size

Dump memory at specified address addr to a specified file.

4.7.2 APPENDMEM

Syntax

APPENDMEM filename addr number_of_elements element_size

Append memory at specified address addr to a specified file, without overwriting
any data that already exists in that file.

Wind River Workbench
Command Reference , 2.6.1

118

119

 5
Wind River ICE Network

Operation Commands

5.1 Wind River ICE SX Network Command Reference

5.1.1 APPLOAD

Wind River ICE SX supports dynamic firmware uploads. The APPLOAD
command can be used to dynamically activate any set of firmware that is stored in
the Wind River ICE SX unit. The APPLOAD command returns a port number.

Syntax

APPLOAD processor:designator:Filename

processor = This is the processor that is resident on your target, such as MPC8260.

designator = This is the reference designator that is assigned to the device that you
are loading the firmware for. It is the designator that identifies that device in the
JTAG scan chain, and it is the parameter that you specify in your board file.

Filename = This is the name of the board file to be loaded.

designator and Filename are optional in this command. If there is only a single
device on the JTAG scan chain, you only need to specify a processor.

NOTE: This chapter applies only to the Wind River ICE SX emulator.

Wind River Workbench
Command Reference , 2.6.1

120

Example

The following example describes loading a file called Motorola_2_PPC8260.brd
for a MPC8260 processor, with reference designator U0. Then the DISPLAY
command is used to display the active firmware.

>NET>appload MPC8260:U0:Motorola_2_PPC8260.brd

Loading Application from FFS...

Wind River ICE Target Driver
Copyright (c) 2004, Wind River Systems, Inc. All rights reserved

Firmware Type PPC82XX Version 1.0q Created On: Jul 23 2002 17:45:20
Starting TCP BKM tools server ESTD0 [1234] PASSED
Starting TCP BKM tools server TCPD0 [1235] PASSED
Starting TCP BKM tools server LOADD0 [1236] PASSED
Starting TCP TGTVIO server TVIOD0 [1237] PASSED
Starting with Saved Parameters....................... PASSED

WIND River ICE UJD module
Copyright (c) 2002, Wind River Systems, Inc. All rights reserved

Firmware Type UJD Module Version 1.0m Created On: Jul 23 2002 14:47:02
Initializing the UJD module.......................... PASSED
Attaching to the UJD Module.......................... PASSED
!PORT! - [1234] Attached to the Application Task.... PASSED
>NET>display
module_name:parms port
ppc82xx.elf:U0:Motorola_2_PPC8260.brd 1234
servers.elf N/A
>NET>

See the DISPLAY command for more information.

5.1.2 ARP

Syntax

arp [-a] [-d] [-s] [host]

Synopsis

Performs operations on the network ARP table

Description:

The ARP command allows for various operations on the network Address
Resolution Protocol table (ARP table). The ARP table translates IP addresses into

5 Wind River ICE Network Operation Commands
5.1 Wind River ICE SX Network Command Reference

121

5

Ethernet addresses and vice versa. The simplest form of the ARP command is ARP
host where host is the IP address of another node. The command will display the
associated Ethernet address for host if it is in the ARP table. The command ARP -a
displays the entire contents of the ARP table.

It is possible to remove a host from the ARP table with the command ARP -d host
where host is the IP address of the node you wish to delete. This is sometimes
useful for testing or if a host changes its Ethernet address.

Hosts can be manually added to the ARP table with the command ARP -s host
ether_addr. In this case, host is the IP address you wish to associate with ether_addr.
ether_addr is a 6 byte number delimited with colon characters (for example,
00:0A:00:99:01:ff).

5.1.3 BKM

Syntax

BKM [-n]

Synopsis

Opens a channel to the >BKM> board prompt

Description

The BKM command allows users to open a channel to the BDM board and interact
with the target via the BKM commands. Upon entering BKM Mode, the >NET>
prompt will disappear and be replaced by a >BKM> prompt. All commands and
responses will be from the BDM card in the Wind River ICE SX. To exit from the
>BKM> prompt, type CTRL+D. This will return a >NET> prompt. The -n option
suppresses sending an initial new line character. This is useful in some instances
since a new line will restart an old BKM command.

Before a BKM command will pass, you need to perform an APPLOAD. See the
APPLOAD command.

Example:

NET> bkm

Entering BKM Mode.
Opening channel ... Complete. ^D to exit BKM mode.

>BKM>
>BKM> in

Wind River Workbench
Command Reference , 2.6.1

122

Wind River ICE Initialization Sequence.
Copyright (c) Wind River Systems, Inc., 1999-2004. All rights reserved.

WIND River ICE UNIT#= none

Support Expires....... 01/01/1995
Warranty Number....... demo
Target Processor...... 68341
Serial Baud Rate...... 38400
Host Debugger......... PSOS

VisionControl Serial#= none Firmware=c2.8a / 6.0x
Type CF For A Menu of Configuration Options
Initializing Background Debug Mode........Successful
>BKM> ^D
NET>

5.1.4 BOOTLOG

Syntax

BOOTLOG

Description

The BOOTLOG command displays the tests that were run during the last
Wind River ICE SX reset. The information that is displayed includes information
about the network configuration for Wind River ICE SX, as well as all of the
hardware and firmware tests that were run and whether or not they passed.

Example

The following is the display that appears when the BOOTLOG command is entered
at the >NET> prompt.

**
Wind River ICE SX Ethernet Platform
Copyright (c) 2004, Wind River Systems, Inc. All Rights Reserved
**
Firmware Type Wind River ICE SX BSP Version 1.2f Created On: Jun 10 2004
14:06:39
Configuring TCP/IP Network Suite:
IP Address......DHCP

DHCP Sending DISCOVER 0 - 1 - +
DHCP OFFER received
DHCP Sending REQUEST 0 - 1 - +
DHCP ACK received

DHCP Server at 172.16.12.114 returned IP address 172.16.17.35
DHCP IP address 172.16.17.35 lease time - 7 days, 0 hours, 0 min

Netmask.........DHCP = 0xFFFF0000

5 Wind River ICE Network Operation Commands
5.1 Wind River ICE SX Network Command Reference

123

5

Default Gateway DHCP = 172.16.1.1
Routing.........Disabled
MAC Address.....00:A0:1E:00:32:E7
Pseudo device initialization.................PASSED
TFTP device initialized......................PASSED
Wind River ICE SX device initialized............PASSED
Starting TCP/IP on Port A 10BaseT............PASSED
Starting TCP/IP on Port B 100BaseT...........PASSED
Starting DHCP daemon server..................PASSED
Initializing FFS Driver......................PASSED
FFS disk initialized 2640 Kbytes free........PASSED
FFS disk 0 percent fragmented................PASSED
Disk volume 45.0.0 initialization............PASSED
Starting TCP TGTCONS server TGTCONS [1232]..PASSED
Starting WRS shell server
Wind River ICE SX System Shell - Type HELP for list of commands
>NET>

5.1.5 CAT

Syntax

CAT filename

filename = This is the name of the file in Wind River ICE SX that you wish to
display.

Description

The CAT command displays the contents of a file in the Wind River ICE SX Flash
File System in ASCII format.

Example

The following example uses the CAT command to display the contents of the
8260_2.xml file in ASCII format.

>NET>cat 8260_2.xml
<DEVICE_TABLE>

<TABLE_MODE>SLOW</TABLE_MODE>
<TABLE_CLOCK>6MHZ</TABLE_CLOCK>
<!--Enable Multiple devices on a chain-->
<TABLE_MULTI>ENABLE</TABLE_MULTI>
<DEVICE>

<NAME>8260_1</NAME>
<DESCRIPTION>8260 Processor</DESCRIPTION>
<TYPE>MICROPROCESSOR</TYPE>
<TARGET>8260</TARGET>
<DESIGNATOR>U0</DESIGNATOR>
<IR_LEN>8</IR_LEN>

</DEVICE>

Wind River Workbench
Command Reference , 2.6.1

124

<DEVICE>
<NAME>8260_2</NAME>
<DESCRIPTION>8260 Processor</DESCRIPTION>
<TYPE>MICROPROCESSOR</TYPE>
<TARGET>8260</TARGET>
<DESIGNATOR>U1</DESIGNATOR>
<IR_LEN>8</IR_LEN>

</DEVICE>
</DEVICE_TABLE
>NET>

5.1.6 COMTAP

Syntax

COMTAP process_name [-o | -i] [-b]

where process_name is the name of the server to tap (for example, bkm or tcpd)

[-o | -i] will trace only output or only input (both by default)

[-b] will monitor binary protocols (ASCII by default)

Synopsis

Traces host/Wind River ICE SX interactions.

Description:

COMTAP is a flexible tool for tracing host/Wind River ICE SX interactions.

Examples:

NET>comtap bkm -o /* Will echo BKM data to a telnet session */
NET>comtap bkm -o -b /* Will display dump of BKM data to telnet session*/
NET>comtap udpd /* Will monitor all UDP debugger transactions */
NET>comtap loadd -o /* Will monitot all LOADER ASCII data net->host */

Exceptions:

■ Monitoring tcpd or udpd is always done in Binary Mode.

■ Loading .BDX files will only display initial ASCII sequence unless the -b
switch is specified.

NOTE: You must make a connection with your software before executing a
COMTAP session.

5 Wind River ICE Network Operation Commands
5.1 Wind River ICE SX Network Command Reference

125

5

■ Since all data is echoed in BDM Mode, the -o switch should be used unless you
are interested in double echo of input.

■ BKM is a legal process name (even if it does not show up in a pstat) as long as
a BKM session is active.

COMTAP can only be used from Telnet sessions. It will simply return on the RS232
console. To exit Comtap Mode, press the ENTER key in the Telnet session
displaying the monitored data. Note that there may be some data queued up, so it
may take a moment before output stops.

To see a list of running processes that are available for a COMTAP session, type the
command PSTAT at the >NET> prompt.

5.1.7 DATE

Syntax

DATE [yyyymmddhhmm[.ss]]

Synopsis

Displays and/or sets the current system calendar date and time of day.

Description

The Wind River ICE SX system maintains a calendar date and time while it is
running. This is used primarily for system log purposes to time correlate data.
Entering the date command with no arguments yields the current system date and
time of day. At system startup, the date is set to January 1, 1990 at midnight.

You may change the system date, although it is not necessary to do so unless you
wish to use the system date/day to time the duration of tests, etc.

Example:

NET> date
0:15:20 Jan 1 1990
NET> date 199403050900.00
9:0:0 Mar 5 1994
NET> date
9:0:1 Mar 5 1994
NET>

Wind River Workbench
Command Reference , 2.6.1

126

5.1.8 DEFRAG

Syntax

DEFRAG

Description

The DEFRAG command optimizes space in the Flash File System on
Wind River ICE SX, freeing up blocks of space that are not being used to their full
potential. Defragmenting the Flash File System on Wind River ICE SX is similar to
defragmenting a hard drive on your PC.

Example

The following example illustrates the output that appears when the DEFRAG
command is being used.

>NET>defrag
Defragmenting the FFS will free up invalid blocks
!DO NOT reset or power-cycle the ICE during this operation
>NET>

5.1.9 DIR

Syntax

DIR

Description

The DIR command displays all of the files that are currently stored in
Wind River ICE SX.

Example

>NET>dir
Volume in FFS is 45.0.0

2048 BITMAP.SYS
14336 FLIST.SYS

1850316 81v3r16p.bin
18575 vp_dll.cfg
108681 cachsp2k.elf
211408 xyimage.hex
211408 flxppc6xx.hex
216561 servers.elf
1668785 msc81xx.elf

453 Motorola_8101ADS.brd
343860 MSC81XX_U17.dat

5 Wind River ICE Network Operation Commands
5.1 Wind River ICE SX Network Command Reference

127

5

347 BD_WRS8260.brd
7104 tdfppc.bin

126497 cache6xx.elf
303720 ppcjtflh.bin
304984 ppcjtflhr.bin
2544929 ppc82xx.elf
343860 MPC82XX_U1.dat

347 BD_WRS82xx.brd
854560 flashbsp.bin

628 8260_2.xml
343860 MPC82XX_U0.dat
22 file(s) 9477267 bytes
0 dir(s) 17564525 bytes free

>NET>

5.1.10 DISPLAY

Syntax

display

Description

The DISPLAY command displays information about the application firmware that
you have running on your Wind River ICE SX unit. Entering the DISPLAY
command without any parameters will list all of the application firmware that is
currently running on your Wind River ICE SX unit.

Example

This example uses the DISPLAY command with no parameters specified.

>NET>display
module_name:parms port
ppc82xx.elf:U0:8260_2.xml 1234
servers.elf N/A
>NET>

5.1.11 ETHSETUP

Syntax

ETHSETUP

Synopsis

Modifies the Ethernet non-volatile setup parameters.

Wind River Workbench
Command Reference , 2.6.1

128

Description

The ETHSETUP command allows users to modify the non-volatile copy of the
Ethernet setup parameters. Unlike the Configuration Switch method, ETHSETUP
allows users to return to the >NET> prompt. Any new parameters will take effect
after the next hardware reset (reset performed by tripping the switch on the rear of
the emulator) or RESET command.

Example

>NET>ethsetup
Ethernet Setup Mode

Select from the operations below
1. Display Basic IP parameters 2. Modify Basic IP parameters
3. Display Routing parameters 4. Modify Routing parameters
5. Display Server parameters 6. Modify Server parameters
7. View ethernet address 8. Save parameters
9. Exit setup mode 10. Port A/B select
11. Advanced Options

Make a selection:

5.1.12 HELP

Syntax

HELP topic

Synopsis

Displays general or topic-specific online help

Description

The HELP command displays help for a given topic (when a topic is specified) or
general help concerning available commands when entered with no arguments.

Example:

>NET>help
appload arp bkm bootlog brd cat cd
coldstart comtap date defrag dir display download
du echo ethsetup firmup help ifconfig load
netinfo netstat ping pstat query reset route
runtime sync syslog unload version ftp telnet
tftp tget tput update
>NET>help appload
Command Description Syntax
======= ===================== ==================================
appload Load an application with APPLOAD </t/s(hostip or hostname)>

5 Wind River ICE Network Operation Commands
5.1 Wind River ICE SX Network Command Reference

129

5

CPU translation <target name>
>NET>

5.1.13 IFCONFIG

Syntax

IFCONFIG interface_number
[af [address [dest_addr]] [up] [down]
[netmask mask] [broadcast broad_addr]]
[arp | -arp]
ifconfig -a

Synopsis

Reconfigures a network interface.

Description

The IFCONFIG command allows viewing and modifying of the network interfaces
in Wind River ICE SX. There are two interfaces available: The Ethernet interface
and Loopback interface. The Loopback interface should never need modification.

When combined with just the -a switch, the IFCONFIG command will display the
state of the network interfaces, as shown below:

>NET>ifconfig -a
1: flags=120201<BROADCAST,UP>

inet 172.16.17.35 netmask ffff0000 broadcast 172.16.255.255
6: flags=212<NOARP,UP>

inet 127.0.0.1 netmask ff000000
>NET>

When used in combination with other flags, the IFCONFIG command allows users
to temporarily change the network interface settings. The new settings will be lost
on power-off or reset unless they are programmed using the ETHSETUP command.
The example below shows how to change Wind River ICE SX's IP address:

NET> ifconfig 3 192.9.201.10 up
NET> ifconfig -a
1: flags=120201<BROADCAST,UP>

inet 192.9.200.103 netmask ffffff00 broadcast 192.9.200.255
3: flags=202<NOARP,UP>

inet 192.9.201.10 netmask ffffff00
NET>

Wind River Workbench
Command Reference , 2.6.1

130

5.1.14 NETINFO

Syntax

NETINFO

Description

The NETINFO command returns information about the Wind River ICE SX
network configuration, including the IP address, netmask, and broadcast address.

Example

>NET>netinfo
TCP/IP on PORT B
1: flags=120201<BROADCAST,UP>

inet 123.45.67.89 netmask ffff0000 broadcast 123.45.255.255
>NET>

This example shows the output of a NETINFO command. It returns the protocol the
ICE is using (TCP/IP); the port in use (B); the number of broadcast flags in use, and
whether they are up or down (flags); the IP address of the ICE unit (123.45.67.89);
the ICE’s netmask (FFFF0000); and the ICE’s broadcast address (123.45.255.255).

5.1.15 NETSTAT

Syntax

NETSTAT [-a, -i, -r, -s]

-a - Displays status of all network connections

-i - Displays status of network interfaces

-r - Displays network routing table

-s - Displays per protocol information

Description

The NETSTAT command displays information about the TCP/IP protocol stack in
Wind River ICE SX. It operates in a fashion similar to the NETSTAT command in a
UNIX environment. The example below shows the output from various forms of
the NETSTAT command.

Example

>NET>netstat

5 Wind River ICE Network Operation Commands
5.1 Wind River ICE SX Network Command Reference

131

5

Proto Local Address Foreign Address (state)
tcp 172.16.17.35.1234 172.16.18.142.1957 ESTABLISHED
>NET>netstat -a
Proto Local Address Foreign Address (state)
udp 0.0.0.0.520
udp 0.0.0.0.111
udp 0.0.0.0.2049
udp 0.0.0.0.771
udp 0.0.0.0.1024
udp 0.0.0.0.68
udp 0.0.0.0.69
tcp 0.0.0.0.1237 0.0.0.0.0 LISTEN
tcp 0.0.0.0.111 0.0.0.0.0 LISTEN
tcp 0.0.0.0.1233 0.0.0.0.0 LISTEN
tcp 0.0.0.0.1236 0.0.0.0.0 LISTEN
tcp 0.0.0.0.23 0.0.0.0.0 LISTEN
tcp 0.0.0.0.1232 0.0.0.0.0 LISTEN
tcp 0.0.0.0.1024 0.0.0.0.0 LISTEN
tcp 172.16.17.35.1234 172.16.18.142.1957 ESTABLISHED
tcp 0.0.0.0.21 0.0.0.0.0 LISTEN
tcp 0.0.0.0.1235 0.0.0.0.0 LISTEN
>NET>netstat -i
I/F Mtu Address Ipkts Ierrs Opkts Oerrs Queue
1 1500 172.16.17.35 32232 0 1993 0 100
6 1536 127.0.0.1 151 0 151 0 0
>NET>netstat -r
Destination Gateway Flags Interface
default 172.16.1.1 UG 1
127.0.0.1 127.0.0.1 U 6
172.16.0.0 172.16.17.35 U 1
>NET>netstat -s
udp:

11123 datagrams delivered to users
0 datagrams received for unknown ports
281 datagrams received with other errors
997 datagrams sent

tcp:
1104 segments sent
0 segments retransmitted
0 segments sent with RST flag
1139 segments received
0 segments received in error
0 failed TCP connection attempts
1 TCP connections reset

ip:
13581 received from interfaces
0 drops due to format errors
1038 drops due to invalid addresses
0 drops due to unknown protocol
0 discarded with no problems
2101 supplied by IP user protocols
0 dropped due to no routes
0 IP datagrams forwarded

>NET>

Wind River Workbench
Command Reference , 2.6.1

132

5.1.16 PING

Syntax

PING [-s] host_ip [repeat_count]

Synopsis

Sends ICMP ECHO_REQUEST messages to the specified host_ip.

Description

The PING command provides a method to test that a connection can be established
over the network to a specific host. It is very useful in diagnosing the ability to send
packets to and from a host from the Wind River ICE SX unit.

By specifying the -s switch, the PING command will repeat the operation 10 times
or repeat_count times. When reporting results, the PING command will print the
elapsed time to send/receive for each ICMP ECHO_REQUEST / ECHO_REPLY pair.
The time is rounded to the nearest millisecond.

5.1.17 PSTAT

Syntax

PSTAT

Synopsis

Lists the state of processes on the Wind River ICE SX.

Description

The Wind River ICE SX is a multi-tasking system capable of executing many
processes at once. The PSTAT command allows users to view the state of most of
the system processes. This is useful when trying to determine what host process is
associated with a server on the Wind River ICE SX.

There are several types of processes that run on the Wind River ICE SX. They are
outlined in the following table:

Table 5-1 Wind River ICE Processes

Type Description

PrmPro Permanent Process-Cannot be killed by the user

5 Wind River ICE Network Operation Commands
5.1 Wind River ICE SX Network Command Reference

133

5

Example:

>NET>pstat
NAME TSK_ID TYPE PRIORITY STATE
--
 dhcp 00000017 DynProc 00000025 ConnWait 0.0.0.0 (0)
 TGTCONS *00000026 PrmServ 00000190 ConnWait 0.0.0.0 (1232)
 SHELLD *00000027 PrmProc 00000065 ConnWait 0.0.0.0 (1233)
 PPC82XX 00000045 00000180 running
 ESTD0 *00000047 PrmServ 00000200 Connected 172.16.18.142 (1957)
 TCPD0 *00000048 PrmServ 00000200 ConnWait 0.0.0.0 (1235)
 LOADD0 *00000049 PrmServ 00000210 ConnWait 0.0.0.0 (1236)
 TVIOD0 *00000050 PrmServ 00000190 ConnWait 0.0.0.0 (1237)
 UJD 00000066 PrmServ 00000210 running

* = Tapable with comtap
>NET>

5.1.18 QUERY

Syntax

QUERY

Description

The QUERY command displays a list of all of the firmware versions that are
currently stored in the Wind River ICE SX Flash File System. The display is a table
that includes the file names, the type of file, the version of the firmware, and the
date and time that it was added to Wind River ICE SX.

Example

>NET>query

FFSNAME NAME TYPE VER DATE/TIME
--
cache82xx.elf CACHE82XX CACHE APP 2.1a Oct 22 2004 16:08:16
servers.elf UJD Module SERVER 2.3a Oct 21 2004 13:50:34
cache6xx.elf CACHE6XX CACHE APP 2.1a Oct 21 2004 13:51:16

PrmServ Permanent Server -- Can be killed and restarted by
the user

DynServ Dynamic Server -- Can be killed by the user; will
restart as needed

Table 5-1 Wind River ICE Processes

Type Description

Wind River Workbench
Command Reference , 2.6.1

134

ppc82xx.elf PPC82XX TARGET APP 2.4a Oct 22 2004 16:08:41
ppc6x.elf PPC6XX TARGET APP 2.3a Oct 21 2004 13:51:53

>NET>

5.1.19 RESET

Syntax

RESET

Synopsis

Issues a cold start reset of the emulator.

Description

The RESET command power cycles the Wind River ICE SX unit. This command is
provided as a convenience and is typically issued after using the ETHSETUP
command to modify the basic operating parameters of the Wind River ICE SX unit.

5.1.20 ROUTE

Syntax

ROUTE [ADD,DELETE] [hostip|netip] destination [gateway [metric]]

Synopsis

Adds or deletes network routes on the Wind River ICE SX.

Description

The ROUTE command allows users to temporarily add and delete network routes
on Wind River ICE SX. To permanently add/delete routes, use ETHSETUP or
consult your software documentation if dynamic routing is enabled. The ROUTE
command is provided primarily for the purpose of testing routing entries or
adding temporary routes.

Example:

NET> netstat -r
Destination Gateway Flags Interface
127.0.0.1 127.0.0.1 U 3
192.9.200.0 192.9.200.103 U 1
NET> route add 192.9.201.0 192.9.200.100 1

5 Wind River ICE Network Operation Commands
5.1 Wind River ICE SX Network Command Reference

135

5

assuming route via gateway
add net 192.9.201.0: gateway 192.9.200.100 (192.9.200.100)
NET> route add 192.9.202.0 192.9.200.101 1
assuming route via gateway
add net 192.9.202.0: gateway 192.9.200.101 (192.9.200.101)
NET> route delete 192.9.202.0 192.9.200.101
delete net 192.9.202.0: gateway 192.9.200.101 (192.9.200.101)
NET> netstat -r
Destination Gateway Flags Interface
127.0.0.1 127.0.0.1 U 3
192.9.200.0 192.9.200.103 U 1
192.9.201.0 192.9.200.100 UG 1
NET>

5.1.21 RUNTIME

Syntax

RUNTIME

Description

The RUNTIME command displays the length of time in days, hours, minutes, and
seconds since the last Wind River ICE SX initialization.

Example

>NET>runtime

Time since last reset/power cycle
730 Days, 9 Hours, 27 Minutes, 3 Seconds
>NET>

5.1.22 SYSLOG

Syntax

SYSLOG

Synopsis

Displays a log of the last 25 events on the Wind River ICE SX unit.

Description

Wind River ICE SX maintains a log of the last 25 significant events that have
occurred since the last time it was reset. These events are stored in a FIFO that can

Wind River Workbench
Command Reference , 2.6.1

136

be displayed by using the SYSLOG command. The SYSLOG command is useful for
looking at the usage of particular facilities on Wind River ICE SX.

In addition to usage information, any abnormal conditions are also saved in the
system log. For example, if a server loses synchronization with a client and restarts
itself, a message will be placed in the system log.

System log information is shown with the most recent event first, followed by
older events. The time stamps are relative to system start time or the last time/date
set command. The format of the time is dd:hh:mm:ss.

Example:

>NET>syslog
[00:00:00:06] LOADAPPS : bootapps.lst not found in FFS
[00:00:00:06] TGTCONS : Server awaiting connection.
[00:00:00:06] TGTCONS : Starting TCP TGTCONS server TGTCONS [1232]
[00:00:00:06] FFS : Task Started
[00:00:00:00] DHCP : Rebinding Time - 6 days, 3 hours, 0 min
[00:00:00:00] DHCP : Renewal Time - 3 days, 12 hours, 0 min
[00:00:00:00] DHCP : BOUND state
[00:00:00:00] DHCP : daemon started
>NET>

5.1.23 TELNET

Syntax

TELNET IP_Address

Synopsis

Allows connection to other telnet capable hosts from the RS232 console.

Description

The TELNET command allows users to telnet from the RS232 console on
Wind River ICE SX to any other host on the network that Wind River ICE SX can
talk to. The telnet client in Wind River ICE SX is a close implementation of the BSD
telnet command found in most UNIX systems.

5.1.24 UNLOAD

Syntax

UNLOAD port_number or NameOfProcess

5 Wind River ICE Network Operation Commands
5.1 Wind River ICE SX Network Command Reference

137

5

port_number = This is the port number that was assigned to your activated
firmware during the APPLOAD command. You can view the port number using
the DISPLAY command.

NameOfProcess = You can specify the name of the application firmware that you
wish to deactivate instead of its associated port number. View the name of the
application using the DISPLAY command.

Instead of specifying a port number or a process name, using the command
UNLOAD * will unload all active firmware sets.

Description

Wind River ICE SX supports dynamic firmware uploads and downloads. The
UNLOAD command can be used to dynamically deactivate any set of firmware
that is currently active on the Wind River ICE SX unit. Currently active processes
can be viewed using the DISPLAY command.

Example

The first example uses the display command to view the active sets of firmware.
Then a set of firmware is deleted using the UNLOAD command.

>NET>display

module_name:parms port
ppc82xx.elf:U0:Motorola_2_PPC8260.brd 1234
servers.elf N/A
>NET>unload /1234

Requesting 'ppc82xx' to delete Itself................ PASSED
>NET>

The second example uses the UNLOAD * command to delete two sets of firmware
that are active simultaneously.

>NET>unload *

Requesting 'ppc82xx' to delete Itself................ PASSED
Requesting 'servers' to delete Itself................ PASSED
>NET>

5.1.25 VERSION

Syntax

VERSION

Wind River Workbench
Command Reference , 2.6.1

138

Description

The VERSION command displays the build date and revision number of the
Wind River ICE SX firmware.

Example:

>NET>version

**
Wind River ICE Ethernet Controller
Copyright © Wind River Systems, Inc. 1999-2004. All rights reserved
**
Firmware Type BSP Version 2.0a Created On: Oct 22 2004 16:07:17

OS version = V2.5.0
REPC version = V2.5.0
NA version = V4.0.5
>NET>

	Wind River Workbench for On-Chip Debugging Command Reference
	Contents
	1 Introduction
	1.1 Overview

	2 Operational Modes
	2.1 The Operational Modes of Wind River Emulators

	3 Low-Level Commands
	3.1 Low-Level Commands
	3.1.1 Inline Assembler (ASM)
	3.1.2 Boot Line Parameters (BL)
	BL ADD REGISTER
	BL ADD STRUCTURE
	BL DELETE
	BL DISPLAY
	BL INIT
	BL MODIFY
	BL UPLOAD

	3.1.3 Breakpoint Disable (BD)
	3.1.4 Breakpoint Enable (BE)
	3.1.5 Block Fill (BF)
	3.1.6 Block Move (BM)
	3.1.7 Cache Access Command (CA)
	CA dis
	CA dump -i
	CA dump -d
	CA dump addr -il
	CA dump addr -dl
	CA read -i
	CA search start_addr..end_addr -i
	CA search start_addr..end_addr -d
	CA -s
	CA diff -i
	CA diff -d

	3.1.8 Configure Parameters (CF)
	3.1.9 Configure Register Groups (CF GRP)
	3.1.10 Chip Selects (CS)
	3.1.11 Chip Selects -Target (CST)
	3.1.12 Display Breakpoint (DB)
	3.1.13 Display Configuration (DC)
	3.1.14 Diagnostic Function (DF)
	Simple RAM Test: Single Pass - DF 0 Command
	Simple RAM Test: Continuous - DF1 Command
	Complete RAM Test: Single Pass - DF 2 Command
	Complete RAM Test: Continuous - DF 3 Command
	CRC Test - DF 4 Command
	Scope Loop: Read from Location - DF 5 Command
	Scope Loop: Write to Location - DF 6 Command
	Scope Loop: Write and Complement - DF 7 Command
	Scope Loop: Write Rotating Value - DF 8 Command
	Scope Loop: Write Then Read - DF 9 Command
	Bus Test: Address - DF A Command
	Bus Test: Data - DF D Command

	3.1.15 Disassemble (DI)
	3.1.16 Disassemble Without Opcode (DIO)
	3.1.17 Disassemble with Code Coverage (DIP)
	3.1.18 Display Memory (DM)
	3.1.19 Display Memory Double (DMD)
	3.1.20 Display Registers (DR)
	3.1.21 Display Trace Non-Real-Time (DT)
	3.1.22 Display License Key String (ESTKEY)
	3.1.23 Display License Key Support Information (ESTKEY DISPLAY)
	3.1.24 Fast Step (FS)
	3.1.25 Fast Step Next (FSN)
	3.1.26 Start Code Execution (GO)
	3.1.27 Start Performance Analysis (GOP)
	3.1.28 Synchronized Start Code Execution (GOS)
	3.1.29 Halt (HA)
	3.1.30 Synchronized Halt (HALTS)
	3.1.31 Help Command (HE)
	3.1.32 Hardware Interface Configuration (HIC)
	3.1.33 Internal Code Breakpoint (IHBC)
	3.1.34 Internal Data Breakpoint (IHBD)
	3.1.35 Initialize System (IN)
	3.1.36 Initialize Communications Only (INN)
	3.1.37 Initialize and Trap Exceptions (INE)
	3.1.38 Memory Modify (MM)
	3.1.39 Memory Modify - Double (MMD)
	3.1.40 Memory Management Unit (MMU)
	Memory Management Unit - Add (MMUA)
	Memory Management Unit - List (MMUL)
	Memory Management Unit - Delete (MMUD)

	3.1.41 Linux Virtual Memory Management (MMUOS)
	MMUOS ADD
	MMUOS DELETE
	MMUOS DISPLAY
	MMUOS SET

	3.1.42 Performance Analysis (PF)
	3.1.43 Project Upload (PJ UPLOAD)
	3.1.44 Remove Software Breakpoint (RB)
	3.1.45 Initialize Communications with Multiple Processors (RST or RSTIN)
	3.1.46 Only Initialize Communications with Multiple Processors (RSTINN)
	3.1.47 Initialize and Trap Exceptions for Multiple Processors (RSTINE)
	3.1.48 Set Breakpoint (SB)
	3.1.49 Set Breakpoint -Temporary (SBT)
	3.1.50 System Configuration (SC)
	3.1.51 System Configuration Add/Delete (SCA/SCD)
	Deleting Custom Registers (SCD)

	3.1.52 System Configuration -Target (SCT)
	3.1.53 System Configuration Group Add (SCGA)
	3.1.54 System Configuration Group Delete (SCGD)
	3.1.55 Synchronize Cores (SCTRL)
	3.1.56 Set Verbose On (SET VERBOSE ON)
	3.1.57 Show History (SH)
	3.1.58 Single-Step Instruction(s) (SI)
	3.1.59 Set Memory (SM)
	3.1.60 Set Memory Double (SMD)
	3.1.61 Set Register (SR)
	3.1.62 Search for String (SS)
	3.1.63 SY Commands
	SY
	SY BAT
	SY BS
	SY CHAIN
	SY CMD value
	SY PCI
	System Program (SY PROG)
	SY REV
	SYNC or SY PROMPT
	System Map (SY MAP)

	3.1.64 Trace Disable (TD)
	3.1.65 Target Diagnostic Functions (TDF)
	3.1.66 Target Diagnostic Function, Double (TDFD)
	3.1.67 Trace Enable (TE)
	3.1.68 TF Flash Configure Command (TF)
	Target Flash Configure (TF CONF)
	Target Flash Configure - Size (TF CONF SIZE)
	Target Flash Device (TF DEVICE)
	Target Flash Erase (TF ERASE)
	Target Flash Test (TF TEST)
	Target Flash Timeout (TF TIMEOUT)
	Target Flash Upload Sector (TF UPLOAD SECTOR)

	3.1.69 Trigger On Breakpoint (TRG)
	3.1.70 Trigger Pulse Out (TRGOUT)

	4 Scripting Commands
	4.1 Introduction
	4.2 Initialization Commands
	4.2.1 LOADREG
	4.2.2 LOADSIMREG
	4.2.3 SAVEEMULATORREG
	4.2.4 SAVESIMREG
	4.2.5 SCUPLOAD
	4.2.6 SAVETARGETREG
	4.2.7 SCTUPLOAD
	4.2.8 SAVENVRAM
	4.2.9 RESTORENVRAM

	4.3 Download Commands
	4.3.1 LOAD
	4.3.2 DOWNLOAD
	4.3.3 DOWN
	4.3.4 LOADVERIFY
	4.3.5 LOADANDVERIFY
	4.3.6 VERIFYONLY
	4.3.7 VERIFY
	4.3.8 LOADMACRO
	4.3.9 LOADMACROS
	4.3.10 FLASHIT
	4.3.11 UPLOADBIN
	4.3.12 SETBLOCK
	4.3.13 BLOCKSIZE
	4.3.14 BLOCK

	4.4 Breakpoint Commands
	4.4.1 BREAKENABLE
	4.4.2 BREAKDISABLE
	4.4.3 BREAKDELETE
	4.4.4 BREAKIN

	4.5 Complex Breakpoint Commands
	4.5.1 SETSB
	4.5.2 SETHBC
	4.5.3 SETHBD
	4.5.4 SETHBDR
	4.5.5 SETHBDW
	4.5.6 SETIHBC
	4.5.7 SETIHBD
	4.5.8 SETIHBDR
	4.5.9 SETIHBDW

	4.6 Run/Step Commands
	4.6.1 G
	4.6.2 H
	4.6.3 ISTEP
	4.6.4 ISTEPOV
	4.6.5 PLAY
	4.6.6 RUNTO
	4.6.7 SETPC
	4.6.8 STEP
	4.6.9 STEPOV
	4.6.10 STEPOUT
	4.6.11 WAIT

	4.7 Memory Commands
	4.7.1 DUMPMEM
	4.7.2 APPENDMEM

	5 Wind River ICE Network Operation Commands
	5.1 Wind River ICE SX Network Command Reference
	5.1.1 APPLOAD
	5.1.2 ARP
	5.1.3 BKM
	5.1.4 BOOTLOG
	5.1.5 CAT
	5.1.6 COMTAP
	5.1.7 DATE
	5.1.8 DEFRAG
	5.1.9 DIR
	5.1.10 DISPLAY
	5.1.11 ETHSETUP
	5.1.12 HELP
	5.1.13 IFCONFIG
	5.1.14 NETINFO
	5.1.15 NETSTAT
	5.1.16 PING
	5.1.17 PSTAT
	5.1.18 QUERY
	5.1.19 RESET
	5.1.20 ROUTE
	5.1.21 RUNTIME
	5.1.22 SYSLOG
	5.1.23 TELNET
	5.1.24 UNLOAD
	5.1.25 VERSION

