
5.5
A P I R E F E R E N C E

VxWorks OS Libraries
®

Copyright 2002 Wind River Systems, Inc.

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy,
microfilm, retrieval system, or by any other means now known or hereafter invented without the prior
written permission of Wind River Systems, Inc.

AutoCode, Embedded Internet, Epilogue, ESp, FastJ, IxWorks, MATRIXX, pRISM, pRISM+, pSOS,
RouterWare, Tornado, VxWorks, wind, WindNavigator, Wind River Systems, WinRouter, and Xmath are
registered trademarks or service marks of Wind River Systems, Inc. or its subsidiaries.

Attaché Plus, BetterState, Doctor Design, Embedded Desktop, Emissary, Envoy, How Smart Things Think,
HTMLWorks, MotorWorks, OSEKWorks, Personal JWorks, pSOS+, pSOSim, pSOSystem, SingleStep,
SNiFF+, VSPWorks, VxDCOM, VxFusion, VxMP, VxSim, VxVMI, Wind Foundation Classes, WindC++,
WindManage, WindNet, Wind River, WindSurf, and WindView are trademarks or service marks of Wind
River Systems, Inc. or its subsidiaries. This is a partial list. For a complete list of Wind River trademarks
and service marks, see the following URL:

http://www.windriver.com/corporate/html/trademark.html

Use of the above marks without the express written permission of Wind River Systems, Inc. is prohibited.
All other trademarks, registered trademarks, or service marks mentioned herein are the property of their
respective owners.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): 800/545-WIND
telephone: 510/748-4100
facsimile: 510/749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

VxWorks OS Libraries API Reference, 5.5

6 Jun 02
Part #: DOC-14604-ND-00

iii

Contents

1: Libraries

This volume provides reference entries for VxWorks OS libraries, arranged alphabetically.
Each entry lists the routines found in the library, including a one-line synopsis of each and
a general description of their use.

Individual reference entries for each of the available functions in these libraries is
provided in section 2.

2: Routines

This section provides reference entries for each of the routines found in the VxWorks OS
libraries documented in section 1.

Keyword Index

This section is a “permuted index” of keywords found in the NAME line of each reference
entry. The keyword for each index item is left-aligned in column 2. The remaining words
in column 1 and 2 show the context for the keyword.

1

1
Libraries

aioPxLib – asynchronous I/O (AIO) library (POSIX) .. 9
aioPxShow – asynchronous I/O (AIO) show library... 13
aioSysDrv – AIO system driver ... 13
ansiAssert – ANSI assert documentation ... 13
ansiCtype – ANSI ctype documentation.. 14
ansiLocale – ANSI locale documentation ... 15
ansiMath – ANSI math documentation .. 15
ansiSetjmp – ANSI setjmp documentation.. 16
ansiStdarg – ANSI stdarg documentation .. 17
ansiStdio – ANSI stdio documentation... 18
ansiStdlib – ANSI stdlib documentation ... 22
ansiString – ANSI string documentation ... 24
ansiTime – ANSI time documentation ... 25
arpLib – Address Resolution Protocol (ARP) table manipulation library 26
bLib – buffer manipulation library ... 28
bootConfig – system configuration module for boot ROMs... 29
bootInit – ROM initialization module .. 30
bootLib – boot ROM subroutine library .. 31
bootpLib – Bootstrap Protocol (BOOTP) client library .. 33
bpfDrv – Berkeley Packet Filter (BPF) I/O driver library .. 35
cache4kcLib – MIPS 4kc cache management library.. 37
cacheArchLib – architecture-specific cache management library... 37
cacheAuLib – Alchemy Au cache management library.. 38
cacheLib – cache management library ... 38
cacheR3kLib – MIPS R3000 cache management library ... 47
cacheR4kLib – MIPS R4000 cache management library ... 47
cacheR5kLib – MIPS R5000 cache management library ... 48
cacheR7kLib – MIPS R7000 cache management library ... 48
cacheR10kLib – MIPS R10000 cache management library ... 49
cacheR32kLib – MIPS RC32364 cache management library .. 49

VxWorks OS Libraries API Reference, 5.5

2

cacheR33kLib – MIPS R33000 cache management library... 50
cacheR333x0Lib – MIPS R333x0 cache management library... 50
cacheSh7040Lib – Hitachi SH7040 cache management library .. 51
cacheSh7604Lib – Hitachi SH7604/SH7615 cache management library... 51
cacheSh7622Lib – SH7622 cache management library .. 52
cacheSh7700Lib – Hitachi SH7700 cache management library .. 52
cacheSh7729Lib – Hitachi SH7729 cache management library .. 53
cacheSh7750Lib – Hitachi SH7750 cache management library .. 53
cacheSun4Lib – Sun-4 cache management library.. 54
cacheTx49Lib – Toshiba Tx49 cache management library .. 54
cbioLib – cached block I/O library .. 55
cdromFsLib – ISO 9660 CD-ROM read-only file system library ... 59
clockLib – clock library (POSIX) .. 61
cplusLib – basic run-time support for C++... 62
dbgArchLib – architecture-dependent debugger library ... 63
dbgLib – debugging facilities... 65
dcacheCbio – disk cache driver ... 67
dhcpcBootLib – DHCP boot-time client library .. 71
dhcpcCommonLib – DHCP client interface shared code library.. 72
dhcpcLib – Dynamic Host Configuration Protocol (DHCP) run-time client API................ 73
dhcpcShow – DHCP run-time client information display routines ... 75
dhcprLib – DHCP relay agent library .. 75
dhcpsLib – Dynamic Host Configuration Protocol (DHCP) server library 76
dirLib – directory handling library (POSIX) .. 81
distIfShow – distributed objects interface adapter show routines (VxFusion) 83
distLib – distributed objects initialization and control library (VxFusion)....................... 83
distNameLib – distributed name database library (VxFusion) ... 84
distNameShow – distributed name database show routines (VxFusion) .. 85
distTBufLib – distributed objects telegram buffer library (VxFusion) 85
dosFsFmtLib – MS-DOS media-compatible file system formatting library 86
dosFsLib – MS-DOS media-compatible file system library .. 86
dpartCbio – generic disk partition manager ... 98
dspLib – dsp support library ... 100
dspShow – dsp show routines ... 100
envLib – environment variable library... 101
errnoLib – error status library... 102
etherMultiLib – a library to handle Ethernet multicast addresses ... 104
eventLib – VxWorks events library.. 104
excArchLib – architecture-specific exception-handling facilities ... 105
excLib – generic exception handling facilities .. 106
fioLib – formatted I/O library ... 108
floatLib – floating-point formatting and scanning library.. 109
fppArchLib – architecture-dependent floating-point coprocessor support 109
fppLib – floating-point coprocessor support library ... 112
fppShow – floating-point show routines ... 113

1: Libraries

3

ftpdLib – File Transfer Protocol (FTP) server ... 113
ftpLib – File Transfer Protocol (FTP) library .. 115
ftruncate – POSIX file truncation .. 117
hostLib – host table subroutine library.. 118
icmpShow – ICMP Information display routines.. 119
ifIndexLib – interface index library ... 119
ifLib – network interface library .. 120
igmpShow – IGMP information display routines.. 121
inetLib – internet address manipulation routines... 121
inflateLib – inflate code using public domain zlib functions .. 123
intArchLib – architecture-dependent interrupt library... 123
intLib – architecture-independent interrupt subroutine library 125
ioLib – I/O interface library .. 125
iosLib – I/O system library... 127
iosShow – I/O system show routines.. 127
ipFilterLib – IP filter hooks library .. 128
ipProto – an interface between the BSD IP protocol and the MUX..................................... 128
kernelLib – VxWorks kernel library .. 129
ledLib – line-editing library... 131
loadLib – object module loader... 133
loginLib – user login/password subroutine library.. 134
logLib – message logging library.. 136
lstLib – doubly linked list subroutine library.. 137
m2IcmpLib – MIB-II ICMP-group API for SNMP Agents... 139
m2IfLib – MIB-II interface-group API for SNMP agents ... 139
m2Igmp – helper file for igmp Mib.. 141
m2IpLib – MIB-II IP-group API for SNMP agents... 142
m2Lib – MIB-II API library for SNMP agents... 144
m2RipLib – VxWorks interface routines to RIP for SNMP Agent ... 147
m2SysLib – MIB-II system-group API for SNMP agents .. 148
m2TcpLib – MIB-II TCP-group API for SNMP agents... 150
m2UdpLib – MIB-II UDP-group API for SNMP agents.. 152
mathALib – C interface library to high-level math functions ... 153
mathHardLib – hardware floating-point math library .. 155
mathSoftLib – high-level floating-point emulation library ... 155
memDrv – pseudo-memory device driver .. 156
memLib – full-featured memory partition manager... 158
memPartLib – core memory partition manager.. 160
memShow – memory show routines ... 161
mmanPxLib – memory management library (POSIX)... 162
mmuMapLib – MMU mapping library for ARM Ltd. processors... 162
mmuPro32Lib – MMU library for PentiumPro/2/3/4 32 bit mode ... 163
mmuSh7700Lib – Hitachi SH7700 MMU support library ... 168
mmuSh7750Lib – Hitachi SH7750 MMU support library ... 172
moduleLib – object module management library .. 176

VxWorks OS Libraries API Reference, 5.5

4

mountLib – mount protocol library ... 178
mqPxLib – message queue library (POSIX)... 179
mqPxShow – POSIX message queue show.. 180
msgQDistGrpLib – distributed message queue group library (VxFusion)... 180
msgQDistGrpShow – distributed message queue group show routines (VxFusion)............................ 181
msgQDistLib – distributed objects message queue library (VxFusion).. 181
msgQDistShow – distributed message queue show routines (VxFusion) 182
msgQEvLib – VxWorks events support for message queues .. 183
msgQLib – message queue library.. 183
msgQShow – message queue show routines... 185
msgQSmLib – shared memory message queue library (VxMP) .. 185
muxLib – MUX network interface library ... 186
muxTkLib – MUX toolkit Network Interface Library .. 188
netBufLib – network buffer library .. 189
netDrv – network remote file I/O driver ... 190
netLib – network interface library.. 192
netShow – network information display routines ... 192
nfsdLib – Network File System (NFS) server library .. 193
nfsDrv – Network File System (NFS) I/O driver ... 195
nfsLib – Network File System (NFS) library .. 197
ntPassFsLib – pass-through (to Windows NT) file system library ... 198
passFsLib – pass-through (to UNIX) file system library (VxSim) ... 200
pentiumALib – Pentium and PentiumPro specific routines... 201
pentiumLib – Pentium and Pentium[234] library ... 205
pentiumShow – Pentium and Pentium[234] specific show routines.. 209
pingLib – Packet InterNet Groper (PING) library.. 209
pipeDrv – pipe I/O driver .. 210
pppHookLib – PPP hook library.. 212
pppLib – Point-to-Point Protocol library .. 212
pppSecretLib – PPP authentication secrets library .. 214
pppShow – Point-to-Point Protocol show routines... 215
proxyArpLib – proxy Address Resolution Protocol (ARP) server library................................... 215
proxyLib – proxy Address Resolution Protocol (ARP) client library 216
pthreadLib – POSIX 1003.1c thread library interfaces... 217
ptyDrv – pseudo-terminal driver .. 223
ramDiskCbio – RAM Disk Cached Block Driver ... 225
ramDrv – RAM disk driver.. 225
rawFsLib – raw block device file system library... 226
rBuffLib – dynamic ring buffer (rBuff) library .. 230
rdiscLib – ICMP router discovery server library .. 230
rebootLib – reboot support library .. 231
remLib – remote command library.. 231
remShellLib – remote access to target shell .. 232
resolvLib – DNS resolver library ... 232
ripLib – Routing Information Protocol (RIP) v1 and v2 library .. 234

1: Libraries

5

rlogLib – remote login library... 236
rngLib – ring buffer subroutine library.. 237
routeEntryLib – route interface library for multiple matching entries... 238
routeLib – network route manipulation library... 238
routeMessageLib – message routines for the routing interface library ... 238
rpcLib – Remote Procedure Call (RPC) support library.. 239
rt11FsLib – RT-11 media-compatible file system library.. 239
schedPxLib – scheduling library (POSIX) .. 245
scsi1Lib – Small Computer System Interface (SCSI) library (SCSI-1) 246
scsi2Lib – Small Computer System Interface (SCSI) library (SCSI-2) 249
scsiCommonLib – SCSI library common commands for all devices (SCSI-2)................................... 256
scsiCtrlLib – SCSI thread-level controller library (SCSI-2) ... 256
scsiDirectLib – SCSI library for direct access devices (SCSI-2) .. 257
scsiLib – Small Computer System Interface (SCSI) library.. 258
scsiMgrLib – SCSI manager library (SCSI-2)... 259
scsiSeqLib – SCSI sequential access device library (SCSI-2) .. 260
selectLib – UNIX BSD 4.3 select library ... 261
semBLib – binary semaphore library ... 262
semCLib – counting semaphore library... 264
semEvLib – VxWorks events support for semaphores.. 265
semLib – general semaphore library ... 266
semMLib – mutual-exclusion semaphore library.. 268
semOLib – release 4.x binary semaphore library.. 271
semPxLib – semaphore synchronization library (POSIX)... 271
semPxShow – POSIX semaphore show library .. 273
semShow – semaphore show routines .. 273
semSmLib – shared memory semaphore library (VxMP).. 274
shellLib – shell execution routines .. 275
sigLib – software signal facility library ... 276
smMemLib – shared memory management library (VxMP) .. 281
smMemShow – shared memory management show routines (VxMP) ... 284
smNameLib – shared memory objects name database library (VxMP) 284
smNameShow – shared memory objects name database show routines (VxMP)......................... 286
smNetLib – VxWorks interface to shared memory network (backplane) driver 287
smNetShow – shared memory network driver show routines .. 288
smObjLib – shared memory objects library (VxMP) ... 288
smObjShow – shared memory objects show routines (VxMP) .. 291
sntpcLib – Simple Network Time Protocol (SNTP) client library.. 291
sntpsLib – Simple Network Time Protocol (SNTP) server library .. 292
sockLib – generic socket library .. 293
spyLib – spy CPU activity library ... 294
symLib – symbol table subroutine library .. 295
symSyncLib – host/target symbol table synchronization... 297
sysLib – system-dependent library .. 299
tapeFsLib – tape sequential device file system library .. 302

VxWorks OS Libraries API Reference, 5.5

6

tarLib – UNIX tar compatible library.. 306
taskArchLib – architecture-specific task management routines .. 307
taskHookLib – task hook library.. 307
taskHookShow – task hook show routines .. 308
taskInfo – task information library ... 309
taskLib – task management library ... 310
taskShow – task show routines .. 312
taskVarLib – task variables support library.. 313
tcpShow – TCP information display routines .. 313
telnetdLib – server library.. 314
tffsConfig – TrueFFS configuration file for VxWorks.. 315
tffsDrv – TrueFFS interface for VxWorks... 316
tftpdLib – Trivial File Transfer Protocol server library.. 318
tftpLib – Trivial File Transfer Protocol (TFTP) client library .. 319
tickLib – clock tick support library ... 321
timerLib – timer library (POSIX) .. 322
timexLib – execution timer facilities .. 323
trgLib – trigger events control library... 324
trgShow – trigger show routine ... 325
ttyDrv – provide terminal device access to serial channels.. 326
tyLib – tty driver support library ... 326
udpShow – UDP information display routines ... 332
unixDrv – UNIX-file disk driver (VxSim for Solaris and VxSim for HP) 332
unldLib – object module unloading library... 334
usrAta – ATA/ATAPI initialization... 335
usrConfig – user-defined system configuration library .. 336
usrFd – floppy disk initialization .. 336
usrFdiskPartLib – FDISK-style partition handler ... 337
usrFsLib – file system user interface subroutine library... 339
usrIde – IDE initialization ... 340
usrLib – user interface subroutine library... 341
usrScsi – SCSI initialization.. 342
vmBaseLib – base virtual memory support library ... 343
vmLib – architecture-independent virtual memory support library (VxVMI) 343
vmShow – virtual memory show routines (VxVMI) ... 346
vxLib – miscellaneous support routines .. 346
wdbLib – WDB agent context management library... 348
wdbUserEvtLib – WDB user event library.. 348
wdLib – watchdog timer library... 349
wdShow – watchdog show routines .. 350
wvFileUploadPathLib – file destination for event data.. 350
wvLib – event logging control library (WindView) .. 351
wvNetLib – WindView for Networking Interface Library ... 356
wvSockUploadPathLib – socket upload path library .. 357
wvTmrLib – timer library (WindView) .. 357

1: Libraries

7

wvTsfsUploadPathLib – target host connection library using TSFS ... 358
zbufLib – zbuf interface library... 359
zbufSockLib – zbuf socket interface library... 361

VxWorks OS Libraries API Reference, 5.5

8

1: Libraries
aioPxLib

9

AaioPxLib

NAME aioPxLib – asynchronous I/O (AIO) library (POSIX)

ROUTINES aioPxLibInit() - initialize the asynchronous I/O (AIO) library
aio_read() - initiate an asynchronous read (POSIX)
aio_write() - initiate an asynchronous write (POSIX)
lio_listio() - initiate a list of asynchronous I/O requests (POSIX)
aio_suspend() - wait for asynchronous I/O request(s) (POSIX)
aio_error() - retrieve error status of asynchronous I/O operation (POSIX)
aio_return() - retrieve return status of asynchronous I/O operation (POSIX)

DESCRIPTION This library implements asynchronous I/O (AIO) according to the definition given by the
POSIX standard 1003.1b (formerly 1003.4, Draft 14). AIO provides the ability to overlap
application processing and I/O operations initiated by the application. With AIO, a task
can perform I/O simultaneously to a single file multiple times or to multiple files.

After an AIO operation has been initiated, the AIO proceeds in logical parallel with the
processing done by the application. The effect of issuing an asynchronous I/O request is
as if a separate thread of execution were performing the requested I/O.

AIO LIBRARY The AIO library is initialized by calling aioPxLibInit(), which should be called once
(typically at system start-up) after the I/O system has already been initialized.

AIO COMMANDS The file to be accessed asynchronously is opened via the standard open call. Open returns
a file descriptor which is used in subsequent AIO calls.

The caller initiates asynchronous I/O via one of the following routines:

aio_read()
initiates an asynchronous read

aio_write()
initiates an asynchronous write

lio_listio()
initiates a list of asynchronous I/O requests

Each of these routines has a return value and error value associated with it; however,
these values indicate only whether the AIO request was successfully submitted (queued),
not the ultimate success or failure of the AIO operation itself.

There are separate return and error values associated with the success or failure of the
AIO operation itself. The error status can be retrieved using aio_error(); however, until
the AIO operation completes, the error status will be EINPROGRESS. After the AIO
operation completes, the return status can be retrieved with aio_return().

VxWorks OS Libraries API Reference, 5.5
aioPxLib

10

The aio_cancel() call cancels a previously submitted AIO request. The aio_suspend() call
waits for an AIO operation to complete.

Finally, the aioShow() call (not a standard POSIX function) displays outstanding AIO
requests.

AIO CONTROL BLOCK

Each of the calls described above takes an AIO control block (aiocb) as an argument. The
calling routine must allocate space for the aiocb, and this space must remain available for
the duration of the AIO operation. (Thus the aiocb must not be created on the task’s stack
unless the calling routine will not return until after the AIO operation is complete and
aio_return() has been called.) Each aiocb describes a single AIO operation. Therefore,
simultaneous asynchronous I/O operations using the same aiocb are not valid and
produce undefined results.

The aiocb structure and the data buffers referenced by it are used by the system to
perform the AIO request. Therefore, once the aiocb has been submitted to the system, the
application must not modify the aiocb structure until after a subsequent call to
aio_return(). The aio_return() call retrieves the previously submitted AIO data structures
from the system. After the aio_return() call, the calling application can modify the aiocb,
free the memory it occupies, or reuse it for another AIO call.

As a result, if space for the aiocb is allocated off the stack the task should not be deleted
(or complete running) until the aiocb has been retrieved from the system via an
aio_return().

The aiocb is defined in aio.h. It has the following elements:

struct

{

int aio_fildes;

off_t aio_offset;

volatile void * aio_buf;

size_t aio_nbytes;

int aio_reqprio;

struct sigevent aio_sigevent;

int aio_lio_opcode;

AIO_SYS aio_sys;

} aiocb

aio_fildes
file descriptor for I/O.

aio_offset
offset from the beginning of the file where the AIO takes place. Note that performing
AIO on the file does not cause the offset location to automatically increase as in read
and write; the caller must therefore keep track of the location of reads and writes
made to the file (see POSIX COMPLIANCE below).

1: Libraries
aioPxLib

11

A
aio_buf

address of the buffer from/to which AIO is requested.

aio_nbytes
number of bytes to read or write.

aio_reqprio
amount by which to lower the priority of an AIO request. Each AIO request is
assigned a priority; this priority, based on the calling task’s priority, indicates the
desired order of execution relative to other AIO requests for the file. The aio_reqprio
member allows the caller to lower (but not raise) the AIO operation priority by the
specified value. Valid values for aio_reqprio are in the range of zero through
AIO_PRIO_DELTA_MAX. If the value specified by aio_req_prio results in a priority
lower than the lowest possible task priority, the lowest valid task priority is used.

aio_sigevent
(optional) if nonzero, the signal to return on completion of an operation.

aio_lio_opcode
operation to be performed by a lio_listio() call; valid entries include LIO_READ,
LIO_WRITE, and LIO_NOP.

aio_sys
a Wind River Systems addition to the aiocb structure; it is used internally by the
system and must not be modified by the user.

EXAMPLES A writer could be implemented as follows:

if ((pAioWrite = calloc (1, sizeof (struct aiocb))) == NULL)

{

printf ("calloc failed\n");

return (ERROR);

}

pAioWrite->aio_fildes = fd;

pAioWrite->aio_buf = buffer;

pAioWrite->aio_offset = 0;

strcpy (pAioWrite->aio_buf, "test string");

pAioWrite->aio_nbytes = strlen ("test string");

pAioWrite->aio_sigevent.sigev_notify = SIGEV_NONE;

aio_write (pAioWrite);

/* .

.

do other work

.

.

*/

/* now wait until I/O finishes */

while (aio_error (pAioWrite) == EINPROGRESS)

taskDelay (1);

VxWorks OS Libraries API Reference, 5.5
aioPxLib

12

aio_return (pAioWrite);

free (pAioWrite);

A reader could be implemented as follows:

/* initialize signal handler */

action1.sa_sigaction = sigHandler;

action1.sa_flags = SA_SIGINFO;

sigemptyset(&action1.sa_mask);

sigaction (TEST_RT_SIG1, &action1, NULL);

if ((pAioRead = calloc (1, sizeof (struct aiocb))) == NULL)

{

printf ("calloc failed\n");

return (ERROR);

}

pAioRead->aio_fildes = fd;

pAioRead->aio_buf = buffer;

pAioRead->aio_nbytes = BUF_SIZE;

pAioRead->aio_sigevent.sigev_signo = TEST_RT_SIG1;

pAioRead->aio_sigevent.sigev_notify = SIGEV_SIGNAL;

pAioRead->aio_sigevent.sigev_value.sival_ptr = (void *)pAioRead;

aio_read (pAioRead);

/*

.

.

do other work

.

.

*/

The signal handler might look like the following:

void sigHandler

(

int sig,

struct siginfo info,

void * pContext

)

{

struct aiocb * pAioDone;

pAioDone = (struct aiocb *) info.si_value.sival_ptr;

aio_return (pAioDone);

free (pAioDone);

}

1: Libraries
ansiAssert

13

A
POSIX COMPLIANCE

Currently VxWorks does not support the O_APPEND flag in the open call. Therefore, the
user must keep track of the offset in the file that the asynchronous writes occur (as in the
case of reads). The aio_offset field is used to specify that file position.

In addition, VxWorks does not currently support synchronized I/O.

INCLUDE FILES aio.h

SEE ALSO POSIX 1003.1b document

aioPxShow

NAME aioPxShow – asynchronous I/O (AIO) show library

ROUTINES aioShow() - show AIO requests

DESCRIPTION This library implements the show routine for aioPxLib.

aioSysDrv

NAME aioSysDrv – AIO system driver

ROUTINES aioSysInit() - initialize the AIO system driver

DESCRIPTION This library is the AIO system driver. The system driver implements asynchronous I/O
with system AIO tasks performing the AIO requests in a synchronous manner. It is
installed as the default driver for AIO.

SEE ALSO POSIX 1003.1b document

ansiAssert

NAME ansiAssert – ANSI assert documentation

ROUTINES assert() - put diagnostics into programs (ANSI)

VxWorks OS Libraries API Reference, 5.5
ansiCtype

14

DESCRIPTION The header assert.h defines the assert() macro and refers to another macro, NDEBUG,
which is not defined by assert.h. If NDEBUG is defined as a macro at the point in the
source file where assert.h is included, the assert() macro is defined simply as:

#define assert(ignore) ((void)0)

ANSI specifies that assert() should be implemented as a macro, not as a routine. If the
macro definition is suppressed in order to access an actual routine, the behavior is
undefined.

INCLUDE FILES stdio.h, stdlib.h, assert.h

SEE ALSO American National Standard X3.159-1989

ansiCtype

NAME ansiCtype – ANSI ctype documentation

ROUTINES isalnum() - test whether a character is alphanumeric (ANSI)
isalpha() - test whether a character is a letter (ANSI)
iscntrl() - test whether a character is a control character (ANSI)
isdigit() - test whether a character is a decimal digit (ANSI)
isgraph() - test whether a character is a printing, non-white-space character (ANSI)
islower() - test whether a character is a lower-case letter (ANSI)
isprint() - test whether a character is printable, including the space character (ANSI)
ispunct() - test whether a character is punctuation (ANSI)
isspace() - test whether a character is a white-space character (ANSI)
isupper() - test whether a character is an upper-case letter (ANSI)
isxdigit() - test whether a character is a hexadecimal digit (ANSI)
tolower() - convert an upper-case letter to its lower-case equivalent (ANSI)
toupper() - convert a lower-case letter to its upper-case equivalent (ANSI)

DESCRIPTION The header ctype.h declares several functions useful for testing and mapping characters.
In all cases, the argument is an int, the value of which is representable as an unsigned
char or is equal to the value of the macro EOF. If the argument has any other value, the
behavior is undefined.

The behavior of the ctype functions is affected by the current locale. VxWorks supports
only the “C” locale.

The term “printing character” refers to a member of an implementation-defined set of
characters, each of which occupies one printing position on a display device; the term
“control character” refers to a member of an implementation-defined set of characters that
are not printing characters.

1: Libraries
ansiMath

15

A
INCLUDE FILES ctype.h

SEE ALSO American National Standard X3.159-1989

ansiLocale

NAME ansiLocale – ANSI locale documentation

ROUTINES localeconv() - set the components of an object with type lconv (ANSI)
setlocale() - set the appropriate locale (ANSI)

DESCRIPTION The header locale.h declares two functions and one type, and defines several macros. The
type is:

struct lconv
contains members related to the formatting of numeric values. The structure should
contain at least the members defined in locale.h, in any order.

SEE ALSO localeconv(), setlocale(), American National Standard X3.159-1989

ansiMath

NAME ansiMath – ANSI math documentation

ROUTINES asin() - compute an arc sine (ANSI)
acos() - compute an arc cosine (ANSI)
atan() - compute an arc tangent (ANSI)
atan2() - compute the arc tangent of y/x (ANSI)
ceil() - compute the smallest integer greater than or equal to a specified value (ANSI)
cosh() - compute a hyperbolic cosine (ANSI)
exp() - compute an exponential value (ANSI)
fabs() - compute an absolute value (ANSI)
floor() - compute the largest integer less than or equal to a specified value (ANSI)
fmod() - compute the remainder of x/y (ANSI)
frexp() - break a floating-point number into a normalized fraction and power of 2
(ANSI)
ldexp() - multiply a number by an integral power of 2 (ANSI)
log() - compute a natural logarithm (ANSI)
log10() - compute a base-10 logarithm (ANSI)

VxWorks OS Libraries API Reference, 5.5
ansiSetjmp

16

modf() - separate a floating-point number into integer and fraction parts (ANSI)
pow() - compute the value of a number raised to a specified power (ANSI)
sin() - compute a sine (ANSI)
cos() - compute a cosine (ANSI)
sinh() - compute a hyperbolic sine (ANSI)
sqrt() - compute a non-negative square root (ANSI)
tan() - compute a tangent (ANSI)
tanh() - compute a hyperbolic tangent (ANSI)

DESCRIPTION The header math.h declares several mathematical functions and defines one macro. The
functions take double arguments and return double values.

The macro defined is:

HUGE_VAL
expands to a positive double expression, not necessarily representable as a float.

The behavior of each of these functions is defined for all representable values of their
input arguments. Each function executes as if it were a single operation, without
generating any externally visible exceptions.

For all functions, a domain error occurs if an input argument is outside the domain over
which the mathematical function is defined. The description of each function lists any
applicable domain errors. On a domain error, the function returns an
implementation-defined value; the value EDOM is stored in errno.

Similarly, a range error occurs if the result of the function cannot be represented as a
double value. If the result overflows (the magnitude of the result is so large that it cannot
be represented in an object of the specified type), the function returns the value
HUGE_VAL, with the same sign (except for the tan() function) as the correct value of the
function; the value ERANGE is stored in errno. If the result underflows (the type), the
function returns zero; whether the integer expression errno acquires the value ERANGE is
implementation defined.

INCLUDE FILES math.h

SEE ALSO mathALib, American National Standard X3.159-1989

ansiSetjmp

NAME ansiSetjmp – ANSI setjmp documentation

ROUTINES setjmp() - save the calling environment in a jmp_buf argument (ANSI)
longjmp() - perform non-local goto by restoring saved environment (ANSI)

1: Libraries
ansiStdarg

17

A
DESCRIPTION The header setjmp.h defines functions and one type for bypassing the normal function

call and return discipline.

The type declared is:

jmp_buf
an array type suitable for holding the information needed to restore a calling
environment.

The ANSI C standard does not specify whether setjmp() is a subroutine or a macro.

SEE ALSO American National Standard X3.159-1989

ansiStdarg

NAME ansiStdarg – ANSI stdarg documentation

ROUTINES va_start() - initialize a va_list object for use by va_arg() and va_end()
va_arg() - expand to an expression having the type and value of the call’s next argument
va_end() - facilitate a normal return from a routine using a va_list object

DESCRIPTION The header stdarg.h declares a type and defines three macros for advancing through a list
of arguments whose number and types are not known to the called function when it is
translated.

A function may be called with a variable number of arguments of varying types. The
rightmost parameter plays a special role in the access mechanism, and is designated
parmN in this description.

The type declared is:

va_list
a type suitable for holding information needed by the macros va_start(), va_arg(),
and va_end().

To access the varying arguments, the called function shall declare an object having type
va_list. The object (referred to here as ap) may be passed as an argument to another
function; if that function invokes the va_arg() macro with parameter ap, the value of ap in
the calling function is indeterminate and is passed to the va_end() macro prior to any
further reference to ap.

va_start() and va_arg() have been implemented as macros, not as functions. The
va_start() and va_end() macros should be invoked in the function accepting a varying
number of arguments, if access to the varying arguments is desired.

VxWorks OS Libraries API Reference, 5.5
ansiStdio

18

The use of these macros is documented here as if they were architecture-generic.
However, depending on the compilation environment, different macro versions are
included by vxWorks.h.

SEE ALSO American National Standard X3.159-1989

ansiStdio

NAME ansiStdio – ANSI stdio documentation

ROUTINES clearerr() - clear end-of-file and error flags for a stream (ANSI)
fclose() - close a stream (ANSI)
fdopen() - open a file specified by a file descriptor (POSIX)
feof() - test the end-of-file indicator for a stream (ANSI)
ferror() - test the error indicator for a file pointer (ANSI)
fflush() - flush a stream (ANSI)
fgetc() - return the next character from a stream (ANSI)
fgetpos() - store the current value of the file position indicator for a stream (ANSI)
fgets() - read a specified number of characters from a stream (ANSI)
fileno() - return the file descriptor for a stream (POSIX)
fopen() - open a file specified by name (ANSI)
fprintf() - write a formatted string to a stream (ANSI)
fputc() - write a character to a stream (ANSI)
fputs() - write a string to a stream (ANSI)
fread() - read data into an array (ANSI)
freopen() - open a file specified by name (ANSI)
fscanf() - read and convert characters from a stream (ANSI)
fseek() - set the file position indicator for a stream (ANSI)
fsetpos() - set the file position indicator for a stream (ANSI)
ftell() - return the current value of the file position indicator for a stream (ANSI)
fwrite() - write from a specified array (ANSI)
getc() - return the next character from a stream (ANSI)
getchar() - return the next character from the standard input stream (ANSI)
gets() - read characters from the standard input stream (ANSI)
getw() - read the next word (32-bit integer) from a stream
perror() - map an error number in errno to an error message (ANSI)
putc() - write a character to a stream (ANSI)
putchar() - write a character to the standard output stream (ANSI)
puts() - write a string to the standard output stream (ANSI)
putw() - write a word (32-bit integer) to a stream
rewind() - set the file position indicator to the beginning of a file (ANSI)
scanf() - read and convert characters from the standard input stream (ANSI)

1: Libraries
ansiStdio

19

A
setbuf() - specify the buffering for a stream (ANSI)
setbuffer() - specify buffering for a stream
setlinebuf() - set line buffering for standard output or standard error
setvbuf() - specify buffering for a stream (ANSI)
stdioInit() - initialize standard I/O support
stdioFp() - return the standard input/output/error FILE of the current task
stdioShowInit() - initialize the standard I/O show facility
stdioShow() - display file pointer internals
tmpfile() - create a temporary binary file (Unimplemented) (ANSI)
tmpnam() - generate a temporary file name (ANSI)
ungetc() - push a character back into an input stream (ANSI)
vfprintf() - write a formatted string to a stream (ANSI)

DESCRIPTION The header stdio.h declares three types, several macros, and many functions for
performing input and output.

Types

The types declared are size_t and:

FILE
object type capable of recording all the information needed to control a stream,
including its file position indicator, a pointer to its associated buffer (if any), an error
indicator that records whether a read/write error has occurred, and an end-of-file
indicator that records whether the end of the file has been reached.

fpos_t
object type capable of recording all the information needed to specify uniquely every
position within a file.

Macros

The macros are NULL and:

_IOFBF, _IOLBF, _IONBF
expand to integral constant expressions with distinct values, suitable for use as the
third argument to setvbuf().

BUFSIZ
expands to an integral constant expression that is the size of the buffer used by
setbuf().

EOF
expands to a negative integral constant expression that is returned by several
functions to indicate end-of-file, that is, no more input from a stream.

FOPEN_MAX
expands to an integral constant expression that is the minimum number of the files
that the system guarantees can be open simultaneously.

VxWorks OS Libraries API Reference, 5.5
ansiStdio

20

FILENAME_MAX
expands to an integral constant expression that is the size needed for an array of char
large enough to hold the longest file name string that can be used.

L_tmpnam
expands to an integral constant expression that is the size needed for an array of char
large enough to hold a temporary file name string generated by tmpnam().

SEEK_CUR, SEEK_END, SEEK_SET
expand to integral constant expressions with distinct values suitable for use as the
third argument to fseek().

TMP_MAX
expands to an integral constant expression that is the minimum number of file names
generated by tmpnam() that will be unique.

‘stderr, stdin, stdout’
expressions of type “pointer to FILE” that point to the FILE objects associated,
respectively, with the standard error, input, and output streams.

STREAMS Input and output, whether to or from physical devices such as terminals and tape drives,
or whether to or from files supported on structured storage devices, are mapped into
logical data streams, whose properties are more uniform than their various inputs and
outputs. Two forms of mapping are supported: for text streams and for binary streams.

A text stream is an ordered sequence of characters composed into lines, each line
consisting of zero or more characters plus a terminating new-line character. Characters
may have to be added, altered, or deleted on input and output to conform to differing
conventions for representing text in the host environment. Thus, there is no need for a
one-to-one correspondence between the characters in a stream and those in the external
representation. Data read in from a text stream will necessarily compare equal to the data
that were earlier written out to that stream only if: the data consists only of printable
characters and the control characters horizontal tab and new-line; no new-line character is
immediately preceded by space characters; and the last character is a new-line character.
Space characters are written out immediately before a new-line character appears.

A binary stream is an ordered sequence of characters that can transparently record
internal data. Data read in from a binary stream should compare equal to the data that
was earlier written out to that stream, under the same implementation. However, such a
stream may have a number of null characters appended to the end of the stream.

Environmental Limits

VxWorks supports text files with lines containing at least 254 characters, including the
terminating new-line character. The value of the macro BUFSIZ is 1024.

FILES A stream is associated with an external file (which may be a physical device) by opening a
file, which may involve creating a new file. Creating an existing file causes its former
contents to be discarded, if necessary. If a file can support positioning requests (such as a

1: Libraries
ansiStdio

21

A
disk file, as opposed to a terminal), then a file position indicator associated with the
stream is positioned at the start (character number zero) of the file. The file position
indicator is maintained by subsequent reads, writes, and positioning requests, to facilitate
an orderly progression through the file. All input takes place as if characters were read by
successive calls to fgetc(); all output takes place as if characters were written by
successive calls to fputc().

Binary files are not truncated, except as defined in fopen() documentation.

When a stream is unbuffered, characters are intended to appear from the source or at the
destination as soon as possible. Otherwise characters may be accumulated and
transmitted to or from the host environment as a block. When a stream is fully buffered,
characters are intended to be transmitted to or from the host environment as a block when
the buffer is filled. When a stream is line buffered, characters are intended to be
transmitted to or from the host environment as a block when a new-line character is
encountered. Furthermore, characters are intended to be transmitted as a block to the host
environment when a buffer is filled, when input is requested on an unbuffered stream, or
when input is requested on a line-buffered stream that requires the transmission of
characters from the host environment. VxWorks supports these characteristics via the
setbuf() and setvbuf() functions.

A file may be disassociated from a controlling stream by closing the file. Output streams
are flushed (any unwritten buffer contents are transmitted to the host environment) before
the stream is disassociated from the file. The value of a pointer to a FILE object is
indeterminate after the associated file is closed (including the standard text streams).

The file may be subsequently reopened, by the same or another program execution, and
its contents reclaimed or modified (if it can be repositioned at its start).

TASK TERMINATION

ANSI specifies that if the main function returns to its original caller or if exit() is called, all
open files are closed (and hence all output streams are flushed) before program
termination. This does not happen in VxWorks. The exit() function does not close all files
opened for that task. A file opened by one task may be used and closed by another. Unlike
in UNIX, when a VxWorks task exits, it is the responsibility of the task to fclose() its file
pointers, except stdin, stdout, and stderr. If a task is to be terminated asynchronously, use
kill() and arrange for a signal handler to clean up.

The address of the FILE object used to control a stream may be significant; a copy of a FILE
object may not necessarily serve in place of the original.

At program startup, three text streams are predefined and need not be opened explicitly:
standard input (for reading conventional input), standard output (for writing
conventional output), and standard error (for writing diagnostic output). When opened,
the standard error stream is not fully buffered; the standard input and standard output
streams are fully buffered if and only if the stream can be determined not to refer to an
interactive device.

VxWorks OS Libraries API Reference, 5.5
ansiStdlib

22

Functions that open additional (non-temporary) files require a file name, which is a string.
VxWorks allows the same file to be open multiple times simultaneously. It is up to the
user to maintain synchronization between different tasks accessing the same file.

FIOLIB Several routines normally considered part of standard I/O -- printf(), sprintf(),
vprintf(), vsprintf(), and sscanf() -- are not implemented as part of the buffered
standard I/O library; they are instead implemented in fioLib. They do not use the
standard I/O buffering scheme. They are self-contained, formatted, but unbuffered I/O
functions. This allows a limited amount of formatted I/O to be achieved without the
overhead of the standard I/O library.

SEE ALSO fioLib, American National Standard for Information Systems - Programming Language - C,
ANSI X3.159-1989: Input/Output (stdio.h)

ansiStdlib

NAME ansiStdlib – ANSI stdlib documentation

ROUTINES abort() - cause abnormal program termination (ANSI)
abs() - compute the absolute value of an integer (ANSI)
atexit() - call a function at program termination (Unimplemented) (ANSI)
atof() - convert a string to a double (ANSI)
atoi() - convert a string to an int (ANSI)
atol() - convert a string to a long (ANSI)
bsearch() - perform a binary search (ANSI)
div() - compute a quotient and remainder (ANSI)
div_r() - compute a quotient and remainder (reentrant)
labs() - compute the absolute value of a long (ANSI)
ldiv() - compute the quotient and remainder of the division (ANSI)
ldiv_r() - compute a quotient and remainder (reentrant)
mblen() - calculate the length of a multibyte character (Unimplemented) (ANSI)
mbtowc() - convert a multibyte character to a wide character (Unimplemented) (ANSI)
wctomb() - convert a wide character to a multibyte character (Unimplemented) (ANSI)
mbstowcs() - convert a series of multibyte char’s to wide char’s (Unimplemented)
(ANSI)
wcstombs() - convert a series of wide char’s to multibyte char’s (Unimplemented)
(ANSI)
qsort() - sort an array of objects (ANSI)
rand() - generate a pseudo-random integer between 0 and RAND_MAX (ANSI)
srand() - reset the value of the seed used to generate random numbers (ANSI)
strtod() - convert the initial portion of a string to a double (ANSI)
strtol() - convert a string to a long integer (ANSI)

1: Libraries
ansiStdlib

23

A
strtoul() - convert a string to an unsigned long integer (ANSI)
system() - pass a string to a command processor (Unimplemented) (ANSI)

DESCRIPTION This library includes several standard ANSI routines. Note that where there is a pair of
routines, such as div() and div_r(), only the routine xxx_r() is reentrant. The xxx()
routine is not reentrant.

The header stdlib.h declares four types and several functions of general utility, and
defines several macros.

Types

The types declared are size_t, wchar_t, and:

div_t
is the structure type of the value returned by the div().

ldiv_t
is the structure type of the value returned by the ldiv_t().

Macros

The macros defined are NULL and:

EXIT_FAILURE, EXIT_SUCCESS
expand to integral constant expressions that may be used as the argument to exit() to
return unsuccessful or successful termination status, respectively, to the host
environment.

RAND_MAX
expands to a positive integer expression whose value is the maximum number of
bytes on a multibyte character for the extended character set specified by the current
locale, and whose value is never greater than MB_LEN_MAX.

INCLUDE FILES stdlib.h

SEE ALSO American National Standard X3.159-1989

VxWorks OS Libraries API Reference, 5.5
ansiString

24

ansiString

NAME ansiString – ANSI string documentation

ROUTINES memchr() - search a block of memory for a character (ANSI)
memcmp() - compare two blocks of memory (ANSI)
memcpy() - copy memory from one location to another (ANSI)
memmove() - copy memory from one location to another (ANSI)
memset() - set a block of memory (ANSI)
strcat() - concatenate one string to another (ANSI)
strchr() - find the first occurrence of a character in a string (ANSI)
strcmp() - compare two strings lexicographically (ANSI)
strcoll() - compare two strings as appropriate to LC_COLLATE (ANSI)
strcpy() - copy one string to another (ANSI)
strcspn() - return the string length up to the first character from a given set (ANSI)
strerror_r() - map an error number to an error string (POSIX)
strerror() - map an error number to an error string (ANSI)
strlen() - determine the length of a string (ANSI)
strncat() - concatenate characters from one string to another (ANSI)
strncmp() - compare the first n characters of two strings (ANSI)
strncpy() - copy characters from one string to another (ANSI)
strpbrk() - find the first occurrence in a string of a character from a given set (ANSI)
strrchr() - find the last occurrence of a character in a string (ANSI)
strspn() - return the string length up to the first character not in a given set (ANSI)
strstr() - find the first occurrence of a substring in a string (ANSI)
strtok() - break down a string into tokens (ANSI)
strtok_r() - break down a string into tokens (reentrant) (POSIX)
strxfrm() - transform up to n characters of s2 into s1 (ANSI)

DESCRIPTION This library includes several standard ANSI routines. Note that where there is a pair of
routines, such as did() and div_r(), only the routine xxx_r() is reentrant. The xxx()
routine is not reentrant.

The header string.h declares one type and several functions, and defines one macro useful
for manipulating arrays of character type and other objects treated as array of character
type. The type is size_t and the macro NULL. Various methods are used for determining
the lengths of the arrays, but in all cases a char * or void * argument points to the initial
(lowest addressed) character of the array. If an array is accessed beyond the end of an
object, the behavior is undefined.

SEE ALSO American National Standard X3.159-1989

1: Libraries
ansiTime

25

AansiTime

NAME ansiTime – ANSI time documentation

ROUTINES asctime() - convert broken-down time into a string (ANSI)
asctime_r() - convert broken-down time into a string (POSIX)
clock() - determine the processor time in use (ANSI)
ctime() - convert time in seconds into a string (ANSI)
ctime_r() - convert time in seconds into a string (POSIX)
difftime() - compute the difference between two calendar times (ANSI)
gmtime() - convert calendar time into UTC broken-down time (ANSI)
gmtime_r() - convert calendar time into broken-down time (POSIX)
localtime() - convert calendar time into broken-down time (ANSI)
localtime_r() - convert calendar time into broken-down time (POSIX)
mktime() - convert broken-down time into calendar time (ANSI)
strftime() - convert broken-down time into a formatted string (ANSI)
time() - determine the current calendar time (ANSI)

DESCRIPTION The header time.h defines two macros and declares four types and several functions for
manipulating time. Many functions deal with a calendar time that represents the current
date (according to the Gregorian calendar) and time. Some functions deal with local time,
which is the calendar time expressed for some specific time zone, and with Daylight
Saving Time, which is a temporary change in the algorithm for determining local time.
The local time zone and Daylight Saving Time are implementation-defined.

Macros

The macros defined are NULL and:

CLOCKS_PER_SEC
the number of ticks per second.

Types

The types declared are size_t and:

clock_t, time_t
arithmetic types capable of representing times.

struct tm
holds the components of a calendar time in what is known as “broken-down time.”
The structure contains at least the following members, in any order. The semantics of
the members and their normal ranges are expressed in the comments.

VxWorks OS Libraries API Reference, 5.5
arpLib

26

The value of tm_isdst is positive if Daylight Saving Time is in effect, zero if Daylight
Saving Time is not in effect, and negative if the information is not available.

If the environment variable TIMEZONE is set, the information is retrieved from this
variable, otherwise from the locale information. TIMEZONE is of the form:

name_of_zone:<(unused)<:time_in_minutes_from_UTC:daylight_start:daylight_end

To calculate local time, the value of time_in_minutes_from_UTC is subtracted from UTC;
time_in_minutes_from_UTC must be positive.

Daylight information is expressed as mmddhh (month-day-hour), for example:

UTC::0:040102:100102

REENTRANCY Where there is a pair of routines, such as div() and div_r(), only the routine xxx_r() is
reentrant. The xxx() routine is not reentrant.

INCLUDE FILES time.h

SEE ALSO ansiLocale, American National Standard X3.159-1989

arpLib

NAME arpLib – Address Resolution Protocol (ARP) table manipulation library

ROUTINES arpAdd() - create or modify an ARP table entry
arpDelete() - remove an ARP table entry
arpFlush() - flush all entries in the system ARP table
arpResolve() - resolve a hardware address for a specified Internet address

DESCRIPTION This library provides direct access to the address translation table maintained by the
Address Resolution Protocol (ARP). Each entry in the table maps an Internet Protocol (IP)

int tm_sec; seconds after the minute - [0, 59]
int tm_min; minutes after the hour - [0, 59]
int tm_hour; hours after midnight - [0, 23]
int tm_mday; day of the month - [1, 31]
int tm_mon; months since January - [0, 11]
int tm_year; years since 1900
int tm_wday; days since Sunday - [0, 6]
int tm_yday; days since January 1 - [0, 365]
int tm_isdst; Daylight Saving Time flag

1: Libraries
arpLib

27

A
address to a physical hardware address. This library supports only those entries that
translate between IP and Ethernet addresses. It is linked into the VxWorks image if
INCLUDE_ARP is defined at the time the image is built. The underlying ARP protocol,
which creates and maintains the table, is included automatically as part of the IP
component.

RELATED INTERFACES

The arpShow() routine (in the netShow library) displays the current contents of the ARP
table.

A low -level interface to the ARP table is available with the socket-specific SIOCSARP,
SIOCDARP and SIOCGARP ioctl functions.

INCLUDE FILES arpLib.h

SEE ALSO inetLib, routeLib, netShow

VxWorks OS Libraries API Reference, 5.5
bLib

28

bLib

NAME bLib – buffer manipulation library

ROUTINES bcmp() - compare one buffer to another
binvert() - invert the order of bytes in a buffer
bswap() - swap buffers
swab() - swap bytes
uswab() - swap bytes with buffers that are not necessarily aligned
bzero() - zero out a buffer
bcopy() - copy one buffer to another
bcopyBytes() - copy one buffer to another one byte at a time
bcopyWords() - copy one buffer to another one word at a time
bcopyLongs() - copy one buffer to another one long word at a time
bfill() - fill a buffer with a specified character
bfillBytes() - fill buffer with a specified character one byte at a time
index() - find the first occurrence of a character in a string
rindex() - find the last occurrence of a character in a string

DESCRIPTION This library contains routines to manipulate buffers of variable-length byte arrays.
Operations are performed on long words when possible, even though the buffer lengths
are specified in bytes. This occurs only when source and destination buffers start on
addresses that are both odd or both even. If one buffer is even and the other is odd,
operations must be done one byte at a time (because of alignment problems inherent in
the MC68000), thereby slowing down the process.

Certain applications, such as byte-wide memory-mapped peripherals, may require that
only byte operations be performed. For this purpose, the routines bcopyBytes() and
bfillBytes() provide the same functions as bcopy() and bfill(), but use only
byte-at-a-time operations. These routines do not check for null termination.

INCLUDE FILES string.h

SEE ALSO ansiString

1: Libraries
bootConfig

29

B
bootConfig

NAME bootConfig – system configuration module for boot ROMs

ROUTINES No Callable Routines

DESCRIPTION This is the WRS-supplied configuration module for the VxWorks boot ROM. It is a
stripped-down version of usrConfig.c, having no VxWorks shell or debugging facilities.
Its primary function is to load an object module over the network with either RSH or FTP.
Additionally, a simple set of single letter commands is provided for displaying and
modifying memory contents. Use this module as a starting point for placing applications
in ROM.

VxWorks OS Libraries API Reference, 5.5
bootInit

30

bootInit

NAME bootInit – ROM initialization module

ROUTINES romStart() - generic ROM initialization

DESCRIPTION This module provides a generic boot ROM facility. The target-specific romInit.s module
performs the minimal preliminary board initialization and then jumps to the C routine
romStart(). This routine, still executing out of ROM, copies the first stage of the startup
code to a RAM address and jumps to it. The next stage clears memory and then
uncompresses the remainder of ROM into the final VxWorks ROM image in RAM.

A modified version of the Public Domain zlib library is used to uncompress the VxWorks
boot ROM executable linked with it. Compressing object code typically achieves over 55%
compression, permitting much larger systems to be burned into ROM. The only expense is
the added few seconds delay while the first two stages complete.

ROM AND RAM MEMORY LAYOUT

Example memory layout for a 1-megabyte board:

SEE ALSO inflate(), romInit(), and deflate()

AUTHOR The original compression software for zlib was written by Jean-Loup Gailly and Mark
Adler. See the manual pages of inflate and deflate for more information on their freely
available compression software.

RAM
0 filled

ROM image

STACK_SAVE

0 filled

ROM

0x00100000 = LOCAL_MEM_SIZE = sysMemTop()

= (romInit+ROM_COPY_SIZE) or binArrayStart

0x00090000 = RAM_HIGH_ADRS

0x00080000 = 0.5 Megabytes

0x00001000 = RAM_ADRS & RAM_LOW_ADRS
exc vectors, bp anchor, exc msg, bootline

0x00000000 = LOCAL_MEM_LOCAL_ADRS

0xff8xxxxx = binArrayStart

0xff800008 = ROM_TEXT_ADRS
0xff800000 = ROM_BASE_ADRS

1: Libraries
bootLib

31

B
bootLib

NAME bootLib – boot ROM subroutine library

ROUTINES bootStringToStruct() - interpret the boot parameters from the boot line
bootStructToString() - construct a boot line
bootParamsShow() - display boot line parameters
bootParamsPrompt() - prompt for boot line parameters
bootLeaseExtract() - extract the lease information from an Internet address
bootNetmaskExtract() - extract the net mask field from an Internet address
bootBpAnchorExtract() - extract a backplane address from a device field

DESCRIPTION This library contains routines for manipulating a boot line. Routines are provided to
interpret, construct, print, and prompt for a boot line.

When VxWorks is first booted, certain parameters can be specified, such as network
addresses, boot device, host, and start-up file. This information is encoded into a single
ASCII string known as the boot line. The boot line is placed at a known address (specified
in config.h) by the boot ROMs so that the system being booted can discover the
parameters that were used to boot the system. The boot line is the only means of
communication from the boot ROMs to the booted system.

The boot line is of the form:

bootdev(unitnum,procnum)hostname:filename e=# b=# h=# g=# u=userid pw=passwd f=#
tn=targetname s=startupscript o=other

where:

bootdev
the boot device (required); for example, “ex” for Excelan Ethernet, “bp” for
backplane. For the backplane, this field can have an optional anchor address
specification of the form “bp=adrs” (see bootBpAnchorExtract()).

unitnum
the unit number of the boot device (0..n).

procnum
the processor number on the backplane, 0..n (required for VME boards).

hostname
the name of the boot host (required).

filename
the file to be booted (required).

e
the Internet address of the Ethernet interface. This field can have an optional subnet
mask of the form inet_adrs:subnet_mask. If DHCP is used to obtain the configuration

VxWorks OS Libraries API Reference, 5.5
bootLib

32

parameters, lease timing information may also be present. This information takes the
form lease_duration:lease_origin and is appended to the end of the field. (see
bootNetmaskExtract() and bootLeaseExtract()).

b
the Internet address of the backplane interface. This field can have an optional subnet
mask and/or lease timing information as “e”.

h
the Internet address of the boot host.

g
the Internet address of the gateway to the boot host. Leave this parameter blank if the
host is on same network.

u
a valid user name on the boot host.

pw
the password for the user on the host. This parameter is usually left blank. If
specified, FTP is used for file transfers.

f
the system-dependent configuration flags. This parameter contains an or of option
bits defined in sysLib.h.

tn
the name of the system being booted

s
the name of a file to be executed as a start-up script.

o
“other” string for use by the application.

The Internet addresses are specified in “dot” notation (e.g., 90.0.0.2). The order of assigned
values is arbitrary.

EXAMPLE enp(0,0)host:/usr/wpwr/target/config/mz7122/vxWorks e=90.0.0.2 b=91.0.0.2

h=100.0.0.4 g=90.0.0.3 u=bob pw=realtime f=2 tn=target

s=host:/usr/bob/startup o=any_string

INCLUDE FILES bootLib.h

SEE ALSO bootConfig

1: Libraries
bootpLib

33

B
bootpLib

NAME bootpLib – Bootstrap Protocol (BOOTP) client library

ROUTINES bootpLibInit() - BOOTP client library initialization
bootpParamsGet() - retrieve boot parameters using BOOTP
bootpMsgGet() - send a BOOTP request message and retrieve reply

DESCRIPTION This library implements the client side of the Bootstrap Protocol (BOOTP). This protocol
allows a host to initialize automatically by obtaining its IP address, boot file name, and
boot host’s IP address over a network. The bootpLibInit() routine links this library into
the VxWorks image. This happens automatically if INCLUDE_BOOTP is defined at the
time the image is built.

CONFIGURATION INTERFACE

When used during boot time, the BOOTP library attempts to retrieve the required
configuration information from a BOOTP server using the interface described below. If it
is successful, the remainder of the boot process continues as if the information were
entered manually.

HIGH-LEVEL INTERFACE

The bootpParamsGet() routine retrieves a set of configuration parameters according to
the client-server interaction described in RFC 951 and clarified in RFC 1542. The
parameter descriptor structure it accepts as an argument allows the retrieval of any
combination of the options described in RFC 1533 (if supported by the BOOTP server and
specified in the database). During the default system boot process, the routine obtains the
boot file, the Internet address, and the host Internet address. It also obtains the subnet
mask and the Internet address of an IP router, if available.

LOW-LEVEL INTERFACE

The bootpMsgGet() routine transmits an arbitrary BOOTP request message and provides
direct access to any reply. This interface provides a method for supporting alternate
BOOTP implementations which may not fully comply with the recommended behavior in
RFC 1542. For example, it allows transmission of BOOTP messages to an arbitrary UDP
port and provides access to the vendor-specific field to handle custom formats which
differ from the RFC 1533 implementation. The bootpParamsGet() routine already extracts
all options which that document defines.

EXAMPLE The following code fragment demonstrates use of the BOOTP library:

#include "bootpLib.h"

#define _MAX_BOOTP_RETRIES 1

struct bootpParams bootParams;

struct in_addr clntAddr;

VxWorks OS Libraries API Reference, 5.5
bootpLib

34

struct in_addr hostAddr;

char bootFile [SIZE_FILE];

int subnetMask;

struct in_addr_list routerList;

struct in_addr gateway;

struct ifnet * pIf;

/* Retrieve the interface descriptor of the transmitting device. */

pIf = ifunit ("ln0");

if (pIf == NULL)

{

printf ("Device not found.\n");

return (ERROR);

}

/* Setup buffers for information from BOOTP server. */

bzero ((char *)&clntAddr, sizeof (struct in_addr));

bzero ((char *)&hostAddr, sizeof (struct in_addr));

bzero (bootFile, SIZE_FILE);

subnetMask = 0;

bzero ((char *)&gateway, sizeof (struct in_addr));

/* Set all pointers in parameter descriptor to NULL. */

bzero ((char *)&bootParams, sizeof (struct bootpParams));

/* Set pointers corresponding to desired options. */

bootParams.netmask = (struct in_addr *)&subnetMask;

routerlist.addr = &gateway;

routerlist.num = 1;

bootParams.routers = &routerlist;

/*

@ Send request and wait for reply, retransmitting as necessary up to

@ given limit. Copy supplied entries into buffers if reply received.

*/

result = bootpParamsGet (pIf, _MAX_BOOTP_RETRIES,

&clntAddr, &hostAddr, NULL, bootFile, &bootParams);

if (result != OK)

return (ERROR);

INCLUDE FILES bootpLib.h

SEE ALSO RFC 951, RFC 1542, RFC 1533,

1: Libraries
bpfDrv

35

B
bpfDrv

NAME bpfDrv – Berkeley Packet Filter (BPF) I/O driver library

ROUTINES bpfDrv() - initialize the BPF driver
bpfDevCreate() - create Berkeley Packet Filter device
bpfDevDelete() - destroy Berkeley Packet Filter device

DESCRIPTION This library provides a driver which supports the customized retrieval of incoming
network data that meets the criteria imposed by a user-specified filter.

USER-CALLABLE ROUTINES

The bpfDrv() routine initializes the driver and the bpfDevCreate() routine creates a
packet filter device. Each BPF device allows direct access to the incoming data from one or
more network interfaces.

CREATING BPF DEVICES

In order to retrieve incoming network data, a BPF device must be created by calling the
bpfDevCreate() routine:

STATUS bpfDevCreate

(

char * pDevName, /* I/O system device name */

int numUnits, /* number of device units */

int bufSize /* block size for the BPF device */

)

The numUnits parameter specifies the maximum number of BPF units for the device. Each
unit is accessed through a separate file descriptor for use with a unique filter and/or a
different network interface. For example, the following call creates the /bpf0 and /bpf1
units:

bpfDevCreate ("/bpf", 2, 4096);

CONFIGURING BPF DEVICES

After opening a device unit, the associated file descriptor must be bound to a specific
network interface with the BIOCSETIF ioctl() option. The BIOCSETF ioctl() option adds
any filter instructions. Each file descriptor receives a copy of any data which matches the
filter. Different file descriptors may share the same interface. The underlying filters will
receive an identical data stream.

IOCTL FUNCTIONS The BPF driver supports the following ioctl() functions:

VxWorks OS Libraries API Reference, 5.5
bpfDrv

36

NOTE: When reading data from BPF units, the supplied buffer must be able to accept an
entire block of data as defined by the bufSize parameter to the bpfDevCreate() routine.
That value is also available with the BIOCGBLEN ioctl() option described above.

INCLUDE FILES bpfDrv.h

SEE ALSO ioLib

1: Libraries
cacheArchLib

37

C

cache4kcLib

NAME cache4kcLib – MIPS 4kc cache management library

ROUTINES cache4kcLibInit() - initialize the 4kc cache library

DESCRIPTION This library contains architecture-specific cache library functions for the MIPS 4kc
architecture. The 4kc utilizes a variable-size instruction and data cache that operates in
write-through mode. Cache line size also varies.

For general information about caching, see the manual entry for cacheLib.

INCLUDE FILES cacheLib.h

SEE ALSO cacheLib

cacheArchLib

NAME cacheArchLib – architecture-specific cache management library

ROUTINES cacheArchLibInit() - initialize the cache library
cacheArchClearEntry() - clear an entry from a cache (68K, x86)
cacheStoreBufEnable() - enable the store buffer (MC68060 only)
cacheStoreBufDisable() - disable the store buffer (MC68060 only)

DESCRIPTION This library contains architecture-specific cache library functions for the following
processor cache families: Motorola 68K, Intel 960, Intel x86, PowerPC, ARM, and the
Solaris and Windows simulators. Each routine description indicates which architecture
families support it. Within families, different members support different cache
mechanisms; thus, some operations cannot be performed by certain processors because
they lack particular functionalities. In such cases, the routines in this library return
ERROR. Processor-specific constraints are addressed in the manual entries for routines in
this library. If the caches are unavailable or uncontrollable, the routines return ERROR.
The exception to this rule is the 68020; although the 68020 has no cache, data cache
operations return OK.

The MIPS architecture families have cache-related routines in individual BSP libraries. See
the reference pages for the individual libraries and routines.

INCLUDE FILES cacheLib.h, mmuLib.h (ARM only)

SEE ALSO cacheLib, vmLib

VxWorks OS Libraries API Reference, 5.5
cacheAuLib

38

cacheAuLib

NAME cacheAuLib – Alchemy Au cache management library

ROUTINES cacheAuLibInit() - initialize the Au cache library

DESCRIPTION This library contains architecture-specific cache library functions for the Alchemy Au
architecture. The Au utilizes a variable-size instruction and data cache that operates in
write-through mode. Cache line size also varies.

For general information about caching, see the manual entry for cacheLib.

INCLUDE FILES cacheLib.h

SEE ALSO cacheLib

cacheLib

NAME cacheLib – cache management library

ROUTINES cacheLibInit() - initialize the cache library for a processor architecture
cacheEnable() - enable the specified cache
cacheDisable() - disable the specified cache
cacheLock() - lock all or part of a specified cache
cacheUnlock() - unlock all or part of a specified cache
cacheFlush() - flush all or some of a specified cache
cacheInvalidate() - invalidate all or some of a specified cache
cacheClear() - clear all or some entries from a cache
cachePipeFlush() - flush processor write buffers to memory
cacheTextUpdate() - synchronize the instruction and data caches
cacheDmaMalloc() - allocate a cache-safe buffer for DMA devices and drivers
cacheDmaFree() - free the buffer acquired with cacheDmaMalloc()
cacheDrvFlush() - flush the data cache for drivers
cacheDrvInvalidate() - invalidate data cache for drivers
cacheDrvVirtToPhys() - translate a virtual address for drivers
cacheDrvPhysToVirt() - translate a physical address for drivers

DESCRIPTION This library provides architecture-independent routines for managing the instruction and
data caches. Architecture-dependent routines are documented in the architecture-specific
libraries.

1: Libraries
cacheLib

39

C

The cache library is initialized by cacheLibInit() in usrInit(). The cacheLibInit() routine
typically calls an architecture-specific initialization routine in one of the
architecture-specific libraries. The initialization routine places the cache in a known and
quiescent state, ready for use, but not yet enabled. Cache devices are enabled and disabled
by calls to cacheEnable() and cacheDisable(), respectively.

The structure CACHE_LIB in cacheLib.h provides a function pointer that allows for the
installation of different cache implementations in an architecture-independent manner. If
the processor family allows more than one cache implementation, the board support
package (BSP) must select the appropriate cache library using the function pointer
sysCacheLibInit. The cacheLibInit() routine calls the initialization function attached to
sysCacheLibInit to perform the actual CACHE_LIB function pointer initialization (see
cacheLib.h). Note that sysCacheLibInit must be initialized when declared; it need not
exist for architectures with a single cache design. Systems without caches have all NULL
pointers in the CACHE_LIB structure. For systems with bus snooping, NULLifying the
flush and invalidate function pointers in sysHwInit() improves overall system and driver
performance.

Function pointers also provide a way to supplement the cache library or attach
user-defined cache functions for managing secondary cache systems.

Parameters specified by cacheLibInit() are used to select the cache mode, either
write-through (CACHE_WRITETHROUGH) or copyback (CACHE_COPYBACK), as well as
to implement all other cache configuration features via software bit-flags. Note that
combinations, such as setting copyback and write-through at the same time, do not make
sense.

Typically, the first argument passed to cache routines after initialization is the
CACHE_TYPE, which selects the data cache (DATA_CACHE) or the instruction cache
(INSTRUCTION_CACHE).

Several routines accept two additional arguments: an address and the number of bytes.
Some cache operations can be applied to the entire cache (bytes = ENTIRE_CACHE) or to a
portion of the cache. This range specification allows the cache to be selectively locked,
unlocked, flushed, invalidated, and cleared. The two complementary routines,
cacheDmaMalloc() and cacheDmaFree(), are tailored for efficient driver writing. The
cacheDmaMalloc() routine attempts to return a “cache-safe” buffer, which is created by
the MMU and a set of flush and invalidate function pointers. Examples are provided
below in the section “Using the Cache Library.”

Most routines in this library return a STATUS value of OK, or ERROR if the cache
selection is invalid or the cache operation fails.

BACKGROUND The emergence of RISC processors and effective CISC caches has made cache and MMU
support a key enhancement to VxWorks. (For more information about MMU support, see
the manual entry for vmLib.) The VxWorks cache strategy is to maintain coherency
between the data cache and RAM and between the instruction and data caches. VxWorks
also preserves overall system performance. The product is designed to support several

VxWorks OS Libraries API Reference, 5.5
cacheLib

40

architectures and board designs, to have a high-performance implementation for drivers,
and to make routines functional for users, as well as within the entire operating system.
The lack of a consistent cache design, even within architectures, has required designing
for the case with the greatest number of coherency issues (Harvard architecture, copyback
mode, DMA devices, multiple bus masters, and no hardware coherency support).

Caches run in two basic modes, write-through and copyback. The write-through mode
forces all writes to the cache and to RAM, providing partial coherency. Writing to RAM
every time, however, slows down the processor and uses bus bandwidth. The copyback
mode conserves processor performance time and bus bandwidth by writing only to the
cache, not RAM. Copyback cache entries are only written to memory on demand. A Least
Recently Used (LRU) algorithm is typically used to determine which cache line to displace
and flush. Copyback provides higher system performance, but requires more coherency
support. Below is a logical diagram of a cached system to aid in the visualization of the
coherency issues.

The loss of cache coherency for a VxWorks system occurs in three places:

 (1) data cache / RAM
 (2) instruction cache / data cache
 (3) shared cache lines

A problem between the data cache and RAM (1) results from asynchronous accesses
(reads and writes) to the RAM by the processor and other masters. Accesses by DMA
devices and alternate bus masters (shared memory) are the primary causes of
incoherency, which can be remedied with minor code additions to the drivers.

Instruction

Cache Processor
Data Cache

(copyback)

RAM

DMA Devices VMEbus, etc.

(2)

(1)

(3)

1: Libraries
cacheLib

41

C

The instruction cache and data cache (2) can get out of sync when the loader, the
debugger, and the interrupt connection routines are being used. The instructions resulting
from these operations are loaded into the data cache, but not necessarily the instruction
cache, in which case there is a coherency problem. This can be fixed by “flushing” the data
cache entries to RAM, then “invalidating” the instruction cache entries. The invalid
instruction cache tags will force the retrieval of the new instructions that the data cache
has just flushed to RAM.

Cache lines that are shared (3) by more than one task create coherency problems. These
are manifest when one thread of execution invalidates a cache line in which entries may
belong to another thread. This can be avoided by allocating memory on a cache line
boundary, then rounding up to a multiple of the cache line size.

The best way to preserve cache coherency with optimal performance (Harvard
architecture, copyback mode, no software intervention) is to use hardware with bus
snooping capabilities. The caches, the RAM, the DMA devices, and all other bus masters
are tied to a physical bus where the caches can “snoop” or watch the bus transactions. The
address cycle and control (read/write) bits are broadcast on the bus to allow snooping.
Data transfer cycles are deferred until absolutely necessary. When one of the entries on
the physical side of the cache is modified by an asynchronous action, the cache(s) marks
its entry(s) as invalid. If an access is made by the processor (logical side) to the now
invalid cached entry, it is forced to retrieve the valid entry from RAM. If while in
copyback mode the processor writes to a cached entry, the RAM version becomes stale. If
another master attempts to access that stale entry in RAM, the cache with the valid
version preempts the access and writes the valid data to RAM. The interrupted access
then restarts and retrieves the now-valid data in RAM. Note that this configuration allows
only one valid entry at any time. At this time, only a few boards provide the snooping
capability; therefore, cache support software must be designed to handle incoherency
hazards without degrading performance.

The determinism, interrupt latency, and benchmarks for a cached system are exceedingly
difficult to specify (best case, worst case, average case) due to cache hits and misses, line
flushes and fills, atomic burst cycles, global and local instruction and data cache locking,
copyback versus write-through modes, hardware coherency support (or lack of), and
MMU operations (table walks, TLB locking).

USING THE CACHE LIBRARY

The coherency problems described above can be overcome by adding cache support to
existing software. For code segments that are not time-critical (loader, debugger, interrupt
connection), the following sequence should be used first to flush the data cache entries
and then to invalidate the corresponding instruction cache entries.

cacheFlush (DATA_CACHE, address, bytes);

cacheInvalidate (INSTRUCTION_CACHE, address, bytes);

For time-critical code, implementation is up to the driver writer. The following are tips for
using the VxWorks cache library effectively.

VxWorks OS Libraries API Reference, 5.5
cacheLib

42

Incorporate cache calls in the driver program to maintain overall system performance. The
cache may be disabled to facilitate driver development; however, high-performance
production systems should operate with the cache enabled. A disabled cache will
dramatically reduce system performance for a completed application.

Buffers can be static or dynamic. Mark buffers “non-cacheable” to avoid cache coherency
problems. This usually requires MMU support. Dynamic buffers are typically smaller
than their static counterparts, and they are allocated and freed often. When allocating
either type of buffer, it should be designated non-cacheable; however, dynamic buffers
should be marked “cacheable” before being freed. Otherwise, memory becomes
fragmented with numerous non-cacheable dynamic buffers.

Alternatively, use the following flush/invalidate scheme to maintain cache coherency.

cacheInvalidate (DATA_CACHE, address, bytes); /* input buffer */

cacheFlush (DATA_CACHE, address, bytes); /* output buffer */

The principle is to flush output buffers before each use and invalidate input buffers before
each use. Flushing only writes modified entries back to RAM, and instruction cache
entries never get modified.

Several flush and invalidate macros are defined in cacheLib.h. Since optimized code uses
these macros, they provide a mechanism to avoid unnecessary cache calls and accomplish
the necessary work (return OK). Needless work includes flushing a write-through cache,
flushing or invalidating cache entries in a system with bus snooping, and flushing or
invalidating cache entries in a system without caches. The macros are set to reflect the
state of the cache system hardware and software. Example 1 The following example is of a
simple driver that uses cacheFlush() and cacheInvalidate() from the cache library to
maintain coherency and performance. There are two buffers (lines 3 and 4), one for input
and one for output. The output buffer is obtained by the call to memalign(), a special
version of the well-known malloc() routine (line 6). It returns a pointer that is rounded
down and up to the alignment parameter’s specification. Note that cache lines should not
be shared, therefore _CACHE_ALIGN_SIZE is used to force alignment. If the memory
allocator fails (line 8), the driver will typically return ERROR (line 9) and quit.

The driver fills the output buffer with initialization information, device commands, and
data (line 11), and is prepared to pass the buffer to the device. Before doing so the driver
must flush the data cache (line 13) to ensure that the buffer is in memory, not hidden in
the cache. The drvWrite() routine lets the device know that the data is ready and where in
memory it is located (line 14).

More driver code is executed (line 16), then the driver is ready to receive data that the
device has placed in an input buffer in memory (line 18). Before the driver can work with
the incoming data, it must invalidate the data cache entries (line 19) that correspond to the
input buffer’s data in order to eliminate stale entries. That done, it is safe for the driver to
retrieve the input data from memory (line 21). Remember to free (line 23) the buffer
acquired from the memory allocator. The driver will return OK (line 24) to distinguish a
successful from an unsuccessful operation.

1: Libraries
cacheLib

43

C

STATUS drvExample1 () /* simple driver - good performance */

{

3: void * pInBuf; /* input buffer */

4: void * pOutBuf; /* output buffer */

6: pOutBuf = memalign (_CACHE_ALIGN_SIZE, BUF_SIZE);

8: if (pOutBuf == NULL)

9: return (ERROR); /* memory allocator failed */

11: /* other driver initialization and buffer filling */

13: cacheFlush (DATA_CACHE, pOutBuf, BUF_SIZE);

14: drvWrite (pOutBuf); /* output data to device */

16: /* more driver code */

18: cacheClear (DATA_CACHE, pInBuf, BUF_SIZE);

19: pInBuf = drvRead (); /* wait for device data */

21: /* handle input data from device */

23: free (pOutBuf); /* return buffer to memory pool */

24: return (OK);

}

Extending this flush/invalidate concept further, individual buffers can be treated this
way, not just the entire cache system. The idea is to avoid unnecessary flush and/or
invalidate operations on a per-buffer basis by allocating cache-safe buffers. Calls to
cacheDmaMalloc() optimize the flush and invalidate function pointers to NULL, if
possible, while maintaining data integrity. Example 2 The following example is of a
high-performance driver that takes advantage of the cache library to maintain coherency.
It uses cacheDmaMalloc() and the macros CACHE_DMA_FLUSH and
CACHE_DMA_INVALIDATE. A buffer pointer is passed as a parameter (line 2). If the
pointer is not NULL (line 7), it is assumed that the buffer will not experience any cache
coherency problems. If the driver was not provided with a cache-safe buffer, it will get
one (line 11) from cacheDmaMalloc(). A CACHE_FUNCS structure (see cacheLib.h) is
used to create a buffer that will not suffer from cache coherency problems. If the memory
allocator fails (line 13), the driver will typically return ERROR (line 14) and quit.

The driver fills the output buffer with initialization information, device commands, and
data (line 17), and is prepared to pass the buffer to the device. Before doing so, the driver
must flush the data cache (line 19) to ensure that the buffer is in memory, not hidden in
the cache. The routine drvWrite() lets the device know that the data is ready and where in
memory it is located (line 20).

More driver code is executed (line 22), and the driver is then ready to receive data that the
device has placed in the buffer in memory (line 24). Before the driver cache can work with
the incoming data, it must invalidate the data cache entries (line 25) that correspond to the
input buffer‘s data in order to eliminate stale entries. That done, it is safe for the driver to
handle the input data (line 27), which the driver retrieves from memory. Remember to
free the buffer (line 29) acquired from the memory allocator. The driver will return OK
(line 30) to distinguish a successful from an unsuccessful operation.

VxWorks OS Libraries API Reference, 5.5
cacheLib

44

STATUS drvExample2 (pBuf) /* simple driver - great performance */

2: void * pBuf; /* buffer pointer parameter */

{

5: if (pBuf != NULL)

{

7: /* no cache coherency problems with buffer passed to driver */

}

else

{

11: pBuf = cacheDmaMalloc (BUF_SIZE);

13: if (pBuf == NULL)

14: return (ERROR); /* memory allocator failed */

}

17: /* other driver initialization and buffer filling */

19: CACHE_DMA_FLUSH (pBuf, BUF_SIZE);

20: drvWrite (pBuf); /* output data to device */

22: /* more driver code */

24: drvWait (); /* wait for device data */

25: CACHE_DMA_INVALIDATE (pBuf, BUF_SIZE);

27: /* handle input data from device */

29: cacheDmaFree (pBuf); /* return buffer to memory pool */

30: return (OK);

}

Do not use CACHE_DMA_FLUSH or CACHE_DMA_INVALIDATE without first calling
cacheDmaMalloc(), otherwise the function pointers may not be initialized correctly. Note
that this driver scheme assumes all cache coherency modes have been set before driver
initialization, and that the modes do not change after driver initialization. The
cacheFlush() and cacheInvalidate() functions can be used at any time throughout the
system since they are affiliated with the hardware, not the malloc/free buffer.

A call to cacheLibInit() in write-through mode makes the flush function pointers NULL.
Setting the caches in copyback mode (if supported) should set the pointer to and call an
architecture-specific flush routine. The invalidate and flush macros may be NULLified if
the hardware provides bus snooping and there are no cache coherency problems.
Example 3 The next example shows a more complex driver that requires address
translations to assist in the cache coherency scheme. The previous example had a priori
knowledge of the system memory map and/or the device interaction with the memory
system. This next driver demonstrates a case in which the virtual address returned by
cacheDmaMalloc() might differ from the physical address seen by the device. It uses the
CACHE_DMA_VIRT_TO_PHYS and CACHE_DMA_PHYS_TO_VIRT macros in addition to
the CACHE_DMA_FLUSH and CACHE_DMA_INVALIDATE macros.

The cacheDmaMalloc() routine initializes the buffer pointer (line 3). If the memory
allocator fails (line 5), the driver will typically return ERROR (line 6) and quit. The driver
fills the output buffer with initialization information, device commands, and data (line 8),
and is prepared to pass the buffer to the device. Before doing so, the driver must flush the

1: Libraries
cacheLib

45

C

data cache (line 10) to ensure that the buffer is in memory, not hidden in the cache. The
flush is based on the virtual address since the processor filled in the buffer. The
drvWrite() routine lets the device know that the data is ready and where in memory it is
located (line 11). Note that the CACHE_DMA_VIRT_TO_PHYS macro converts the buffer’s
virtual address to the corresponding physical address for the device.

More driver code is executed (line 13), and the driver is then ready to receive data that the
device has placed in the buffer in memory (line 15). Note the use of the
CACHE_DMA_PHYS_TO_VIRT macro on the buffer pointer received from the device.
Before the driver cache can work with the incoming data, it must invalidate the data cache
entries (line 16) that correspond to the input buffer’s data in order to eliminate stale
entries. That done, it is safe for the driver to handle the input data (line 17), which it
retrieves from memory. Remember to free (line 19) the buffer acquired from the memory
allocator. The driver will return OK (line 20) to distinguish a successful from an
unsuccessful operation.

STATUS drvExample3 () /* complex driver - great performance */ {

3: void * pBuf = cacheDmaMalloc (BUF_SIZE);

5: if (pBuf == NULL)

6: return (ERROR); /* memory allocator failed */

8: /* other driver initialization and buffer filling */

10: CACHE_DMA_FLUSH (pBuf, BUF_SIZE);

11: drvWrite (CACHE_DMA_VIRT_TO_PHYS (pBuf));

13: /* more driver code */

15: pBuf = CACHE_DMA_PHYS_TO_VIRT (drvRead ());

16: CACHE_DMA_INVALIDATE (pBuf, BUF_SIZE);

17: /* handle input data from device */

19: cacheDmaFree (pBuf); /* return buffer to memory pool */

20: return (OK);

}

Driver Summary

The virtual-to-physical and physical-to-virtual function pointers associated with
cacheDmaMalloc() are supplements to a cache-safe buffer. Since the processor operates
on virtual addresses and the devices access physical addresses, discrepant addresses can
occur and might prevent DMA-type devices from being able to access the allocated buffer.
Typically, the MMU is used to return a buffer that has pages marked as non-cacheable. An
MMU is used to translate virtual addresses into physical addresses, but it is not
guaranteed that this will be a “transparent” translation.

When cacheDmaMalloc() does something that makes the virtual address different from
the physical address needed by the device, it provides the translation procedures. This is
often the case when using translation lookaside buffers (TLB) or a segmented address
space to inhibit caching (e.g., by creating a different virtual address for the same physical
space.) If the virtual address returned by cacheDmaMalloc() is the same as the physical
address, the function pointers are made NULL so that no calls are made when the macros

VxWorks OS Libraries API Reference, 5.5
cacheLib

46

are expanded. Board Support Packages Each board for an architecture with more than one
cache implementation has the potential for a different cache system. Hence the BSP for
selecting the appropriate cache library. The function pointer sysCacheLibInit is set to
cacheXxxLibInit() (“Xxx” refers to the chip-specific name of a library or function) so that
the function pointers for that cache system will be initialized and the linker will pull in
only the desired cache library. Below is an example of cacheXxxLib being linked in by
sysLib.c. For systems without caches and for those architectures with only one cache
design, there is no need for the sysCacheLibInit variable.

FUNCPTR sysCacheLibInit = (FUNCPTR) cacheXxxLibInit;

For cache systems with bus snooping, the flush and invalidate macros should be
NULLified to enhance system and driver performance in sysHwInit().

void sysHwInit ()

{

...

cacheLib.flushRtn = NULL; /* no flush necessary */

cacheLib.invalidateRtn = NULL; /* no invalidate necessary */

...

}

There may be some drivers that require numerous cache calls, so many that they interfere
with the code clarity. Additional checking can be done at the initialization stage to
determine if cacheDmaMalloc() returned a buffer in non-cacheable space. Remember that
it will return a cache-safe buffer by virtue of the function pointers. Ideally, these are NULL,
since the MMU was used to mark the pages as non-cacheable. The macros
CACHE_Xxx_IS_WRITE_COHERENT and CACHE_Xxx_IS_READ_COHERENT can be used to
check the flush and invalidate function pointers, respectively.

Write buffers are used to allow the processor to continue execution while the bus interface
unit moves the data to the external device. In theory, the write buffer should be smart
enough to flush itself when there is a write to non-cacheable space or a read of an item
that is in the buffer. In those cases where the hardware does not support this, the software
must flush the buffer manually. This often is accomplished by a read to non-cacheable
space or a NOP instruction that serializes the chip’s pipelines and buffers. This is not
really a caching issue; however, the cache library provides a CACHE_PIPE_FLUSH macro.
External write buffers may still need to be handled in a board-specific manner.

INCLUDE FILES cacheLib.h

SEE ALSO Architecture-specific cache-management libraries (cacheXxxLib), vmLib, VxWorks
Programmer’s Guide: I/O System

1: Libraries
cacheR4kLib

47

C

cacheR3kLib

NAME cacheR3kLib – MIPS R3000 cache management library

ROUTINES cacheR3kLibInit() - initialize the R3000 cache library

DESCRIPTION This library contains architecture-specific cache library functions for the MIPS R3000
architecture. The R3000 utilizes a variable-size instruction and data cache that operates in
write-through mode. Cache line size also varies. Cache tags may be invalidated on a
per-word basis by execution of a byte write to a specified word while the cache is isolated.
See also the manual entry for cacheR3kALib.

For general information about caching, see the manual entry for cacheLib.

INCLUDE FILES cacheLib.h

SEE ALSO cacheR3kALib, cacheLib, Gerry Kane: MIPS R3000 RISC Architecture

cacheR4kLib

NAME cacheR4kLib – MIPS R4000 cache management library

ROUTINES cacheR4kLibInit() - initialize the R4000 cache library

DESCRIPTION This library contains architecture-specific cache library functions for the MIPS R4000
architecture. The R4000 utilizes a variable-size instruction and data cache that operates in
write-back mode. Cache line size also varies.

For general information about caching, see the manual entry for cacheLib.

INCLUDE FILES cacheLib.h

SEE ALSO cacheLib

VxWorks OS Libraries API Reference, 5.5
cacheR5kLib

48

cacheR5kLib

NAME cacheR5kLib – MIPS R5000 cache management library

ROUTINES cacheR5kLibInit() - initialize the R5000 cache library

DESCRIPTION This library contains architecture-specific cache library functions for the MIPS R5000
architecture. The R5000 utilizes a variable-size instruction and data cache that operates in
write-back mode. Cache line size also varies.

For general information about caching, see the manual entry for cacheLib.

INCLUDE FILES cacheLib.h

SEE ALSO cacheLib

cacheR7kLib

NAME cacheR7kLib – MIPS R7000 cache management library

ROUTINES cacheR7kLibInit() - initialize the R7000 cache library

DESCRIPTION This library contains architecture-specific cache library functions for the MIPS R7000
architecture. The R7000 utilizes a variable-size instruction and data cache that operates in
write-back mode. Cache line size also varies.

For general information about caching, see the manual entry for cacheLib.

INCLUDE FILES cacheLib.h

SEE ALSO cacheLib

1: Libraries
cacheR32kLib

49

C

cacheR10kLib

NAME cacheR10kLib – MIPS R10000 cache management library

ROUTINES cacheR10kLibInit() - initialize the R10000 cache library

DESCRIPTION This library contains architecture-specific cache library functions for the MIPS R10000
architecture. The R10000 utilizes a variable-size instruction and data cache that operates in
write-back mode. Cache line size also varies.

For general information about caching, see the manual entry for cacheLib.

INCLUDE FILES cacheLib.h

SEE ALSO cacheLib

cacheR32kLib

NAME cacheR32kLib – MIPS RC32364 cache management library

ROUTINES cacheR32kLibInit() - initialize the RC32364 cache library
cacheR32kMalloc() - allocate a cache-safe buffer, if possible

DESCRIPTION This library contains architecture-specific cache library functions for the MIPS IDT
RC32364 architecture.

For general information about caching, see the manual entry for cacheLib.

INCLUDE FILES cacheLib.h

SEE ALSO cacheLib

VxWorks OS Libraries API Reference, 5.5
cacheR33kLib

50

cacheR33kLib

NAME cacheR33kLib – MIPS R33000 cache management library

ROUTINES cacheR33kLibInit() - initialize the R33000 cache library

DESCRIPTION This library contains architecture-specific cache library functions for the MIPS R33000
architecture. The R33000 utilizes a 8-Kbyte instruction cache and a 1-Kbyte data cache that
operate in write-through mode. Cache line size is fixed at 16 bytes. Cache tags may be
invalidated on a per-line basis by execution of a store to a specified line while the cache is
in invalidate mode.

For general information about caching, see the manual entry for cacheLib.

INCLUDE FILES arch/mips/lr33000.h, cacheLib.h

SEE ALSO cacheLib, LSI Logic LR33000 MIPS Embedded Processor User’s Manual

cacheR333x0Lib

NAME cacheR333x0Lib – MIPS R333x0 cache management library

ROUTINES cacheR333x0LibInit() - initialize the R333x0 cache library

DESCRIPTION This library contains architecture-specific cache library functions for the MIPS R333x0
architecture. The R33300 utilizes a 4-Kbyte instruction cache and a 2-Kbyte data cache that
operate in write-through mode. The R33310 utilizes a 8-Kbyte instruction cache and a
4-Kbyte data cache that operate in write-through mode. Cache line size is fixed at 16 bytes.
Cache tags may be invalidated on a per-line basis by execution of a store to a specified line
while the cache is in invalidate mode.

For general information about caching, see the manual entry for cacheLib.

INCLUDE FILES arch/mips/lr33300.h, cacheLib.h

SEE ALSO cacheLib, LSI Logic LR33300 and LR33310 Self-Embedding Processors User’s Manual

1: Libraries
cacheSh7604Lib

51

C

cacheSh7040Lib

NAME cacheSh7040Lib – Hitachi SH7040 cache management library

ROUTINES cacheSh7040LibInit() - initialize the SH7040 cache library

DESCRIPTION This library contains architecture-specific cache library functions for the Hitachi SH7040
architecture. This architecture has a 1-Kbyte instruction cache.

For general information about caching, see the manual entry for cacheLib.

INCLUDE FILES cacheLib.h

SEE ALSO cacheLib

cacheSh7604Lib

NAME cacheSh7604Lib – Hitachi SH7604/SH7615 cache management library

ROUTINES cacheSh7604LibInit() - initialize the SH7604/SH7615 cache library

DESCRIPTION This library contains architecture-specific cache library functions for the Hitachi
SH7604/SH7615 instruction and data mixed cache.

INCLUDE FILES cacheLib.h

SEE ALSO cacheLib

VxWorks OS Libraries API Reference, 5.5
cacheSh7622Lib

52

cacheSh7622Lib

NAME cacheSh7622Lib – SH7622 cache management library

ROUTINES cacheSh7622LibInit() - initialize the SH7622 cache library

DESCRIPTION This library contains architecture-specific cache library functions for the Hitachi SH7622
instruction and data caches.

INCLUDE FILES cacheLib.h

SEE ALSO cacheLib

cacheSh7700Lib

NAME cacheSh7700Lib – Hitachi SH7700 cache management library

ROUTINES cacheSh7700LibInit() - initialize the SH7700 cache library

DESCRIPTION This library contains architecture-specific cache library functions for the Hitachi SH7700
architecture. There is a 8-Kbyte (2-Kbyte for SH7702) mixed instruction and data cache
that operates in write-through or write-back (copyback) mode. The 8-Kbyte cache can be
divided into 4-Kbyte cache and 4-Kbyte memory. Cache line size is fixed at 16 bytes, and
the cache address array holds physical addresses as cache tags. Cache entries may be
“flushed” by accesses to the address array in privileged mode. There is a write-back buffer
which can hold one line of cache entry, and the completion of write-back cycle is assured
by accessing to any cache through region.

For general information about caching, see the manual entry for cacheLib.

INCLUDE FILES cacheLib.h

SEE ALSO cacheLib

1: Libraries
cacheSh7750Lib

53

C

cacheSh7729Lib

NAME cacheSh7729Lib – Hitachi SH7729 cache management library

ROUTINES cacheSh7729LibInit() - initialize the SH7729 cache library

DESCRIPTION This library contains architecture-specific cache library functions for the Hitachi SH7729
architecture.

The cache is 16-Kbytes (16 bytes X 256 entries X 4 ways) mixed instruction and data cache
that operates in write-through or write-back (copyback) mode. Cache line size is fixed at
16 bytes, and the cache address array holds physical addresses as cache tags. Cache
entries may be “flushed” by accesses to the address array in privileged mode. There is a
write-back buffer which can hold one line of cache entry, and the completion of
write-back cycle is assured by accessing to any cache through region.

For general information about caching, see the manual entry for cacheLib.

INCLUDE FILES cacheLib.h

SEE ALSO cacheLib

cacheSh7750Lib

NAME cacheSh7750Lib – Hitachi SH7750 cache management library

ROUTINES cacheSh7750LibInit() - initialize the SH7750 cache library

DESCRIPTION This library contains architecture-specific cache library functions for the Hitachi SH7750
architecture. There is a 8-Kbyte instruction cache and 16-Kbyte operand cache that
operates in write-through or write-back (copyback) mode. The 16-Kbyte operand cache
can be divided into 8-Kbyte cache and 8-Kbyte memory. Cache line size is fixed at 32
bytes, and the cache address array holds physical addresses as cache tags. Cache entries
may be “flushed” by accesses to the address array in privileged mode. There is a
write-back buffer which can hold one line of cache entry, and the completion of
write-back cycle is assured by accessing to any cache through region.

For general information about caching, see the manual entry for cacheLib.

INCLUDE FILES cacheLib.h

SEE ALSO cacheLib

VxWorks OS Libraries API Reference, 5.5
cacheSun4Lib

54

cacheSun4Lib

NAME cacheSun4Lib – Sun-4 cache management library

ROUTINES cacheSun4LibInit() - initialize the Sun-4 cache library
cacheSun4ClearLine() - clear a line from a Sun-4 cache
cacheSun4ClearPage() - clear a page from a Sun-4 cache
cacheSun4ClearSegment() - clear a segment from a Sun-4 cache
cacheSun4ClearContext() - clear a specific context from a Sun-4 cache

DESCRIPTION This library contains architecture-specific cache library functions for the Sun
Microsystems Sun-4 architecture. There is a 64-Kbyte mixed instruction and data cache
that operates in write-through mode. Each cache line contains 16 bytes. Cache tags may be
“flushed” by accesses to alternate space in supervisor mode. Invalidate operations are
performed in software by writing zero to the cache tags in an iterative manner. Tag
operations are performed on “page,” “segment,” or “context” granularity.

MMU (Memory Management Unit) support is needed to mark pages cacheable or
non-cacheable. For more information, see the manual entry for vmLib.

For general information about caching, see the manual entry for cacheLib.

INCLUDE FILES cacheLib.h

SEE ALSO cacheLib, vmLib

cacheTx49Lib

NAME cacheTx49Lib – Toshiba Tx49 cache management library

ROUTINES cacheTx49LibInit() - initialize the Tx49 cache library

DESCRIPTION This library contains architecture-specific cache library functions for the Toshiba Tx49
architecture. The Tx49 utilizes a variable-size instruction and data cache that operates in
write-back mode. The cache is four-way set associative and the library allows the cache
line size to vary.

For general information about caching, see the manual entry for cacheLib.

INCLUDE FILES cacheLib.h

SEE ALSO cacheLib

1: Libraries
cbioLib

55

C

cbioLib

NAME cbioLib – cached block I/O library

ROUTINES cbioLibInit() - Initialize CBIO Library
cbioBlkRW() - transfer blocks to or from memory
cbioBytesRW() - transfer bytes to or from memory
cbioBlkCopy() - block to block (sector to sector) tranfer routine
cbioIoctl() - perform ioctl operation on device
cbioModeGet() - return the mode setting for CBIO device
cbioModeSet() - set mode for CBIO device
cbioRdyChgdGet() - determine ready status of CBIO device
cbioRdyChgdSet() - force a change in ready status of CBIO device
cbioLock() - obtain CBIO device semaphore.
cbioUnlock() - release CBIO device semaphore.
cbioParamsGet() - fill in CBIO_PARAMS structure with CBIO device parameters
cbioShow() - print information about a CBIO device
cbioDevVerify() - verify CBIO_DEV_ID
cbioWrapBlkDev() - create CBIO wrapper atop a BLK_DEV device
cbioDevCreate() - Initialize a CBIO device (Generic)

DESCRIPTION This library provides the Cached Block Input Output Application Programmers Interface
(CBIO API). Libraries such as dosFsLib, rawFsLib, and usrFdiskPartLib use the CBIO
API for I/O operations to underlying devices.

This library also provides generic services for CBIO modules. The libraries dpartCbio,
dcacheCbio, and ramDiskCbio are examples of CBIO modules that make use of these
generic services.

This library also provides a CBIO module that converts blkIo driver BLK_DEV (blkIo.h)
interface into CBIO API compliant interface using minimal memory overhead. This lean
module is known as the basic BLK_DEV to CBIO wrapper module.

CBIO MODULES AND DEVICES

A CBIO module contains code for supporting CBIO devices. The libraries cbioLib,
dcacheCbio, dpartCbio, and ramDiskCbio are examples of CBIO modules.

A CBIO device is a software layer that provide its master control of I/O to it subordinate.
CBIO device layers typically reside logically below a file system and above a storage
device. CBIO devices conform to the CBIO API on their master (upper) interface.

CBIO modules provide a CBIO device creation routine used to instantiate a CBIO device.
The CBIO modules device creation routine returns a CBIO_DEV_ID handle. The
CBIO_DEV_ID handle is used to uniquely identify the CBIO device layer instance. The
user of the CBIO device passes this handle to the CBIO API routines when accessing the
device.

VxWorks OS Libraries API Reference, 5.5
cbioLib

56

The libraries dosFsLib, rawFsLib, and usrFdiskPartLib are considered users of CBIO
devices because they use the CBIO API on their subordinate (lower) interface. They do not
conform to the CBIO API on their master interface, therefore they are not CBIO modules.
They are users of CBIO devices and always reside above CBIO devices in the logical stack.

TYPES OF CBIO DEVICES

A “CBIO to CBIO device” uses the CBIO API for both its master and its subordinate
interface. Typically, some type of module specific I/O processing occurs during the
interface between the master and subordinate layers. The libraries dpartCbio and
dcacheCbio are examples of CBIO to CBIO devices. CBIO to CBIO device layers are
stackable. Care should be taken to assemble the stack properly. Refer to each modules
reference manual entry for recommendations about the optimum stacking order.

A “CBIO API device driver” is a device driver which provides the CBIO API as the
interface between the hardware and its upper layer. The ramDiskCbio.c RAM DISK
driver is an example of a simple CBIO API device driver.

A “basic BLK_DEV to CBIO wrapper device” wraps a subordinate BLK_DEV layer with a
CBIO API compatible layer. The wrapper is provided via cbioWrapBlkDev().

The logical layers of a typical system using a CBIO RAM DISK are as pictured below:

+--------------------+

| Application module |

+--------------------+ <-- read(), write(), ioctl()

|

+--------------------+

| VxWorks I/O System |

+--------------------+ <-- IOS layer iosRead,Write,ioctl

| (iosDrvInstall rtns from dosFsLib)

+--------------- -----------+

| File System (DOSFS/RAWFS) |

+---------------------------+ <-- CBIO API (cbioBlkRW, cbioIoctl, etc.)

|

+--+

| CBIO API device driver module (ramDiskCbio.c)|

+--+

|

+----------+

| Hardware |

+----------+

The logical layers of a typical system with a fixed disk using CBIO partitioning layer and a
CBIO caching layer appears:

+--------------------+

| Application module |

+--------------------+ <-- read(), write(), ioctl()
|

1: Libraries
cbioLib

57

C

+-------------------+
| VxWorks IO System |
+-------------------+ <-- IOS layer Read,Write, ioctl

| (iosDrvInstall rtns from dosFsLib)
+---------------------------+
| File System (DOSFS/RAWFS) |
+---------------------------+ <-- CBIO API RTNS (cbioLib.h)

|
+---------------------------------+
| CBIO to CBIO device (dpartCbio) |
+---------------------------------+ <-- CBIO API RTNS

|
+----------------------------------+
| CBIO to CBIO device (dcacheCbio) |
+----------------------------------+ <-- CBIO API RTNS

|
+--+
| basic CBIO to BLK_DEV wrapper device (cbioLib) |
+--+ <-- BLK_DEV (blkIo.h)

|
+---+
| BLK_DEV API device driver. scsiLib, ataDrv, fdDrv,etc |
+---+

|
+-------------------------+
| Storage Device Hardware |
+-------------------------+

PUBLIC CBIO API The CBIO API provides user access to CBIO devices. Users of CBIO devices are typically
either file systems or other CBIO devices.

The CBIO API is exposed via cbioLib.h. Users of CBIO modules include the cbioLib.h
header file. The libraries dosFsLib, dosFsFat, dosVDirLib, dosDirOldLib,
usrFdiskPartLib, and rawFsLib all use the CBIO API to access CBIO modules beneath
them.

The following functions make up the public CBIO API:

cbioLibInit() - Library initialization routine

cbioBlkRW() - Transfer blocks (sectors) from/to a memory buffer

cbioBytesRW() - Transfer bytes from/to a memory buffer

cbioBlkCopy() - Copy directly from block to block (sector to sector)

cbioIoctl() - Perform I/O control operations on the CBIO device

cbioModeGet() - Get the CBIO device mode (O_RDONLY, O_WRONLY, or O_RDWR)

cbioModeSet() - Set the CBIO device mode (O_RDONLY, O_WRONLY, or O_RDWR)

cbioRdyChgdGet() - Determine the CBIO device ready status state

cbioRdyChgdSet() - Force a change in the CBIO device ready status state

VxWorks OS Libraries API Reference, 5.5
cbioLib

58

cbioLock() - Obtain exclusive ownership of the CBIO device

cbioUnlock() - Release exclusive ownership of the CBIO device

cbioParamsGet() - Fill a CBIO_PARAMS structure with data from the CBIO device

cbioDevVerify() - Verify valid CBIO device

cbioWrapBlkDev() - Create CBIO wrapper atop a BLK_DEV

cbioShow() - Display information about a CBIO device

These CBIO API functions (except cbioLibInit()) are passed a CBIO_DEV_ID handle in the
first argument. This handle (obtained from the subordinate CBIO modules device
creation routine) is used by the routine to verify that the CBIO device is valid and then to
perform the requested operation on the specific CBIO device.

When the CBIO_DEV_ID passed to the CBIO API routine is not a valid CBIO handle,
ERROR will be returned with the errno set to S_cbioLib_INVALID_CBIO_DEV_ID
(cbioLib.h).

Refer to the individual manual entries for each function for a complete description.

THE BASIC CBIO TO BLK_DEV WRAPPER MODULE

The basic CBIO to BLK_DEV wrapper is a minimized disk cache using simplified
algorithms. It is used to convert a legacy BLK_DEV device into as CBIO device. It may be
used standalone with solid state disks which do not have mechanical seek and rotational
latency delays, such flash cards. It may also be used in conjunction with the dpartCbio
and dcacheCbio libraries. The DOS file system dosFsDevCreate() routine will call
cbioWrapBlkDev() internally, so the file system may be installed directly on top of a
block driver BLK_DEV or it can be used with cache and partitioning support.

The function cbioWrapBlkDev() is used to create the CBIO wrapper atop a BLK_DEV
device.

The functions dcacheDevCreate() and dpartDevCreate() also both internally use
cbioDevVerify() and cbioWrapBlkDev() to either stack the new CBIO device atop a
validated CBIO device or to create a basic CBIO to BLK_DEV wrapper as needed. The user
typically never needs to manually invoke the cbioWrapBlkDev() or cbioDevVerify()
functions.

Please note that the basic CBIO BLK_DEV wrapper is inappropriate for rotational media
without the disk caching layer. The services provided by the dcacheCbio module are
more appropriate for use on rotational disk devices and will yield superior performance
when used.

INCLUDE FILES cbioLib.h, cbioLibP.h

SEE ALSO VxWorks Programmers Guide: I/O System.

1: Libraries
cdromFsLib

59

C

cdromFsLib

NAME cdromFsLib – ISO 9660 CD-ROM read-only file system library

ROUTINES cdromFsInit() - initialize cdromFsLib
cdromFsVolConfigShow() - show the volume configuration information
cdromFsDevCreate() - create a cdromFsLib device

DESCRIPTION This library defines cdromFsLib, a utility that lets you use standard POSIX I/O calls to
read data from a CD-ROM formatted according to the ISO 9660 standard file system.

It provides access to CD-ROM file systems using any standard BLOCK_DEV structure
(that is, a disk-type driver).

The basic initialization sequence is similar to installing a DOS file system on a SCSI
device.

1. Initialize the cdrom file system library (preferably in sysScsiConfig() in sysScsi.c):

cdromFsInit ();

2. Locate and create a SCSI physical device:

pPhysDev=scsiPhysDevCreate(pSysScsiCtrl,0,0,0,NONE,1,0,0);

3. Create a SCSI block device on the physical device:

pBlkDev = (SCSI_BLK_DEV *) scsiBlkDevCreate (pPhysDev, 0, 0);

4. Create a CD-ROM file system on the block device:

cdVolDesc = cdromFsDevCreate ("cdrom:", (BLK_DEV *) pBlkDev);

Call cdromFsDevCreate() once for each CD-ROM drive attached to your target. After the
successful completion of cdromFsDevCreate(), the CD-ROM file system will be available
like any DOS file system, and you can access data on the named CD-ROM device using
open(), close(), read(), ioctl(), readdir(), and stat(). A write() always returns an error.

The cdromFsLib utility supports multiple drives, concurrent access from multiple tasks,
and multiple open files.

FILE AND DIRECTORY NAMING

The strict ISO 9660 specification allows only uppercase file names consisting of 8
characters plus a 3 character suffix. To support multiple versions of the same file, the ISO
9660 specification also supports version numbers. When specifying a file name in an
open() call, you can select the file version by appending the file name with a semicolon (;)
followed by a decimal number indicating the file version. If you omit the version number,
cdromFsLib opens the latest version of the file.

VxWorks OS Libraries API Reference, 5.5
cdromFsLib

60

To accommodate users familiar with MS-DOS, cdromFsLib lets you use lowercase name
arguments to access files with names consisting entirely of uppercase characters.
Mixed-case file and directory names are accessible only if you specify their exact
case-correct names.

For the time being, cdromFsLib further accommodates MS-DOS users by allowing “\”
(backslash) instead of “/” in path names. However, the use of the backslash is
discouraged because it may not be supported in future versions of cdromFsLib.

Finally, cdromFsLib uses an 8-bit clean implementation of ISO 9660. Thus, cdromFsLib is
compatible with CD-ROMs using either Latin or Asian characters in the file names.

IOCTL CODES SUPPORTED

FIOGETNAME

Returns the file name for a specific file descriptor.

FIOLABELGET
Retrieves the volume label. This code can be used to verify that a particular volume
has been inserted into the drive.

FIOWHERE
Determines the current file position.

FIOSEEK
Changes the current file position.

FIONREAD
Tells you the number of bytes between the current location and the end of this file.

FIOREADDIR
Reads the next directory entry.

FIODISKCHANGE
Announces that a disk has been replaced (in case the block driver is not able to
provide this indication).

FIOUNMOUNT
Announces that the a disk has been removed (all currently open file descriptors are
invalidated).

FIOFSTATGET
Gets the file status information (directory entry data).

MODIFYING A BSP TO USE CDROMFS

The following example describes mounting cdromFS on a SCSI device.

Edit your BSP’s config.h to make the following changes:

1. Insert the following macro definition:

#define INCLUDE_CDROMFS

1: Libraries
clockLib

61

C

2. Change FALSE to TRUE in the section under the following comment:

/* change FALSE to TRUE for SCSI interface */

Make the following changes in sysScsi.c (or sysLib.c if your BSP has no sysScsi.c):

The main goal of the above code fragment is to call cdromFsDevCreate(). As input,
cdromFsDevCreate() expects a pointer to a block device. In the example above, the
scsiPhysDevCreate() and scsiBlkDevCreate() calls set up a block device interface for a
SCSI CD-ROM device.

After the successful completion of cdromFsDevCreate(), the device called “cdrom” is
accessible using the standard open(), close(), read(), ioctl(), readdir(), and stat() calls.

INCLUDE FILES cdromFsLib.h

CAVEATS The cdromFsLib utility does not support CD sets containing multiple disks.

SEE ALSO ioLib, ISO 9660 Specification

clockLib

NAME clockLib – clock library (POSIX)

ROUTINES clock_getres() - get the clock resolution (POSIX)
clock_setres() - set the clock resolution
clock_gettime() - get the current time of the clock (POSIX)
clock_settime() - set the clock to a specified time (POSIX)

DESCRIPTION This library provides a clock interface, as defined in the IEEE standard, POSIX 1003.1b.

A clock is a software construct that keeps time in seconds and nanoseconds. The clock has
a simple interface with three routines: clock_settime(), clock_gettime(), and
clock_getres(). The non-POSIX routine clock_setres() that was provided so that clockLib
could be informed if there were changes in the system clock rate is no longer necessary.
This routine is still present for backward compatibility, but does nothing.

Times used in these routines are stored in the timespec structure:

struct timespec

{

time_t tv_sec; /* seconds */

long tv_nsec; /* nanoseconds (0 -1,000,000,000) */

};

VxWorks OS Libraries API Reference, 5.5
cplusLib

62

IMPLEMENTATION Only one clock_id is supported, the required CLOCK_REALTIME. Conceivably, additional
“virtual” clocks could be supported, or support for additional auxiliary clock hardware (if
available) could be added.

INCLUDE FILES timers.h

SEE ALSO IEEE VxWorks Programmer’s Guide: Basic OS, POSIX 1003.1b documentation

cplusLib

NAME cplusLib – basic run-time support for C++

ROUTINES cplusCallNewHandler() - call the allocation failure handler (C++)
cplusCtors() - call static constructors (C++)
cplusCtorsLink() - call all linked static constructors (C++)
cplusDemanglerSet() - change C++ demangling mode (C++)
cplusDemanglerStyleSet() - change C++ demangling style (C++)
cplusDtors() - call static destructors (C++)
cplusDtorsLink() - call all linked static destructors (C++)
cplusLibInit() - initialize the C++ library (C++)
cplusXtorSet() - change C++ static constructor calling strategy (C++)
operator delete() - default run-time support for memory deallocation (C++)
operator new() - default run-time support for operator new (C++)
operator new() - default run-time support for operator new (nothrow) (C++)
operator new() - run-time support for operator new with placement (C++)
set_new_handler() - set new_handler to user-defined function (C++)
set_terminate() - set terminate to user-defined function (C++)

DESCRIPTION This library provides run-time support and shell utilities that support the development of
VxWorks applications in C++. The run-time support can be broken into three categories:

– Support for C++ new and delete operators.

– Support for initialization and cleanup of static objects.

Shell utilities are provided for:

– Resolving overloaded C++ function names.

– Hiding C++ name mangling, with support for terse or complete name demangling.

– Manual or automatic invocation of static constructors and destructors.

The usage of cplusLib is more fully described in the VxWorks Programmer’s Guide: C++
Development.

SEE ALSO VxWorks Programmer’s Guide: C++ Development

1: Libraries
dbgArchLib

63

D

dbgArchLib

NAME dbgArchLib – architecture-dependent debugger library

ROUTINES a0() - return the contents of register a0 (also a1 - a7) (68K)
d0() - return the contents of register d0 (also d1 - d7) (68K)
sr() - return the contents of the status register (68K, SH)
dbgBpTypeBind() - bind a breakpoint handler to a breakpoint type (MIPS)
edi() - return the contents of register edi (also esi - eax) (x86)
eflags() - return the contents of the status register (x86)
r0() - return the contents of register r0 (also r1 - r14) (ARM)
cpsr() - return the contents of the current processor status register (ARM)
psrShow;1() - display the meaning of a specified PSR value, symbolically (ARM)
r0() - return the contents of general register r0 (also r1-r15) (SH)
sr() - return the contents of control register sr (also gbr, vbr) (SH)
mach() - return the contents of system register mach (also macl, pr) (SH)
o0() - return the contents of register o0 (also o1-o7) (SimSolaris)
l0() - return the contents of register l0 (also l1-l7) (SimSolaris)
i0() - return the contents of register i0 (also i1-i7) (SimSolaris)
npc() - return the contents of the next program counter (SimSolaris)
psr() - return the contents of the processor status register (SimSolaris)
wim() - return the contents of the window invalid mask register (SimSolaris)
y() - return the contents of the y register (SimSolaris)
edi() - return the contents of register edi (also esi - eax) (x86/SimNT)
eflags() - return the contents of the status register (x86/SimNT)

DESCRIPTION This module provides architecture-specific support functions for dbgLib. It also includes
user-callable functions for accessing the contents of registers in a task’s TCB (task control
block). These routines include:

MC680x0:

a0() - a7() - address registers (a0 - a7)

d0() - d7() - data registers (d0 - d7)

sr() - status register (sr)

MIPS:

dbgBpTypeBind() - bind a breakpoint handler to a breakpoint type

x86/SimNT:

edi() - eax() - named register values

eflags() - status register value

VxWorks OS Libraries API Reference, 5.5
dbgArchLib

64

SH:

r0() - r15() - general registers (r0 - r15)

sr() - status register (sr)

gbr() - global base register (gbr)

vbr() - vector base register (vbr)

mach() - multiply and accumulate register high (mach)

macl() - multiply and accumulate register low (macl)

pr() - procedure register (pr)

ARM:

r0() - r14() - general-purpose registers (r0 - r14)

cpsr() - current processor status reg (cpsr)

psrShow() - psr value, symbolically

SimSolaris:

g0() - g7() - global registers (g0 - g7)

o0() - o7() - out registers (o0 - o7, note lower-case “o”)

l0() - l7() - local registers (l0 - l7, note lower-case “l”)

i0() - i7() - in registers (i0 - i7)

npc() - next program counter (npc)

psr() - processor status register (psr)

wim() - window invalid mask (wim)

y() - y register

NOTE: The routine pc(), for accessing the program counter, is found in usrLib.

SEE ALSO dbgLib, VxWorks Programmer’s Guide: Target Shell

1: Libraries
dbgLib

65

D

dbgLib

NAME dbgLib – debugging facilities

ROUTINES dbgHelp() - display debugging help menu
dbgInit() - initialize the local debugging package
b() - set or display breakpoints
e() - set or display eventpoints (WindView)
bh() - set a hardware breakpoint
bd() - delete a breakpoint
bdall() - delete all breakpoints
c() - continue from a breakpoint
cret() - continue until the current subroutine returns
s() - single-step a task
so() - single-step, but step over a subroutine
l() - disassemble and display a specified number of instructions
tt() - display a stack trace of a task

DESCRIPTION This library contains VxWorks’s primary interactive debugging routines, which provide
the following facilities:

 - task breakpoints
 - task single-stepping
 - symbolic disassembly
 - symbolic task stack tracing

In addition, dbgLib provides the facilities necessary for enhanced use of other VxWorks
functions, including:

 - enhanced shell abort and exception handling (via tyLib and excLib)

The facilities of excLib are used by dbgLib to support breakpoints, single-stepping, and
additional exception handling functions.

INITIALIZATION The debugging facilities provided by this module are optional. In the standard VxWorks
development configuration as distributed, the debugging package is included. The
configuration macro is INCLUDE_DEBUG. When defined, it enables the call to dbgInit() in
the task usrRoot() in usrConfig.c. The dbgInit() routine initializes dbgLib and must be
made before any other routines in the module are called.

BREAKPOINTS Use the routine b() or bh() to set breakpoints. Breakpoints can be set to be hit by a
specific task or all tasks. Multiple breakpoints for different tasks can be set at the same
address. Clear breakpoints with bd() and bdall().

When a task hits a breakpoint, the task is suspended and a message is displayed on the
console. At this point, the task can be examined, traced, deleted, its variables changed, etc.

VxWorks OS Libraries API Reference, 5.5
dbgLib

66

If you examine the task at this point (using the i() routine), you will see that it is in a
suspended state. The instruction at the breakpoint address has not yet been executed.

To continue executing the task, use the c() routine. The breakpoint remains until it is
explicitly removed.

EVENTPOINTS (WINDVIEW)

When WindView is installed, dbgLib supports eventpoints. Use the routine e() to set
eventpoints. Eventpoints can be set to be hit by a specific task or all tasks. Multiple
eventpoints for different tasks can be set at the same address.

When a task hits an eventpoint, an event is logged and is displayed by VxWorks kernel
instrumentation.

You can manage eventpoints with the same facilities that manage breakpoints: for
example, unbreakable tasks (discussed below) ignore eventpoints, and the b() command
(without arguments) displays eventpoints as well as breakpoints. As with breakpoints,
you can clear eventpoints with bd() and bdall().

UNBREAKABLE TASKS

An unbreakable task ignores all breakpoints. Tasks can be spawned unbreakable by
specifying the task option VX_UNBREAKABLE. Tasks can subsequently be set unbreakable
or breakable by resetting VX_UNBREAKABLE with taskOptionsSet(). Several VxWorks
tasks are spawned unbreakable, such as the shell, the exception support task excTask(),
and several network-related tasks.

DISASSEMBLER AND STACK TRACER

The l() routine provides a symbolic disassembler. The tt() routine provides a symbolic
stack tracer.

SHELL ABORT AND EXCEPTION HANDLING

This package includes enhanced support for the shell in a debugging environment. The
terminal abort function, which restarts the shell, is invoked with the abort key if the
OPT_ABORT option has been set. By default, the abort key is CTRL-C. For more
information, see the manual entries for tyAbortSet() and tyAbortFuncSet().

THE DEFAULT TASK AND TASK REFERENCING

Many routines in this module take an optional task name or ID as an argument. If this
argument is omitted or zero, the “current” task is used. The current task (or “default”
task) is the last task referenced. The dbgLib library uses taskIdDefault() to set and get
the last-referenced task ID, as do many other VxWorks routines.

All VxWorks shell expressions can reference a task by either ID or name. The shell
attempts to resolve a task argument to a task ID; if no match is found in the system
symbol table, it searches for the argument in the list of active tasks. When it finds a match,
it substitutes the task name with its matching task ID. In symbol lookup, symbol names
take precedence over task names.

1: Libraries
dcacheCbio

67

D

WARNING: When a task is continued, c() and s() routines do not yet distinguish between
a suspended task or a task suspended by the debugger. Therefore, use of these routines
should be restricted to only those tasks being debugged.

INCLUDE FILES dbgLib.h

SEE ALSO excLib, tyLib, taskIdDefault(), taskOptionsSet(), tyAbortSet(), tyAbortFuncSet(),
VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s Guide: Shell

dcacheCbio

NAME dcacheCbio – disk cache driver

ROUTINES dcacheDevCreate() - Create a disk cache
dcacheDevDisable() - Disable the disk cache for this device
dcacheDevEnable() - Re-enable the disk cache
dcacheDevTune() - modify tunable disk cache parameters
dcacheDevMemResize() - set a new size to a disk cache device
dcacheShow() - print information about disk cache
dcacheHashTest() - test hash table integrity

DESCRIPTION This module implements a disk cache mechanism via the CBIO API. This is intended for
use by the VxWorks DOS file system, to store frequently used disk blocks in memory. The
disk cache is unaware of the particular file system format on the disk, and handles the
disk as a collection of blocks of a fixed size, typically the sector size of 512 bytes.

The disk cache may be used with SCSI, IDE, ATA, Floppy or any other type of disk
controllers. The underlying device driver may be either comply with the CBIO API or
with the older block device API.

This library interfaces to device drivers implementing the block device API via the basic
CBIO BLK_DEV wrapper provided by cbioLib.

Because the disk cache complies with the CBIO programming interface on both its upper
and lower layers, it is both an optional and a stackable module. It can be used or omitted
depending on resources available and performance required.

The disk cache module implements the CBIO API, which is used by the file system
module to access the disk blocks, or to access bytes within a particular disk block. This
allows the file system to use the disk cache to store file data as well as Directory and File
Allocation Table blocks, on a Most Recently Used basis, thus keeping a controllable subset
of these disk structures in memory. This results in minimized memory requirements for
the file system, while avoiding any significant performance degradation.

VxWorks OS Libraries API Reference, 5.5
dcacheCbio

68

The size of the disk cache, and thus the memory consumption of the disk subsystem, is
configured at the time of initialization (see dcacheDevCreate()), allowing the user to
trade-off memory consumption versus performance. Additional performance tuning
capabilities are available through dcacheDevTune().

Briefly, here are the main techniques deployed by the disk cache:

– Least Recently Used block re-use policy

– Read-ahead

– Write-behind with sorting and grouping

– Hidden writes

– Disk cache bypass for large requests

– Background disk updating (flushing changes to disk) with an adjustable update
period (ioctl flushes occur without delay.)

Some of these techniques are discussed in more detail below; others are described in
various professional and academic publications.

DISK CACHE ALGORITHM

The disk cache is composed internally of a number cache blocks, of the same size as the
disk physical block (sector). These cache blocks are maintained in a list in “Most Recently
Used” order, that is, blocks which are used are moved to the top of this list. When a block
needs to be relinquished, and made available to contain a new disk block, the Least
Recently Used block will be used for this purpose.

In addition to the regular cache blocks, some of the memory allocated for cache is set aside
for a “big buffer”, which may range from 1/4 of the overall cache size up to 64KB. This
buffer is used for:

– Combining cache blocks with adjacent disk block numbers, in order to write them to
disk in groups, and save on latency and overhead

– Reading ahead a group of blocks, and then converting them to normal cache blocks.

Because there is significant overhead involved in accessing the disk drive, read-ahead
improves performance significantly by reading groups of blocks at once.

TUNABLE PARAMETERS

There are certain operational parameters that control the disk cache operation which are
tunable. A number of preset parameter sets is provided, dependent on the size of the
cache. These should suffice for most purposes, but under certain types of workload, it
may be desirable to tune these parameters to better suite the particular workload patterns.

See dcacheDevTune() for description of the tunable parameters. It is recommended to
call dcacheShow() after calling dcacheTune() in order to verify that the parameters
where set as requested, and to inspect the cache statistics which may change dramatically.

1: Libraries
dcacheCbio

69

D

Note that the hit ratio is a principal indicator of cache efficiency, and should be inspected
during such tuning.

BACKGROUND UPDATING

A dedicated task will be created to take care of updating the disk with blocks that have
been modified in cache. The time period between updates is controlled with the tunable
parameter syncInterval. Its priority should be set above the priority of any CPU-bound
tasks so as to assure it can wake up frequently enough to keep the disk synchronized with
the cache. There is only one such task for all cache devices configured. The task name is
tDcacheUpd

The updating task also has the responsibility to invalidate disk cache blocks for removable
devices which have not been used for 2 seconds or more.

There are a few global variables which control the parameters of this task, namely:

dcacheUpdTaskPriority
controls the default priority of the update task, and is set by default to 250.

dcacheUpdTaskStack
is used to set the update task stack size.

dcacheUpdTaskOptions
controls the task options for the update task.

All the above global parameters must be set prior to calling dcacheDevCreate() for the
first time, with the exception of dcacheUpdTaskPriority, which may be modified in run-time,
and takes effect almost immediately. It should be noted that this priority is not entirely
fixed, at times when critical disk operations are performed, and FIOFLUSH ioctl is called,
the caller task will temporarily loan its priority to the update task, to insure the completion
of the flushing operation.

REMOVABLE DEVICES

For removable devices, disk cache provides these additional features:

disk updating
is performed such that modified blocks will be written to disk within one second, so
as to minimize the risk of losing data in case of a failure or disk removal.

error handling
includes a test for disk removal, so that if a disk is removed from the drive while an
I/O operation is in progress, the disk removal event will be set immediately.

disk signature
which is a checksum of the disk’s boot block, is maintained by the cache control
structure, and it will be verified against the disk if it was idle for 2 seconds or more.
Hence if during that idle time a disk was replaced, the change will be detected on the
next disk access, and the condition will be flagged to the file system.

VxWorks OS Libraries API Reference, 5.5
dcacheCbio

70

NOTE: It is very important that removable disks should all have a unique volume label, or
volume serial number, which are stored in the disk’s boot sector during formatting.
Changing disks which have an identical boot sector may result in failure to detect the
change, resulting in unpredictable behavior, possible file system corruption.

CACHE IMPLEMENTATION

Most Recently Used (MRU) disk blocks are stored in a collection of memory buffers called
the disk cache. The purpose of the disk cache is to reduce the number of disk accesses and
to accelerate disk read and write operations, by means of the following techniques:

– Most Recently Used blocks are stored in RAM, which results in the most frequently
accessed data being retrieved from memory rather than from disk.

– Reading data from disk is performed in large units, relying on the read-ahead feature,
one of the disk cache£s tunable parameters.

Write operations are optimized because they occur to memory first. Then updating the
disk happens in an orderly manner, by delayed write, another tunable parameter.

Overall, the main performance advantage arises from a dramatic reduction in the amount
of time spent by the disk drive seeking, thus maximizing the time available for the disk to
read and write actual data. In other words, you get efficient use of the disk drive£s
available throughput. The disk cache offers a number of operational parameters that can
be tuned by the user to suit a particular file system workload pattern, for example,
delayed write, read ahead, and bypass threshold.

The technique of delaying writes to disk means that if the system is turned off
unexpectedly, updates that have not yet been written to the disk are lost. To minimize the
effect of a possible crash, the disk cache periodically updates the disk. Modified blocks of
data are not kept in memory more then a specified period of time. By specifying a small
update period, the possible worst-case loss of data from a crash is the sum of changes
possible during that specified period. For example, it is assumed that an update period of
2 seconds is sufficiently large to effectively optimize disk writes, yet small enough to
make the potential loss of data a reasonably minor concern. It is possible to set the update
period to 0, in which case, all updates are flushed to disk immediately. This is essentially
the equivalent of using the DOS_OPT_AUTOSYNC option in earlier dosFsLib
implementations. The disk cache allows you to negotiate between disk performance and
memory consumption: The more memory allocated to the disk cache, the higher the “hit
ratio” observed, which means increasingly better performance of file system operations.
Another tunable parameter is the bypass threshold, which defines how much data
constitutes a request large enough to justify bypassing the disk cache. When significantly
large read or write requests are made by the application, the disk cache is circumvented
and there is a direct transfer of data between the disk controller and the user data buffer.
The use of bypassing, in conjunction with support for contiguous file allocation and access
(via the FIOCONTIG ioctl() command and the DOS_O_CONTIG open() flag), should
provide performance equivalent to that offered by the raw file system (rawFs).

1: Libraries
dhcpcBootLib

71

D

PARTITION INTERACTION

The dcache CBIO layer is intended to operate atop an entire fixed disk device. When using
the dcache layer with the dpart CBIO partition layer, it is important to place the dcache
layer below the partition layer.

For example:

ENABLE/DISABLE THE DISK CACHE

The function dcacheDevEnable() is used to enable the disk cache. The function
dcacheDevDisable() is used to disable the disk cache. When the disk cache is disabled, all
I/O will bypass the cache layer.

SEE ALSO dosFsLib, cbioLib, dpartCbio

dhcpcBootLib

NAME dhcpcBootLib – DHCP boot-time client library

ROUTINES dhcpcBootInit() - set up the DHCP client parameters and data structures
dhcpcBootBind() - initialize the network with DHCP at boot time
dhcpcBootInformGet() - obtain additional configuration parameters with DHCP

DESCRIPTION This library contains the interface for the client side of the Dynamic Host Configuration
Protocol (DHCP) used during system boot. DHCP is an extension of BOOTP, the
bootstrap protocol. Like BOOTP, the protocol allows automatic system startup by
providing an IP address, boot file name, and boot host’s IP address over a network.
Additionally, DHCP provides the complete set of configuration parameters defined in the
Host Requirements RFCs and allows automatic reuse of network addresses by specifying
a lease duration for a set of configuration parameters. This library is linked into the boot
ROM image automatically if INCLUDE_DHCPC is defined at the time that image is
constructed.

dosFsLib

dpart

dcache

blkIoDev

VxWorks OS Libraries API Reference, 5.5
dhcpcCommonLib

72

HIGH-LEVEL INTERFACE

The VxWorks boot program uses this library to obtain configuration parameters with
DHCP according to the client-server interaction detailed in RFC 2131 using the boot
device specified in the boot parameters. The DHCP client supports devices attached to the
IP protocol with the MUX/END interface. It also supports BSD Ethernet devices attached
to the IP protocol.

To use DHCP, first build a boot ROM image with INCLUDE_DHCPC defined and set the
appropriate flag in the boot parameters before initiating booting with the “@” command.
The DHCP client will attempt to retrieve entries for the boot file name, and host IP
address, as well as a subnet mask and broadcast address for the boot device. If a target IP
address is not available, the client will retrieve those parameters in the context of a lease.
Otherwise, it will search for permanent assignments using a simpler message exchange.
Any entries retrieved with either method will only be used if the corresponding fields in
the boot parameters are blank.

NOTE: After DHCP retrieves the boot parameters, the specified boot file is loaded and the
system restarts. As a result, the boot-time DHCP client cannot renew any lease which may
be associated with the assigned IP address. To avoid potential IP address conflicts while
loading the boot file, the DHCPC_MIN_LEASE value should be set to exceed the file
transfer time. In addition, the boot file must also contain the DHCP client library so that
the lease obtained before the restart can be renewed. Otherwise, the network initialization
using the boot parameters will fail. These restrictions do not apply if the target IP address
is entered manually since the boot parameters do not involve a lease in that case.

INCLUDE FILES dhcpcBootLib.h

SEE ALSO dhcpcLib, RFC 1541, RFC 1533

dhcpcCommonLib

NAME dhcpcCommonLib – DHCP client interface shared code library

ROUTINES dhcpcOptionSet() - add an option to the option request list
dhcpcOptionAdd() - add an option to the client messages

DESCRIPTION This library contains the shared functions used by the both the run-time and boot-time
portions of the DHCP client.

INCLUDE FILES dhcpcLib.h

SEE ALSO dhcpcLib

1: Libraries
dhcpcLib

73

D

dhcpcLib

NAME dhcpcLib – Dynamic Host Configuration Protocol (DHCP) run-time client API

ROUTINES dhcpcLibInit() - DHCP client library initialization
dhcpcInit() - assign network interface and setup lease request
dhcpcEventHookAdd() - add a routine to handle configuration parameters
dhcpcEventHookDelete() - remove the configuration parameters handler
dhcpcCacheHookAdd() - add a routine to store and retrieve lease data
dhcpcCacheHookDelete() - delete a lease data storage routine
dhcpcBind() - obtain a set of network configuration parameters with DHCP
dhcpcVerify() - renew an established lease
dhcpcRelease() - relinquish specified lease
dhcpcInformGet() - obtain additional configuration parameters with DHCP
dhcpcShutdown() - disable DHCP client library
dhcpcOptionGet() - retrieve an option provided to a client and store in a buffer
dhcpcServerGet() - retrieve the current DHCP server
dhcpcTimerGet() - retrieve current lease timers
dhcpcParamsGet() - retrieve current configuration parameters

DESCRIPTION This library implements the run-time access to the client side of the Dynamic Host
Configuration Protocol (DHCP). DHCP is an extension of BOOTP. Like BOOTP, the
protocol allows a host to initialize automatically by obtaining its IP address, boot file
name, and boot host’s IP address over a network. Additionally, DHCP provides a client
with the complete set of parameters defined in the Host Requirements RFCs and allows
automatic reuse of network addresses by specifying individual leases for each set of
configuration parameters. The compatible message format allows DHCP participants to
interact with BOOTP participants. The dhcpcLibInit() routine links this library into the
VxWorks image. This happens automatically if INCLUDE_DHCPC is defined at the time
the image is built.

CONFIGURATION INTERFACE

When used during run time, the DHCP client library establishes and maintains one or
more DHCP leases. Each lease provides access to a set of configuration parameters. If
requested, the parameters retrieved will be used to reconfigure the associated network
interface, but may also be handled separately through an event hook. The
dhcpcEventHookAdd() routine specifies a function which is invoked whenever the lease
status changes. The dhcpcEventHookDelete() routine will disable that notification. The
automatic reconfiguration must be limited to one lease for a particular network interface.
Otherwise, multiple leases would attempt to reconfigure the same device, with
unpredictable results.

VxWorks OS Libraries API Reference, 5.5
dhcpcLib

74

HIGH-LEVEL INTERFACE

To access the DHCP client during run time, an application must first call the dhcpcInit()
routine with a pointer to the network interface to be used for communication with a
DHCP server. Each call to the initialization routine returns a unique identifier to be used
in subsequent calls to the DHCP client routines. Next, the application must specify a client
identifier for the lease using the dhcpcOptionSet() call. Typically, the link-level hardware
address is used for this purpose. Additional calls to the option set routine may be used to
request specific DHCP options. After all calls to that routine are completed, a call to
dhcpcBind() will retrieve a set of configuration parameters according to the client-server
interaction detailed in RFC 1541.

Each sequence of the three function calls described above, if successful, will retrieve a set
of configuration parameters from a DHCP server. The dhcpcServerGet() routine retrieves
the address of the server that provided a particular lease. The dhcpcTimerGet() routine
will retrieve the current values for both lease timers.

Alternatively, the dhcpcParamsGet() and dhcpcOptionGet() routines will access any
options provided by a DHCP server. In addition to the lease identifier obtained from the
initialization routine, the dhcpcParamsGet() routine accepts a parameter descriptor
structure that selects any combination of the options described in RFC 1533 for retrieval.
Similarly, the dhcpcOptionGet() routine retrieves the values associated with a single
option.

LOW-LEVEL INTERFACE

This library also contains several routines which explicitly generate DHCP messages. The
dhcpcVerify() routine causes the client to renew a particular lease, regardless of the time
remaining. The dhcpcRelease() routine relinquishes the specified lease. The associated
parameters are no longer valid. If those parameters were used by the underlying network
device, the routine also shuts off all network processing for that interface. Finally, the
dhcpcShutdown() routine will release all active leases and disable all the DHCP client
library routines.

OPTIONAL INTERFACE

The dhcpcCacheHookAdd() routine registers a function that the client will use to store
and retrieve lease data. The client can then re-use this information if it is rebooted. The
dhcpcCacheHookDelete() routine prevents the re-use of lease data. Initially, a function to
access permanent storage is not provided.

INCLUDE FILES dhcpcLib.h

SEE ALSO RFC 1541, RFC 1533

1: Libraries
dhcprLib

75

D

dhcpcShow

NAME dhcpcShow – DHCP run-time client information display routines

ROUTINES dhcpcShowInit() - initialize the DHCP show facility
dhcpcServerShow() - display current DHCP server
dhcpcTimersShow() - display current lease timers
dhcpcParamsShow() - display current lease parameters

DESCRIPTION This library provides routines that display various data related to the DHCP run-time
client library such as the lease timers and responding server. The dhcpcShowInit()
routine links the show facility into the VxWorks image. This happens automatically if
INCLUDE_NET_SHOW and INCLUDE_DHCPC are defined at the time the image is built.

INCLUDE FILES dhcpcLib.h

SEE ALSO dhcpcLib

dhcprLib

NAME dhcprLib – DHCP relay agent library

ROUTINES No Callable Routines

DESCRIPTION This library implements a relay agent for the Dynamic Host Configuration Protocol
(DHCP). DHCP is an extension of BOOTP. Like BOOTP, it allows a target to configure
itself dynamically by using the network to get its IP address, a boot file name, and the
DHCP server’s address. The relay agent forwards DHCP messages between clients and
servers resident on different subnets. The standard DHCP server, if present on a subnet,
can also forward messages across subnet boundaries. The relay agent is needed only if
there is no DHCP server running on the subnet. The dhcprLibInit() routine links this
library into the VxWorks system. This happens automatically if INCLUDE_DHCPR is
defined at the time the system is built, as long as INCLUDE_DHCPS is not also defined.

HIGH-LEVEL INTERFACE

The dhcprInit() routine initializes the relay agent automatically. The relay agent forwards
incoming DHCP messages to the IP addresses specified at build time in dhcpTargetTbl[].

INCLUDE FILES dhcprLib.h

SEE ALSO RFC 1541, RFC 1533

VxWorks OS Libraries API Reference, 5.5
dhcpsLib

76

dhcpsLib

NAME dhcpsLib – Dynamic Host Configuration Protocol (DHCP) server library

ROUTINES dhcpsInit() - set up the DHCP server parameters and data structures
dhcpsLeaseEntryAdd() - add another entry to the address pool
dhcpsLeaseHookAdd() - assign a permanent lease storage hook for the server
dhcpsAddressHookAdd() - assign a permanent address storage hook for the server

DESCRIPTION This library implements the server side of the Dynamic Host Configuration Protocol
(DHCP). DHCP is an extension of BOOTP. Like BOOTP, it allows a target to configure
itself dynamically by using the network to get its IP address, a boot file name, and the
DHCP server’s address. Additionally, DHCP provides for automatic reuse of network
addresses by specifying individual leases as well as many additional options. The
compatible message format allows DHCP participants to inter-operate with BOOTP
participants. The dhcpsInit() routine links this library into the VxWorks image. This
happens automatically if INCLUDE_DHCPS is defined when the image is built.

PRIMARY INTERFACE

The dhcpsInit() routine initializes the server. It reads the hard-coded server configuration
data that is stored in three separate tables. The first table contains entries as follows:

DHCPS_LEASE_DESC dhcpsLeaseTbl [] =

{

{"sample1", "90.11.42.24", "90.11.42.24", "clid=\"1:0x08003D21FE90\""},

{"sample2", "90.11.42.25", "90.11.42.28", "maxl=90:dfll=60"},

{"sample3", ”90.11.42.29","90.11.42.34","maxl=0xffffffff:file=/vxWorks"},

{"sample4", "90.11.42.24", "90.11.42.24", "albp=true:file=/vxWorks"}

};

Each entry contains a name of up to eight characters, the starting and ending IP addresses
of a range, and the parameters associated with the lease. The four samples shown
demonstrate the four types of leases.

Manual leases contain a specific client ID, and are issued only to that client, with an
infinite duration. The example shown specifies a MAC address, which is the identifier
type used by the VxWorks DHCP client.

Dynamic leases specify a finite maximum length, and can be issued to any requesting
client. These leases allow later re-use of the assigned IP address. If not explicitly specified
in the parameters field, these leases use the values of DHCPS_MAX_LEASE and
DHCPS_DFLT_LEASE to determine the lease length.

Automatic leases are implied by the infinite maximum length. Their IP addresses are
assigned permanently to any requesting client.

1: Libraries
dhcpsLib

77

D

The last sample demonstrates a lease that is also available to BOOTP clients. The infinite
maximum length is implied, and any timing-related parameters are ignored.

The DHCP server supplies leases to DHCP clients according to the lease type in the order
shown above. Manual leases have the highest priority and leases available to BOOTP
clients the lowest.

Entries in the parameters field may be one of these types:

bool
Takes values of “true” or “false”, for example, ipfd=true. Unrecognized values
default to false.

str
Takes a character string as a value, for example, hstn=“clapton”. If the string includes
a delimiter character, such as a colon, it should be enclosed in quotation marks.

octet
Takes an 8-bit integer in decimal, octal, or hexadecimal, for example, 8, 070, 0xff.

short
Takes a 16-bit integer.

long
Takes a 32-bit integer.

ip
Takes a string that is interpreted as a 32-bit IP address. One of the following formats
is expected: a.b.c.d, a.b.c or a.b. In the second format, c is interpreted as a 16-bit value.
In the third format, b is interpreted as a 24-bit value, for example siad=90.11.42.1.

iplist
Takes a list of IP addresses, separated by white space, for example, rout=133.4.31.1
133.4.31.2 133.4.31.3.

ippairs
Takes a list of IP address pairs. Each IP address is separated by white space and
grouped in pairs, for example, strt=133.4.27.0 133.4.31.1 133.4.36.0 133.4.31.1.

mtpt
Takes a list of 16 bit integers, separated by white space, for example, mtpt=1 2 3 4 6 8.

clid
Takes a client identifier as a value. Client identifiers are represented by the quoted
string “type:data”, where type is an integer from 0 to 255, as defined by the IANA, and
data is a sequence of 8-bit values in hexadecimal. The client ID is usually a MAC
address, for example, clid=“1:0x08004600e5d5”.

The following table lists the option specifiers and descriptions for every possible entry in
the parameter list. When available, the option code from RFC 2132 is included.

VxWorks OS Libraries API Reference, 5.5
dhcpsLib

78

Name Code Type Description

snam - str Optional server name.
file - str Name of file containing the boot image.
siad - ip Address of server that offers the boot image.
albp - bool If true, this entry is also available to BOOTP clients. For entries

using static allocation, this value becomes true by default and
maxl becomes infinity.

maxl - long Maximum lease duration in seconds.
dfll - long Default lease duration in seconds. If a client does not request a

specific lease duration, the server uses this value.
clid - clid This specifies a client identifier for manual leases. The VxWorks

client uses a MAC address as the client identifier.
pmid - clid This specifies a client identifier for client-specific parameters to

be included in a lease. It should be present in separate entries
without IP addresses.

clas - str This specifies a class identifier for class-specific parameters to be
included in a lease. It should be present in separate entries
without IP addresses.

snmk 1 ip Subnet mask of the IP address to be allocated. The default is a
natural mask corresponding to the IP address. The server will
not issue IP addresses to clients on different subnets.

tmof 2 long Time offset from UTC in seconds.
rout 3 iplist A list of routers on the same subnet as the client.
tmsv 4 iplist A list of time servers (RFC 868).
nmsv 5 iplist A list of name servers (IEN 116).
dnsv 6 iplist A list of DNS servers (RFC 1035).
lgsv 7 iplist A list of MIT-LCS UDP log servers.
cksv 8 iplist A list of Cookie servers (RFC 865).
lpsv 9 iplist A list of LPR servers (RFC 1179).
imsv 10 iplist A list of Imagen Impress servers.
rlsv 11 iplist A list of Resource Location servers (RFC 887).
hstn 12 str Hostname of the client.
btsz 13 short Size of boot image.
mdmp 14 str Path name to which client dumps core.
dnsd 15 str Domain name for DNS.
swsv 16 ip IP address of swap server.
rpth 17 str Path name of root disk of the client.
epth 18 str Extensions Path (See RFC 1533).
ipfd 19 bool If true, the client performs IP forwarding.
nlsr 20 bool If true, the client can perform non-local source routing.
plcy 21 ippairs Policy filter for non-local source routing. A list of pairs of

(Destination IP, Subnet mask).

1: Libraries
dhcpsLib

79

D

mdgs 22 short Maximum size of IP datagram that the client should be able to
reassemble.

ditl 23 octet Default IP TTL.
mtat 24 long Aging timeout (in seconds) to be used with Path MTU discovery

(RFC 1191).
mtpt 25 mtpt A table of MTU sizes to be used with Path MTU Discovery.
ifmt 26 short MTU to be used on an interface.
asnl 27 bool If true, the client assumes that all subnets to which the client is

connected use the same MTU.
brda 28 ip Broadcast address in use on the client’s subnet. The default is

calculated from the subnet mask and the IP address.
mskd 29 bool If true, the client should perform subnet mask discovery using

ICMP.
msks 30 bool If true, the client should respond to subnet mask requests using

ICMP.
rtrd 31 bool If true, the client should solicit routers using Router Discovery

defined in RFC 1256.
rtsl 32 ip Destination IP address to which the client sends router

solicitation requests.
strt 33 ippairs A table of static routes for the client, which are pairs of

(Destination, Router). It is illegal to specify default route as a
destination.

trlr 34 bool If true, the client should negotiate the use of trailers with ARP
(RFC 893).

arpt 35 long Timeout in seconds for ARP cache.
encp 36 bool If false, the client uses RFC 894 encapsulation. If true, it uses RFC

1042 (IEEE 802.3) encapsulation.
dttl 37 octet Default TTL of TCP.
kain 38 long Interval of the client’s TCP keepalive in seconds.
kagb 39 bool If true, the client should send TCP keepalive messages with a

octet of garbage for compatibility.
nisd 40 str Domain name for NIS.
nisv 41 iplist A list of NIS servers.
ntsv 42 iplist A list of NTP servers.
nnsv 44 iplist A list of NetBIOS name server. (RFC 1001, 1002)
ndsv 45 iplist A list of NetBIOS datagram distribution servers (RFC 1001,

1002).
nbnt 46 octet NetBIOS node type (RFC 1001, 1002).
nbsc 47 str NetBIOS scope (RFC 1001, 1002).
xfsv 48 iplist A list of font servers of X Window system.
xdmn 49 iplist A list of display managers of X Window system.

Name Code Type Description

VxWorks OS Libraries API Reference, 5.5
dhcpsLib

80

Finally, to function correctly, the DHCP server requires access to some form of permanent
storage. The DHCPS_LEASE_HOOK constant specifies the name of a storage routine with
the following interface:

STATUS dhcpsStorageHook (int op, char *buffer, int datalen);

The storage routine is installed by a call to the dhcpsLeaseHookAdd() routine The
manual pages for dhcpsLeaseHookAdd() describe the parameters and required
operation of the storage routine.

SECONDARY INTERFACE

In addition to the hard-coded entries, address entries may be added after the server has
started by calling the following routine:

STATUS dhcpsLeaseEntryAdd (char *name, char *start, char *end, char *config);

The parameters specify an entry name, starting and ending values for a block of IP
addresses, and additional configuration information in the same format as shown above
for the hard-coded entries. Each parameter must be formatted as a NULL-terminated
string.

The DHCPS_ADDRESS_HOOK constant specifies the name of a storage routine, used to
preserve address entries added after startup, which has the following prototype:

STATUS dhcpsAddressStorageHook (int op,

char *name, char *start, char *end,

char *params);

The storage routine is installed with the dhcpsAddressHookAdd() routine, and is fully
described in the manual pages for that function.

OPTIONAL INTERFACE

The DHCP server can also receive messages forwarded from different subnets by a relay
agent. To provide addresses to clients on different subnets, the appropriate relay agents
must be listed in the provided table in usrNetwork.c. A sample configuration is:

DHCPS_RELAY_DESC dhcpsRelayTbl [] =

{

{"90.11.46.75", "90.11.46.0"}

};

dht1 58 short This value specifies when the client should start RENEWING.
The default of 500 means the client starts RENEWING after 50%
of the lease duration passes.

dht2 59 short This value specifies when the client should start REBINDING.
The default of 875 means the client starts REBINDING after
87.5% of the lease duration passes.

Name Code Type Description

1: Libraries
dirLib

81

D

Each entry in the table specifies the address of a relay agent that will transmit the request
and the corresponding subnet number. To issue leases successfully, the address pool must
also contain IP addresses for the monitored subnets.

The following table allows a DHCP server to act as a relay agent in addition to its default
function of processing messages. It consists of a list of IP addresses.

DHCP_TARGET_DESC dhcpTargetTbl [] =

{

{"90.11.43.2"},

{"90.11.44.1"}

};

Each IP address in this list receives a copy of any client messages generated on the subnets
monitored by the server.

INCLUDE FILES dhcpsLib.h

SEE ALSO RFC 1541, RFC 1533

dirLib

NAME dirLib – directory handling library (POSIX)

ROUTINES opendir() - open a directory for searching (POSIX)
readdir() - read one entry from a directory (POSIX)
rewinddir() - reset position to the start of a directory (POSIX)
closedir() - close a directory (POSIX)
fstat() - get file status information (POSIX)
stat() - get file status information using a pathname (POSIX)
fstatfs() - get file status information (POSIX)
statfs() - get file status information using a pathname (POSIX)
utime() - update time on a file

DESCRIPTION This library provides POSIX-defined routines for opening, reading, and closing directories
on a file system. It also provides routines to obtain more detailed information on a file or
directory.

SEARCHING DIRECTORIES

Basic directory operations, including opendir(), readdir(), rewinddir(), and closedir(),
determine the names of files and subdirectories in a directory.

VxWorks OS Libraries API Reference, 5.5
dirLib

82

A directory is opened for reading using opendir(), specifying the name of the directory to
be opened. The opendir() call returns a pointer to a directory descriptor, which identifies
a directory stream. The stream is initially positioned at the first entry in the directory.

Once a directory stream is opened, readdir() is used to obtain individual entries from it.
Each call to readdir() returns one directory entry, in sequence from the start of the
directory. The readdir() routine returns a pointer to a dirent structure, which contains the
name of the file (or subdirectory) in the d_name field.

The rewinddir() routine resets the directory stream to the start of the directory. After
rewinddir() has been called, the next readdir() will cause the current directory state to be
read in, just as if a new opendir() had occurred. The first entry in the directory will be
returned by the first readdir().

The directory stream is closed by calling closedir().

GETTING FILE INFORMATION

The directory stream operations described above provide a mechanism to determine the
names of the entries in a directory, but they do not provide any other information about
those entries. More detailed information is provided by stat() and fstat().

The stat() and fstat() routines are essentially the same, except for how the file is specified.
The stat() routine takes the name of the file as an input parameter, while fstat() takes a
file descriptor number as returned by open() or creat(). Both routines place the
information from a directory entry in a stat structure whose address is passed as an input
parameter. This structure is defined in the include file stat.h. The fields in the structure
include the file size, modification date/time, whether it is a directory or regular file, and
various other values.

The st_mode field contains the file type; several macro functions are provided to test the
type easily. These macros operate on the st_mode field and evaluate to TRUE or FALSE
depending on whether the file is a specific type. The macro names are:

S_ISREG
test if the file is a regular file

S_ISDIR
test if the file is a directory

S_ISCHR
test if the file is a character special file

S_ISBLK
test if the file is a block special file

S_ISFIFO
test if the file is a FIFO special file

Only the regular file and directory types are used for VxWorks local file systems.
However, the other file types may appear when getting file status from a remote file
system (using NFS).

1: Libraries
distLib

83

D

As an example, the S_ISDIR macro tests whether a particular entry describes a directory. It
is used as follows:

char *filename;

struct stat fileStat;

stat (filename, &fileStat);

if (S_ISDIR (fileStat.st_mode))

printf ("%s is a directory.\n", filename);

else

printf ("%s is not a directory.\n", filename);

See the ls() routine in usrLib for an illustration of how to combine the directory stream
operations with the stat() routine.

INCLUDE FILES dirent.h, stat.h

distIfShow

NAME distIfShow – distributed objects interface adapter show routines (VxFusion Opt.)

ROUTINES distIfShow() - display information about the installed interface adapter (VxFusion Opt.)

DESCRIPTION This library provides a show routine for displaying information about the installed
interface adapter.

AVAILABILITY This module is distributed as a component of the unbundled distributed message queues
option, VxFusion.

INCLUDE FILES distIfLib.h

SEE ALSO distStatLib

distLib

NAME distLib – distributed objects initialization and control library (VxFusion Opt.)

ROUTINES distInit() - initialize and bootstrap the current node (VxFusion Opt.)
distCtl() - perform a distributed objects control function (VxFusion Opt.)

DESCRIPTION This library provides an initialization and control interface for VxFusion.

VxWorks OS Libraries API Reference, 5.5
distNameLib

84

Use distInit() to initialize VxFusion on the current node. In addition to performing local
initialization, distInit() attempts to locate remote VxFusion nodes on the network and
download copies of the databases from one of the remote nodes.

Call distCtl() to set VxFusion run-time parameters using an ioctl()-like syntax.

NOTE: In this release, the distInit() routine is called automatically with default
parameters when a target boots using a VxWorks image with VxFusion installed.

AVAILABILITY This module is distributed as a component of the unbundled distributed message queues
option, VxFusion.

INCLUDE FILES distLib.h

distNameLib

NAME distNameLib – distributed name database library (VxFusion Opt.)

ROUTINES distNameAdd() - add an entry to the distributed name database (VxFusion Opt.)
distNameFind() - find an object by name in the local database (VxFusion Opt.)
distNameFindByValueAndType() - look up the name of an object by value and type
(VxFusion Opt.)
distNameRemove() - remove an entry from the distributed name database (VxFusion
Opt.)

DESCRIPTION This library contains the distributed objects distributed name database and routines for
manipulating it. Symbolic names are bound to values, such as message queue identifiers
or simple integers. Entries can be found by name or by value and type. The distributed
name database is replicated throughout the system, with a copy sitting on each node.

The distributed name database library is initialized by calling distInit() in distLib.

AVAILABILITY This module is distributed as a component of the unbundled distributed message queues
option, VxFusion.

INCLUDE FILES distNameLib.h

SEE ALSO distLib, distNameShow

1: Libraries
distTBufLib

85

D

distNameShow

NAME distNameShow – distributed name database show routines (VxFusion Opt.)

ROUTINES distNameShow() - display the entire distributed name database (VxFusion Opt.)
distNameFilterShow() - display the distributed name database filtered by type
(VxFusion Opt.)

DESCRIPTION This library provides routines for displaying the contents of the distributed name
database.

AVAILABILITY This module is distributed as a component of the unbundled distributed message queues
option, VxFusion.

INCLUDE FILES distNameLib.h

SEE ALSO distNameLib

distTBufLib

NAME distTBufLib – distributed objects telegram buffer library (VxFusion Opt.)

ROUTINES distTBufAlloc() - allocate a telegram buffer from the pool of buffers (VxFusion Opt.)
distTBufFree() - return a telegram buffer to the pool of buffers (VxFusion Opt.)

DESCRIPTION This library provides routines for allocating and freeing telegram buffers. Telegrams are
the largest packets that can be sent between nodes by the distributed objects product; their
size is limited by the MTU size of the underlying communications. If a distributed objects
message exceeds the space allocated in a telegram for message data, that message is
divided into multiple telegrams that are sent out in sequence.

AVAILABILITY This module is distributed as a component of the unbundled distributed message queues
option, VxFusion.

INCLUDE FILES distTBufLib.h

VxWorks OS Libraries API Reference, 5.5
dosFsFmtLib

86

dosFsFmtLib

NAME dosFsFmtLib – MS-DOS media-compatible file system formatting library

ROUTINES dosFsVolFormat() - format an MS-DOS compatible volume

DESCRIPTION This module is a scalable companion module for dosFsLib, and is intended to facilitate
high level formatting of disk volumes.

There are two ways to high level format a volume:

(1) Directly calling dosFsVolFormat() routine allows to have complete control over the
format used, parameters and allows to supply a hook routine which for instance
could interactively prompt the user to modify disk parameters.

(2) Calling ioctl command FIODISKINIT will invoke the formatting routine via dosFsLib.
This uses the default volume format and parameters.

AVAILABILITY This routine is an optional part of the MS-DOS file system, and may be included in a
target system if it is required to be able to format new volumes.

In order to include this option, the following function needs to be invoked during system
initialization:

void dosFsFmtLibInit(void);

See reference page dosFsVolFormat() for complete description of supported formats,
options and arguments.

SEE ALSO dosFsLib

dosFsLib

NAME dosFsLib – MS-DOS media-compatible file system library

ROUTINES dosSetVolCaseSens() - set case sensitivity of volume
dosFsVolDescGet() - convert a device name into a DOS volume descriptor pointer.
dosFsChkDsk() - make volume integrity checking.
dosFsLastAccessDateEnable() - enable last access date updating for this volume
dosFsLibInit() - prepare to use the dosFs library
dosFsDevCreate() - create file system device.
dosFsShow() - display dosFs volume configuration data.

1: Libraries
dosFsLib

87

D

DESCRIPTION This library implements the MS-DOS compatible file system. This is a multi-module
library, which depends on sub-modules to perform certain parts of the file system
functionality. A number of different file system format variations are supported.

USING THIS LIBRARY

The various routines provided by the VxWorks DOS file system (dosFs) may be separated
into three broad groups: general initialization, device initialization, and file system
operation.

The dosFsLibInit() routine is the principal initialization function; it should be called once
during system initialization, regardless of how many dosFs devices are to be used.

Another dosFs routine is used for device initialization. For each dosFs device,
dosFsDevCreate() must be called to install the device in VxWorks device list. In the case
where partitioned disks are used, dosFsDevCreate() must be called for each partition that
is anticipated, thereby it is associated with a logical device name, so it can be later
accessed via the I/O system.

In case of a removable disk, dosFsDevCreate() must be called during system initialization
time, even if a cartridge or diskette may be absent from the drive at boot time.
dosFsDevCreate() will only associate the device with a logical device name. Device access
will be done only when the logical device is first accessed by the application.

More detailed information on all of these routines is provided below.

INITIALIZING DOSFSLIB

To enable this file system in a particular VxWorks configuration, a library initialization
routine must be called for each sub-module of the file system, as well as for the
underlying disk cache, partition manager and drivers. This is usually done at system
initialization time, within the usrRoot task context.

Following is the list of initialization routines that need to be called:

dosFsLibInit()
(mandatory) initialize the principle dosFs module. Must be called first.

dosFsFatInit()
(mandatory) initialize the File Allocation Table handler, which supports 12-bit, 16-bit
and 32-bit FATs.

dosVDirLibInit()
(choice) install the variable size directory handler supporting Windows-compatible
Long File Names (VFAT) Directory Handler.

dosDirOldLibInit()
(choice) install the fixed size directory handler which supports old-fashioned 8.3
MS-DOS file names, and Wind River Systems proprietary long file names (VXLONG).

dosFsFmtLibInit()
(optional) install the volume formatting module.

VxWorks OS Libraries API Reference, 5.5
dosFsLib

88

dosChkLibInit()
(optional) install the file system consistency checking module.

The two Directory handlers which are marked choice are installed in accordance with the
system requirements, either one of these modules could be installed or both, in which case
the VFAT will take precedence for MS-DOS compatible volumes.

Also, at least one CBIO module must be initialized on a per-device basis prior to calling
dosFsDevCreate(). See the related documentation for more details and examples.

DEFINING A DOSFS DEVICE

The dosFsDevCreate() routine associates a device with the dosFsLib functions. It expects
three parameters:

(1) A pointer to a name string, to be used to identify the device - logical device name.
This will be part of the pathname for I/O operations which operate on the device.
This name will appear in the I/O system device table, which may be displayed using
the iosDevShow() routine.

(2) CBIO_DEV_ID - a pointer to the CBIO_DEV structure which provides interface to
particular disk, via a disk cache, or a partition manager or a combination of a number
of CBIO modules which are stacked on top of each other to form one of many
configurations possible.

(3) A maximum number of files can be simultaneously opened on a particular device.

(4) Because volume integrity check utility can be automatically invoked every time a
device is mounted, this parameter indicates whether the consistency check needs to
be performed automatically on a given device, and on what level of verbosity is
required. In any event, the consistency check may be invoked at a later time, e.g., by
calling chkdsk(). See description for FIOCHKDSK ioctl command for more
information.

For example:

dosFsDevCreate

(

"/sd0", /* name to be used for volume */

pCbio, /* pointer to device descriptor */

10, /* max no. of simultaneously open files */

DOS_CHK_REPAIR | DOS_CHK_VERB_1

/* check volume during mounting and repair */

/* errors, and display volume statistics */

)

Once dosFsDevCreate() has been called, the device can be accessed using ioLib generic
I/O routines: open(), read(), write(), close(), ioctl(), remove(). Also, the user-level
utility functions may be used to access the device at a higher level (See usrFsLib reference
page for more details).

1: Libraries
dosFsLib

89

D

DEVICE AND PATH NAMES

On true MS-DOS machines, disk device names are typically of the form “A:”, that is, a
single letter designator followed by a colon. Such names may be used with the VxWorks
dosFs file system. However, it is possible (and desirable) to use longer, more mnemonic
device names, such as DOS1:, or /floppy0. The name is specified during the
dosFsDevCreate() call.

The pathnames used to specify dosFs files and directories may use either forward slashes
(“/”) or backslashes (“\”) freely mixed. The choice of forward slashes or backslashes has
absolutely no effect on the directory data written to the disk. (Note, however, that forward
slashes are not allowed within VxWorks dosFs filenames, although they are normally
legal for pure MS-DOS implementations.)

For the sake of consistency however use of forward slashes (“/”) is recommended at all
times.

The leading slash of a dosFs pathname following the device name is optional. For
example, both DOS1:newfile.new and DOS1:/newfile.new refer to the same file.

USING EXTENDED DIRECTORY STRUCTURE

This library supports DOS4.0 standard file names which fit the restrictions of eight
upper-case characters optionally followed by a three-character extension, as well as
Windows style VFAT standard long file names that are stored mixed cased on disk, but
are case insensitive when searched and matched (e.g., during open() call). The VFAT long
file name is stored in a variable number of consecutive directory entries. Both standards
restrict file size to 4 GB (32 bit value).

To provide additional flexibility, this implementation of the DOS file system provides
proprietary ling file name format (VXLONGNAMES), which uses a simpler directory
structure: the directory entry is of fixed size. When this option is used, file names may
consist of any sequence of up to 40 ASCII characters. No case conversion is performed,
and file name match is case-sensitive. With this directory format the file maximum size is
expanded to 1 Terabyte (40 bit value).

NOTE: Because special directory entries are used on the disk, disks which use the
extended names are not compatible with other implementation of the MS-DOS systems,
and cannot be read on MS-DOS or Windows machines.

To enable the extended file names, set the DOS_OPT_VXLONGNAMES flag when calling
dosFsVolFormat().

READING DIRECTORY ENTRIES

Directories on VxWorks dosFs volumes may be searched using the opendir(), readdir(),
rewinddir(), and closedir() routines. These calls allow the names of files and
subdirectories to be determined.

VxWorks OS Libraries API Reference, 5.5
dosFsLib

90

To obtain more detailed information about a specific file, use the fstat() or stat() routine.
Along with standard file information, the structure used by these routines also returns the
file attribute byte from a dosFs directory entry.

For more information, see the manual entry for dirLib.

FILE DATE AND TIME

Directory entries on dosFs volumes contain creation, last modification time and date, and
the last access date for each file or subdirectory. Directory last modification time and date
fields are set only when a new entry is created, but not when any directory entries are
deleted. The last access date field indicates the date of the last read or write. The last
access date field is an optional field, per Microsoft. By default, file open-read-close
operations do not update the last access date field. This default avoids media writes
(writing out the date field) during read only operations. In order to enable the updating
of the optional last access date field for open-read-close operations, you must call
dosFsLastAccessDateEnable(), passing it the volumes DOS_VOLUME_DESC_ID and
TRUE.

The dosFs file system uses the ANSI time() function, that returns system clock value to
obtain date and time. It is recommended that the target system should set the system time
during system initialization time from a network server or from an embedded Calendar /
Clock hardware component, so that all files on the file system would be associated with a
correct date and time.

The file system consistency checker (see below) sets system clock to value following the
latest date-time field stored on the disk, if it discovers, that function time() returns a date
earlier then Jan 1, 1998, meaning that the target system does not have a source of valid
date and time to synchronize with.

See also the reference manual entry for ansiTime.

FILE ATTRIBUTES Directory entries on dosFs volumes contain an attribute byte consisting of bit-flags which
specify various characteristics of the entry. The attributes which are identified are:
read-only file, hidden file, system file, volume label, directory, and archive. The VxWorks
symbols for these attribute bit-flags are:

DOS_ATTR_RDONLY
File is write-protected, can not be modified or deleted.

DOS_ATTR_HIDDEN
this attribute is not used by VxWorks.

DOS_ATTR_SYSTEM
this attribute is not used by VxWorks.

DOS_ATTR_VOL_LABEL
directory entry describes a volume label, this attribute can not be set or used directly,
see ioctl() command FIOLABELGET and FIOLABELSET below for volume label
manipulation.

1: Libraries
dosFsLib

91

D

DOS_ATTR_DIRECTORY
directory entry is a subdirectory, this attribute can not be set directly.

DOS_ATTR_ARCHIVE
this attribute is not used by VxWorks.

All the flags in the attribute byte, except the directory and volume label flags, may be set
or cleared using the ioctl() FIOATTRIBSET function. This function is called after opening
the specific file whose attributes are to be changed. The attribute byte value specified in
the FIOATTRIBSET call is copied directly. To preserve existing flag settings, the current
attributes should first be determined via fstat(), and the appropriate flag(s) changed
using bitwise AND or OR operations. For example, to make a file read-only, while leaving
other attributes intact:

struct stat fileStat;

fd = open ("file", O_RDONLY, 0); /* open file */

fstat (fd, &fileStat); /* get file status */

ioctl (fd, FIOATTRIBSET, (fileStat.st_attrib | DOS_ATTR_RDONLY));

/* set read-only flag */

close (fd); /* close file */

See also the reference manual entry for attrib() and xattrib() for user-level utility routines
which control the attributes of files or file hierarchy.

CONTIGOUS FILE SUPPORT

The VxWorks dosFs file system provides efficient files storage: space will be allocated in
groups of clusters (also termed extents) so that a file will be composed of relatively large
contiguous units. This nearly contiguous allocation technique is designed to effectively
eliminate the effects of disk space fragmentation, keeping throughput very close to the
maximum of which the hardware is capable of.

However dosFs provides mechanism to allocate truly contiguous files, meaning files
which are made up of a consecutive series of disk sectors. This support includes both the
ability to allocate contiguous space to a file and optimized access to such a file when it is
used. Usually this will somewhat improve performance when compared to Nearly
Contiguous allocation, at the price of disk space fragmentation.

To allocate a contiguous area to a file, the file is first created in the normal fashion, using
open() or creat(). The file descriptor returned during the creation of the file is then used
to make an ioctl() call, specifying the FIOCONTIG or FIOCONTIG64 function. The last
parameter to the FIOCONTIG function is the size of the requested contiguous area in
bytes, If the FIOCONTIG64 is used, the last parameter is pointer to 64-bit integer variable,
which contains the required file size. It is also possible to request that the largest
contiguous free area on the disk be obtained. In this case, the size value CONTIG_MAX (-1)
is used instead of an actual size. These ioctl() codes are not supported for directories. The
volume is searched for a contiguous area of free space, which is assigned to the file. If a
segment of contiguous free space large enough for the request was not found, ERROR is
returned, with errno set to S_dosFsLib_NO_CONTIG_SPACE.

VxWorks OS Libraries API Reference, 5.5
dosFsLib

92

When contiguous space is allocated to a file, the file remains empty, while the newly
allocated space has not been initialized. The data should be then written to the file, and
eventually, when all data has been written, the file is closed. When file is closed, its space
is truncated to reflect the amount of data actually written to the file. This file may then be
again opened and used for further I/O operations read() or write(), but it can not be
guaranteed that appended data will be contiguous to the initially written data segment.

For example, the following will create a file and allocate 85 Mbytes of contiguous space:

fd = creat ("file", O_RDWR, 0); /* open file */

status = ioctl (fd, FIOCONTIG, 85*0x100000);/* get contiguous area */

if (status != OK)

... /* do error handling */

close (fd); /* close file */

In contrast, the following example will create a file and allocate the largest contiguous
area on the disk to it:

fd = creat ("file", O_RDWR, 0); /* open file */

status = ioctl (fd, FIOCONTIG, CONTIG_MAX); /* get contiguous area */

if (status != OK)

... /* do error handling */

close (fd); /* close file */

NOTE: The FIOCONTIG operation should take place right after the file has been created,
before any data is written to the file. Directories may not be allocated a contiguous disk
area.

To determine the actual amount of contiguous space obtained when CONTIG_MAX is
specified as the size, use fstat() to examine the number of blocks and block size for the
file.

When any file is opened, it may be checked for contiguity. Use the extended flag
DOS_O_CONTIG_CHK when calling open() to access an existing file which may have
been allocated contiguous space. If a file is detected as contiguous, all subsequent
operations on the file will not require access to the File Allocation Table, thus eliminating
any disk Seek operations. The down side however is that if this option is used, open()
will take an amount of time which is linearly proportional of the file size.

CHANGING, UNMOUNTING, AND SYNCHRONIZING DISKS

Buffering of disk data in RAM, synchronization of these buffers with the disk and
detection of removable disk replacement are all handled by the disk cache. See reference
manual on dcacheCbio for more details.

If a disk is physically removed, the disk cache will cause dosFsLib to unmount the volume,
which will mark all currently open file descriptors as obsolete.

If a new disk is inserted, it will be automatically mounted on the next call to open() or
creat().

1: Libraries
dosFsLib

93

D

IOCTL FUNCTIONS The dosFs file system supports the following ioctl() functions. The functions listed are
defined in the header ioLib.h. Unless stated otherwise, the file descriptor used for these
functions may be any file descriptor which is opened to a file or directory on the volume
or to the volume itself. There are some ioctl() commands, that expect a 32-bit integer
result (FIONFREE, FIOWHERE, etc.). However, disks and files with are grater than 4GB are
supported. In order to solve this problem, new ioctl() functions have been added to
support 64-bit integer results. They have the same name as basic functions, but with suffix
64, namely: FIONFREE64, FIOWHERE64 and so on. These commands expect a pointer to a
64-bit integer, i.e.:

long long *arg ;

as the 3rd argument to the ioctl() function. If a value which is requested with a 32-bit
ioctl() command is too large to be represented in the 32-bit variable, ioctl() will return
ERROR, and errno will be set to S_dosFsLib_32BIT_OVERFLOW.

FIODISKINIT
Re-initializes a DOS file system on the disk volume. This function calls
dosFsVolFormat() to format the volume, so dosFsFmtLib must be installed for this
to work. Third argument of ioctl() is passed as argument opt to dosFsVolFormat()
routine. This routine does not perform a low level format, the physical media is
expected to be already formatted. If DOS file system device has not been created yet
for a particular device, only direct call to dosFsVolFormat() can be used.

fd = open ("DEV1:", O_WRONLY);

status = ioctl (fd, FIODISKINIT, DOS_OPT_BLANK);

FIODISKCHANGE
Announces a media change. No buffers flushing is performed. This function may be
called from interrupt level:

status = ioctl (fd, FIODISKCHANGE, 0);

FIOUNMOUNT
Unmounts a disk volume. It performs the same function as dosFsVolUnmount().
This function must not be called from interrupt level:

status = ioctl (fd, FIOUNMOUNT, 0);

FIOGETNAME
Gets the file name of the file descriptor and copies it to the buffer nameBuf. Note that
nameBuf must be large enough to contain the largest possible path name, which
requires at least 256 bytes.

status = ioctl (fd, FIOGETNAME, &nameBuf);

FIORENAME
Renames the file or directory to the string newname:

fd = open("oldname", O_RDONLY, 0);

status = ioctl (fd, FIORENAME, "newname");

VxWorks OS Libraries API Reference, 5.5
dosFsLib

94

FIOMOVE
Moves the file or directory to the string newname:

fd = open("oldname", O_RDONLY, 0);

status = ioctl (fd, FIOMOVE, "newname");

FIOSEEK
Sets the current byte offset in the file to the position specified by newOffset. This
function supports offsets in 32-bit value range. Use FIOSEEK64 for larger position
values:

status = ioctl (fd, FIOSEEK, newOffset);

FIOSEEK64
Sets the current byte offset in the file to the position specified by newOffset. This
function supports offsets in 64-bit value range:

long long newOffset;

status = ioctl (fd, FIOSEEK64, (int) & newOffset);

FIOWHERE
Returns the current byte position in the file. This is the byte offset of the next byte to
be read or written. This function returns a 32-bit value. It takes no additional
argument:

position = ioctl (fd, FIOWHERE, 0);

FIOWHERE64
Returns the current byte position in the file. This is the byte offset of the next byte to
be read or written. This function returns a 64-bit value in position:

long long position;

status = ioctl (fd, FIOWHERE64, (int) & position);

FIOFLUSH
Flushes disk cache buffers. It guarantees that any output that has been requested is
actually written to the device:

status = ioctl (fd, FIOFLUSH, 0);

FIOSYNC
Updates the FAT copy for the passed file descriptor, then flushes and invalidates
the CBIO cache buffers for the file descriptor’s volume. FIOSYNC ensures that any
outstanding output requests for the passed file descriptor are written to the
device and a subsequent I/O operation will fetch data directly from the physical
medium. To safely sync a volume for shutdown, all open file descriptor’s should at
the least be FIOSYNC’d by the application. Better, all open FD’s should be closed by
the application and the volume should be unmounted via FIOUNMOUNT.

status = ioctl (fd, FIOSYNC, 0);

1: Libraries
dosFsLib

95

D

FIOTRUNC
Truncates the specified file’s length to newLength bytes. Any disk clusters which had
been allocated to the file but are now unused are deallocated, and the directory entry
for the file is updated to reflect the new length. Only regular files may be truncated;
attempts to use FIOTRUNC on directories will return an error. FIOTRUNC may only
be used to make files shorter; attempting to specify a newLength larger than the
current size of the file produces an error (setting errno to
S_dosFsLib_INVALID_NUMBER_OF_BYTES).

status = ioctl (fd, FIOTRUNC, newLength);

FIOTRUNC64
Similar to FIOTRUNC, but can be used for files lager, than 4GB.

long long newLength =;

status = ioctl (fd, FIOTRUNC, (int) & newLength);

FIONREAD
Copies to unreadCount the number of unread bytes in the file:

unsigned long unreadCount;

status = ioctl (fd, FIONREAD, &unreadCount);

FIONREAD64
Copies to unreadCount the number of unread bytes in the file. This function returns a
64-bit integer value:

long long unreadCount;

status = ioctl (fd, FIONREAD64, &unreadCount);

FIONFREE
Copies to freeCount the amount of free space, in bytes, on the volume:

unsigned long freeCount;

status = ioctl (fd, FIONFREE, &freeCount);

FIONFREE64
Copies to freeCount the amount of free space, in bytes, on the volume. This function
can return value in 64-bit range:

long long freeCount;

status = ioctl (fd, FIONFREE64, &freeCount);

FIOMKDIR
Creates a new directory with the name specified as dirName:

status = ioctl (fd, FIOMKDIR, "dirName");

FIORMDIR
Removes the directory whose name is specified as dirName:

status = ioctl (fd, FIORMDIR, "dirName");

VxWorks OS Libraries API Reference, 5.5
dosFsLib

96

FIOLABELGET
Gets the volume label (located in root directory) and copies the string to labelBuffer. If
the label contains DOS_VOL_LABEL_LEN significant characters, resulting string is not
NULL terminated:

char labelBuffer [DOS_VOL_LABEL_LEN];

status = ioctl (fd, FIOLABELGET, (int)labelBuffer);

FIOLABELSET
Sets the volume label to the string specified as newLabel. The string may consist of up
to eleven ASCII characters:

status = ioctl (fd, FIOLABELSET, (int)"newLabel");

FIOATTRIBSET
Sets the file attribute byte in the DOS directory entry to the new value newAttrib. The
file descriptor refers to the file whose entry is to be modified:

status = ioctl (fd, FIOATTRIBSET, newAttrib);

FIOCONTIG
Allocates contiguous disk space for a file or directory. The number of bytes of
requested space is specified in bytesRequested. In general, contiguous space should be
allocated immediately after the file is created:

status = ioctl (fd, FIOCONTIG, bytesRequested);

FIOCONTIG64
Allocates contiguous disk space for a file or directory. The number of bytes of
requested space is specified in bytesRequested. In general, contiguous space should be
allocated immediately after the file is created. This function accepts a 64-bit value:

long long bytesRequested;

status = ioctl (fd, FIOCONTIG64, &bytesRequested);

FIONCONTIG
Copies to maxContigBytes the size of the largest contiguous free space, in bytes, on the
volume:

status = ioctl (fd, FIONCONTIG, &maxContigBytes);

FIONCONTIG64
Copies to maxContigBytes the size of the largest contiguous free space, in bytes, on the
volume. This function returns a 64-bit value:

long long maxContigBytes;

status = ioctl (fd, FIONCONTIG64, &maxContigBytes);

FIOREADDIR
Reads the next directory entry. The argument dirStruct is a DIR directory descriptor.
Normally, the readdir() routine is used to read a directory, rather than using the
FIOREADDIR function directly. See dirLib.

1: Libraries
dosFsLib

97

D

DIR dirStruct;

fd = open ("directory", O_RDONLY);

status = ioctl (fd, FIOREADDIR, &dirStruct);

FIOFSTATGET
Gets file status information (directory entry data). The argument statStruct is a
pointer to a stat structure that is filled with data describing the specified file.
Normally, the stat() or fstat() routine is used to obtain file information, rather than
using the FIOFSTATGET function directly. See dirLib.

struct stat statStruct;

fd = open ("file", O_RDONLY);

status = ioctl (fd, FIOFSTATGET, (int)&statStruct);

FIOTIMESET
Update time on a file. arg shall be a pointer to a utimbuf structure, see utime.h. If
arg is value NULL, the current system time is used for both actime and modtime
members. If arg is not NULL then the utimbuf structure members actime and
modtime are used as passed. If actime is zero value, the file access time is not
updated (the operation is ignored). If modtime is zero, the file modification time is
not updated (the operation is ignored). See also utime()

struct utimbuf newTimeBuf;;

 newTimeBuf.modtime = newTimeBuf.actime = fileNewTime;

 fd = open ("file", O_RDONLY);
 status = ioctl (fd, FIOTIMESET, (int)&newTimeBuf);

FIOCHKDSK
This function invokes the integral consistency checking. During the test, the file
system will be blocked from application code access, and will emit messages
describing any inconsistencies found on the disk, as well as some statistics,
depending on the verbosity level in the flags argument. Depending on the repair
permission value in flags argument, the inconsistencies will be repaired, and changes
written to disk or only reported. Argument flags should be composed of bitwise or-ed
verbosity level value and repair permission value. Possible repair levels are:

DOS_CHK_ONLY (1)
Only report errors, do not modify disk.

DOS_CHK_REPAIR (2)
Repair any errors found.

Possible verbosity levels are:

DOS_CHK_VERB_SILENT (0xff00)
Do not emit any messages, except errors encountered.

DOS_CHK_VERB_1 (0x0100)
Display some volume statistics when done testing, as well

VxWorks OS Libraries API Reference, 5.5
dpartCbio

98

DOS_CHK_VERB_2 (0x0200)
In addition to the above option, display path of every file, while it is being checked.
This option may significantly slow down the test process.

NOTE: In environments with reduced RAM size check disk uses reserved FAT copy as
temporary buffer, it can cause respectively long time of execution on a slow CPU
architectures.

See also the reference manual usrFsLib for the chkdsk() user level utility which may be
used to invoke the FIOCHKDSK ioctl(). The volume root directory should be opened, and
the resulting file descriptor should be used:

int fd = open (device_name, O_RDONLY, 0);

status = ioctl (fd, FIOCHKDSK, DOS_CHK_REPAIR | DOS_CHK_VERB_1);

close (fd);

Any other ioctl() function codes are passed to the underlying CBIO modules for handling.

INCLUDE FILES dosFsLib.h

SEE ALSO ioLib, iosLib, dirLib, usrFsLib, dcacheCbio, dpartCbio, dosFsFmtLib, dosChkLib
Microsoft MS-DOS Programmer’s Reference (Microsoft Press), Advanced MS-DOS
Programming (Ray Duncan, Microsoft Press), VxWorks Programmer’s Guide: I/O System,
Local File Systems

dpartCbio

NAME dpartCbio – generic disk partition manager

ROUTINES dpartDevCreate() - Initialize a partitioned disk
dpartPartGet() - retrieve handle for a partition

DESCRIPTION This module implements a generic partition manager using the CBIO API (see cbioLib) It
supports creating a separate file system device for each of its partitions.

This partition manager depends upon an external library to decode a particular disk
partition table format, and report the resulting partition layout information back to this
module. This module is responsible for maintaining the partition logic during operation.

When using this module with the dcacheCbio module, it is recommended this module be
the master CBIO device. This module should be above the cache CBIO module layer.
This is because the cache layer is optimized to function efficiently atop a single physical
disk drive. One should call dcacheDevCreate() before dpartDevCreate().

1: Libraries
dpartCbio

99

D

An implementation of the de-facto standard partition table format which is created by the
MSDOS FDISK program is provided with the usrFdiskPartLib module, which should be
used to handle PC-style partitioned hard or removable drives.

EXAMPLE The following code will initialize a disk which is expected to have up to 4 partitions:

usrPartDiskFsInit(BLK_DEV * blkDevId)

{

const char * devNames[] = { "/sd0a", "/sd0b", "/sd0c", "/sd0d" };

cbioCache;

CBIO_DEV_ID cbioParts;

/* create a disk cache atop the entire BLK_DEV */

cbioCache = dcacheDevCreate (blkDevId, NULL, 0, "/sd0");

if (NULL == cbioCache)

{

return (ERROR);

}

/* create a partition manager with a FDISK style decoder */

cbioParts = dpartDevCreate(cbioCache, 4, usrFdiskPartRead);

if (NULL == cbioParts)

{

return (ERROR);

}

/* create file systems atop each partition */

dosFsDevCreate(devNames[0], dpartPartGet(cbioParts,0), 0x10, NONE);

dosFsDevCreate(devNames[1], dpartPartGet(cbioParts,1), 0x10, NONE);

dosFsDevCreate(devNames[2], dpartPartGet(cbioParts,2), 0x10, NONE);

dosFsDevCreate(devNames[3], dpartPartGet(cbioParts,3), 0x10, NONE);

}

Because this module complies with the CBIO programming interface on both its upper
and lower layers, it is both an optional and a stackable module.

SEE ALSO dcacheLib, dosFsLib, usrFdiskPartLib

VxWorks OS Libraries API Reference, 5.5
dspLib

100

dspLib

NAME dspLib – dsp support library

ROUTINES dspInit() - initialize dsp support

DESCRIPTION This library provides a general interface to the dsp. To activate dsp support, dspInit()
must be called before any tasks using the dsp are spawned. This is done automatically by
the root task, usrRoot(), in usrConfig.c when INCLUDE_DSP is defined in configAll.h.
For information about architecture-dependent dsp routines, see the entry for dspArchLib.

VX_DSP_TASK OPTION

Saving and restoring dsp registers adds to the context switch time of a task. Therefore, dsp
registers are not saved and restored for every task. Only those tasks spawned with the
task option VX_DSP_TASK will have dsp registers saved and restored.

NOTE: If a task does any dsp operations, it must be spawned with VX_DSP_TASK.

INTERRUPT LEVEL DSP registers are not saved and restored for interrupt service routines connected with
intConnect(). However, if necessary, an interrupt service routine can save and restore
dsp registers by calling routines in dspArchLib.

INCLUDE FILES dspLib.h

SEE ALSO dspArchLib, dspShow, intConnect(), VxWorks Programmer’s Guide: Basic OS

dspShow

NAME dspShow – dsp show routines

ROUTINES dspShowInit() - initialize the dsp show facility
dspTaskRegsShow() - print the contents of a task’s dsp registers

DESCRIPTION This library provides routines necessary to show a task’s optional dsp context. This facility
must first be installed using dspShowInit(). It is included automatically when
INCLUDE_SHOW_ROUTINES and INCLUDE_DSP are defined in configAll.h.

This library enhances task information routines, such as ti(), to display the dsp context.

INCLUDE FILES dspLib.h

SEE ALSO dspLib

1: Libraries
envLib

101

E

envLib

NAME envLib – environment variable library

ROUTINES envLibInit() - initialize environment variable facility
envPrivateCreate() - create a private environment
envPrivateDestroy() - destroy a private environment
putenv() - set an environment variable
getenv() - get an environment variable (ANSI)
envShow() - display the environment for a task

DESCRIPTION This library provides a UNIX-compatible environment variable facility. Environment
variables are created or modified with a call to putenv():

putenv ("variableName=value");

The value of a variable may be retrieved with a call to getenv(), which returns a pointer to
the value string.

Tasks may share a common set of environment variables, or they may optionally create
their own private environments, either automatically when the task create hook is
installed, or by an explicit call to envPrivateCreate(). The task must be spawned with the
VX_PRIVATE_ENV option set to receive a private set of environment variables. Private
environments created by the task creation hook inherit the values of the environment of
the task that called taskSpawn() (since task create hooks run in the context of the calling
task).

INCLUDE FILES envLib.h

SEE ALSO UNIX BSD 4.3 manual entry for environ(5V), * American National Standard for Information
Systems - * Programming Language - C, ANSI X3.159-1989: General Utilities (stdlib.h)

VxWorks OS Libraries API Reference, 5.5
errnoLib

102

errnoLib

NAME errnoLib – error status library

ROUTINES errnoGet() - get the error status value of the calling task
errnoOfTaskGet() - get the error status value of a specified task
errnoSet() - set the error status value of the calling task
errnoOfTaskSet() - set the error status value of a specified task

DESCRIPTION This library contains routines for setting and examining the error status values of tasks
and interrupts. Most VxWorks functions return ERROR when they detect an error, or
NULL in the case of functions returning pointers. In addition, they set an error status that
elaborates the nature of the error.

This facility is compatible with the UNIX error status mechanism in which error status
values are set in the global variable errno. However, in VxWorks there are many task and
interrupt contexts that share common memory space and therefore conflict in their use of
this global variable. VxWorks resolves this in two ways:

(1) For tasks, VxWorks maintains the errno value for each context separately, and saves
and restores the value of errno with every context switch. The value of errno for a
non-executing task is stored in the task’s TCB. Thus, regardless of task context, code
can always reference or modify errno directly.

(2) For interrupt service routines, VxWorks saves and restores errno on the interrupt
stack as part of the interrupt enter and exit code provided automatically with the
intConnect() facility. Thus, interrupt service routines can also reference or modify
errno directly.

The errno facility is used throughout VxWorks for error reporting. In situations where a
lower-level routine has generated an error, by convention, higher-level routines propagate
the same error status, leaving errno with the value set at the deepest level. Developers are
encouraged to use the same mechanism for application modules where appropriate.

ERROR STATUS VALUES

An error status is a 4-byte integer. By convention, the most significant two bytes are the
module number, which indicates the module in which the error occurred. The lower two
bytes indicate the specific error within that module. Module number 0 is reserved for
UNIX error numbers so that values from the UNIX errno.h header file can be set and
tested without modification. Module numbers 1-500 decimal are reserved for VxWorks
modules. These are defined in vwModNum.h. All other module numbers are available to
applications.

PRINTING ERROR STATUS VALUES

VxWorks can include a special symbol table called statSymTbl which printErrno() uses

1: Libraries
errnoLib

103

E

to print human-readable error messages.

This table is created with the tool makeStatTbl, found in host/hostOs/bin. This tool reads
all the.h files in a specified directory and generates a C-language file, which generates a
symbol table when compiled. Each symbol consists of an error status value and its
definition, which was obtained from the header file.

For example, suppose the header file target/h/myFile.h contains the line:

#define S_myFile_ERROR_TOO_MANY_COOKS 0x230003

The table statSymTbl is created by first running:

On Unix:

makeStatTbl target/h > statTbl.c

On Windows:

makeStatTbl target/h

This creates a file statTbl.c in the current directory, which, when compiled, generates
statSymTbl. The table is then linked in with VxWorks. Normally, these steps are
performed automatically by the makefile in target/src/usr.

If the user now types from the VxWorks shell:

-> printErrno 0x230003

The printErrno() routine would respond:

S_myFile_ERROR_TOO_MANY_COOKS

The makeStatTbl tool looks for error status lines of the form:

#define S_xxx <n>

where xxx is any string, and n is any number. All VxWorks status lines are of the form:

#define S_thisFile_MEANINGFUL_ERROR_MESSAGE 0xnnnn

where thisFile is the name of the module.

This facility is available to the user by adding header files with status lines of the
appropriate forms and remaking VxWorks.

INCLUDE FILES The file vwModNum.h contains the module numbers for every VxWorks module. The
include file for each module contains the error numbers which that module can generate.

SEE ALSO printErrno(), makeStatTbl, VxWorks Programmer’s Guide: Basic OS

VxWorks OS Libraries API Reference, 5.5
etherMultiLib

104

etherMultiLib

NAME etherMultiLib – a library to handle Ethernet multicast addresses

ROUTINES etherMultiAdd() - add multicast address to a multicast address list
etherMultiDel() - delete an Ethernet multicast address record
etherMultiGet() - retrieve a table of multicast addresses from a driver

DESCRIPTION This library manages a list of multicast addresses for network drivers. This abstracts the
management of these drivers into a device-independent library.

To use this feature, include the following component:
INCLUDE_NETWRS_ETHERMULTILIB

INCLUDE FILES string.h, errno.h, netinet/in.h, net/if.h, lstLib.h, etherMultiLib.h

eventLib

NAME eventLib – VxWorks events library

ROUTINES eventReceive() - wait for event(s)
eventSend() - send event(s)
eventClear() - clear all events for current task

DESCRIPTION Events are a means of communication between tasks and interrupt routines, based on a
synchronous model. Only tasks can receive events, and both tasks and ISRs can send
them.

Events are similar to signals in that they are directed at one task but differ in the fact that
they are synchronous in nature. Thus, the receiving task must pend when waiting for
events to occur. Also, unlike signals, a handler is not needed since, when wanted events
are received, the pending task continues its execution (like after a call to msgQReceive()
or semTake()).

Each task has its own events field that can be filled by having tasks (even itself) and/or
ISRs sending events to the task. Each event’s meaning is different for every task. Event X
when received can be interpreted differently by separate tasks. Also, it should be noted
that events are not accumulated. If the same event is received several times, it counts as if
it were received only once. It is not possible to track how many times each event has been
sent to a task.

1: Libraries
excArchLib

105

E

There are some VxWorks objects that can send events when they become available. They
are referred to as resources in the context of events. They include semaphores and
message queues. For example, when a semaphore becomes free, events can be sent to a
task that asked for it.

INCLUDE FILES eventLib.h

SEE ALSO taskLib, semLib, semBLib, semCLib, semMLib, msgQLib, VxWorks Programmer’s Guide:
Basic OS

excArchLib

NAME excArchLib – architecture-specific exception-handling facilities

ROUTINES excVecInit() - initialize the exception/interrupt vectors
excConnect() - connect a C routine to an exception vector (PowerPC)
excIntConnect() - connect a C routine to an asynchronous exception vector (PowerPC,
ARM)
excCrtConnect() - connect a C routine to a critical exception vector (PowerPC 403)
excIntCrtConnect() - connect a C routine to a critical interrupt vector (PowerPC 403)
excVecSet() - set a CPU exception vector (PowerPC, ARM)
excVecGet() - get a CPU exception vector (PowerPC, ARM)

DESCRIPTION This library contains exception-handling facilities that are architecture dependent. For
information about generic (architecture-independent) exception-handling, see the manual
entry for excLib.

INCLUDE FILES excLib.h

SEE ALSO excLib, dbgLib, sigLib, intLib

VxWorks OS Libraries API Reference, 5.5
excLib

106

excLib

NAME excLib – generic exception handling facilities

ROUTINES excInit() - initialize the exception handling package
excHookAdd() - specify a routine to be called with exceptions
excTask() - handle task-level exceptions

DESCRIPTION This library provides generic initialization facilities for handling exceptions. It safely traps
and reports exceptions caused by program errors in VxWorks tasks, and it reports
occurrences of interrupts that are explicitly connected to other handlers. For information
about architecture-dependent exception handling facilities, see the manual entry for
excArchLib.

INITIALIZATION Initialization of excLib facilities occurs in two steps. First, the routine excVecInit() is
called to set all vectors to the default handlers for an architecture provided by the
corresponding architecture exception handling library. Since this does not involve
VxWorks’ kernel facilities, it is usually done early in the system start-up routine usrInit()
in the library usrConfig.c with interrupts disabled.

The rest of this package is initialized by calling excInit(), which spawns the exception
support task, excTask(), and creates the message queues used to communicate with it.

Exceptions or uninitialized interrupts that occur after the vectors have been initialized by
excVecInit(), but before excInit() is called, cause a trap to the ROM monitor.

NORMAL EXCEPTION HANDLING

When a program error generates an exception (such as divide by zero, or a bus or address
error), the task that was executing when the error occurred is suspended, and a
description of the exception is displayed on standard output. The VxWorks kernel and
other system tasks continue uninterrupted. The suspended task can be examined with the
usual VxWorks routines, including ti() for task information and tt() for a stack trace. It
may be possible to fix the task and resume execution with tr(). However, tasks aborted in
this way are often unsalvageable and can be deleted with td().

When an interrupt that is not connected to a handler occurs, the default handler provided
by the architecture-specific module displays a description of the interrupt on standard
output.

ADDITIONAL EXCEPTION HANDLING ROUTINE

The excHookAdd() routine adds a routine that will be called when a hardware exception
occurs. This routine is called at the end of normal exception handling.

TASK-LEVEL SUPPORT

The excInit() routine spawns excTask(), which performs special exception handling

1: Libraries
excLib

107

E

functions that need to be done at task level. Do not suspend, delete, or change the priority
of this task.

DBGLIB The facilities of excLib, including excTask(), are used by dbgLib to support breakpoints,
single-stepping, and additional exception handling functions.

SIGLIB A higher-level, UNIX-compatible interface for hardware and software exceptions is
provided by sigLib. If sigvec() is used to initialize the appropriate hardware
exception/interrupt (e.g., BUS ERROR == SIGSEGV), excLib will use the signal
mechanism instead.

INCLUDE FILES excLib.h

SEE ALSO dbgLib, sigLib, intLib

VxWorks OS Libraries API Reference, 5.5
fioLib

108

fioLib

NAME fioLib – formatted I/O library

ROUTINES fioLibInit() - initialize the formatted I/O support library
printf() - write a formatted string to the standard output stream (ANSI)
printErr() - write a formatted string to the standard error stream
fdprintf() - write a formatted string to a file descriptor
sprintf() - write a formatted string to a buffer (ANSI)
vprintf() - write a string formatted with a variable argument list to standard output
(ANSI)
vfdprintf() - write a string formatted with a variable argument list to a file descriptor
vsprintf() - write a string formatted with a variable argument list to a buffer (ANSI)
fioFormatV() - convert a format string
fioRead() - read a buffer
fioRdString() - read a string from a file
sscanf() - read and convert characters from an ASCII string (ANSI)

DESCRIPTION This library provides the basic formatting and scanning I/O functions. It includes some
routines from the ANSI-compliant printf()/scanf() family of routines. It also includes
several utility routines.

If the floating-point format specifications e, E, f, g, and G are to be used with these
routines, the routine floatInit() must be called first. If the configuration macro
INCLUDE_FLOATING_POINT is defined, floatInit() is called by the root task, usrRoot(),
in usrConfig.c.

These routines do not use the buffered I/O facilities provided by the standard I/O facility.
Thus, they can be invoked even if the standard I/O package has not been included. This
includes printf(), which in most UNIX systems is part of the buffered standard I/O
facilities. Because printf() is so commonly used, it has been implemented as an
unbuffered I/O function. This allows minimal formatted I/O to be achieved without the
overhead of the entire standard I/O package. For more information, see the manual entry
for ansiStdio.

INCLUDE FILES fioLib.h, stdio.h

SEE ALSO ansiStdio, floatLib, VxWorks Programmer’s Guide: I/O System

1: Libraries
fppArchLib

109

F

floatLib

NAME floatLib – floating-point formatting and scanning library

ROUTINES floatInit() - initialize floating-point I/O support

DESCRIPTION This library provides the floating-point I/O formatting and scanning support routines.

The floating-point formatting and scanning support routines are not directly callable; they
are connected to call-outs in the printf()/scanf() family of functions in fioLib. This is
done dynamically by the routine floatInit(), which is called by the root task, usrRoot(), in
usrConfig.c when the configuration macro INCLUDE_FLOATING_POINT is defined. If this
option is omitted (i.e., floatInit() is not called), floating-point format specifications in
printf() and sscanf() are not supported.

INCLUDE FILES math.h

SEE ALSO fioLib

fppArchLib

NAME fppArchLib – architecture-dependent floating-point coprocessor support

ROUTINES fppSave() - save the floating-point coprocessor context
fppRestore() - restore the floating-point coprocessor context
fppProbe() - probe for the presence of a floating-point coprocessor
fppTaskRegsGet() - get the floating-point registers from a task TCB
fppTaskRegsSet() - set the floating-point registers of a task

DESCRIPTION This library contains architecture-dependent routines to support the floating-point
coprocessor. The routines fppSave() and fppRestore() save and restore all the task
floating-point context information. The routine fppProbe() checks for the presence of the
floating-point coprocessor. The routines fppTaskRegsSet() and fppTaskRegsGet()
inspect and set coprocessor registers on a per-task basis.

With the exception of fppProbe(), the higher-level facilities in dbgLib and usrLib should
be used instead of these routines. For information about architecture-independent access
mechanisms, see the manual entry for fppLib.

VxWorks OS Libraries API Reference, 5.5
fppArchLib

110

INITIALIZATION To activate floating-point support, fppInit() must be called before any tasks using the
coprocessor are spawned. This is done by the root task, usrRoot(), in usrConfig.c. See the
manual entry for fppLib.

x86 ARCHITECTURE

There are two kind of floating-point contexts and set of routines for each kind. One is 108
bytes for older FPU (i80387, i80487, Pentium) and older MMX technology and fppSave(),
fppRestore(), fppRegsToCtx(), and fppCtxToRegs() are used to save and restore the
context, convert to or from the FPPREG_SET. The other is 512 bytes for newer FPU, newer
MMX technology and streaming SIMD technology (PentiumII, III, 4) and fppXsave(),
fppXrestore(), fppXregsToCtx(), and fppXctxToRegs() are used to save and restore the
context, convert to or from the FPPREG_SET. Which to use is automatically detected by
checking CPUID information in fppArchInit(). And fppTaskRegsSet() and
fppTaskRegsGet() access the appropriate floating-point context. The bit interrogated for
the automatic detection is the “Fast Save and Restore” feature flag.

x86 INITIALIZATION

To activate floating-point support, fppInit() must be called before any tasks using the
coprocessor are spawned. If INCLUDE_FLOATING_POINT is defined in configAll.h, this is
done by the root task, usrRoot(), in usrConfig.c.

x86 VX_FP_TASK OPTION

Saving and restoring floating-point registers adds to the context switch time of a task.
Therefore, floating-point registers are not saved and restored for every task. Only those
tasks spawned with the task option VX_FP_TASK will have floating-point state, MMX
technology state, and streaming SIMD state saved and restored.

NOTE: If a task does any floating-point operations, MMX operations, and streaming SIMD
operation, it must be spawned with VX_FP_TASK. It is deadly to execute any
floating-point operations in a task spawned without VX_FP_TASK option, and very
difficult to find. To detect that illegal/unintentional/accidental floating-point operations,
a new API and mechanism is added. The mechanism is to enable or disable the FPU by
toggling the TS flag in the CR0 in the new task switch hook routine -
fppArchSwitchHook() - respecting the VX_FP_TASK option. If VX_FP_TASK option is not
set in the switching-in task, the FPU is disabled. Thus the device-not-available exception
will be raised if that task does any floating-point operations. This mechanism is disabled
in the default. To enable, call the enabler - fppArchSwitchHookEnable() - with a
parameter TRUE(1). A parameter FALSE(0) disables the mechanism.

x86 MIXING MMX AND FPU INSTRUCTIONS

A task with VX_FP_TASK option saves and restores the FPU and MMX state when
performing a context switch. Therefore, the application does not have to save or restore
the FPU and MMX state if the FPU and MMX instructions are not mixed within a task.
Because the MMX registers are aliased to the FPU registers, care must be taken when

1: Libraries
fppArchLib

111

F

making transitions between FPU instructions and MMX instructions to prevent the loss of
data in the FPU and MMX registers and to prevent incoherent or unexpected result. When
mixing MMX and FPU instructions within a task, follow these guidelines from Intel:

– Keep the code in separate modules, procedures, or routines.

– Do not rely on register contents across transitions between FPU and MMX code
modules.

– When transitioning between MMX code and FPU code, save the MMX register state
(if it will be needed in the future) and execute an EMMS instruction to empty the
MMX state.

– When transitioning between FPU and MMX code, save the FPU state, if it will be
needed in the future.

x86 MIXING SSE/SSE2 AND FPU/MMX INSTRUCTIONS

The XMM registers and the FPU/MMX registers represent separate execution
environments, which has certain ramifications when executing SSE, SSE2, MMX and FPU
instructions in the same task context:

– Those SSE and SSE2 instruction that operate only on the XMM registers (such as the
packed and scalar floating-point instructions and the 128-bit SIMD integer
instructions) can be executed in the same instruction stream with 64-bit SIMD integer
or FPU instructions without any restrictions. For example, an application can perform
the majority of its floating-point computations in the XMM registers, using the
packed and scalar floating-point instructions, and at the same time use the FPU to
perform trigonometric and other transcendental computations. Likewise, an
application can perform packed 64-bit and 128-bit SIMD integer operations can be
executed together without restrictions.

– Those SSE and SSE2 instructions that operate on MMX registers (such as the
CVTPS2PI, CVTTPS2PI, CVTPI2PS, CVTPD2PI, CVTTPD2PI, CVTPI2PD,
MOVDQ2Q, MOVQ2DQ, PADDQ, and PSUBQ instructions) can also be executed in
the same instruction stream as 64-bit SIMD integer or FPU instructions, however,
here they subject to the restrictions on the simultaneous use of MMX and FPU
instructions, which mentioned in the previous paragraph.

x86 INTERRUPT LEVEL

Floating-point registers are not saved and restored for interrupt service routines connected
with intConnect(). However, if necessary, an interrupt service routine can save and
restore floating-point registers by calling routines in fppALib. See the manual entry for
intConnect() for more information.

x86 EXCEPTIONS There are six FPU exceptions that can send an exception to the CPU. They are controlled
by Exception Mask bits of the Control Word register. VxWorks disables them in the
default configuration. They are:
 - Precision

VxWorks OS Libraries API Reference, 5.5
fppLib

112

 - Overflow
 - Underflow
 - Division by zero
 - Denormalized operand
 - Invalid Operation

ARM ARCHITECTURE

This architecture does not currently support floating-point coprocessors.

INCLUDE FILES fppLib.h

SEE ALSO fppLib, intConnect(), Motorola MC68881/882 Floating-Point Coprocessor User’s Manual,
Intel 80960SA/SB Reference Manual, Intel 80960KB Programmer’s Reference Manual, Intel 387
DX User’s Manual, Intel Architecture Software Developer’s Manual, Hitachi SH7750 Hardware
Manual, Gerry Kane and Joe Heinrich: MIPS RISC Architecture Manual

fppLib

NAME fppLib – floating-point coprocessor support library

ROUTINES fppInit() - initialize floating-point coprocessor support

DESCRIPTION This library provides a general interface to the floating-point coprocessor. To activate
floating-point support, fppInit() must be called before any tasks using the coprocessor
are spawned. This is done automatically by the root task, usrRoot(), in usrConfig.c when
the configuration macro INCLUDE_HW_FP is defined.

For information about architecture-dependent floating-point routines, see the manual
entry for fppArchLib.

The fppShow() routine displays coprocessor registers on a per-task basis. For information
on this facility, see the manual entries for fppShow and fppShow().

VX_FP_TASK OPTION

Saving and restoring floating-point registers adds to the context switch time of a task.
Therefore, floating-point registers are not saved and restored for every task. Only those
tasks spawned with the task option VX_FP_TASK will have floating-point registers saved
and restored.

NOTE: If a task does any floating-point operations, it must be spawned with VX_FP_TASK.

1: Libraries
ftpdLib

113

F

INTERRUPT LEVEL Floating-point registers are not saved and restored for interrupt service routines
connected with intConnect(). However, if necessary, an interrupt service routine can save
and restore floating-point registers by calling routines in fppArchLib.

INCLUDE FILES fppLib.h

SEE ALSO fppArchLib, fppShow, intConnect(), VxWorks Programmer’s Guide: Basic OS

fppShow

NAME fppShow – floating-point show routines

ROUTINES fppShowInit() - initialize the floating-point show facility
fppTaskRegsShow() - print the contents of a task’s floating-point registers

DESCRIPTION This library provides the routines necessary to show a task’s optional floating-point
context. To use this facility, it must first be installed using fppShowInit(), which is called
automatically when the floating-point show facility is configured into VxWorks using
either of the following methods:

If you use the configuration header files, define INCLUDE_SHOW_ROUTINES in config.h.

If you use the Tornado project facility, select INCLUDE_HW_FP_SHOW.

This library enhances task information routines, such as ti(), to display the floating-point
context.

INCLUDE FILES fppLib.h

SEE ALSO fppLib

ftpdLib

NAME ftpdLib – File Transfer Protocol (FTP) server

ROUTINES ftpdInit() - initialize the FTP server task
ftpdDelete() - terminate the FTP server task

DESCRIPTION This library implements the server side of the File Transfer Protocol (FTP), which provides
remote access to the file systems available on a target. The protocol is defined in RFC 959.

VxWorks OS Libraries API Reference, 5.5
ftpdLib

114

This implementation supports all commands required by that specification, as well as
several additional commands.

USER INTERFACE During system startup, the ftpdInit() routine creates a control connection at the
predefined FTP server port which is monitored by the primary FTP task. Each FTP session
established is handled by a secondary server task created as necessary. The server accepts
the following commands:

The ftpdDelete() routine will disable the FTP server until restarted. It reclaims all system
resources used by the server tasks and cleanly terminates all active sessions.

To use this feature, include the following component: INCLUDE_FTP_SERVER

INCLUDE FILES ftpdLib.h

SEE ALSO ftpLib, netDrv, RFC-959 File Transfer Protocol

HELP - List supported commands.
USER - Verify user name.
PASS - Verify password for the user.
QUIT - Quit the session.
LIST - List out contents of a directory.
NLST - List directory contents using a concise format.
RETR - Retrieve a file.
STOR - Store a file.
CWD - Change working directory.
TYPE - Change the data representation type.
PORT - Change the port number.
PWD - Get the name of current working directory.
STRU - Change file structure settings.
MODE - Change file transfer mode.
ALLO - Reserve sufficient storage.
ACCT - Identify the user’s account.
PASV - Make the server listen on a port for data connection.
NOOP - Do nothing.
DELE - Delete a file

1: Libraries
ftpLib

115

F

ftpLib

NAME ftpLib – File Transfer Protocol (FTP) library

ROUTINES ftpCommand() - send an FTP command and get the reply
ftpCommandEnhanced() - send an FTP command and get the complete RFC reply code
ftpXfer() - initiate a transfer via FTP
ftpReplyGet() - get an FTP command reply
ftpReplyGetEnhanced() - get an FTP command reply
ftpHookup() - get a control connection to the FTP server on a specified host
ftpLogin() - log in to a remote FTP server
ftpDataConnInitPassiveMode() - initialize an FTP data connection using PASV mode
ftpDataConnInit() - initialize an FTP data connection using PORT mode
ftpDataConnGet() - get a completed FTP data connection
ftpLs() - list directory contents via FTP
ftpLibDebugOptionSet() - set the debug level of the ftp library routines
ftpTransientConfigSet() - set parameters for host FTP_TRANSIENT responses
ftpTransientConfigGet() - get parameters for host FTP_TRANSIENT responses
ftpTransientFatalInstall() - set applette to stop FTP transient host responses

DESCRIPTION This library provides facilities for transferring files to and from a host via File Transfer
Protocol (FTP). This library implements only the “client” side of the FTP facilities.

FTP IN VXWORKS For most purposes, you should access the services of ftpLib by means of netDrv, a
VxWorks I/O driver that supports transparent access to remote files by means of standard
I/O system calls. Before attempting to access ftpLib services directly, you should check
whether netDrv already provides the same access for less trouble.

HIGH-LEVEL INTERFACE

The routines ftpXfer() and ftpReplyGet() provide the highest level of direct interface to
FTP. The routine ftpXfer() connects to a specified remote FTP server, logs in under a
specified user name, and initiates a specified data transfer command. The routine
ftpReplyGet() receives control reply messages sent by the remote FTP server in response
to the commands sent.

LOW-LEVEL INTERFACE

The routines ftpHookup(), ftpLogin(), ftpDataConnInit(), ftpDataConnGet(),
ftpCommand(), ftpCommandEnhanced() provide the primitives necessary to create and
use control and data connections to remote FTP servers. The following example shows
how to use these low-level routines. It implements roughly the same function as
ftpXfer().

char *host, *user, *passwd, *acct, *dirname, *filename;

int ctrlSock = ERROR; /* This is the control socket file descriptor */

VxWorks OS Libraries API Reference, 5.5
ftpLib

116

int dataSock = ERROR; /* This is the data path socket file descriptor */

if (((ctrlSock = ftpHookup (host)) == ERROR) ||

(ftpLogin (ctrlSock, user, passwd, acct) == ERROR) ||

(ftpCommand (ctrlSock, "TYPE I", 0, 0, 0, 0, 0, 0) != FTP_COMPLETE) ||

(ftpCommand (ctrlSock, "CWD %s", dirname, 0,0,0,0,0) != FTP_COMPLETE) ||

((dataSock = ftpDataConnInit (ctrlSock)) == ERROR) ||

(ftpCommand (ctrlSock, "RETR %s", filename, 0,0,0,0,0) != FTP_PRELIM) ||

((dataSock = ftpDataConnGet (dataSock)) == ERROR))

{

/* an error occurred; close any open sockets and return */

if (ctrlSock != ERROR)

close (ctrlSock);

if (dataSock != ERROR)

close (dataSock);

return (ERROR);

}

For even lower-level access, please note that the sockets provided by ftpHookup() and
ftpDataConnInit() are standard TCP/IP sockets. Developers may implement read(),
write() and select() calls using these sockets for maximum flexibility.

To use this feature, include the following component: INCLUDE_FTP

TUNING FOR MULTIPLE FILE ACCESS

Please note that accessing multiple files simultaneously may require increasing the
memory available to the network stack. You can examine memory requirements by using
netStackSysPoolShow() and netStackDataPoolShow() before opening and after closing
files.

You may need to modify the following macro definitions according to your specific
memory requirements:

NUM_64
 NUM_128
 NUM_256
 NUM_512
 NUM_1024
 NUM_2048
 NUM_SYS_64
 NUM_SYS_128
 NUM_SYS_256
 NUM_SYS_512
 NUM_SYS_1024
 NUM_SYS_2048

Please also note that each concurrent file access requires three file descriptors (File,
Control and Socket). The following macro definition may need modification per your
application: NUM_FILES

1: Libraries
ftruncate

117

F

Developers are encouraged to enable the error reporting facility during debugging using
the function ftpLibDebugOptionsSet(). The output is displayed via the logging facility.

INCLUDE FILES ftpLib.h

SEE ALSO netDrv, logLib

ftruncate

NAME ftruncate – POSIX file truncation

ROUTINES ftruncate() - truncate a file (POSIX)

VxWorks OS Libraries API Reference, 5.5
hostLib

118

hostLib

NAME hostLib – host table subroutine library

ROUTINES hostTblInit() - initialize the network host table
hostAdd() - add a host to the host table
hostDelete() - delete a host from the host table
hostGetByName() - look up a host in the host table by its name
hostGetByAddr() - look up a host in the host table by its Internet address
sethostname() - set the symbolic name of this machine
gethostname() - get the symbolic name of this machine

DESCRIPTION This library provides routines to store and access the network host database. The host
table contains information regarding the known hosts on the local network. The host table
(displayed with hostShow()) contains the Internet address, the official host name, and
aliases.

By convention, network addresses are specified in dotted (“.”) decimal notation. The
library inetLib contains Internet address manipulation routines. Host names and aliases
may contain any printable character.

Before any of the routines in this module can be used, the library must be initialized by
hostTblInit(). This is done automatically if INCLUDE_HOST_TBL is defined.

INCLUDE FILES hostLib.h

SEE ALSO inetLib

1: Libraries
ifIndexLib

119

I

icmpShow

NAME icmpShow – ICMP Information display routines

ROUTINES icmpShowInit() - initialize ICMP show routines
icmpstatShow() - display statistics for ICMP

DESCRIPTION This library provides routines to show ICMP related statistics.

Interpreting these statistics requires detailed knowledge of Internet network protocols.
Information on these protocols can be found in the following books:

TCP/IP Illustrated Volume II, The Implementation, by Richard Stevens

The Design and Implementation of the 4.4 BSD UNIX Operating System, by Leffler, McKusick,
Karels and Quarterman

The icmpShowInit() routine links the ICMP show facility into the VxWorks system. This
is performed automatically if INCLUDE_NET_SHOW is defined.

SEE ALSO netLib, netShow

ifIndexLib

NAME ifIndexLib – interface index library

ROUTINES ifIndexLibInit() - initializes library variables
ifIndexLibShutdown() - frees library variables
ifIndexAlloc() - return a unique interface index
ifIndexTest() - returns true if an index has been allocated.

VxWorks OS Libraries API Reference, 5.5
ifLib

120

ifLib

NAME ifLib – network interface library

ROUTINES ifUnnumberedSet() - configure an interface to be unnumbered
ifAddrAdd() - add an interface address for a network interface
ifAddrSet() - set an interface address for a network interface
ifAddrDelete() - delete an interface address for a network interface
ifAddrGet() - get the Internet address of a network interface
ifBroadcastSet() - set the broadcast address for a network interface
ifBroadcastGet() - get the broadcast address for a network interface
ifDstAddrSet() - define an address for the other end of a point-to-point link
ifDstAddrGet() - get the Internet address of a point-to-point peer
ifMaskSet() - define a subnet for a network interface
ifMaskGet() - get the subnet mask for a network interface
ifFlagChange() - change the network interface flags
ifFlagSet() - specify the flags for a network interface
ifFlagGet() - get the network interface flags
ifMetricSet() - specify a network interface hop count
ifMetricGet() - get the metric for a network interface
ifRouteDelete() - delete routes associated with a network interface
ifAllRoutesDelete() - delete all routes associated with a network interface
ifunit() - map an interface name to an interface structure pointer
ifNameToIfIndex() - returns the interface index given the interface name
ifIndexToIfName() - returns the interface name given the interface index

DESCRIPTION This library contains routines to configure the network interface parameters. Generally,
each routine corresponds to one of the functions of the UNIX command ifconfig.

To use this feature, include the following component: INCLUDE_NETWRS_IFLIB

INCLUDE FILES ifLib.h

SEE ALSO hostLib

1: Libraries
inetLib

121

I

igmpShow

NAME igmpShow – IGMP information display routines

ROUTINES igmpShowInit() - initialize IGMP show routines
igmpstatShow() - display statistics for IGMP

DESCRIPTION This library provides routines to show IGMP related statistics.

Interpreting these statistics requires detailed knowledge of Internet network protocols.
Information on these protocols can be found in the following books:

TCP/IP Illustrated Volume II, The Implementation, by Richard Stevens

The Design and Implementation of the 4.4 BSD UNIX Operating System, by Leffler, McKusick,
Karels and Quarterman

The igmpShowInit() routine links the IGMP show facility into the VxWorks system. This
is performed automatically if INCLUDE_NET_SHOW and INCLUDE_IGMP are defined.

SEE ALSO netLib, netShow

inetLib

NAME inetLib – internet address manipulation routines

ROUTINES inet_addr() - convert a dot notation Internet address to a long integer
inet_lnaof() - get the local address (host number) from the Internet address
inet_makeaddr_b() - form an Internet address from network and host numbers
inet_makeaddr() - form an Internet address from network and host numbers
inet_netof() - return the network number from an Internet address
inet_netof_string() - extract the network address in dot notation
inet_network() - convert an Internet network number from string to address
inet_ntoa_b() - convert an network address to dot notation, store it in a buffer
inet_ntoa() - convert a network address to dotted decimal notation
inet_aton() - convert a network address from dot notation, store in a structure

DESCRIPTION This library provides routines for manipulating Internet addresses, including the UNIX
BSD 4.3 inet_ routines. It includes routines for converting between character addresses in
Internet standard dotted decimal notation and integer addresses, routines for extracting
the network and host portions out of an Internet address, and routines for constructing
Internet addresses given the network and host address parts.

VxWorks OS Libraries API Reference, 5.5
inetLib

122

All Internet addresses are returned in network order (bytes ordered from left to right). All
network numbers and local address parts are returned as machine format integer values.

INTERNET ADDRESSES

Internet addresses are typically specified in dotted decimal notation or as a 4-byte
number. Values specified using the dotted decimal notation take one of the following
forms:

a.b.c.d

a.b.c

a.b

a

If four parts are specified, each is interpreted as a byte of data and assigned, from left to
right, to the four bytes of an Internet address. Note that when an Internet address is
viewed as a 32-bit integer quantity on any MC68000 family machine, the bytes referred to
above appear as “a.b.c.d” and are ordered from left to right.

If a three-part address is specified, the last part is interpreted as a 16-bit quantity and
placed in the right-most two bytes of the network address. This makes the three-part
address format convenient for specifying Class B network addresses as “128.net.host”.

If a two-part address is supplied, the last part is interpreted as a 24-bit quantity and
placed in the right-most three bytes of the network address. This makes the two-part
address format convenient for specifying Class A network addresses as “net.host”.

If only one part is given, the value is stored directly in the network address without any
byte rearrangement.

Although dotted decimal notation is the default, it is possible to use the dot notation with
hexadecimal or octal numbers. The base is indicated using the same prefixes as are used in
C. That is, a leading 0x or 0X indicates a hexadecimal number. A leading 0 indicates an
octal number. If there is no prefix, the number is interpreted as decimal.

To use this feature, include the following component: INCLUDE_NETWRS_INETLIB

INCLUDE FILES inetLib.h, inet.h

SEE ALSO UNIX BSD 4.3 manual entry for inet(3N)

1: Libraries
intArchLib

123

I

inflateLib

NAME inflateLib – inflate code using public domain zlib functions

ROUTINES inflate() - inflate compressed code

DESCRIPTION This library is used to inflate a compressed data stream, primarily for boot ROM
decompression. Compressed boot ROMs contain a compressed executable in the data
segment between the symbols binArrayStart and binArrayEnd (compressed data is
generated by deflate() and binToAsm). The boot ROM startup code (in bootInit.c) calls
inflate() to decompress the executable and then jump to it.

This library is based on the public domain zlib code, which has been modified by Wind
River Systems. For more information, see the zlib home page at
http://www.gzip.org/zlib/.

intArchLib

NAME intArchLib – architecture-dependent interrupt library

ROUTINES intLevelSet() - set the interrupt level (68K, x86, ARM, SimSolaris, SimNT and SH)
intLock() - lock out interrupts
intUnlock() - cancel interrupt locks
intEnable() - enable corresponding interrupt bits (MIPS, PowerPC, ARM)
intDisable() - disable corresponding interrupt bits (MIPS, PowerPC, ARM)
intCRGet() - read the contents of the cause register (MIPS)
intCRSet() - write the contents of the cause register (MIPS)
intSRGet() - read the contents of the status register (MIPS)
intSRSet() - update the contents of the status register (MIPS)
intConnect() - connect a C routine to a hardware interrupt
intHandlerCreate() - construct interrupt handler for C routine (68K, x86, MIPS,
SimSolaris)
intLockLevelSet() - set current interrupt lock-out level (68K, x86, ARM, SH, SimSolaris,
SimNT)
intLockLevelGet() - get current interrupt lock-out level (68K, x86, ARM, SH, SimSolaris,
SimNT)
intVecBaseSet() - set vector (trap) base address (68K, x86, MIPS, ARM, SimSolaris,
SimNT)
intVecBaseGet() - get vector (trap) base address (68K, x86, MIPS, ARM, SimSolaris,
SimNT)
intVecSet() - set a CPU vector (trap) (68K, x86, MIPS, SH, SimSolaris, SimNT)

VxWorks OS Libraries API Reference, 5.5
intArchLib

124

intVecGet() - get an interrupt vector (68K, x86, MIPS, SH, SimSolaris, SimNT)
intVecTableWriteProtect() - write-protect exception vector table (68K, x86, ARM,
SimSolaris, SimNT)
intUninitVecSet() - set the uninitialized vector handler (ARM)
intHandlerCreateI86() - construct an interrupt handler for a C routine (x86)
intVecSet2() - set a CPU vector, gate type(int/trap), and selector (x86)
intVecGet2() - get a CPU vector, gate type(int/trap), and gate selector (x86)
intStackEnable() - enable or disable the interrupt stack usage (x86)

DESCRIPTION This library provides architecture-dependent routines to manipulate and connect to
hardware interrupts. Any C language routine can be connected to any interrupt by calling
intConnect(). Vectors can be accessed directly by intVecSet() and intVecGet(). The
vector (trap) base register (if present) can be accessed by the routines intVecBaseSet()
and intVecBaseGet().

Tasks can lock and unlock interrupts by calling intLock() and intUnlock(). The lock-out
level can be set and reported by intLockLevelSet() and intLockLevelGet() (68K, x86,
ARM and SH only). The routine intLevelSet() changes the current interrupt level of the
processor (68K, ARM, SimSolaris, and SH).

WARNING: Do not call VxWorks system routines with interrupts locked. Violating this
rule may re-enable interrupts unpredictably.

INTERRUPT VECTORS AND NUMBERS

Most of the routines in this library take an interrupt vector as a parameter, which is
generally the byte offset into the vector table. Macros are provided to convert between
interrupt vectors and interrupt numbers:

IVEC_TO_INUM (intVector)
converts a vector to a number.

INUM_TO_IVEC (intNumber)
converts a number to a vector.

TRAPNUM_TO_IVEC (trapNumber)
converts a trap number to a vector.

EXAMPLE To switch between one of several routines for a particular interrupt, the following code
fragment is one alternative:

vector = INUM_TO_IVEC(some_int_vec_num);

oldfunc = intVecGet (vector);

newfunc = intHandlerCreate (routine, parameter);

intVecSet (vector, newfunc);

...

intVecSet (vector, oldfunc); /* use original routine */

...

intVecSet (vector, newfunc); /* reconnect new routine */

1: Libraries
ioLib

125

I

INCLUDE FILES iv.h, intLib.h

SEE ALSO intLib

intLib

NAME intLib – architecture-independent interrupt subroutine library

ROUTINES intContext() - determine if the current state is in interrupt or task context
intCount() - get the current interrupt nesting depth

DESCRIPTION This library provides generic routines for interrupts. Any C language routine can be
connected to any interrupt (trap) by calling intConnect(), which resides in intArchLib.
The intCount() and intContext() routines are used to determine whether the CPU is
running in an interrupt context or in a normal task context. For information about
architecture-dependent interrupt handling, see the manual entry for intArchLib.

INCLUDE FILES intLib.h

SEE ALSO intArchLib, VxWorks Programmer’s Guide: Basic OS

ioLib

NAME ioLib – I/O interface library

ROUTINES creat() - create a file
open() - open a file
unlink() - delete a file (POSIX)
remove() - remove a file (ANSI)
close() - close a file
rename() - change the name of a file
read() - read bytes from a file or device
write() - write bytes to a file
ioctl() - perform an I/O control function
lseek() - set a file read/write pointer
ioDefPathSet() - set the current default path
ioDefPathGet() - get the current default path
chdir() - set the current default path
getcwd() - get the current default path (POSIX)

VxWorks OS Libraries API Reference, 5.5
ioLib

126

getwd() - get the current default path
ioGlobalStdSet() - set the file descriptor for global standard input/output/error
ioGlobalStdGet() - get the file descriptor for global standard input/output/error
ioTaskStdSet() - set the file descriptor for task standard input/output/error
ioTaskStdGet() - get the file descriptor for task standard input/output/error
isatty() - return whether the underlying driver is a tty device

DESCRIPTION This library contains the interface to the basic I/O system. It includes:

Interfaces to the seven basic driver-provided functions: creat(), remove(), open(),
close(), read(), write(), and ioctl().

Interfaces to several file system functions, including rename() and lseek().

Routines to set and get the current working directory.

Routines to assign task and global standard file descriptors.

FILE DESCRIPTORS

At the basic I/O level, files are referred to by a file descriptor. A file descriptor is a small
integer returned by a call to open() or creat(). The other basic I/O calls take a file
descriptor as a parameter to specify the intended file.

Three file descriptors are reserved and have special meanings:

 0 (STD_IN) - standard input
 1 (STD_OUT) - standard output
 2 (STD_ERR) - standard error output

VxWorks allows two levels of redirection. First, there is a global assignment of the three
standard file descriptors. By default, new tasks use this global assignment. The global
assignment of the three standard file descriptors is controlled by the routines
ioGlobalStdSet() and ioGlobalStdGet().

Second, individual tasks may override the global assignment of these file descriptors with
their own assignments that apply only to that task. The assignment of task-specific
standard file descriptors is controlled by the routines ioTaskStdSet() and
ioTaskStdGet().

INCLUDE FILES ioLib.h

SEE ALSO iosLib, ansiStdio, VxWorks Programmer’s Guide: I/O System

1: Libraries
iosShow

127

I

iosLib

NAME iosLib – I/O system library

ROUTINES iosInit() - initialize the I/O system
iosDrvInstall() - install an I/O driver
iosDrvRemove() - remove an I/O driver
iosDevAdd() - add a device to the I/O system
iosDevDelete() - delete a device from the I/O system
iosDevFind() - find an I/O device in the device list
iosFdValue() - validate an open file descriptor and return the driver-specific value

DESCRIPTION This library is the driver-level interface to the I/O system. Its primary purpose is to route
user I/O requests to the proper drivers, using the proper parameters. To do this, iosLib
keeps tables describing the available drivers (e.g., names, open files).

The I/O system should be initialized by calling iosInit(), before calling any other routines
in iosLib. Each driver then installs itself by calling iosDrvInstall(). The devices serviced
by each driver are added to the I/O system with iosDevAdd().

The I/O system is described more fully in the I/O System chapter of the Programmer’s
Guide.

INCLUDE FILES iosLib.h

SEE ALSO intLib, ioLib, VxWorks Programmer’s Guide: I/O System

iosShow

NAME iosShow – I/O system show routines

ROUTINES iosShowInit() - initialize the I/O system show facility
iosDrvShow() - display a list of system drivers
iosDevShow() - display the list of devices in the system
iosFdShow() - display a list of file descriptor names in the system

DESCRIPTION This library contains I/O system information display routines.

The routine iosShowInit() links the I/O system information show facility into the
VxWorks system. It is called automatically when INCLUDE_SHOW_ROUTINES is defined
in configAll.h.

SEE ALSO intLib, ioLib, VxWorks Programmer’s Guide: I/O System, windsh, Tornado User’s Guide: Shell

VxWorks OS Libraries API Reference, 5.5
ipFilterLib

128

ipFilterLib

NAME ipFilterLib – IP filter hooks library

ROUTINES ipFilterLibInit() - initialize IP filter facility
ipFilterHookAdd() - add a routine to receive all internet protocol packets
ipFilterHookDelete() - delete a IP filter hook routine

DESCRIPTION This library provides utilities that give direct access to IP packets. You can examine or
process incoming raw IP packets using the hooks you installed with ipFilterHookAdd().
Using a filter hook, you can build IP traffic monitoring and testing tools.

However, you should not use an IP filter hook as a standard means to provide network
access to an application. The filter hook lets you see, process, and even consume packets
before their intended recipients have seen the packets. For most network applications, this
is too much responsibility. Thus, most network applications should access the network
access through the higher-level socket interface provided by sockLib.

The ipFilterLibInit() routine links the IP filtering facility into the VxWorks system. This is
performed automatically if INCLUDE_IP_FILTER is defined.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call ipFilterHookAdd() from within the kernel protection
domain only, and the function referenced in the ipFilterHook parameter must reside in the
kernel protection domain. This restriction does not apply to non-AE versions of VxWorks.

ipProto

NAME ipProto – an interface between the BSD IP protocol and the MUX

ROUTINES ipAttach() - a generic attach routine for the TCP/IP network stack
ipDetach() - a generic detach routine for the TCP/IP network stack

DESCRIPTION This library provides an interface between the Berkeley protocol stack and the MUX
interface for both NPT and END devices. The ipAttach() routine binds the IP protocol to a
specific device. It is called automatically during network initialization if INCLUDE_END is
defined. The ipDetach() routine removes an existing binding to an END device.

NOTE: The library can only transmit data to link-level destination addresses less than or
equal to 64 bytes in length.

INCLUDE FILES end.h, muxLib.h, etherMultiLib.h, sys/ioctl.h

1: Libraries
kernelLib

129

K

kernelLib

NAME kernelLib – VxWorks kernel library

ROUTINES kernelInit() - initialize the kernel
kernelVersion() - return the kernel revision string
kernelTimeSlice() - enable round-robin selection

DESCRIPTION The VxWorks kernel provides tasking control services to an application. The libraries
kernelLib, taskLib, semLib, tickLib, and wdLib comprise the kernel functionality. This
library is the interface to the VxWorks kernel initialization, revision information, and
scheduling control.

KERNEL INITIALIZATION

The kernel must be initialized before any other kernel operation is performed. Normally
kernel initialization is taken care of by the system configuration code in usrInit() in
usrConfig.c.

Kernel initialization consists of the following:

(1) Defining the starting address and size of the system memory partition. The malloc()
routine uses this partition to satisfy memory allocation requests of other facilities in
VxWorks.

(2) Allocating the specified memory size for an interrupt stack. Interrupt service routines
will use this stack unless the underlying architecture does not support a separate
interrupt stack, in which case the service routine will use the stack of the interrupted
task.

(3) Specifying the interrupt lock-out level. VxWorks will not exceed the specified level
during any operation. The lock-out level is normally defined to mask the highest
priority possible. However, in situations where extremely low interrupt latency is
required, the lock-out level may be set to ensure timely response to the interrupt in
question. Interrupt service routines handling interrupts of priority greater than the
interrupt lock-out level may not call any VxWorks routine.

Once the kernel initialization is complete, a root task is spawned with the specified entry
point and stack size. The root entry point is normally usrRoot() of the usrConfig.c
module. The remaining VxWorks initialization takes place in usrRoot().

ROUND-ROBIN SCHEDULING

Round-robin scheduling allows the processor to be shared fairly by all tasks of the same
priority. Without round-robin scheduling, when multiple tasks of equal priority must
share the processor, a single non-blocking task can usurp the processor until preempted
by a task of higher priority, thus never giving the other equal-priority tasks a chance to
run.

VxWorks OS Libraries API Reference, 5.5
kernelLib

130

Round-robin scheduling is disabled by default. It can be enabled or disabled with the
routine kernelTimeSlice(), which takes a parameter for the “time slice” (or interval) that
each task will be allowed to run before relinquishing the processor to another
equal-priority task. If the parameter is zero, round-robin scheduling is turned off. If
round-robin scheduling is enabled and preemption is enabled for the executing task, the
system tick handler will increment the task’s time-slice count. When the specified
time-slice interval is completed, the system tick handler clears the counter and the task is
placed at the tail of the list of tasks at its priority. New tasks joining a given priority group
are placed at the tail of the group with a run-time counter initialized to zero.

Enabling round-robin scheduling does not affect the performance of task context switches,
nor is additional memory allocated.

If a task blocks or is preempted by a higher priority task during its interval, it’s time-slice
count is saved and then restored when the task is eligible for execution. In the case of
preemption, the task will resume execution once the higher priority task completes,
assuming no other task of a higher priority is ready to run. For the case when the task
blocks, it is placed at the tail of the list of tasks at its priority. If preemption is disabled
during round-robin scheduling, the time-slice count of the executing task is not
incremented.

Time-slice counts are accrued against the task that is executing when a system tick occurs
regardless of whether the task has executed for the entire tick interval. Due to preemption
by higher priority tasks or ISRs stealing CPU time from the task, scenarios exist where a
task can execute for less or more total CPU time than it’s allotted time slice.

INCLUDE FILES kernelLib.h

SEE ALSO taskLib, intLib, VxWorks Programmer’s Guide: Basic OS

1: Libraries
ledLib

131

L

ledLib

NAME ledLib – line-editing library

ROUTINES ledOpen() - create a new line-editor ID
ledClose() - discard the line-editor ID
ledRead() - read a line with line-editing
ledControl() - change the line-editor ID parameters

DESCRIPTION This library provides a line-editing layer on top of a tty device. The shell uses this
interface for its history-editing features.

The shell history mechanism is similar to the UNIX Korn shell history facility, with a
built-in line-editor similar to UNIX vi that allows previously typed commands to be
edited. The command h() displays the 20 most recent commands typed into the shell; old
commands fall off the top as new ones are entered.

To edit a command, type ESC to enter edit mode, and use the commands listed below. The
ESC key switches the shell to edit mode. The RETURN key always gives the line to the
shell from either editing or input mode.

The following list is a summary of the commands available in edit mode.

Movement and search commands:
nG - Go to command number n.
/s - Search for string s backward in history.
?s - Search for string s forward in history.
n - Repeat last search.
N - Repeat last search in opposite direction.
nk - Get nth previous shell command in history.
n- - Same as “k”.
nj - Get nth next shell command in history.
n+ - Same as “j”.
nh - Move left n characters.
CTRL-H - Same as “h”.
nl - Move right n characters.
f1SPACEfP - Same as “l”.
nw - Move n words forward.
nW - Move n blank-separated words forward.
ne - Move to end of the nth next word.
nE - Move to end of the nth next blank-separated word.
nb - Move back n words.

VxWorks OS Libraries API Reference, 5.5
ledLib

132

nB - Move back n blank-separated words.
fc - Find character c, searching forward.
Fc - Find character c, searching backward.
^ - Move cursor to first non-blank character in line.
$ - Go to end of line.
0 - Go to beginning of line.

Insert commands (input is expected until an ESC is typed):
a - Append.
A - Append at end of line.
c f1SPACEfP - Change character.
cl - Change character.
cw - Change word.
cc - Change entire line.
c$ - Change everything from cursor to end of line.
C - Same as “c$”.
S - Same as “cc”.
i - Insert.
I - Insert at beginning of line.
R - Type over characters.

Editing commands:
nrc - Replace the following n characters with c.
nx - Delete n characters starting at cursor.
nX - Delete n characters to the left of the cursor.
d f1SPACEfP - Delete character.
dl - Delete character.
dw - Delete word.
dd - Delete entire line.
d$ - Delete everything from cursor to end of line.
D - Same as “d$”.
p - Put last deletion after the cursor.
P - Put last deletion before the cursor.
u - Undo last command.
~ - Toggle case, lower to upper or vice versa.

1: Libraries
loadLib

133

L

The default value for n is 1.

DEFICIENCIES Since the shell toggles between raw mode and line mode, type-ahead can be lost. The ESC,
redraw, and non-printable characters are built-in. The EOF, backspace, and line-delete are
not imported well from tyLib. Instead, tyLib should supply and/or support these
characters via ioctl().

Some commands do not take counts as users might expect. For example, “ni” will not
insert whatever was entered n times.

INCLUDE FILES ledLib.h

SEE ALSO VxWorks Programmer’s Guide: Shell

loadLib

NAME loadLib – object module loader

ROUTINES loadModule() - load an object module into memory
loadModuleAt() - load an object module into memory

DESCRIPTION This library provides a generic object module loading facility. Any supported format files
may be loaded into memory, relocated properly, their external references resolved, and
their external definitions added to the system symbol table for use by other modules and
from the shell. Modules may be loaded from any I/O stream which allows repositioning
of the pointer. This includes netDrv, NFS, or local file devices. It does not include sockets.

EXAMPLE fdX = open ("/devX/objFile", O_RDONLY);

loadModule (fdX, LOAD_ALL_SYMBOLS);

close (fdX);

This code fragment would load the object file “objFile” located on device /devX/ into
memory which would be allocated from the system memory pool. All external and static
definitions from the file would be added to the system symbol table.

Special commands:
CTRL-U - Delete line and leave edit mode.
CTRL-L - Redraw line.
CTRL-D - Complete symbol name.
f1RETURNfP - Give line to shell and leave edit mode.

VxWorks OS Libraries API Reference, 5.5
loginLib

134

This could also have been accomplished from the shell, by typing:

-> ld (1) </devX/objFile

INCLUDE FILE loadLib.h

SEE ALSO usrLib, symLib, memLib, VxWorks Programmer’s Guide: Basic OS

loginLib

NAME loginLib – user login/password subroutine library

ROUTINES loginInit() - initialize the login table
loginUserAdd() - add a user to the login table
loginUserDelete() - delete a user entry from the login table
loginUserVerify() - verify a user name and password in the login table
loginUserShow() - display the user login table
loginPrompt() - display a login prompt and validate a user entry
loginStringSet() - change the login string
loginEncryptInstall() - install an encryption routine
loginDefaultEncrypt() - default password encryption routine

DESCRIPTION This library provides a login/password facility for network access to the VxWorks shell.
When installed, it requires a user name and password match to gain access to the
VxWorks shell from rlogin or telnet. Therefore VxWorks can be used in secure
environments where access must be restricted.

Routines are provided to prompt for the user name and password, and verify the
response by looking up the name/password pair in a login user table. This table contains
a list of user names and encrypted passwords that will be allowed to log in to the
VxWorks shell remotely. Routines are provided to add, delete, and access the login user
table. The list of user names can be displayed with loginUserShow().

INSTALLATION The login security feature is initialized by the root task, usrRoot(), in usrConfig.c, if the
configuration macro INCLUDE_SECURITY is defined. Defining this macro also adds a
single default user to the login table. The default user and password are defined as
LOGIN_USER_NAME and LOGIN_PASSWORD. These can be set to any desired name and
password. More users can be added by making additional calls to loginUserAdd(). If
INCLUDE_SECURITY is not defined, access to VxWorks will not be restricted and secure.

The name/password pairs are added to the table by calling loginUserAdd(), which takes
the name and an encrypted password as arguments. The VxWorks host tool vxencrypt is
used to generate the encrypted form of a password. For example, to add a user name of

1: Libraries
loginLib

135

L

“fred” and password of “flintstone”, first run vxencrypt on the host to find the encryption
of “flintstone” as follows:

% vxencrypt

please enter password: flintstone

encrypted password is ScebRezb9c

Then invoke the routine loginUserAdd() in VxWorks:

loginUserAdd ("fred", "ScebRezb9c");

This can be done from the shell, a start-up script, or application code.

LOGGING IN When the login security facility is installed, every attempt to rlogin or telnet to the
VxWorks shell will first prompt for a user name and password.

% rlogin target

VxWorks login: fred

Password: flintstone

->

The delay in prompting between unsuccessful logins is increased linearly with the
number of attempts, in order to slow down password-guessing programs.

ENCRYPTION ALGORITHM

This library provides a simple default encryption routine, loginDefaultEncrypt(). This
algorithm requires that passwords be at least 8 characters and no more than 40 characters.

The routine loginEncryptInstall() allows a user-specified encryption function to be used
instead of the default.

INCLUDE FILES loginLib.h

SEE ALSO shellLib, vxencrypt, VxWorks Programmer’s Guide: Shell

VxWorks OS Libraries API Reference, 5.5
logLib

136

logLib

NAME logLib – message logging library

ROUTINES logInit() - initialize message logging library
logMsg() - log a formatted error message
logFdSet() - set the primary logging file descriptor
logFdAdd() - add a logging file descriptor
logFdDelete() - delete a logging file descriptor
logTask() - message-logging support task

DESCRIPTION This library handles message logging. It is usually used to display error messages on the
system console, but such messages can also be sent to a disk file or printer.

The routines logMsg() and logTask() are the basic components of the logging system.
The logMsg() routine has the same calling sequence as printf(), but instead of formatting
and outputting the message directly, it sends the format string and arguments to a
message queue. The task logTask() waits for messages on this message queue. It formats
each message according to the format string and arguments in the message, prepends the
ID of the sender, and writes it on one or more file descriptors that have been specified as
logging output streams (by logInit() or subsequently set by logFdSet() or logFdAdd()).

USE IN INTERRUPT SERVICE ROUTINES

Because logMsg() does not directly cause output to I/O devices, but instead simply
writes to a message queue, it can be called from an ISR as well as from tasks. Normal I/O,
such as printf() output to a serial port, cannot be done from an ISR.

DEFERRED LOGGING

Print formatting is performed within the context of logTask(), rather than the context of
the task calling logMsg(). Since formatting can require considerable stack space, this can
reduce stack sizes for tasks that only need to do I/O for error output.

However, this also means that the arguments to logMsg() are not interpreted at the time
of the call to logMsg(), but rather are interpreted at some later time by logTask(). This
means that the arguments to logMsg() should not be pointers to volatile entities. For
example, pointers to dynamic or changing strings and buffers should not be passed as
arguments to be formatted. Thus the following would not give the desired results:

doLog (which)

{

char string [100];

strcpy (string, which ? "hello" : "goodbye");

...

logMsg (string);

}

1: Libraries
lstLib

137

L

By the time logTask() formats the message, the stack frame of the caller may no longer
exist and the pointer string may no longer be valid. On the other hand, the following is
correct since the string pointer passed to the logTask() always points to a static string:

doLog (which)

{

char *string;

string = which ? "hello" : "goodbye";

...

logMsg (string);

}

INITIALIZATION To initialize the message logging facilities, the routine logInit() must be called before
calling any other routine in this module. This is done by the root task, usrRoot(), in
usrConfig.c.

INCLUDE FILES logLib.h

SEE ALSO msgQLib, VxWorks Programmer’s Guide: I/O System

lstLib

NAME lstLib – doubly linked list subroutine library

ROUTINES lstLibInit() - initializes lstLib module
lstInit() - initialize a list descriptor
lstAdd() - add a node to the end of a list
lstConcat() - concatenate two lists
lstCount() - report the number of nodes in a list
lstDelete() - delete a specified node from a list
lstExtract() - extract a sublist from a list
lstFirst() - find first node in list
lstGet() - delete and return the first node from a list
lstInsert() - insert a node in a list after a specified node
lstLast() - find the last node in a list
lstNext() - find the next node in a list
lstNth() - find the Nth node in a list
lstPrevious() - find the previous node in a list
lstNStep() - find a list node nStep steps away from a specified node
lstFind() - find a node in a list
lstFree() - free up a list

VxWorks OS Libraries API Reference, 5.5
lstLib

138

DESCRIPTION This subroutine library supports the creation and maintenance of a doubly linked list. The
user supplies a list descriptor (type LIST) that will contain pointers to the first and last
nodes in the list, and a count of the number of nodes in the list. The nodes in the list can
be any user-defined structure, but they must reserve space for two pointers as their first
elements. Both the forward and backward chains are terminated with a NULL pointer.

The linked-list library simply manipulates the linked-list data structures; no kernel
functions are invoked. In particular, linked lists by themselves provide no task
synchronization or mutual exclusion. If multiple tasks will access a single linked list, that
list must be guarded with some mutual-exclusion mechanism (e.g., a mutual-exclusion
semaphore).

NON-EMPTY LIST

EMPTY LIST

INCLUDE FILES lstLib.h

List
Descriptor

head

tail

count = 2

Node1

user

data

user

data

Node2

NULL NULL

next next
prevprev

List
Descriptor

head

tail

count = 0

NULL NULL

1: Libraries
m2IfLib

139

M

m2IcmpLib

NAME m2IcmpLib – MIB-II ICMP-group API for SNMP Agents

ROUTINES m2IcmpInit() - initialize MIB-II ICMP-group access
m2IcmpGroupInfoGet() - get the MIB-II ICMP-group global variables
m2IcmpDelete() - delete all resources used to access the ICMP group

DESCRIPTION This library provides MIB-II services for the ICMP group. It provides routines to initialize
the group, and to access the group scalar variables. For a broader description of MIB-II
services, see the manual entry for m2Lib.

To use this feature, include the following component: INCLUDE_MIB2_ICMP

USING THIS LIBRARY

This library can be initialized and deleted by calling the routines m2IcmpInit() and
m2IcmpDelete() respectively, if only the ICMP group’s services are needed. If full MIB-II
support is used, this group and all other groups can be initialized and deleted by calling
m2Init() and m2Delete().

The group scalar variables are accessed by calling m2IcmpGroupInfoGet() as follows:

M2_ICMP icmpVars;

if (m2IcmpGroupInfoGet (&icmpVars) == OK)

/* values in icmpVars are valid */

INCLUDE FILES m2Lib.h

SEE ALSO m2Lib, m2IfLib, m2IpLib, m2TcpLib, m2SysLib

m2IfLib

NAME m2IfLib – MIB-II interface-group API for SNMP agents

ROUTINES m2IfAlloc() - allocate the structure for the interface table
m2IfFree() - free an interface data structure
m2IfGenericPacketCount() - increment the interface packet counters
m2If8023PacketCount() - increment the packet counters for an 802.3 device
m2IfCounterUpdate() - increment interface counters
m2IfVariableUpdate() - update the contents of an interface non-counter object
m2IfPktCountRtnInstall() - install an interface packet counter routine
m2IfCtrUpdateRtnInstall() - install an interface counter update routine

VxWorks OS Libraries API Reference, 5.5
m2IfLib

140

m2IfVarUpdateRtnInstall() - install an interface variable update routine
m2IfInit() - initialize MIB-II interface-group routines
m2IfTableUpdate() - insert or remove an entry in the ifTable
rcvEtherAddrGet() - populate the rcvAddr fields for the ifRcvAddressTable
rcvEtherAddrAdd() - add a physical address into the linked list
m2IfTblEntryGet() - get a MIB-II interface-group table entry
m2IfDefaultValsGet() - get the default values for the counters
m2IfCommonValsGet() - get the common values
m2IfTblEntrySet() - set the state of a MIB-II interface entry to UP or DOWN
m2IfGroupInfoGet() - get the MIB-II interface-group scalar variables
m2IfStackTblUpdate() - update the relationship between the sub-layers
stackEntryIsTop() - test if an ifStackTable interface has no layers above
stackEntryIsBottom() - test if an interface has no layers beneath it
m2IfStackEntryGet() - get a MIB-II interface-group table entry
m2IfStackEntrySet() - modify the status of a relationship
m2IfRcvAddrEntryGet() - get the rcvAddress table entries for a given address
m2IfRcvAddrEntrySet() - modify the entries of the rcvAddressTable
m2IfDelete() - delete all resources used to access the interface group
nextIndex() - the comparison routine for the AVL tree

DESCRIPTION This library provides MIB-II services for the interface group. It provides routines to
initialize the group, access the group scalar variables, read the table interfaces and change
the state of the interfaces. For a broader description of MIB-II services, see the manual
entry for m2Lib.

To use this feature, include the following component: INCLUDE_MIB2_IF

USING THIS LIBRARY

This library can be initialized and deleted by calling m2IfInit() and m2IfDelete()
respectively, if only the interface group’s services are needed. If full MIB-II support is
used, this group and all other groups can be initialized and deleted by calling m2Init()
and m2Delete().

The interface group supports the Simple Network Management Protocol (SNMP) concept
of traps, as specified by RFC 1215. The traps supported by this group are “link up” and
“link down.” This library enables an application to register a hook routine and an
argument. This hook routine can be called by the library when a “link up” or “link down”
condition is detected. The hook routine must have the following prototype:

void TrapGenerator (int trapType, /* M2_LINK_DOWN_TRAP or M2_LINK_UP_TRAP */

int interfaceIndex,

void * myPrivateArg);

The trap routine and argument can be specified at initialization time as input parameters
to the routine m2IfInit() or to the routine m2Init().

The interface-group global variables can be accessed as follows:

1: Libraries
m2Igmp

141

M

M2_INTERFACE ifVars;

if (m2IfGroupInfoGet (&ifVars) == OK)

/* values in ifVars are valid */

An interface table entry can be retrieved as follows:

M2_INTERFACETBL interfaceEntry;

/* Specify zero as the index to get the first entry in the table */

interfaceEntry.ifIndex = 2; /* Get interface with index 2 */

if (m2IfTblEntryGet (M2_EXACT_VALUE, &interfaceEntry) == OK)

/* values in interfaceEntry are valid */

An interface entry operational state can be changed as follows:

M2_INTERFACETBL ifEntryToSet;

ifEntryToSet.ifIndex = 2; /* Select interface with index 2 */

/* MIB-II value to set the interface */

/* to the down state. */

ifEntryToSet.ifAdminStatus = M2_ifAdminStatus_down;

if (m2IfTblEntrySet (&ifEntryToSet) == OK)

/* Interface is now in the down state */

INCLUDE FILES m2Lib.h

SEE ALSO m2Lib, m2SysLib, m2IpLib, m2IcmpLib, m2UdpLib, m2TcpLib

m2Igmp

NAME m2Igmp – helper file for igmp Mib

ROUTINES No Callable Routines.

DESCRIPTION This library provides an interface between the Berkeley multicast code and the IGMP Mib
code

INCLUDE FILES m2Lib.h

VxWorks OS Libraries API Reference, 5.5
m2IpLib

142

m2IpLib

NAME m2IpLib – MIB-II IP-group API for SNMP agents

ROUTINES m2IpInit() - initialize MIB-II IP-group access
m2IpGroupInfoGet() - get the MIB-II IP-group scalar variables
m2IpGroupInfoSet() - set MIB-II IP-group variables to new values
m2IpAddrTblEntryGet() - get an IP MIB-II address entry
m2IpAtransTblEntryGet() - get a MIB-II ARP table entry
m2IpAtransTblEntrySet() - add, modify, or delete a MIB-II ARP entry
m2IpRouteTblEntryGet() - get a MIB-2 routing table entry
m2IpRouteTblEntrySet() - set a MIB-II routing table entry
m2IpDelete() - delete all resources used to access the IP group

DESCRIPTION This library provides MIB-II services for the IP group. It provides routines to initialize the
group, access the group scalar variables, read the table IP address, route and ARP table.
The route and ARP table can also be modified. For a broader description of MIB-II
services, see the manual entry for m2Lib.

To use this feature, include the following component: INCLUDE_MIB2_IP

USING THIS LIBRARY

To use this library, the MIB-II interface group must also be initialized; see the manual
entry for m2IfLib. This library (m2IpLib) can be initialized and deleted by calling
m2IpInit() and m2IpDelete() respectively, if only the IP group’s services are needed. If
full MIB-II support is used, this group and all other groups can be initialized and deleted
by calling m2Init() and m2Delete().

The following example demonstrates how to access and change IP scalar variables:

M2_IP ipVars;

int varToSet;

if (m2IpGroupInfoGet (&ipVars) == OK)

/* values in ipVars are valid */

/* if IP is forwarding packets (MIB-II value is 1) turn it off */

if (ipVars.ipForwarding == M2_ipForwarding_forwarding)

{

/* Not forwarding (MIB-II value is 2) */

ipVars.ipForwarding = M2_ipForwarding_not_forwarding;

varToSet |= M2_IPFORWARDING;

}

/* change the IP default time to live parameter */

ipVars.ipDefaultTTL = 55;

if (m2IpGroupInfoSet (varToSet, &ipVars) == OK)

/* values in ipVars are valid */

1: Libraries
m2IpLib

143

M

The IP address table is a read-only table. Entries to this table can be retrieved as follows:

M2_IPADDRTBL ipAddrEntry;

/* Specify the index as zero to get the first entry in the table */

ipAddrEntry.ipAdEntAddr = 0; /* Local IP address in host byte order */

/* get the first entry in the table */

if ((m2IpAddrTblEntryGet (M2_NEXT_VALUE, &ipAddrEntry) == OK)

/* values in ipAddrEntry in the first entry are valid */

/* Process first entry in the table */

/*

* For the next call, increment the index returned in the previous call.

* The increment is to the next possible lexicographic entry; for

* example, if the returned index was 147.11.46.8 the index passed in the

* next invocation should be 147.11.46.9. If an entry in the table

* matches the specified index, then that entry is returned.

* Otherwise the closest entry following it, in lexicographic order,

* is returned.

*/

/* get the second entry in the table */

if ((m2IpAddrTblEntryGet (M2_NEXT_VALUE, &ipAddrEntryEntry) == OK)

/* values in ipAddrEntry in the second entry are valid */

The IP Address Translation Table (ARP table) includes the functionality of the AT group
plus additional functionality. The AT group is supported through this MIB-II table.
Entries in this table can be added and deleted. An entry is deleted (with a set operation)
by setting the ipNetToMediaType field to the MIB-II “invalid” value (2). The following
example shows how to delete an entry:

M2_IPATRANSTBL atEntry;

/* Specify the index for the connection to be deleted in the table */

atEntry.ipNetToMediaIfIndex = 1 /* interface index */

/* destination IP address in host byte order */

atEntry.ipNetToMediaNetAddress = 0x930b2e08;

/* mark entry as invalid */

atEntry.ipNetToMediaType = M2_ipNetToMediaType_invalid;

/* set the entry in the table */

if ((m2IpAtransTblEntrySet (&atEntry) == OK)

/* Entry deleted successfully */

The IP route table allows for entries to be read, deleted, and modified. This example
demonstrates how an existing route is deleted:

M2_IPROUTETBL routeEntry;

/* Specify the index for the connection to be deleted in the table */

/* destination IP address in host byte order */

routeEntry.ipRouteDest = 0x930b2e08;

/* mark entry as invalid */

routeEntry.ipRouteType = M2_ipRouteType_invalid;

VxWorks OS Libraries API Reference, 5.5
m2Lib

144

/* set the entry in the table */

if ((m2IpRouteTblEntrySet (M2_IP_ROUTE_TYPE, &routeEntry) == OK)

/* Entry deleted successfully */

INCLUDE FILES m2Lib.h

SEE ALSO m2Lib, m2SysLib, m2IfLib, m2IcmpLib, m2UdpLib, m2TcpLib

m2Lib

NAME m2Lib – MIB-II API library for SNMP agents

ROUTINES m2Init() - initialize the SNMP MIB-2 library
m2Delete() - delete all the MIB-II library groups

DESCRIPTION This library provides Management Information Base (MIB-II, defined in RFC 1213)
services for applications wishing to have access to MIB parameters.

To use this feature, include the following component: INCLUDE_MIB2_ALL

There are no specific provisions for MIB-I: all services are provided at the MIB-II level.
Applications that use this library for MIB-I must hide the MIB-II extensions from higher
level protocols. The library accesses all the MIB-II parameters, and presents them to the
application in data structures based on the MIB-II specifications.

The routines provided by the VxWorks MIB-II library are separated into groups that
follow the MIB-II definition. Each supported group has its own interface library:

m2SysLib
systems group

m2IfLib
interface group

m2IpLib
IP group (includes AT)

m2IcmpLib
ICMP group

m2TcpLib
TCP group

m2UdpLib
UDP group

1: Libraries
m2Lib

145

M

MIB-II retains the AT group for backward compatibility, but includes its functionality in
the IP group. The EGP and SNMP groups are not supported by this interface. The
variables in each group have been subdivided into two types: table entries and scalar
variables. Each type has a pair of routines that get and set the variables.

USING THIS LIBRARY

There are four types of operations on each group:

 - initializing the group
 - getting variables and table entries
 - setting variables and table entries
 - deleting the group

Only the groups that are to be used need be initialized. There is one exception: to use the
IP group, the interface group must also be initialized. Applications that require MIB-II
support from all groups can initialize all groups at once by calling the m2Init(). All MIB-II
group services can be disabled by calling m2Delete(). Applications that need access only
to a particular set of groups need only call the initialization routines of the desired groups.

To read the scalar variables for each group, call one of the following routines:

m2SysGroupInfoGet()
m2IfGroupInfoGet()
m2IpGroupInfoGet()
m2IcmpGroupInfoGet()
m2TcpGroupInfoGet()
m2UdpGroupInfoGet()

The input parameter to the routine is always a pointer to a structure specific to the
associated group. The scalar group structures follow the naming convention
“M2_groupname”. The get routines fill in the input structure with the values of all the
group variables.

The scalar variables can also be set to a user supplied value. Not all groups permit setting
variables, as specified by the MIB-II definition. The following group routines allow
setting variables:

m2SysGroupInfoSet()
m2IpGroupInfoSet()

The input parameters to the variable-set routines are a bit field that specifies which
variables to set, and a group structure. The structure is the same structure type used in the
get operation. Applications need set only the structure fields corresponding to the bits
that are set in the bit field.

The MIB-II table routines read one entry at a time. Each MIB-II group that has tables has a
get routine for each table. The following table-get routines are available:

m2IfTblEntryGet()
m2IpAddrTblEntryGet()

VxWorks OS Libraries API Reference, 5.5
m2Lib

146

m2IpAtransTblEntryGet()
m2IpRouteTblEntryGet()
m2TcpConnEntryGet()
m2UdpTblEntryGet()

The input parameters are a pointer to a table entry structure, and a flag value specifying
one of two types of table search. Each table entry is a structure, where the struct type
name follows this naming convention: “M2_GroupnameTablenameTBL”. The MIB-II RFC
specifies an index that identifies a table entry. Each get request must specify an index
value. To retrieve the first entry in a table, set all the index fields of the table-entry
structure to zero, and use the search parameter M2_NEXT_VALUE. To retrieve subsequent
entries, pass the index returned from the previous invocation, incremented to the next
possible lexicographical entry. The search field can only be set to the constants
M2_NEXT_VALUE or M2_EXACT_VALUE:

M2_NEXT_VALUE
retrieves a table entry that is either identical to the index value specified as input, or is
the closest entry following that value, in lexicographic order.

M2_EXACT_VALUE
retrieves a table entry that exactly matches the index specified in the input structure.

Some MIB-II table entries can be added, modified and deleted. Routines to manipulate
such entries are described in the manual pages for individual groups.

All the IP network addresses that are exchanged with the MIB-II library must be in
host-byte order; use ntohl() to convert addresses before calling these library routines.

The following example shows how to initialize the MIB-II library for all groups.

extern FUNCPTR myTrapGenerator;

extern void * myTrapGeneratorArg;

M2_OBJECTID mySysObjectId = { 8, {1,3,6,1,4,1,731,1} };

if (m2Init ("VxWorks 5.1.1 MIB-II library (sysDescr)",

"support@wrs.com (sysContact)",

"500 Wind River Way Alameda, California 94501 (sysLocation)",

&mySysObjectId,

myTrapGenerator,

myTrapGeneratorArg,

0) == OK)

/* MIB-II groups initialized successfully */

INCLUDE FILES m2Lib.h

SEE ALSO m2IfLib, m2IpLib, m2IcmpLib, m2UdpLib, m2TcpLib, m2SysLib

1: Libraries
m2RipLib

147

M

m2RipLib

NAME m2RipLib – VxWorks interface routines to RIP for SNMP Agent

ROUTINES m2RipInit() - initialize the RIP MIB support
m2RipDelete() - delete the RIP MIB support
m2RipGlobalCountersGet() - get MIB-II RIP-group global counters
m2RipIfStatEntryGet() - get MIB-II RIP-group interface entry
m2RipIfConfEntryGet() - get MIB-II RIP-group interface entry
m2RipIfConfEntrySet() - set MIB-II RIP-group interface entry

DESCRIPTION This library provides routines to initialize the group, access the group global variables,
read the table of network interfaces that RIP knows about, and change the state of such an
interface. For a broader description of MIB-II services, see the manual entry for m2Lib.

USING THIS LIBRARY

This library can be initialized and deleted by calling m2RipInit() and m2RipDelete()
respectively, if only the RIP group’s services are needed. If full MIB-II support is used, this
group and all other groups can be initialized and deleted by calling m2Init() and
m2Delete().

The group global variables are accessed by calling m2RipGlobalCountersGet() as
follows:

M2_RIP2_GLOBAL_GROUP ripGlobal;

if (m2RipGlobalCountersGet (&ripGlobal) == OK)

/* values in ripGlobal are valid */

To retrieve the RIP group statistics for a particular interface you call the
m2RipIfStatEntryGet() routine a pointer to an M2_RIP2_IFSTAT_ENTRY structure that
contains the address of the interface you are searching for. For example:

M2_RIP2_IFSTAT_ENTRY ripIfStat;

ripIfStat.rip2IfStatAddress = inet_addr("90.0.0.3");

if (m2RipIfStatEntryGet(M2_EXACT_VALUE, &ripIfStat) == OK)

/* values in ripIfState are valid */

To retrieve the configuration statistics for a particular interface the
m2RipIfConfEntryGet() routine must be called with an IP address encoded in an
M2_RIP2_IFSTAT_ENTRY structure which is passed as the second argument. For example:

M2_RIP2_IFCONF_ENTRY ripIfConf;

ripIfConf.rip2IfConfAddress = inet_addr("90.0.0.3");

if (m2RipIfConfEntryGet(M2_EXACT_VALUE, &ripIfConf) == OK)

/* values in ripIfConf are valid */

VxWorks OS Libraries API Reference, 5.5
m2SysLib

148

To set the values of for an interface the m2RipIfConfEntrySet() routine must be called
with an IP address in dot notation encoded into an M2_RIP2_IFSTAT_ENTRY structure,
which is passed as the second argument. For example:

M2_RIP2_IFCONF_ENTRY ripIfConf;

ripIfConf.rip2IfConfAddress = inet_addr("90.0.0.3");

/* Set the authorization type. */

ripIfConf.rip2IfConfAuthType = M2_rip2IfConfAuthType_simplePassword;

bzero(ripIfConf.rip2IfConfAuthKey, 16);

bcopy("Simple Password ", ripIfConf.rip2IfConfAuthKey, 16);

/* We only accept version 1 packets. */

ripIfConf.rip2IfConfSend = M2_rip2IfConfSend_ripVersion1;

/* We only send version 1 packets. */

ripIfConf.rip2IfConfReceive = M2_rip2IfConfReceive_rip1;

/* Default routes have a metric of 2 */

ripIfConf.rip2IfConfDefaultMetric = 2;

/* If the interface is invalid it is turned off, we make it valid. */

ripIfConf.rip2IfConfStatus = M2_rip2IfConfStatus_valid;

if (m2RipIfConfEntrySet(varsToSet, &ripIfConf) == OK)

/* Call succeded. */

INCLUDE FILES rip/m2RipLib.h, rip/defs.h

SEE ALSO ripLib

m2SysLib

NAME m2SysLib – MIB-II system-group API for SNMP agents

ROUTINES m2SysInit() - initialize MIB-II system-group routines
m2SysGroupInfoGet() - get system-group MIB-II variables
m2SysGroupInfoSet() - set system-group MIB-II variables to new values
m2SysDelete() - delete resources used to access the MIB-II system group

DESCRIPTION This library provides MIB-II services for the system group. It provides routines to
initialize the group and to access the group scalar variables. For a broader description of
MIB-II services, see the manual entry for m2Lib.

To use this feature, include the following component: INCLUDE_MIB2_SYSTEM

USING THIS LIBRARY

This library can be initialized and deleted by calling m2SysInit() and m2SysDelete()

1: Libraries
m2SysLib

149

M

respectively, if only the system group’s services are needed. If full MIB-II support is used,
this group and all other groups can be initialized and deleted by calling m2Init() and
m2Delete().

The system group provides the option to set the system variables at the time m2Sysinit()
is called. The MIB-II variables sysDescr and sysobjectId are read-only, and can be set only
by the system-group initialization routine. The variables sysContact, sysName and
sysLocation can be set through m2SysGroupInfoSet() at any time.

The following is an example of system group initialization:

M2_OBJECTID mySysObjectId = { 8, {1,3,6,1,4,1,731,1} };

if (m2SysInit ("VxWorks MIB-II library ",

"support@wrs.com",

"1010 Atlantic Avenue Alameda, California 94501",

&mySysObjectId) == OK)

/* System group initialized successfully */

The system group variables can be accessed as follows:

M2_SYSTEM sysVars;

if (m2SysGroupInfoGet (&sysVars) == OK)

/* values in sysVars are valid */

The system group variables can be set as follows:

M2_SYSTEM sysVars;

unsigned int varToSet; /* bit field of variables to set */

/* Set the new system Name */

strcpy (m2SysVars.sysName, "New System Name");

varToSet |= M2SYSNAME;

/* Set the new contact name */

strcpy (m2SysVars.sysContact, "New Contact");

varToSet |= M2SYSCONTACT;

if (m2SysGroupInfoGet (varToSet, &sysVars) == OK)

/* values in sysVars set */

INCLUDE FILES m2Lib.h

SEE ALSO m2Lib, m2IfLib, m2IpLib, m2IcmpLib, m2UdpLib, m2TcpLib

VxWorks OS Libraries API Reference, 5.5
m2TcpLib

150

m2TcpLib

NAME m2TcpLib – MIB-II TCP-group API for SNMP agents

ROUTINES m2TcpInit() - initialize MIB-II TCP-group access
m2TcpGroupInfoGet() - get MIB-II TCP-group scalar variables
m2TcpConnEntryGet() - get a MIB-II TCP connection table entry
m2TcpConnEntrySet() - set a TCP connection to the closed state
m2TcpDelete() - delete all resources used to access the TCP group

DESCRIPTION This library provides MIB-II services for the TCP group. It provides routines to initialize
the group, access the group global variables, read the table of TCP connections, and
change the state of a TCP connection. For a broader description of MIB-II services, see the
manual entry for m2Lib.

To use this feature, include the following component: INCLUDE_MIB2_TCP

USING THIS LIBRARY

This library can be initialized and deleted by calling m2TcpInit() and m2TcpDelete()
respectively, if only the TCP group’s services are needed. If full MIB-II support is used,
this group and all other groups can be initialized and deleted by calling m2Init() and
m2Delete().

The group global variables are accessed by calling m2TcpGroupInfoGet() as follows:

M2_TCP tcpVars;

if (m2TcpGroupInfoGet (&tcpVars) == OK)

/* values in tcpVars are valid */

The TCP table of connections can be accessed in lexicographical order. The first entry in
the table can be accessed by setting the table index to zero. Every other entry thereafter
can be accessed by passing to m2TcpConnTblEntryGet() the index retrieved in the
previous invocation incremented to the next lexicographical value by giving
M2_NEXT_VALUE as the search parameter. For example:

M2_TCPCONNTBL tcpEntry;

/* Specify a zero index to get the first entry in the table */

tcpEntry.tcpConnLocalAddress = 0; /* Lcl IP address in host byte order */

tcpEntry.tcpConnLocalPort = 0; /* Local TCP port */

tcpEntry.tcpConnRemAddress = 0; /* remote IP address */

tcpEntry.tcpConnRemPort = 0; /* remote TCP port in host byte order */

/* get the first entry in the table */

if ((m2TcpConnTblEntryGet (M2_NEXT_VALUE, &tcpEntry) == OK)

/* values in tcpEntry in the first entry are valid */

/* process first entry in the table */

/*

1: Libraries
m2TcpLib

151

M

* For the next call, increment the index returned in the previous call.

* The increment is to the next possible lexicographic entry; for

* example, if the returned index was 147.11.46.8.2000.147.11.46.158.1000

* the index passed in the next invocation should be

* 147.11.46.8.2000.147.11.46.158.1001. If an entry in the table

* matches the specified index, then that entry is returned.

* Otherwise the closest entry following it, in lexicographic order,

* is returned.

*/

/* get the second entry in the table */

if ((m2TcpConnTblEntryGet (M2_NEXT_VALUE, &tcpEntry) == OK)

/* values in tcpEntry in the second entry are valid */

The TCP table of connections allows only for a connection to be deleted as specified in the
MIB-II. For example:

M2_TCPCONNTBL tcpEntry;

/* Fill in the index for the connection to be deleted in the table */

/* Local IP address in host byte order, and local port number */

tcpEntry.tcpConnLocalAddress = 0x930b2e08;

tcpEntry.tcpConnLocalPort = 3000;

/* Remote IP address in host byte order, and remote port number */

tcpEntry.tcpConnRemAddress = 0x930b2e9e;

tcpEntry.tcpConnRemPort = 3000;

tcpEntry.tcpConnState = 12; /* MIB-II state value for delete */

/* set the entry in the table */

if ((m2TcpConnTblEntrySet (&tcpEntry) == OK)

/* tcpEntry deleted successfuly */

INCLUDE FILES m2Lib.h

SEE ALSO m2Lib, m2IfLib, m2IpLib, m2IcmpLib, m2UdpLib, m2SysLib

VxWorks OS Libraries API Reference, 5.5
m2UdpLib

152

m2UdpLib

NAME m2UdpLib – MIB-II UDP-group API for SNMP agents

ROUTINES m2UdpInit() - initialize MIB-II UDP-group access
m2UdpGroupInfoGet() - get MIB-II UDP-group scalar variables
m2UdpTblEntryGet() - get a UDP MIB-II entry from the UDP list of listeners
m2UdpDelete() - delete all resources used to access the UDP group

DESCRIPTION This library provides MIB-II services for the UDP group. It provides routines to initialize
the group, access the group scalar variables, and read the table of UDP listeners. For a
broader description of MIB-II services, see the manual entry for m2Lib.

To use this feature, include the following component: INCLUDE_MIB2_UDP

USING THIS LIBRARY

This library can be initialized and deleted by calling m2UdpInit() and m2UdpDelete()
respectively, if only the UDP group’s services are needed. If full MIB-II support is used,
this group and all other groups can be initialized and deleted by calling m2Init() and
m2Delete().

The group scalar variables are accessed by calling m2UdpGroupInfoGet() as follows:

M2_UDP udpVars;

if (m2UdpGroupInfoGet (&udpVars) == OK)

/* values in udpVars are valid */

The UDP table of listeners can be accessed in lexicographical order. The first entry in the
table can be accessed by setting the table index to zero in a call to m2UdpTblEntryGet().
Every other entry thereafter can be accessed by incrementing the index returned from the
previous invocation to the next possible lexicographical index, and repeatedly calling
m2UdpTblEntryGet() with the M2_NEXT_VALUE constant as the search parameter. For
example:

M2_UDPTBL udpEntry;

/* Specify zero index to get the first entry in the table */

udpEntry.udpLocalAddress = 0; /* local IP Address in host byte order */

udpEntry.udpLocalPort = 0; /* local port Number */

/* get the first entry in the table */

if ((m2UdpTblEntryGet (M2_NEXT_VALUE, &udpEntry) == OK)

/* values in udpEntry in the first entry are valid */

/* process first entry in the table */

/*

* For the next call, increment the index returned in the previous call.

* The increment is to the next possible lexicographic entry; for

* example, if the returned index was 0.0.0.0.3000 the index passed in

1: Libraries
mathALib

153

M

* the next invocation should be 0.0.0.0.3001. If an entry in the table

* matches the specified index, then that entry is returned.

* Otherwise the closest entry following it, in lexicographic order,

* is returned.

*/

/* get the second entry in the table */

if ((m2UdpTblEntryGet (M2_NEXT_VALUE, &udpEntry) == OK)

/* values in udpEntry in the second entry are valid */

INCLUDE FILES m2Lib.h

SEE ALSO m2Lib, m2IfLib, m2IpLib, m2IcmpLib, m2TcpLib, m2SysLib

mathALib

NAME mathALib – C interface library to high-level math functions

ROUTINES acos() - compute an arc cosine (ANSI)
asin() - compute an arc sine (ANSI)
atan() - compute an arc tangent (ANSI)
atan2() - compute the arc tangent of y/x (ANSI)
cbrt() - compute a cube root
ceil() - compute the smallest integer greater than or equal to a specified value (ANSI)
cos() - compute a cosine (ANSI)
cosh() - compute a hyperbolic cosine (ANSI)
exp() - compute an exponential value (ANSI)
fabs() - compute an absolute value (ANSI)
floor() - compute the largest integer less than or equal to a specified value (ANSI)
fmod() - compute the remainder of x/y (ANSI)
infinity() - return a very large double
irint() - convert a double-precision value to an integer
iround() - round a number to the nearest integer
log() - compute a natural logarithm (ANSI)
log10() - compute a base-10 logarithm (ANSI)
log2() - compute a base-2 logarithm
pow() - compute the value of a number raised to a specified power (ANSI)
round() - round a number to the nearest integer
sin() - compute a sine (ANSI)
sincos() - compute both a sine and cosine
sinh() - compute a hyperbolic sine (ANSI)
sqrt() - compute a non-negative square root (ANSI)
tan() - compute a tangent (ANSI)

VxWorks OS Libraries API Reference, 5.5
mathALib

154

tanh() - compute a hyperbolic tangent (ANSI)
trunc() - truncate to integer
acosf() - compute an arc cosine (ANSI)
asinf() - compute an arc sine (ANSI)
atanf() - compute an arc tangent (ANSI)
atan2f() - compute the arc tangent of y/x (ANSI)
cbrtf() - compute a cube root
ceilf() - compute the smallest integer greater than or equal to a specified value (ANSI)
cosf() - compute a cosine (ANSI)
coshf() - compute a hyperbolic cosine (ANSI)
expf() - compute an exponential value (ANSI)
fabsf() - compute an absolute value (ANSI)
floorf() - compute the largest integer less than or equal to a specified value (ANSI)
fmodf() - compute the remainder of x/y (ANSI)
infinityf() - return a very large float
irintf() - convert a single-precision value to an integer
iroundf() - round a number to the nearest integer
logf() - compute a natural logarithm (ANSI)
log10f() - compute a base-10 logarithm (ANSI)
log2f() - compute a base-2 logarithm
powf() - compute the value of a number raised to a specified power (ANSI)
roundf() - round a number to the nearest integer
sinf() - compute a sine (ANSI)
sincosf() - compute both a sine and cosine
sinhf() - compute a hyperbolic sine (ANSI)
sqrtf() - compute a non-negative square root (ANSI)
tanf() - compute a tangent (ANSI)
tanhf() - compute a hyperbolic tangent (ANSI)
truncf() - truncate to integer

DESCRIPTION This library provides a C interface to high-level floating-point math functions, which can
use either a hardware floating-point unit or a software floating-point emulation library.
The appropriate routine is called based on whether mathHardInit() or mathSoftInit() or
both have been called to initialize the interface.

All angle-related parameters are expressed in radians. All functions in this library with
names corresponding to ANSI C specifications are ANSI compatible.

WARNING: Not all functions in this library are available on all architectures. For
information on available math functions, consult the VxWorks architecture supplement
for your processor.

INCLUDE FILES math.h

SEE ALSO ansiMath, fppLib, floatLib, mathHardLib, mathSoftLib, the various Architecture
Supplements, Kernighan & Ritchie: The C Programming Language, 2nd Edition

1: Libraries
mathSoftLib

155

M

mathHardLib

NAME mathHardLib – hardware floating-point math library

ROUTINES mathHardInit() - initialize hardware floating-point math support

DESCRIPTION This library provides support routines for using hardware floating-point units with
high-level math functions. The high-level functions include trigonometric operations,
exponents, and so forth.

The routines in this library are used automatically for high-level math functions only if
mathHardInit() has been called previously.

WARNING: Not all architectures support hardware floating-point. See the
architecture-specific appendices of the VxWorks Programmer’s Guide.

INCLUDE FILES math.h

SEE ALSO mathSoftLib, mathALib, VxWorks Programmer’s Guide architecture-specific appendices

mathSoftLib

NAME mathSoftLib – high-level floating-point emulation library

ROUTINES mathSoftInit() - initialize software floating-point math support

DESCRIPTION This library provides software emulation of various high-level floating-point operations.
This emulation is generally for use in systems that lack a floating-point coprocessor.

WARNING: Software floating point is not supported for all architectures. See the
architecture-specific appendices of the VxWorks Programmer’s Guide.

INCLUDE FILES math.h

SEE ALSO mathHardLib, mathALib, VxWorks Programmer’s Guide architecture-specific appendices

VxWorks OS Libraries API Reference, 5.5
memDrv

156

memDrv

NAME memDrv – pseudo-memory device driver

ROUTINES memDrv() - install a memory driver
memDevCreate() - create a memory device
memDevCreateDir() - create a memory device for multiple files
memDevDelete() - delete a memory device

DESCRIPTION This driver allows the I/O system to access memory directly as a pseudo-I/O device.
Memory location and size are specified when the device is created. This feature is useful
when data must be preserved between boots of VxWorks or when sharing data between
CPUs.

Additionally, it can be used to build some files into a VxWorks binary image (having first
converted them to data arrays in C source files, using a utility such as memdrvbuild), and
then mount them in the file system; this is a simple way of delivering some non-changing
files with VxWorks. For example, a system with an integrated web server may use this
technique to build some HTML and associated content files into VxWorks.

memDrv can be used to simply provide a high-level method of reading and writing bytes
in absolute memory locations through I/O calls. It can also be used to implement a
simple, essentially read-only file system (existing files can be rewritten within their
existing sizes); directory searches and a limited set of IOCTL calls (including stat()) are
supported.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. Four
routines, however, can be called directly: memDrv() to initialize the driver,
memDevCreate() and memDevCreateDir() to create devices, and memDevDelete() to
delete devices.

Before using the driver, it must be initialized by calling memDrv(). This routine should
be called only once, before any reads, writes, or memDevCreate() calls. It may be called
from usrRoot() in usrConfig.c or at some later point.

IOCTL FUNCTIONS The dosFs file system supports the following ioctl() functions. The functions listed are
defined in the header ioLib.h. Unless stated otherwise, the file descriptor used for these
functions may be any file descriptor which is opened to a file or directory on the volume
or to the volume itself.

FIOGETFL
Copies to flags the open mode flags of the file (O_RDONLY, O_WRONLY, O_RDWR):

int flags;

status = ioctl (fd, FIOGETFL, &flags);

1: Libraries
memDrv

157

M

FIOSEEK
Sets the current byte offset in the file to the position specified by newOffset:

status = ioctl (fd, FIOSEEK, newOffset);

The FIOSEEK offset is always relative to the beginning of the file. The offset, if any, given
at open time by using pseudo-file name is overridden.

FIOWHERE
Returns the current byte position in the file. This is the byte offset of the next byte to
be read or written. It takes no additional argument:

position = ioctl (fd, FIOWHERE, 0);

FIONREAD
Copies to unreadCount the number of unread bytes in the file:

int unreadCount;

status = ioctl (fd, FIONREAD, &unreadCount);

FIOREADDIR
Reads the next directory entry. The argument dirStruct is a DIR directory descriptor.
Normally, the readdir() routine is used to read a directory, rather than using the
FIOREADDIR function directly. See dirLib.

DIR dirStruct;

fd = open ("directory", O_RDONLY);

status = ioctl (fd, FIOREADDIR, &dirStruct);

FIOFSTATGET
Gets file status information (directory entry data). The argument statStruct is a
pointer to a stat structure that is filled with data describing the specified file. File
inode numbers, user and group IDs, and times are not supported (returned as 0).

Normally, the stat() or fstat() routine is used to obtain file information, rather than using
the FIOFSTATGET function directly. See dirLib.

struct stat statStruct;

fd = open ("file", O_RDONLY);

status = ioctl (fd, FIOFSTATGET, &statStruct);

Any other ioctl() function codes will return error status.

SEE ALSO VxWorks Programmer’s Guide: I/O System

VxWorks OS Libraries API Reference, 5.5
memLib

158

memLib

NAME memLib – full-featured memory partition manager

ROUTINES memPartOptionsSet() - set the debug options for a memory partition
memalign() - allocate aligned memory
valloc() - allocate memory on a page boundary
memPartRealloc() - reallocate a block of memory in a specified partition
memPartFindMax() - find the size of the largest available free block
memOptionsSet() - set the debug options for the system memory partition
calloc() - allocate space for an array (ANSI)
realloc() - reallocate a block of memory (ANSI)
cfree() - free a block of memory
memFindMax() - find the largest free block in the system memory partition

DESCRIPTION This library provides full-featured facilities for managing the allocation of blocks of
memory from ranges of memory called memory partitions. The library is an extension of
memPartLib and provides enhanced memory management features, including error
handling, aligned allocation, and ANSI allocation routines. For more information about
the core memory partition management facility, see the manual entry for memPartLib.

The system memory partition is created when the kernel is initialized by kernelInit(),
which is called by the root task, usrRoot(), in usrConfig.c. The ID of the system memory
partition is stored in the global variable memSysPartId; its declaration is included in
memLib.h.

The memalign() routine is provided for allocating memory aligned to a specified
boundary.

This library includes three ANSI-compatible routines: calloc() allocates a block of
memory for an array; realloc() changes the size of a specified block of memory; and
cfree() returns to the free memory pool a block of memory that was previously allocated
with calloc().

ERROR OPTIONS Various debug options can be selected for each partition using memPartOptionsSet() and
memOptionsSet(). Two kinds of errors are detected: attempts to allocate more memory
than is available, and bad blocks found when memory is freed. In both cases, the error
status is returned. There are four error-handling options that can be individually selected:

MEM_ALLOC_ERROR_LOG_FLAG
Log a message when there is an error in allocating memory.

MEM_ALLOC_ERROR_SUSPEND_FLAG
Suspend the task when there is an error in allocating memory (unless the task was
spawned with the VX_UNBREAKABLE option, in which case it cannot be suspended).

1: Libraries
memLib

159

M

MEM_BLOCK_ERROR_LOG_FLAG
Log a message when there is an error in freeing memory.

MEM_BLOCK_ERROR_SUSPEND_FLAG
Suspend the task when there is an error in freeing memory (unless the task was
spawned with the VX_UNBREAKABLE option, in which case it cannot be suspended).

When the following option is specified to check every block freed to the partition,
memPartFree() and free() in memPartLib run consistency checks of various pointers and
values in the header of the block being freed. If this flag is not specified, no check will be
performed when memory is freed.

MEM_BLOCK_CHECK
Check each block freed.

Setting either of the MEM_BLOCK_ERROR options automatically sets
MEM_BLOCK_CHECK.

The default options when a partition is created are:

MEM_ALLOC_ERROR_LOG_FLAG
MEM_BLOCK_CHECK
MEM_BLOCK_ERROR_LOG_FLAG
MEM_BLOCK_ERROR_SUSPEND_FLAG

When setting options for a partition with memPartOptionsSet() or memOptionsSet(),
use the logical OR operator between each specified option to construct the options
parameter. For example:

memPartOptionsSet (myPartId, MEM_ALLOC_ERROR_LOG_FLAG |

MEM_BLOCK_CHECK |

MEM_BLOCK_ERROR_LOG_FLAG);

INCLUDE FILES memLib.h

SEE ALSO memPartLib, smMemLib

VxWorks OS Libraries API Reference, 5.5
memPartLib

160

memPartLib

NAME memPartLib – core memory partition manager

ROUTINES memPartCreate() - create a memory partition
memPartAddToPool() - add memory to a memory partition
memPartAlignedAlloc() - allocate aligned memory from a partition
memPartAlloc() - allocate a block of memory from a partition
memPartFree() - free a block of memory in a partition
memAddToPool() - add memory to the system memory partition
malloc() - allocate a block of memory from the system memory partition (ANSI)
free() - free a block of memory (ANSI)

DESCRIPTION This library provides core facilities for managing the allocation of blocks of memory from
ranges of memory called memory partitions. The library was designed to provide a
compact implementation; full-featured functionality is available with memLib, which
provides enhanced memory management features built as an extension of memPartLib.
(For more information about enhanced memory partition management options, see the
manual entry for memLib.) This library consists of two sets of routines. The first set,
memPart...(), comprises a general facility for the creation and management of memory
partitions, and for the allocation and deallocation of blocks from those partitions. The
second set provides a traditional ANSI-compatible malloc()/free() interface to the
system memory partition.

The system memory partition is created when the kernel is initialized by kernelInit(),
which is called by the root task, usrRoot(), in usrConfig.c. The ID of the system memory
partition is stored in the global variable memSysPartId; its declaration is included in
memLib.h.

The allocation of memory, using malloc() in the typical case and memPartAlloc() for a
specific memory partition, is done with a first-fit algorithm. Adjacent blocks of memory
are coalesced when they are freed with memPartFree() and free(). There is also a routine
provided for allocating memory aligned to a specified boundary from a specific memory
partition, memPartAlignedAlloc().

CAVEATS Architectures have various alignment constraints. To provide optimal performance,
malloc() returns a pointer to a buffer having the appropriate alignment for the
architecture in use. The portion of the allocated buffer reserved for system bookkeeping,
known as the overhead, may vary depending on the architecture.

Architecture Boundary Overhead

 ARM 4 8
 COLDFIRE 4 8
 I86 4 8

1: Libraries
memShow

161

M

* On PowerPC, the boundary and overhead values are 16 bytes for system based on the
PPC604 CPU type (including ALTIVEC). For all other PowerPC CPU types (PPC403,
PPC405, PPC440, PPC860, PPC603, etc....), the boundary and overhead are 8 bytes.

INCLUDE FILES memLib.h, stdlib.h

SEE ALSO memLib, smMemLib

memShow

NAME memShow – memory show routines

ROUTINES memShowInit() - initialize the memory partition show facility
memShow() - show system memory partition blocks and statistics
memPartShow() - show partition blocks and statistics
memPartInfoGet() - get partition information

DESCRIPTION This library contains memory partition information display routines. To use this facility, it
must first be installed using memShowInit(), which is called automatically when the
memory partition show facility is configured into VxWorks using either of the following
methods:

If you use the configuration header files, define INCLUDE_SHOW_ROUTINES in config.h.

If you use the Tornado project facility, select INCLUDE_MEM_SHOW.

SEE ALSO memLib, memPartLib, VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s
Guide: Shell

 M68K 4 8
 MCORE 8 8
 MIPS 16 16
 PPC * 8/16 8/16
 SH 4 8
 SimNT 8 8
 SimSolaris 8 8

Architecture Boundary Overhead

VxWorks OS Libraries API Reference, 5.5
mmanPxLib

162

mmanPxLib

NAME mmanPxLib – memory management library (POSIX)

ROUTINES mlockall() - lock all pages used by a process into memory (POSIX)
munlockall() - unlock all pages used by a process (POSIX)
mlock() - lock specified pages into memory (POSIX)
munlock() - unlock specified pages (POSIX)

DESCRIPTION This library contains POSIX interfaces designed to lock and unlock memory pages, i.e., to
control whether those pages may be swapped to secondary storage. Since VxWorks does
not use swapping (all pages are always kept in memory), these routines have no real effect
and simply return 0 (OK).

INCLUDE FILES sys/mman.h

SEE ALSO POSIX 1003.1b document

mmuMapLib

NAME mmuMapLib – MMU mapping library for ARM Ltd. processors

ROUTINES mmuVirtToPhys() - translate a virtual address to a physical address (ARM)
mmuPhysToVirt() - translate a physical address to a virtual address (ARM)

DESCRIPTION This library provides additional MMU support routines. These are present in a separate
module from mmuLib.c, so that these routines can be used without including all the code
in that object module.

1: Libraries
mmuPro32Lib

163

M

mmuPro32Lib

NAME mmuPro32Lib – MMU library for PentiumPro/2/3/4 32 bit mode

ROUTINES mmuPro32LibInit() - initialize module

DESCRIPTION mmuPro32Lib.c provides the architecture dependent routines that directly control the
memory management unit. It provides 10 routines that are called by the higher level
architecture independent routines in vmLib.c:

mmuPro32LibInit() - initialize module
mmuTransTblCreate() - create a new translation table
mmuTransTblDelete() - delete a translation table.
mmuPro32Enable() - turn MMU on or off
mmuStateSet() - set state of virtual memory page
mmuStateGet() - get state of virtual memory page
mmuPageMap() - map physical memory page to virtual memory page
mmuGlobalPageMap() - map physical memory page to global virtual memory page
mmuTranslate() - translate a virtual address to a physical address
mmuCurrentSet() - change active translation table

Applications using the MMU will never call these routines directly; the visible interface is
supported in vmLib.c.

mmuLib supports the creation and maintenance of multiple translation tables, one of
which is the active translation table when the MMU is enabled. Note that VxWorks does
not include a translation table as part of the task context; individual tasks do not reside in
private virtual memory. However, we include the facilities to create multiple translation
tables so that the user may create “private” virtual memory contexts and switch them in
an application specific manner. New translation tables are created with a call to
mmuTransTblCreate(), and installed as the active translation table with
mmuCurrentSet(). Translation tables are modified and potentially augmented with calls
to mmuPageMap() and mmuStateSet(). The state of portions of the translation table can
be read with calls to mmuStateGet() and mmuTranslate().

The traditional VxWorks architecture and design philosophy requires that all objects and
operating systems resources be visible and accessible to all agents (tasks, isrs, watchdog
timers, etc.) in the system. This has traditionally been insured by the fact that all objects
and data structures reside in physical memory; thus, a data structure created by one agent
may be accessed by any other agent using the same pointer (object identifiers in VxWorks
are often pointers to data structures.) This creates a potential problem if you have multiple
virtual memory contexts. For example, if a semaphore is created in one virtual memory
context, you must guarantee that that semaphore will be visible in all virtual memory
contexts if the semaphore is to be accessed at interrupt level, when a virtual memory
context other than the one in which it was created may be active. Another example is that

VxWorks OS Libraries API Reference, 5.5
mmuPro32Lib

164

code loaded using the incremental loader from the shell must be accessible in all virtual
memory contexts, since code is shared by all agents in the system.

This problem is resolved by maintaining a global “transparent” mapping of virtual to
physical memory for all the contiguous segments of physical memory (on board memory,
i/o space, sections of vme space, etc.) that is shared by all translation tables; all available
physical memory appears at the same address in virtual memory in all virtual memory
contexts. This technique provides an environment that allows resources that rely on a
globally accessible physical address to run without modification in a system with multiple
virtual memory contexts.

An additional requirement is that modifications made to the state of global virtual
memory in one translation table appear in all translation tables. For example, memory
containing the text segment is made read only (to avoid accidental corruption) by setting
the appropriate writable bits in the translation table entries corresponding to the virtual
memory containing the text segment. This state information must be shared by all virtual
memory contexts, so that no matter what translation table is active, the text segment is
protected from corruption. The mechanism that implements this feature is architecture
dependent, but usually entails building a section of a translation table that corresponds to
the global memory, that is shared by all other translation tables. Thus, when changes to
the state of the global memory are made in one translation table, the changes are reflected
in all other translation tables.

mmuLib provides a separate call for constructing global virtual memory -
mmuGlobalPageMap() - which creates translation table entries that are shared by all
translation tables. Initialization code in usrConfig makes calls to vmGlobalMap() (which
in turn calls mmuGlobalPageMap()) to set up global transparent virtual memory for all
available physical memory. All calls made to mmuGlobalPageMap() must occur before
any virtual memory contexts are created; changes made to global virtual memory after
virtual memory contexts are created are not guaranteed to be reflected in all virtual
memory contexts.

Most MMU architectures will dedicate some fixed amount of virtual memory to a minimal
section of the translation table (a “segment”, or “block”). This creates a problem in that the
user may map a small section of virtual memory into the global translation tables, and
then attempt to use the virtual memory after this section as private virtual memory. The
problem is that the translation table entries for this virtual memory are contained in the
global translation tables, and are thus shared by all translation tables. This condition is
detected by vmMap(), and an error is returned, thus, the lower level routines in
mmuPro32Lib.c (mmuPageMap(), mmuGlobalPageMap()) need not perform any error
checking.

A global variable mmuPageBlockSize should be defined which is equal to the minimum
virtual segment size. mmuLib must provide a routine mmuGlobalInfoGet(), which
returns a pointer to the globalPageBlock[] array. This provides the user with enough
information to be able to allocate virtual memory space that does not conflict with the
global memory space.

1: Libraries
mmuPro32Lib

165

M

This module supports the PentiumPro/2/3/4 MMU:

PDBR

|

|

top level |pde |pde |pde |pde |pde |pde | ...

| | | | | |

| | | | | |

---------- | v v v v

| ------ NULL NULL NULL NULL

| |

v v

---- ----

l |pte | |pte |

o ---- ----

w |pte | |pte |

e ---- ----

r |pte | |pte |

l ---- ----

e |pte | |pte |

v ---- ----

e . .

l . .

. .

where the top level consists of an array of pointers (Page Directory Entry) held within a
single 4k page. These point to arrays of Page Table Entry arrays in the lower level. Each of
these lower level arrays is also held within a single 4k page, and describes a virtual space
of 4 MB (each Page Table Entry is 4 bytes, so we get 1000 of these in each array, and each
Page Table Entry maps a 4KB page - thus 1000 * 4096 = 4MB.)

To implement global virtual memory, a separate translation table called
mmuGlobalTransTbl is created when the module is initialized. Calls to
mmuGlobalPageMap() will augment and modify this translation table. When new
translation tables are created, memory for the top level array of sftd’s is allocated and
initialized by duplicating the pointers in mmuGlobalTransTbl’s top level sftd array.
Thus, the new translation table will use the global translation table’s state information for
portions of virtual memory that are defined as global. Here’s a picture to illustrate:

VxWorks OS Libraries API Reference, 5.5
mmuPro32Lib

166

GLOBAL TRANS TBL NEW TRANS TBL

PDBR PDBR

| |

| |

------------------------- -------------------------

top level |pde |pde | NULL| NULL| |pde |pde | NULL| NULL|

------------------------- -------------------------

| | | | | | | |

| | | | | | | |

---------- | v v ---------- | v v

| ------ NULL NULL | | NULL NULL

| | | |

o------------------------------------ |

| | |

| o---

| |

v v

---- ----

l |pte | |pte |

o ---- ----

w |pte | |pte |

e ---- ----

r |pte | |pte |

l ---- ----

e |pte | |pte |

v ---- ----

e . .

l . .

. .

Note that with this scheme, the global memory granularity is 4MB. Each time you map a
section of global virtual memory, you dedicate at least 4MB of the virtual space to global
virtual memory that will be shared by all virtual memory contexts.

The physical memory that holds these data structures is obtained from the system
memory manager via memalign() to ensure that the memory is page aligned. We want to
protect this memory from being corrupted, so we invalidate the descriptors that we set up
in the global translation that correspond to the memory containing the translation table
data structures. This creates a “chicken and the egg” paradox, in that the only way we can
modify these data structures is through virtual memory that is now invalidated, and we
can’t validate it because the page descriptors for that memory are in invalidated memory
(confused yet?) So, you will notice that anywhere that page table descriptors (pte’s) are
modified, we do so by locking out interrupts, momentarily disabling the MMU, accessing
the memory with its physical address, enabling the MMU, and then re-enabling interrupts
(see mmuStateSet(), for example.)

1: Libraries
mmuPro32Lib

167

M

Support for two new page attribute bits are added for PentiumPro’s enhanced MMU.
They are Global bit (G) and Page-level write-through/back bit (PWT). Global bit indicates
a global page when set. When a page is marked global and the page global enable (PGE)
bit in register CR4 is set, the page-table or page-directory entry for the page is not
invalidated in the TLB when register CR3 is loaded or a task switch occurs. This bit is
provided to prevent frequently used pages (such as pages that contain kernel or other
operating system or executive code) from being flushed from the TLB. Page-level
write-through/back bit (PWT) controls the write-through or write- back caching policy of
individual pages or page tables. When the PWT bit is set, write-through caching is
enabled for the associated page or page table. When the bit is clear, write-back caching is
enabled for the associated page and page table. Following macros are used to describe
these attribute bits in the physical memory descriptor table sysPhysMemDesc[] in
sysLib.c.

VM_STATE_WBACK - use write-back cache policy for the page
VM_STATE_WBACK_NOT - use write-through cache policy for the page
VM_STATE_GLOBAL - set page global bit
VM_STATE_GLOBAL_NOT - not set page global bit

Support for two page size (4KB and 4MB) are added also. The linear address for 4KB
pages is divided into three sections:

 Page directory entry - bits 22 through 31.
 Page table entry - Bits 12 through 21.
 Page offset - Bits 0 through 11.

The linear address for 4MB pages is divided into two sections:

 Page directory entry - Bits 22 through 31.
 Page offset - Bits 0 through 21.

These two page size is configurable by VM_PAGE_SIZE macro in config.h.

VxWorks OS Libraries API Reference, 5.5
mmuSh7700Lib

168

mmuSh7700Lib

NAME mmuSh7700Lib – Hitachi SH7700 MMU support library

ROUTINES mmuSh7700LibInit() - initialize module

DESCRIPTION mmuLib.c provides the architecture dependent routines that directly control the memory
management unit. It provides 10 routines that are called by the higher level architecture
independent routines in vmLib.c:

– mmuLibInit() - initialize module

– mmuTransTblCreate() - create a new translation table

– mmuTransTblDelete() - delete a translation table.

– mmuEnable() - turn mmu on or off

– mmuStateSet() - set state of virtual memory page

– mmuStateGet() - get state of virtual memory page

– mmuPageMap() - map physical memory page to virtual memory page

– mmuGlobalPageMap() - map physical memory page to global virtual memory page

– mmuTranslate() - translate a virtual address to a physical address

– mmuCurrentSet() - change active translation table

Applications using the mmu will never call these routines directly; the visible interface is
supported in vmLib.c.

mmuLib supports the creation and maintenance of multiple translation tables, one of
which is the active translation table when the mmu is enabled. Note that VxWorks does
not include a translation table as part of the task context; individual tasks do not reside in
private virtual memory. However, we include the facilities to create multiple translation
tables so that the user may create “private” virtual memory contexts and switch them in
an application specific manner. New translation tables are created with a call to
mmuTransTblCreate(), and installed as the active translation table with
mmuCurrentSet(). Translation tables are modified and potentially augmented with calls
to mmuPageMap() and mmuStateSet(). The state of portions of the translation table can
be read with calls to mmuStateGet() and mmuTranslate().

The traditional VxWorks architecture and design philosophy requires that all objects and
operating systems resources be visible and accessible to all agents (tasks, isrs, watchdog
timers, etc.) in the system. This has traditionally been insured by the fact that all objects
and data structures reside in physical memory; thus, a data structure created by one agent
may be accessed by any other agent using the same pointer (object identifiers in VxWorks
are often pointers to data structures.) This creates a potential problem if you have multiple

1: Libraries
mmuSh7700Lib

169

M

virtual memory contexts. For example, if a semaphore is created in one virtual memory
context, you must guarantee that that semaphore will be visible in all virtual memory
contexts if the semaphore is to be accessed at interrupt level, when a virtual memory
context other than the one in which it was created may be active. Another example is that
code loaded using the incremental loader from the shell must be accessible in all virtual
memory contexts, since code is shared by all agents in the system.

This problem is resolved by maintaining a global “transparent” mapping of virtual to
physical memory for all the contiguous segments of physical memory (on board memory,
i/o space, sections of vme space, etc.) that is shared by all translation tables; all available
physical memory appears at the same address in virtual memory in all virtual memory
contexts. This technique provides an environment that allows resources that rely on a
globally accessible physical address to run without modification in a system with multiple
virtual memory contexts.

An additional requirement is that modifications made to the state of global virtual
memory in one translation table appear in all translation tables. For example, memory
containing the text segment is made read only (to avoid accidental corruption) by setting
the appropriate writable bits in the translation table entries corresponding to the virtual
memory containing the text segment. This state information must be shared by all virtual
memory contexts, so that no matter what translation table is active, the text segment is
protected from corruption. The mechanism that implements this feature is architecture
dependent, but usually entails building a section of a translation table that corresponds to
the global memory, that is shared by all other translation tables. Thus, when changes to
the state of the global memory are made in one translation table, the changes are reflected
in all other translation tables.

mmuLib provides a separate call for constructing global virtual memory -
mmuGlobalPageMap() - which creates translation table entries that are shared by all
translation tables. Initialization code in usrConfig makes calls to vmGlobalMap() (which
in turn calls mmuGlobalPageMap()) to set up global transparent virtual memory for all
available physical memory. All calls made to mmuGlobaPageMap() must occur before
any virtual memory contexts are created; changes made to global virtual memory after
virtual memory contexts are created are not guaranteed to be reflected in all virtual
memory contexts.

Most mmu architectures will dedicate some fixed amount of virtual memory to a minimal
section of the translation table (a “segment”, or “block”). This creates a problem in that the
user may map a small section of virtual memory into the global translation tables, and
then attempt to use the virtual memory after this section as private virtual memory. The
problem is that the translation table entries for this virtual memory are contained in the
global translation tables, and are thus shared by all translation tables. This condition is
detected by vmMap(), and an error is returned, thus, the lower level routines in
mmuLib.c (mmuPageMap(), mmuGlobalPageMap()) need not perform any error
checking.

A global variable called mmuPageBlockSize should be defined which is equal to the
minimum virtual segment size.

VxWorks OS Libraries API Reference, 5.5
mmuSh7700Lib

170

This module supports the SH7700 mmu with a two level translation table:

root

|

|

top level | td | td | td | td | td | td | ...

| | | | | |

| | | | | |

---------- | v v v v

| ----- NULL NULL NULL NULL

| |

v v

------ ------

l | ptel | | ptel |

o ------ ------

w | ptel | | ptel |

e ------ ------

r | ptel | | ptel |

l ------ ------

e | ptel | | ptel |

v ------ ------

e . .

l . .

. .

where the top level consists of an array of pointers (Table Descriptors) held within a single
4k page. These point to arrays of PTEL (Page Table Entry Low) arrays in the lower level.
Each of these lower level arrays is also held within a single 4k page, and describes a
virtual space of 4MB (each page descriptor is 4 bytes, so we get 1024 of these in each array,
and each page descriptor maps a 4KB page - thus 1024 * 4096 = 4MB.)

To implement global virtual memory, a separate translation table called
mmuGlobalTransTbl is created when the module is initialized. Calls to
mmuGlobalPageMap() will augment and modify this translation table. When new
translation tables are created, memory for the top level array of td’s is allocated and
initialized by duplicating the pointers in mmuGlobalTransTbl’s top level td array. Thus,
the new translation table will use the global translation table’s state information for
portions of virtual memory that are defined as global. Here’s a picture to illustrate:

1: Libraries
mmuSh7700Lib

171

M

GLOBAL TRANS TBL NEW TRANS TBL

root root

| |

| |

------------------------- -------------------------

top level | td1 | td2 | NULL| NULL| | td1 | td2 | NULL| NULL|

------------------------- -------------------------

| | | | | | | |

| | | | | | | |

---------- | v v ---------- | v v

| ------ NULL NULL | | NULL NULL

| | | |

o------------------------------------ |

| | |

| o---

| |

v v

------ ------

l | ptel | | ptel |

o ------ ------

w | ptel | | ptel |

e ------ ------

r | ptel | | ptel |

l ------ ------

e | ptel | | ptel |

v ------ ------

e . .

l . .

. .

Note that with this scheme, the global memory granularity is 4MB. Each time you map a
section of global virtual memory, you dedicate at least 4MB of the virtual space to global
virtual memory that will be shared by all virtual memory contexts.

The physical memory that holds these data structures is obtained from the system
memory manager via memalign() to ensure that the memory is page aligned. We want to
protect this memory from being corrupted, so we invalidate the descriptors that we set up
in the global translation that correspond to the memory containing the translation table
data structures. This creates a “chicken and the egg” paradox, in that the only way we can
modify these data structures is through virtual memory that is now invalidated, and we
can’t validate it because the page descriptors for that memory are in invalidated memory
(confused yet?) So, you will notice that anywhere that page table descriptors (ptel’s) are
modified, we do so by locking out interrupts, momentarily disabling the mmu, accessing
the memory with its physical address, enabling the mmu, and then re-enabling interrupts
(see mmuStateSet(), for example.)

VxWorks OS Libraries API Reference, 5.5
mmuSh7750Lib

172

USER-MODIFIABLE OPTIONS

1) Memory fragmentation - mmuLib obtains memory from the system memory
manager via memalign() to contain the mmu’s translation tables. This memory was
allocated a page at a time on page boundaries. Unfortunately, in the current memory
management scheme, the memory manager is not able to allocate these pages
contiguously. Building large translation tables (i.e., when mapping large portions of
virtual memory) causes excessive fragmentation of the system memory pool. An
attempt to alleviate this has been installed by providing a local buffer of page aligned
memory; the user may control the buffer size by manipulating the global variable
mmuNumPagesInFreeList. By default, mmuPagesInFreeList is set to 8.

2) Alternate memory source - A customer has special purpose hardware that includes
separate static RAM for the mmu’s translation tables. Thus, they require the ability to
specify an alternate source of memory other than memalign(). A global variable has
been created that points to the memory partition to be used as the source for
translation table memory; by default, it points to the system memory partition. The
user may modify this to point to another memory partition before
mmuSh7700LibInit() is called.

mmuSh7750Lib

NAME mmuSh7750Lib – Hitachi SH7750 MMU support library

ROUTINES mmuSh7750LibInit() - initialize module

DESCRIPTION mmuLib.c provides the architecture dependent routines that directly control the memory
management unit. It provides 10 routines that are called by the higher level architecture
independent routines in vmLib.c:

– mmuLibInit() - initialize module
– mmuTransTblCreate() - create a new translation table
– mmuTransTblDelete() - delete a translation table.
– mmuEnable() - turn mmu on or off
– mmuStateSet() - set state of virtual memory page
– mmuStateGet() - get state of virtual memory page
– mmuPageMap() - map physical memory page to virtual memory page
– mmuGlobalPageMap() - map physical memory page to global virtual memory page
– mmuTranslate() - translate a virtual address to a physical address
– mmuCurrentSet() - change active translation table

Applications using the mmu will never call these routines directly; the visible interface is
supported in vmLib.c.

1: Libraries
mmuSh7750Lib

173

M

mmuLib supports the creation and maintenance of multiple translation tables, one of
which is the active translation table when the mmu is enabled. Note that VxWorks does
not include a translation table as part of the task context; individual tasks do not reside in
private virtual memory. However, we include the facilities to create multiple translation
tables so that the user may create “private” virtual memory contexts and switch them in
an application specific manner. New translation tables are created with a call to
mmuTransTblCreate(), and installed as the active translation table with
mmuCurrentSet(). Translation tables are modified and potentially augmented with calls
to mmuPageMap() and mmuStateSet(). The state of portions of the translation table can
be read with calls to mmuStateGet() and mmuTranslate().

The traditional VxWorks architecture and design philosophy requires that all objects and
operating systems resources be visible and accessible to all agents (tasks, isrs, watchdog
timers, etc.) in the system. This has traditionally been insured by the fact that all objects
and data structures reside in physical memory; thus, a data structure created by one agent
may be accessed by any other agent using the same pointer (object identifiers in VxWorks
are often pointers to data structures.) This creates a potential problem if you have multiple
virtual memory contexts. For example, if a semaphore is created in one virtual memory
context, you must guarantee that that semaphore will be visible in all virtual memory
contexts if the semaphore is to be accessed at interrupt level, when a virtual memory
context other than the one in which it was created may be active. Another example is that
code loaded using the incremental loader from the shell must be accessible in all virtual
memory contexts, since code is shared by all agents in the system.

This problem is resolved by maintaining a global “transparent” mapping of virtual to
physical memory for all the contiguous segments of physical memory (on board memory,
i/o space, sections of vme space, etc.) that is shared by all translation tables; all available
physical memory appears at the same address in virtual memory in all virtual memory
contexts. This technique provides an environment that allows resources that rely on a
globally accessible physical address to run without modification in a system with multiple
virtual memory contexts.

An additional requirement is that modifications made to the state of global virtual
memory in one translation table appear in all translation tables. For example, memory
containing the text segment is made read only (to avoid accidental corruption) by setting
the appropriate writable bits in the translation table entries corresponding to the virtual
memory containing the text segment. This state information must be shared by all virtual
memory contexts, so that no matter what translation table is active, the text segment is
protected from corruption. The mechanism that implements this feature is architecture
dependent, but usually entails building a section of a translation table that corresponds to
the global memory, that is shared by all other translation tables. Thus, when changes to
the state of the global memory are made in one translation table, the changes are reflected
in all other translation tables.

mmuLib provides a separate call for constructing global virtual memory -
mmuGlobalPageMap() - which creates translation table entries that are shared by all
translation tables. Initialization code in usrConfig makes calls to vmGlobalMap() (which

VxWorks OS Libraries API Reference, 5.5
mmuSh7750Lib

174

in turn calls mmuGlobalPageMap()) to set up global transparent virtual memory for all
available physical memory. All calls made to mmuGlobaPageMap() must occur before
any virtual memory contexts are created; changes made to global virtual memory after
virtual memory contexts are created are not guaranteed to be reflected in all virtual
memory contexts.

Most mmu architectures will dedicate some fixed amount of virtual memory to a minimal
section of the translation table (a “segment”, or “block”). This creates a problem in that the
user may map a small section of virtual memory into the global translation tables, and
then attempt to use the virtual memory after this section as private virtual memory. The
problem is that the translation table entries for this virtual memory are contained in the
global translation tables, and are thus shared by all translation tables. This condition is
detected by vmMap(), and an error is returned, thus, the lower level routines in
mmuLib.c (mmuPageMap(), mmuGlobalPageMap()) need not perform any error
checking.

A global variable called mmuPageBlockSize should be defined which is equal to the
minimum virtual segment size.

This module supports the SH7750 mmu with a two level translation table:

root

|

|

top level | td | td | td | td | td | td | ...

| | | | | |

| | | | | |

---------- | v v v v

| ----- NULL NULL NULL NULL

| |

v v

------ ------

l | ptel | | ptel |

o ------ ------

w | ptel | | ptel |

e ------ ------

r | ptel | | ptel |

l ------ ------

e | ptel | | ptel |

v ------ ------

e . .

l . .

. .

where the top level consists of an array of pointers (Table Descriptors) held within a single
4k page. These point to arrays of PTEL (Page Table Entry Low) arrays in the lower level.

1: Libraries
mmuSh7750Lib

175

M

Each of these lower level arrays is also held within a single 4k page, and describes a
virtual space of 4MB (each page descriptor is 4 bytes, so we get 1024 of these in each array,
and each page descriptor maps a 4KB page - thus 1024 * 4096 = 4MB.)

To implement global virtual memory, a separate translation table called
mmuGlobalTransTbl is created when the module is initialized. Calls to
mmuGlobalPageMap() will augment and modify this translation table. When new
translation tables are created, memory for the top level array of td’s is allocated and
initialized by duplicating the pointers in mmuGlobalTransTbl’s top level td array. Thus,
the new translation table will use the global translation table’s state information for
portions of virtual memory that are defined as global. Here’s a picture to illustrate:

GLOBAL TRANS TBL NEW TRANS TBL

root root

| |

| |

------------------------- -------------------------

top level | td1 | td2 | NULL| NULL| | td1 | td2 | NULL| NULL|

------------------------- -------------------------

| | | | | | | |

| | | | | | | |

---------- | v v ---------- | v v

| ------ NULL NULL | | NULL NULL

| | | |

o------------------------------------ |

| | |

| o---

| |

v v

------ ------

l | ptel | | ptel |

o ------ ------

w | ptel | | ptel |

e ------ ------

r | ptel | | ptel |

l ------ ------

e | ptel | | ptel |

v ------ ------

e . .

l . .

. .

Note that with this scheme, the global memory granularity is 4MB. Each time you map a
section of global virtual memory, you dedicate at least 4MB of the virtual space to global
virtual memory that will be shared by all virtual memory contexts.

VxWorks OS Libraries API Reference, 5.5
moduleLib

176

The physical memory that holds these data structures is obtained from the system
memory manager via memalign() to ensure that the memory is page aligned. We want to
protect this memory from being corrupted, so we invalidate the descriptors that we set up
in the global translation that correspond to the memory containing the translation table
data structures. This creates a “chicken and the egg” paradox, in that the only way we can
modify these data structures is through virtual memory that is now invalidated, and we
can’t validate it because the page descriptors for that memory are in invalidated memory
(confused yet?) So, you will notice that anywhere that page table descriptors (ptel’s) are
modified, we do so by locking out interrupts, momentarily disabling the mmu, accessing
the memory with its physical address, enabling the mmu, and then re-enabling interrupts
(see mmuStateSet(), for example.)

USER MODIFIABLE OPTIONS

1) Memory fragmentation - mmuLib obtains memory from the system memory
manager via memalign() to contain the mmu’s translation tables. This memory was
allocated a page at a time on page boundaries. Unfortunately, in the current memory
management scheme, the memory manager is not able to allocate these pages
contiguously. Building large translation tables (i.e., when mapping large portions of
virtual memory) causes excessive fragmentation of the system memory pool. An
attempt to alleviate this has been installed by providing a local buffer of page aligned
memory; the user may control the buffer size by manipulating the global variable
mmuNumPagesInFreeList. By default, mmuPagesInFreeList is set to 8.

2) Alternate memory source - A customer has special purpose hardware that includes
separate static RAM for the mmu’s translation tables. Thus, they require the ability to
specify an alternate source of memory other than memalign(). A global variable has
been created that points to the memory partition to be used as the source for
translation table memory; by default, it points to the system memory partition. The
user may modify this to point to another memory partition before
mmuSh7750LibInit() is called.

moduleLib

NAME moduleLib – object module management library

ROUTINES moduleCreate() - create and initialize a module
moduleDelete() - delete module ID information (use unld() to reclaim space)
moduleShow() - show the current status for all the loaded modules
moduleSegGet() - get (delete and return) the first segment from a module
moduleSegFirst() - find the first segment in a module
moduleSegNext() - find the next segment in a module
moduleCreateHookAdd() - add a routine to be called when a module is added

1: Libraries
moduleLib

177

M

moduleCreateHookDelete() - delete a previously added module create hook routine
moduleFindByName() - find a module by name
moduleFindByNameAndPath() - find a module by file name and path
moduleFindByGroup() - find a module by group number
moduleIdListGet() - get a list of loaded modules
moduleInfoGet() - get information about an object module
moduleCheck() - verify checksums on all modules
moduleNameGet() - get the name associated with a module ID
moduleFlagsGet() - get the flags associated with a module ID

DESCRIPTION This library is a class manager, using the standard VxWorks class/object facilities. The
library is used to keep track of which object modules have been loaded into VxWorks, to
maintain information about object module segments associated with each module, and to
track which symbols belong to which module. Tracking modules makes it possible to list
which modules are currently loaded, and to unload them when they are no longer
needed.

The module object contains the following information:

 - name
 - linked list of segments, including base addresses
 and sizes
 - symbol group number
 - format of the object module (a.out, COFF, ECOFF, etc.)
 - the symFlag passed to ld() when the module was
 loaded. (For more information about symFlag and the
 loader, see the manual entry for loadLib.)

Multiple modules with the same name are allowed (the same module may be loaded
without first being unloaded) but “find” functions find the most recently created module.

The symbol group number is a unique number for each module, used to identify the
module’s symbols in the symbol table. This number is assigned by moduleLib when a
module is created.

In general, users will not access these routines directly, with the exception of
moduleShow(), which displays information about currently loaded modules. Most calls
to this library will be from routines in loadLib and unldLib.

INCLUDE FILES moduleLib.h

SEE ALSO loadLib, Tornado User’s Guide: Cross-Development

VxWorks OS Libraries API Reference, 5.5
mountLib

178

mountLib

NAME mountLib – mount protocol library

ROUTINES mountdInit() - initialize the mount daemon
nfsExport() - specify a file system to be NFS exported
nfsUnexport() - remove a file system from the list of exported file systems

DESCRIPTION This library implements a mount server to support mounting VxWorks file systems
remotely. The mount server is an implementation of version 1 of the mount protocol as
defined in RFC 1094. It is closely connected with version 2 of the Network File System
Protocol Specification, which in turn is implemented by the library nfsdLib.

NOTE: The only routines in this library that are normally called by applications are
nfsExport() and nfsUnexport(). The mount daemon is normally initialized indirectly by
nfsdInit().

The mount server is initialized by calling mountdInit(). Normally, this is done by
nfsdInit(), although it is possible to call mountdInit() directly if the NFS server is not
being initialized. Defining INCLUDE_NFS_SERVER enables the call to nfsdInit() during
the boot process, which in turn calls mountdInit(), so there is normally no need to call
either routine manually. mountdInit() spawns one task, tMountd, which registers as an
RPC service with the portmapper.

Currently, only the dosFsLib file system is supported. File systems are exported with the
nfsExport() call.

To export VxWorks file systems via NFS, you need facilities from both this library and
from nfsdLib. To include both, add INCLUDE_NFS_SERVER and rebuild VxWorks.

Example

The following example illustrates how to export an existing dosFs file system.

First, initialize the block device containing your file system.

Then assuming the dosFs system is called /export execute the following code on the target:

nfsExport ("/export", 0, FALSE, 0); /* make available remotely */

This makes it available to all clients to be mounted using the client’s NFS mounting
command. (On UNIX systems, mounting file systems normally requires root privileges.)

VxWorks does not normally provide authentication services for NFS requests, and the
DOS file system does not provide file permissions. If you need to authenticate incoming
requests, see the documentation for nfsdInit() and mountdInit() for information about
authorization hooks.

1: Libraries
mqPxLib

179

M

The following requests are accepted from clients. For details of their use, see Appendix A
of RFC 1094, “NFS: Network File System Protocol Specification.”

SEE ALSO dosFsLib, nfsdLib, RFC 1094

mqPxLib

NAME mqPxLib – message queue library (POSIX)

ROUTINES mqPxLibInit() - initialize the POSIX message queue library
mq_open() - open a message queue (POSIX)
mq_receive() - receive a message from a message queue (POSIX)
mq_send() - send a message to a message queue (POSIX)
mq_close() - close a message queue (POSIX)
mq_unlink() - remove a message queue (POSIX)
mq_notify() - notify a task that a message is available on a queue (POSIX)
mq_setattr() - set message queue attributes (POSIX)
mq_getattr() - get message queue attributes (POSIX)

DESCRIPTION This library implements the message-queue interface defined in the POSIX 1003.1b
standard, as an alternative to the VxWorks-specific message queue design in msgQLib.
These message queues are accessed through names; each message queue supports
multiple sending and receiving tasks.

The message queue interface imposes a fixed upper bound on the size of messages that
can be sent to a specific message queue. The size is set on an individual queue basis. The
value may not be changed dynamically.

This interface allows a task be notified asynchronously of the availability of a message on
the queue. The purpose of this feature is to let the task to perform other functions and yet
still be notified that a message has become available on the queue.

Procedure Name Procedure Number

MOUNTPROC_NULL 0
MOUNTPROC_MNT 1
MOUNTPROC_DUMP 2
MOUNTPROC_UMNT 3
MOUNTPROC_UMNTALL 4
MOUNTPROC_EXPORT 5

VxWorks OS Libraries API Reference, 5.5
mqPxShow

180

MESSAGE QUEUE DESCRIPTOR DELETION

The mq_close() call terminates a message queue descriptor and deallocates any
associated memory. When deleting message queue descriptors, take care to avoid
interfering with other tasks that are using the same descriptor. Tasks should only close
message queue descriptors that the same task has opened successfully.

The routines in this library conform to POSIX 1003.1b.

INCLUDE FILES mqueue.h

SEE ALSO POSIX 1003.1b document, msgQLib, VxWorks Programmer’s Guide: Basic OS

mqPxShow

NAME mqPxShow – POSIX message queue show

ROUTINES mqPxShowInit() - initialize the POSIX message queue show facility

DESCRIPTION This library provides a show routine for POSIX objects.

msgQDistGrpLib

NAME msgQDistGrpLib – distributed message queue group library (VxFusion Opt.)

ROUTINES msgQDistGrpAdd() - add a distributed message queue to a group (VxFusion Opt.)
msgQDistGrpDelete() - delete a distributed message queue from a group (VxFusion
Opt.)

DESCRIPTION This library provides the grouping facility for distributed message queues. Single
distributed message queues can join one or more groups. A message sent to a group is
sent to all message queues that are members of that group. A group, however, is
prohibited from sending messages. Also, it is an error to call msgQDistNumMsgs() with
a distributed message queue group ID.

Groups are created with symbolic names and identified by a unique ID, MSG_Q_ID, as
with normal message queues.

If the group is new to the distributed system, the group agreement protocol (GAP) is
employed to determine a globally unique identifier. As part of the protocol’s negotiation,
all group databases throughout the system are updated.

1: Libraries
msgQDistLib

181

M

The distributed message queue group library is initialized by calling distInit().

AVAILABILITY This module is distributed as a component of the unbundled distributed message queues
option, VxFusion.

INCLUDE FILES msgQDistGrpLib.h

SEE ALSO distLib, msgQDistGrpShow

msgQDistGrpShow

NAME msgQDistGrpShow – distributed message queue group show routines (VxFusion Opt.)

ROUTINES msgQDistGrpShow() - display all or one group with its members (VxFusion Opt.)

DESCRIPTION This library provides a routine to show either the contents of the entire message queue
group database or the contents of single message queue group.

AVAILABILITY This module is distributed as a component of the unbundled distributed message queues
option, VxFusion.

INCLUDE FILES msgQDistGrpShow.h

SEE ALSO msgQDistGrpLib

msgQDistLib

NAME msgQDistLib – distributed objects message queue library (VxFusion Opt.)

ROUTINES msgQDistCreate() - create a distributed message queue (VxFusion Opt.)
msgQDistSend() - send a message to a distributed message queue (VxFusion Opt.)
msgQDistReceive() - receive a message from a distributed message queue (VxFusion
Opt.)
msgQDistNumMsgs() - get the number of messages in a distributed message queue
(VxFusion Opt.)

DESCRIPTION This library provides the interface to distributed message queues. Any task on any node
in the system can send messages to or receive from a distributed message queue. Full

VxWorks OS Libraries API Reference, 5.5
msgQDistShow

182

duplex communication between two tasks generally requires two distributed message
queues, one for each direction.

Distributed message queues are created with msgQDistCreate(). After creation, they can
be manipulated using the generic routines for local message queues; for more information
on the use of these routines, see the manual entry for msgQLib. The msgQDistLib library
also provides the msgQDistSend(), msgQDistReceive(), and msgQDistNumMsgs()
routines which support additional parameters that are useful for working with distributed
message queues.

The distributed objects message queue library is initialized by calling distInit().

AVAILABILITY This module is distributed as a component of the unbundled distributed message queues
option, VxFusion.

INCLUDE FILES msgQDistLib.h

SEE ALSO msgQLib, msgQDistShow, distLib

msgQDistShow

NAME msgQDistShow – distributed message queue show routines (VxFusion Opt.)

ROUTINES msgQDistShowInit() - initialize the distributed message queue show package
(VxFusion Opt.)

DESCRIPTION This library provides show routines for distributed message queues. The user does not
call these show routines directly. Instead, he uses the msgQShow library routine
msgQShow() to display the contents of a message queue, regardless of its type. The
msgQShow() routine calls the distributed show routines, as necessary.

AVAILABILITY This module is distributed as a component of the unbundled distributed message queues
option, VxFusion.

INCLUDE FILES msgQDistShow.h

SEE ALSO msgQDistLib, msgQShow

1: Libraries
msgQLib

183

M

msgQEvLib

NAME msgQEvLib – VxWorks events support for message queues

ROUTINES msgQEvStart() - start event notification process for a message queue
msgQEvStop() - stop event notification process for a message queue

DESCRIPTION This library is an extension to eventLib, the events library. Its purpose is to support events
for message queues.

The functions in this library are used to control registration of tasks on a message queue.
The routine msgQEvStart() registers a task and starts the notification process. The
function msgQEvStop() un-registers the task, which stops the notification mechanism.

When a task is registered and a message arrives on the queue, the events specified are sent
to that task, on the condition that no other task is pending on that message queue.
However, if a msgQReceive() is to be done afterwards to get the message, there is no
guarantee that it will still be available.

INCLUDE FILES msgQEvLib.h

SEE ALSO eventLib, VxWorks Programmer’s Guide: Basic OS

msgQLib

NAME msgQLib – message queue library

ROUTINES msgQCreate() - create and initialize a message queue
msgQDelete() - delete a message queue
msgQSend() - send a message to a message queue
msgQReceive() - receive a message from a message queue
msgQNumMsgs() - get the number of messages queued to a message queue

DESCRIPTION This library contains routines for creating and using message queues, the primary
intertask communication mechanism within a single CPU. Message queues allow a
variable number of messages (varying in length) to be queued in first-in-first-out (FIFO)
order. Any task or interrupt service routine can send messages to a message queue. Any
task can receive messages from a message queue. Multiple tasks can send to and receive
from the same message queue. Full-duplex communication between two tasks generally
requires two message queues, one for each direction.

VxWorks OS Libraries API Reference, 5.5
msgQLib

184

To provide message queue support for a system, VxWorks must be configured with the
INCLUDE_MSG_Q component.

CREATING AND USING MESSAGE QUEUES

A message queue is created with msgQCreate(). Its parameters specify the maximum
number of messages that can be queued to that message queue and the maximum length
in bytes of each message. Enough buffer space will be pre-allocated to accommodate the
specified number of messages of specified length.

A task or interrupt service routine sends a message to a message queue with
msgQSend(). If no tasks are waiting for messages on the message queue, the message is
simply added to the buffer of messages for that queue. If any tasks are already waiting to
receive a message from the message queue, the message is immediately delivered to the
first waiting task.

A task receives a message from a message queue with msgQReceive(). If any messages
are already available in the message queue’s buffer, the first message is immediately
dequeued and returned to the caller. If no messages are available, the calling task will
block and be added to a queue of tasks waiting for messages. This queue of waiting tasks
can be ordered either by task priority or FIFO, as specified in an option parameter when
the queue is created.

TIMEOUTS Both msgQSend() and msgQReceive() take timeout parameters. When sending a
message, if no buffer space is available to queue the message, the timeout specifies how
many ticks to wait for space to become available. When receiving a message, the timeout
specifies how many ticks to wait if no message is immediately available. The timeout
parameter can have the special values NO_WAIT (0) or WAIT_FOREVER (-1). NO_WAIT
means the routine should return immediately; WAIT_FOREVER means the routine should
never time out.

URGENT MESSAGES

The msgQSend() routine allows the priority of a message to be specified as either normal
or urgent, MSG_PRI_NORMAL (0) and MSG_PRI_URGENT (1), respectively. Normal
priority messages are added to the tail of the list of queued messages, while urgent
priority messages are added to the head of the list.

VXWORKS EVENTS If a task has registered with a message queue via msgQEvStart(), events will be sent to
that task when a message arrives on that message queue, on the condition that no other
task is pending on the queue.

INCLUDE FILES msgQLib.h

SEE ALSO pipeDrv, msgQSmLib, msgQEvLib, eventLib, VxWorks Programmer’s Guide: Basic OS

1: Libraries
msgQSmLib

185

M

msgQShow

NAME msgQShow – message queue show routines

ROUTINES msgQShowInit() - initialize the message queue show facility
msgQInfoGet() - get information about a message queue
msgQShow() - show information about a message queue

DESCRIPTION This library provides routines to show message queue statistics, such as the task queuing
method, messages queued, receivers blocked, etc.

The routine msgQshowInit() links the message queue show facility into the VxWorks
system. It is called automatically when the message queue show facility is configured into
VxWorks using either of the following methods:

If you use the configuration header files, define INCLUDE_SHOW_ROUTINES in config.h.

If you use the Tornado project facility, select INCLUDE_MSG_Q_SHOW.

INCLUDE FILES msgQLib.h

SEE ALSO pipeDrv, VxWorks Programmer’s Guide: Basic OS

msgQSmLib

NAME msgQSmLib – shared memory message queue library (VxMP Opt.)

ROUTINES msgQSmCreate() - create and initialize a shared memory message queue (VxMP Opt.)

DESCRIPTION This library provides the interface to shared memory message queues. Shared memory
message queues allow a variable number of messages (varying in length) to be queued in
first-in-first-out order. Any task running on any CPU in the system can send messages to
or receive messages from a shared message queue. Tasks can also send to and receive
from the same shared message queue. Full-duplex communication between two tasks
generally requires two shared message queues, one for each direction.

Shared memory message queues are created with msgQSmCreate(). Once created, they
can be manipulated using the generic routines for local message queues; for more
information on the use of these routines, see the manual entry for msgQLib.

MEMORY REQUIREMENTS

The shared memory message queue structure is allocated from a dedicated shared

VxWorks OS Libraries API Reference, 5.5
muxLib

186

memory partition. This shared memory partition is initialized by the shared memory
objects master CPU. The size of this partition is defined by the maximum number of
shared message queues, SM_OBJ_MAX_MSG_Q.

The message queue buffers are allocated from the shared memory system partition.

RESTRICTIONS Shared memory message queues differ from local message queues in the following ways:

Interrupt Use:
Shared memory message queues may not be used (sent to or received from) at
interrupt level.

Deletion:
There is no way to delete a shared memory message queue and free its associated
shared memory. Attempts to delete a shared message queue return ERROR and set
errno to S_smObjLib_NO_OBJECT_DESTROY.

Queuing Style:
The shared message queue task queueing order specified when a message queue is
created must be FIFO.

CONFIGURATION Before routines in this library can be called, the shared memory objects facility must be
initialized by calling usrSmObjInit(). This is done automatically during VxWorks
initialization if the component INCLUDE_SM_OBJ is included.

AVAILABILITY This module is distributed as a component of the unbundled shared objects memory
support option, VxMP.

INCLUDE FILES msgQSmLib.h, msgQLib.h, smMemLib.h, smObjLib.h

SEE ALSO msgQLib, smObjLib, msgQShow, usrSmObjInit(), VxWorks Programmer’s Guide: Shared
Memory Objects

muxLib

NAME muxLib – MUX network interface library

ROUTINES muxLibInit() - initialize global state for the MUX
muxDevLoad() - load a driver into the MUX
muxDevStart() - start a device by calling its start routine
muxDevStop() - stop a device by calling its stop routine
muxShow() - display configuration of devices registered with the MUX
muxBind() - create a binding between a network service and an END
muxSend() - send a packet out on a network interface

1: Libraries
muxLib

187

M

muxPollSend() - now deprecated, see muxTkPollSend()
muxPollReceive() - now deprecated, see muxTkPollReceive()
muxIoctl() - send control information to the MUX or to a device
muxMCastAddrAdd() - add a multicast address to a device’s multicast table
muxMCastAddrDel() - delete a multicast address from a device’s multicast table
muxMCastAddrGet() - get the multicast address table from the MUX/Driver
muxUnbind() - detach a network service from the specified device
muxDevUnload() - unloads a device from the MUX
muxLinkHeaderCreate() - attach a link-level header to a packet
muxAddressForm() - form a frame with a link-layer address
muxPacketDataGet() - return the data from a packet
muxPacketAddrGet() - get addressing information from a packet
endFindByName() - find a device using its string name
muxDevExists() - tests whether a device is already loaded into the MUX
muxAddrResFuncAdd() - replace the default address resolution function
muxAddrResFuncGet() - get the address resolution function for ifType/protocol
muxAddrResFuncDel() - delete an address resolution function
muxTaskDelaySet() - set the inter-cycle delay on the polling task
muxTaskDelayGet() - get the delay on the polling task
muxTaskPrioritySet() - reset the priority of tMuxPollTask
muxTaskPriorityGet() - get the priority of tMuxPollTask
muxPollStart() - initialize and start the MUX poll task
muxPollEnd() - shuts down tMuxPollTask and returns devices to interrupt mode
muxPollDevAdd() - adds a device to list polled by tMuxPollTask
muxPollDevDel() - removes a device from the list polled by tMuxPollTask
muxPollDevStat() - reports whether device is on list polled by tMuxPollTask

DESCRIPTION This library provides the routines that define the MUX interface, a facility that handles
communication between the data link layer and the network protocol layer. Using the
MUX, the VxWorks network stack has decoupled the data link and network layers.
Drivers and services no longer need knowledge of each other’s internals. This
independence makes it much easier to add new drivers or services. For example, if you
add a new MUX-based “END” driver, all existing MUX-based services can use the new
driver. Likewise, if you add a new MUX-based service, any existing END can use the
MUX to access the new service.

INCLUDE FILES errno.h, lstLib.h, logLib.h, string.h, m2Lib.h, bufLib.h, if.h, end.h, muxLib.h,
vxWorks.h, taskLib.h, stdio.h, errnoLib.h, if_ether.h, netLib.h, semLib.h, rebootLib.h

To use this feature, include the following component: INCLUDE_MUX

SEE ALSO VxWorks AE Network Programmer’s Guide

VxWorks OS Libraries API Reference, 5.5
muxTkLib

188

muxTkLib

NAME muxTkLib – MUX toolkit Network Interface Library

ROUTINES muxTkDrvCheck() - checks if the device is an NPT or an END interface
muxTkCookieGet() - returns the cookie for a device
muxTkBind() - bind an NPT protocol to a driver
muxTkReceive() - receive a packet from a NPT driver
muxTkSend() - send a packet out on a Toolkit or END network interface
muxTkPollSend() - send a packet out in polled mode to an END or NPT interface
muxTkPollReceive() - poll for a packet from a NPT or END driver

DESCRIPTION This library provides additional APIs offered by the Network Protocol Toolkit (NPT)
architecture. These APIs extend the original release of the MUX interface.

A NPT driver is an enhanced END but retains all of the END’s functionality. NPT also
introduces the term “network service sublayer” or simply “service sublayer” which is the
component that interfaces between the network service (or network protocol) and the
MUX. This service sublayer may be built in to the network service or protocol rather than
being a separate component.

INCLUDE FILES vxWorks.h, taskLib.h, stdio.h, errno.herrnoLib.h, lstlib.h, logLib.h, string.h, m2Lib.h,
net/if.h, bufLib.h, semlib.h, end.h, muxLib.h, muxTkLib.h, netinet/if_ether.h,
net/mbuf.h

1: Libraries
netBufLib

189

N

netBufLib

NAME netBufLib – network buffer library

ROUTINES netBufLibInit() - initialize netBufLib
netPoolInit() - initialize a netBufLib-managed memory pool
netPoolKheapInit() - kernel heap version of netPoolInit()
netPoolDelete() - delete a memory pool
netMblkFree() - free an mBlk back to its memory pool
netClBlkFree() - free a clBlk-cluster construct back to the memory pool
netClFree() - free a cluster back to the memory pool
netMblkClFree() - free an mBlk-clBlk-cluster construct
netMblkClChainFree() - free a chain of mBlk-clBlk-cluster constructs
netMblkGet() - get an mBlk from a memory pool
netClBlkGet() - get a clBlk
netClusterGet() - get a cluster from the specified cluster pool
netMblkClGet() - get a clBlk-cluster and join it to the specified mBlk
netTupleGet() - get an mBlk-clBlk-cluster
netClBlkJoin() - join a cluster to a clBlk structure
netMblkClJoin() - join an mBlk to a clBlk-cluster construct
netClPoolIdGet() - return a CL_POOL_ID for a specified buffer size
netMblkToBufCopy() - copy data from an mBlk to a buffer
netMblkDup() - duplicate an mBlk
netMblkChainDup() - duplicate an mBlk chain

DESCRIPTION This library contains routines that you can use to organize and maintain a memory pool
that consists of pools of mBlk structures, pools of clBlk structures, and pools of clusters.
The mBlk and clBlk structures are used to manage the clusters. The clusters are
containers for the data described by the mBlk and clBlk structures.

These structures and the various routines of this library constitute a buffering API that has
been designed to meet the needs both of network protocols and network device drivers.

The mBlk structure is the primary vehicle for passing data between a network driver and
a protocol. However, the mBlk structure must first be properly joined with a clBlk
structure that was previously joined with a cluster. Thus, the actual vehicle for passing
data is not merely an mBlk structure but an mBlk-clBlk-cluster construct.

To use this feature, include the following component: INCLUDE_NETWRS_NETBUFLIB

INCLUDE FILES netBufLib.h

VxWorks OS Libraries API Reference, 5.5
netDrv

190

netDrv

NAME netDrv – network remote file I/O driver

ROUTINES netDrv() - install the network remote file driver
netDevCreate() - create a remote file device
netDevCreate2() - create a remote file device with fixed buffer size
netDrvDebugLevelSet() - set the debug level of the netDrv library routines
netDrvFileDoesNotExistInstall() - install an applette to test if a file exists

DESCRIPTION This driver provides facilities for accessing files transparently over the network via FTP or
RSH. By creating a network device with netDevCreate(), files on a remote UNIX machine
may be accessed as if they were local.

When a remote file is opened, the entire file is copied over the network to a local buffer.
When a remote file is created, an empty local buffer is opened. Any reads, writes, or
ioctl() calls are performed on the local copy of the file. If the file was opened with the
flags O_WRONLY or O_RDWR and modified, the local copy is sent back over the network
to the UNIX machine when the file is closed.

Note that this copying of the entire file back and forth can make netDrv devices awkward
to use. A preferable mechanism is NFS as provided by nfsDrv.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. However,
two routines must be called directly: netDrv() to initialize the driver and netDevCreate()
to create devices.

FILE OPERATIONS This driver supports the creation, deletion, opening, reading, writing, and appending of
files. The renaming of files is not supported.

INITIALIZATION Before using the driver, it must be initialized by calling the routine netDrv(). This routine
should be called only once, before any reads, writes, netDevCreate(), or netDevCreate2()
calls. Initialization is performed automatically when INCLUDE_NET_DRV is defined.

CREATING NETWORK DEVICES

To access files on a remote host, a network device must be created by calling
netDevCreate() or netDevCreate2(). The arguments to netDevCreate() are the name of
the device, the name of the host the device will access, and the remote file access protocol
to be used -- RSH or FTP. The arguments to netDevCreate2() are ones described above
and a size of buffer used in the network device as a fourth argument. By convention, a
network device name is the remote machine name followed by a colon “:”. For example,
for a UNIX host on the network “wrs”, files can be accessed by creating a device called
“wrs:”. For more information, see the manual entry for netDevCreate() and
netDevCreate2().

1: Libraries
netDrv

191

N

IOCTL FUNCTIONS The network driver responds to the following ioctl() functions:

FIOGETNAME
Gets the file name of the file descriptor fd and copies it to the buffer specified by
nameBuf:

status = ioctl (fd, FIOGETNAME, &nameBuf);

FIONREAD
Copies to nBytesUnread the number of bytes remaining in the file specified by fd:

status = ioctl (fd, FIONREAD, &nBytesUnread);

FIOSEEK
Sets the current byte offset in the file to the position specified by newOffset. If the seek
goes beyond the end-of-file, the file grows. The end-of-file pointer changes to the new
position, and the new space is filled with zeroes:

status = ioctl (fd, FIOSEEK, newOffset);

FIOWHERE
Returns the current byte position in the file. This is the byte offset of the next byte to
be read or written. It takes no additional argument:

position = ioctl (fd, FIOWHERE, 0);

FIOFSTATGET
Gets file status information. The argument statStruct is a pointer to a stat structure
that is filled with data describing the specified file. Normally, the stat() or fstat()
routine is used to obtain file information, rather than using the FIOFSTATGET
function directly. netDrv only fills in three fields of the stat structure: st_dev,
st_mode, and st_size. st_mode is always filled with S_IFREG.

struct stat statStruct;

fd = open ("file", O_RDONLY);

status = ioctl (fd, FIOFSTATGET, &statStruct);

LIMITATIONS The netDrv implementation strategy implies that directories cannot always be
distinguished from plain files. Thus, opendir() does not work for directories mounted on
netDrv devices, and ll() does not flag subdirectories with the label “DIR” in listings from
netDrv devices.

When the access method is FTP, operations can only be done on files that the FTP server
allows to download. In particular it is not possible to stat a directory, doing so will result
in “dirname: not a plain file” error.

INCLUDE FILES netDrv.h

SEE ALSO remLib, netLib, sockLib, hostAdd()

VxWorks OS Libraries API Reference, 5.5
netLib

192

netLib

NAME netLib – network interface library

ROUTINES netLibInit() - initialize the network package
netTask() - network task entry point

DESCRIPTION This library contains the network task that runs low-level network interface routines in a
task context. The network task executes and removes routines that were added to the job
queue. This facility is used by network interfaces in order to have interrupt-level
processing at task level.

The routine netLibInit() initializes the network and spawns the network task netTask().
This is done automatically when INCLUDE_NET_LIB is defined.

The routine netHelp() in usrLib displays a summary of the network facilities available
from the VxWorks shell.

INCLUDE FILES netLib.h

SEE ALSO routeLib, hostLib, netDrv, netHelp(),

netShow

NAME netShow – network information display routines

ROUTINES ifShow() - display the attached network interfaces
inetstatShow() - display all active connections for Internet protocol sockets
ipstatShow() - display IP statistics
netPoolShow() - show pool statistics
netStackDataPoolShow() - show network stack data pool statistics
netStackSysPoolShow() - show network stack system pool statistics
mbufShow() - report mbuf statistics
netShowInit() - initialize network show routines
arpShow() - display entries in the system ARP table
arptabShow() - display the known ARP entries
routestatShow() - display routing statistics
routeShow() - display all IP routes (summary information)
hostShow() - display the host table
mRouteShow() - display all IP routes (verbose information)

1: Libraries
nfsdLib

193

N

DESCRIPTION This library provides routines to show various network-related statistics, such as
configuration parameters for network interfaces, protocol statistics, socket statistics, and
so on.

Interpreting these statistics requires detailed knowledge of Internet network protocols.
Information on these protocols can be found in the following books:

Internetworking with TCP/IP Volume III, by Douglas Comer and David Stevens

UNIX Network Programming, by Richard Stevens

The Design and Implementation of the 4.3 BSD UNIX Operating System, by Leffler, McKusick,
Karels and Quarterman

The netShowInit() routine links the network show facility into the VxWorks system. This
is performed automatically if INCLUDE_NET_SHOW is defined. If you want
inetstatShow() to display TCP socket status, then INCLUDE_TCP_SHOW needs to be
included.

SEE ALSO ifLib, icmpShow, igmpShow, tcpShow, udpShow

nfsdLib

NAME nfsdLib – Network File System (NFS) server library

ROUTINES nfsdInit() - initialize the NFS server
nfsdStatusGet() - get the status of the NFS server
nfsdStatusShow() - show the status of the NFS server

DESCRIPTION This library is an implementation of version 2 of the Network File System Protocol
Specification as defined in RFC 1094. It is closely connected with version 1 of the mount
protocol, also defined in RFC 1094 and implemented in turn by mountLib.

The NFS server is initialized by calling nfsdInit(). This is done automatically at boot
time if INCLUDE_NFS_SERVER is defined.

Currently, only the dosFsLib file system is supported. File systems are exported with the
nfsExport() call.

To create and export a file system, define INCLUDE_NFS_SERVER and rebuild VxWorks.

To export VxWorks file systems via NFS, you need facilities from both this library and
from mountLib. To include both, define INCLUDE_NFS_SERVER and rebuild VxWorks.

Use the mountLib routine nfsExport() to export file systems. For an example, see the
manual page for mountLib.

VxWorks OS Libraries API Reference, 5.5
nfsdLib

194

VxWorks does not normally provide authentication services for NFS requests, and the
DOS file system does not provide file permissions. If you need to authenticate incoming
requests, see the documentation for nfsdInit() and mountdInit() for information about
authorization hooks.

The following requests are accepted from clients. For details of their use, see RFC 1094,
“NFS: Network File System Protocol Specification.”

AUTHENTICATION AND PERMISSIONS

Currently, no authentication is done on NFS requests. nfsdInit() describes the
authentication hooks that can be added should authentication be necessary.

Note that the DOS file system does not provide information about ownership or
permissions on individual files. Before initializing a dosFs file system, three global
variables--dosFsUserId, dosFsGroupId, and dosFsFileMode--can be set to define the user
ID, group ID, and permissions byte for all files in all dosFs volumes initialized after
setting these variables. To arrange for different dosFs volumes to use different user and
group ID numbers, reset these variables before each volume is initialized. See the manual
entry for dosFsLib for more information.

TASKS Several NFS tasks are created by nfsdInit(). They are:

tMountd
The mount daemon, which handles all incoming mount requests. This daemon is
created by mountdInit(), which is automatically called from nfsdInit().

Procedure Name Procedure Number

NFSPROC_NULL 0
NFSPROC_GETATTR 1
NFSPROC_SETATTR 2
NFSPROC_ROOT 3
NFSPROC_LOOKUP 4
NFSPROC_READLINK 5
NFSPROC_READ 6
NFSPROC_WRITE 8
NFSPROC_CREATE 9
NFSPROC_REMOVE 10
NFSPROC_RENAME 11
NFSPROC_LINK 12
NFSPROC_SYMLINK 13
NFSPROC_MKDIR 14
NFSPROC_RMDIR 15
NFSPROC_READDIR 16
NFSPROC_STATFS 17

1: Libraries
nfsDrv

195

N

tNfsd
The NFS daemon, which queues all incoming NFS requests.

tNfsdX
The NFS request handlers, which dequeues and processes all incoming NFS requests.

Performance of the NFS file system can be improved by increasing the number of servers
specified in the nfsdInit() call, if there are several different dosFs volumes exported from
the same target system. The spy() utility can be called to determine whether this is useful
for a particular configuration.

nfsDrv

NAME nfsDrv – Network File System (NFS) I/O driver

ROUTINES nfsDrv() - install the NFS driver
nfsDrvNumGet() - return the IO system driver number for the NFS driver
nfsMount() - mount an NFS file system
nfsMountAll() - mount all file systems exported by a specified host
nfsDevShow() - display the mounted NFS devices
nfsUnmount() - unmount an NFS device
nfsDevListGet() - create list of all the NFS devices in the system
nfsDevInfoGet() - read configuration information from the requested NFS device

DESCRIPTION This driver provides facilities for accessing files transparently over the network via NFS
(Network File System). By creating a network device with nfsMount(), files on a remote
NFS system (such as a UNIX system) can be handled as if they were local.

USER-CALLABLE ROUTINES

The nfsDrv() routine initializes the driver. The nfsMount() and nfsUnmount() routines
mount and unmount file systems. The nfsMountAll() routine mounts all file systems
exported by a specified host.

INITIALIZATION Before using the network driver, it must be initialized by calling nfsDrv(). This routine
must be called before any reads, writes, or other NFS calls. This is done automatically
when INCLUDE_NFS is defined.

CREATING NFS DEVICES

In order to access a remote file system, an NFS device must be created by calling
nfsMount(). For example, to create the device /myd0/ for the file system /d0/ on the host
wrs, call:

nfsMount ("wrs", "/d0/", "/myd0/");

VxWorks OS Libraries API Reference, 5.5
nfsDrv

196

The file /d0/dog on the host wrs can now be accessed as /myd0/dog.

If the third parameter to nfsMount() is NULL, VxWorks creates a device with the same
name as the file system. For example, the call:

nfsMount ("wrs", "/d0/", NULL);

or from the shell:

nfsMount "wrs", "/d0/"

creates the device /d0/. The file /d0/dog is accessed by the same name, /d0/dog.

Before mounting a file system, the host must already have been created with hostAdd().
The routine nfsDevShow() displays the mounted NFS devices.

IOCTL FUNCTIONS The NFS driver responds to the following ioctl() functions:

FIOGETNAME
Gets the file name of fd and copies it to the buffer referenced by nameBuf:

status = ioctl (fd, FIOGETNAME, &nameBuf);

FIONREAD
Copies to nBytesUnread the number of bytes remaining in the file specified by fd:

status = ioctl (fd, FIONREAD, &nBytesUnread);

FIOSEEK
Sets the current byte offset in the file to the position specified by newOffset. If the seek
goes beyond the end-of-file, the file grows. The end-of-file pointer gets moved to the
new position, and the new space is filled with zeros:

status = ioctl (fd, FIOSEEK, newOffset);

FIOSYNC
Flush data to the remote NFS file. It takes no additional argument:

status = ioctl (fd, FIOSYNC, 0);

FIOWHERE
Returns the current byte position in the file. This is the byte offset of the next byte to
be read or written. It takes no additional argument:

position = ioctl (fd, FIOWHERE, 0);

FIOREADDIR
Reads the next directory entry. The argument dirStruct is a pointer to a directory
descriptor of type DIR. Normally, the readdir() routine is used to read a directory,
rather than using the FIOREADDIR function directly. See the manual entry for dirLib:

DIR dirStruct;

fd = open ("directory", O_RDONLY);

status = ioctl (fd, FIOREADDIR, &dirStruct);

1: Libraries
nfsLib

197

N

FIOFSTATGET
Gets file status information (directory entry data). The argument statStruct is a
pointer to a stat structure that is filled with data describing the specified file.
Normally, the stat() or fstat() routine is used to obtain file information, rather than
using the FIOFSTATGET function directly. See the manual entry for dirLib:

struct stat statStruct;

fd = open ("file", O_RDONLY);

status = ioctl (fd, FIOFSTATGET, &statStruct);

FIOFSTATFSGET
Gets the file system parameters for and open file descriptor. The argument statfsStruct
is a pointer to a statfs structure that is filled with data describing the underlying file
system. Normally, the stat() or fstat() routine is used to obtain file information,
rather than using the FIOFSTATGET function directly. See the manual entry for
dirLib:

statfs statfsStruct;

fd = open ("directory", O_RDONLY);

status = ioctl (fd, FIOFSTATFSGET, &statfsStruct);

DEFICIENCIES There is only one client handle/cache per task. Performance is poor if a task is accessing
two or more NFS files.

Changing nfsCacheSize after a file is open could cause adverse effects. However, changing
it before opening any NFS file descriptors should not pose a problem.

INCLUDE FILES nfsDrv.h, ioLib.h, dirent.h

SEE ALSO dirLib, nfsLib, hostAdd(), ioctl(),

nfsLib

NAME nfsLib – Network File System (NFS) library

ROUTINES nfsHelp() - display the NFS help menu
nfsExportShow() - display the exported file systems of a remote host
nfsAuthUnixPrompt() - modify the NFS UNIX authentication parameters
nfsAuthUnixShow() - display the NFS UNIX authentication parameters
nfsAuthUnixSet() - set the NFS UNIX authentication parameters
nfsAuthUnixGet() - get the NFS UNIX authentication parameters
nfsIdSet() - set the ID number of the NFS UNIX authentication parameters

VxWorks OS Libraries API Reference, 5.5
ntPassFsLib

198

DESCRIPTION This library provides the client side of services for NFS (Network File System) devices.
Most routines in this library should not be called by users, but rather by device drivers.
The driver is responsible for keeping track of file pointers, mounted disks, and cached
buffers. This library uses Remote Procedure Calls (RPC) to make the NFS calls.

VxWorks is delivered with NFS disabled. To use this feature, include the following
component: INCLUDE_NFS

In the same file, NFS_USER_ID and NFS_GROUP_ID should be defined to set the default
user ID and group ID at system start-up. For information about creating NFS devices, see
the WindNet TCP/IP Network Programmer’s Guide.

Normal use of NFS requires no more than 2000 bytes of stack. This requirement may
change depending on how the maximum file name path length parameter,
NFS_MAXPATH, is configured. As many as 4 character arrays of length NFS_MAXPATH
may be allocated off the stack during client operation. Therefore any increase in the
parameter can increase stack usage by a factor of four times the deviation from default
NFS_MAXPATH. For example, a change from 255 to 1024 will increase peak stack usage by
(1024 -255) * 4 which is 3076 bytes.

NFS USER IDENTIFICATION

NFS is built on top of RPC and uses a type of RPC authentication known as AUTH_UNIX,
which is passed on to the NFS server with every NFS request. AUTH_UNIX is a structure
that contains necessary information for NFS, including the user ID number and a list of
group IDs to which the user belongs. On UNIX systems, a user ID is specified in the file
/etc/passwd. The list of groups to which a user belongs is specified in the file /etc/group.

To change the default authentication parameters, use nfsAuthUnixPrompt(). To change
just the AUTH_UNIX ID, use nfsIdSet(). Usually, only the user ID needs to be changed to
indicate a new NFS user.

INCLUDE FILES nfsLib.h

SEE ALSO rpcLib, ioLib, nfsDrv

ntPassFsLib

NAME ntPassFsLib – pass-through (to Windows NT) file system library

ROUTINES ntPassFsDevInit() - associate a device with ntPassFs file system functions
ntPassFsInit() - prepare to use the ntPassFs library

DESCRIPTION This module is only used with VxSim simulated versions of VxWorks.

1: Libraries
ntPassFsLib

199

N

This library provides services for file-oriented device drivers to use the Windows NT file
standard. In general, the routines in this library are not to be called directly by users, but
rather by the VxWorks I/O System.

INITIALIZING PASSFSLIB

Before any other routines in ntPassFsLib can be used, the routine ntPassFsInit() must be
called to initialize this library. The ntPassFsDevInit() routine associates a device name
with the ntPassFsLib functions. The parameter expected by ntPassFsDevInit() is a
pointer to a name string, to be used to identify the volume/device. This will be part of the
pathname for I/O operations which operate on the device. This name will appear in the
I/O system device table, which may be displayed using the iosDevShow() routine.

As an example:

ntPassFsInit (1);

ntPassFsDevInit ("host:");

After the ntPassFsDevInit() call has been made, when ntPassFsLib receives a request
from the I/O system, it calls the Windows NT I/O system to service the request. Only one
volume may be created.

READING DIRECTORY ENTRIES

Directories on a ntPassFs volume may be searched using the opendir(), readdir(),
rewinddir(), and closedir() routines. These calls allow the names of files and
sub-directories to be determined.

To obtain more detailed information about a specific file, use the fstat() or stat() function.
Along with standard file information, the structure used by these routines also returns the
file attribute byte from a ntPassFs directory entry.

FILE DATE AND TIME

Windows NT file date and time are passed through to VxWorks.

INCLUDE FILES ntPassFsLib.h

SEE ALSO ioLib, iosLib, dirLib, ramDrv

VxWorks OS Libraries API Reference, 5.5
passFsLib

200

passFsLib

NAME passFsLib – pass-through (to UNIX) file system library (VxSim)

ROUTINES passFsDevInit() - associate a device with passFs file system functions
passFsInit() - prepare to use the passFs library

DESCRIPTION This module is only used with VxSim simulated versions of VxWorks.

This library provides services for file-oriented device drivers to use the UNIX file
standard. This module takes care of all the buffering, directory maintenance, and file
system details that are necessary. In general, the routines in this library are not to be called
directly by users, but rather by the VxWorks I/O System.

INITIALIZING PASSFSLIB

Before any other routines in passFsLib can be used, the routine passFsInit() must be
called to initialize this library. The passFsDevInit() routine associates a device name with
the passFsLib functions. The parameter expected by passFsDevInit() is a pointer to a
name string, to be used to identify the volume/device. This will be part of the pathname
for I/O operations which operate on the device. This name will appear in the I/O system
device table, which may be displayed using the iosDevShow() routine.

As an example:

passFsInit (1);

passFsDevInit ("host:");

After the passFsDevInit() call has been made, when passFsLib receives a request from
the I/O system, it calls the UNIX I/O system to service the request. Only one volume may
be created.

READING DIRECTORY ENTRIES

Directories on a passFs volume may be searched using the opendir(), readdir(),
rewinddir(), and closedir() routines. These calls allow the names of files and
sub-directories to be determined.

To obtain more detailed information about a specific file, use the fstat() or stat() function.
Along with standard file information, the structure used by these routines also returns the
file attribute byte from a passFs directory entry.

FILE DATE AND TIME

UNIX file date and time are passed though to VxWorks.

INCLUDE FILES passFsLib.h

SEE ALSO ioLib, iosLib, dirLib, ramDrv

1: Libraries
pentiumALib

201

P

pentiumALib

NAME pentiumALib – Pentium and PentiumPro specific routines

ROUTINES pentiumCr4Get() - get contents of CR4 register
pentiumCr4Set() - sets specified value to the CR4 register
pentiumP6PmcStart() - start both PMC0 and PMC1
pentiumP6PmcStop() - stop both PMC0 and PMC1
pentiumP6PmcStop1() - stop PMC1
pentiumP6PmcGet() - get the contents of PMC0 and PMC1
pentiumP6PmcGet0() - get the contents of PMC0
pentiumP6PmcGet1() - get the contents of PMC1
pentiumP6PmcReset() - reset both PMC0 and PMC1
pentiumP6PmcReset0() - reset PMC0
pentiumP6PmcReset1() - reset PMC1
pentiumP5PmcStart0() - start PMC0
pentiumP5PmcStart1() - start PMC1
pentiumP5PmcStop() - stop both P5 PMC0 and PMC1
pentiumP5PmcStop0() - stop P5 PMC0
pentiumP5PmcStop1() - stop P5 PMC1
pentiumP5PmcGet() - get the contents of P5 PMC0 and PMC1
pentiumP5PmcGet0() - get the contents of P5 PMC0
pentiumP5PmcGet1() - get the contents of P5 PMC1
pentiumP5PmcReset() - reset both PMC0 and PMC1
pentiumP5PmcReset0() - reset PMC0
pentiumP5PmcReset1() - reset PMC1
pentiumTscGet64() - get 64Bit TSC (Timestamp Counter)
pentiumTscGet32() - get the lower half of the 64Bit TSC (Timestamp Counter)
pentiumTscReset() - reset the TSC (Timestamp Counter)
pentiumMsrGet() - get the contents of the specified MSR (Model Specific Register)
pentiumMsrSet() - set a value to the specified MSR (Model Specific Registers)
pentiumTlbFlush() - flush TLBs (Translation Lookaside Buffers)
pentiumSerialize() - execute a serializing instruction CPUID
pentiumBts() - execute atomic compare-and-exchange instruction to set a bit
pentiumBtc() - execute atomic compare-and-exchange instruction to clear a bit

DESCRIPTION This module contains Pentium and PentiumPro specific routines written in assembly
language.

MCA (Machine Check Architecture)

The Pentium processor introduced a new exception called the machine-check exception
(interrupt-18). This exception is used to signal hardware-related errors, such as a parity
error on a read cycle. The PentiumPro processor extends the types of errors that can be
detected and that generate a machine- check exception. It also provides a new

VxWorks OS Libraries API Reference, 5.5
pentiumALib

202

machine-check architecture that records information about a machine-check error and
provides the basis for an extended error logging capability.

MCA is enabled and its status registers are cleared zero in sysHwInit(). Its registers are
accessed by pentiumMsrSet() and pentiumMsrGet().

PMC (Performance Monitoring Counters)

The P5 and P6 family of processor has two performance-monitoring counters for use in
monitoring internal hardware operations. These counters are duration or event counters
that can be programmed to count any of approximately 100 different types of events, such
as the number of instructions decoded, number of interrupts received, or number of cache
loads. However, the set of events can be counted with PMC is different in the P5 and P6
family of processors; and the locations and bit definitions of the related counter and
control registers are also different. So there are two set of PMC routines, one for P6 family
and one for p5 family respectively.

There are nine routines to interface the PMC of P6 family processors. These nine routines
are:

STATUS pentiumP6PmcStart

(

int pmcEvtSel0; /* performance event select register 0 */

int pmcEvtSel1; /* performance event select register 1 */

)

void pentiumP6PmcStop (void)

void pentiumP6PmcStop1 (void)

void pentiumP6PmcGet

(

long long int * pPmc0; /* performance monitoring counter 0 */

long long int * pPmc1; /* performance monitoring counter 1 */

)

void pentiumP6PmcGet0

(

long long int * pPmc0; /* performance monitoring counter 0 */

)

void pentiumP6PmcGet1

(

long long int * pPmc1; /* performance monitoring counter 1 */

)

void pentiumP6PmcReset (void)

void pentiumP6PmcReset0 (void)

void pentiumP6PmcReset1 (void)

pentiumP6PmcStart() starts both PMC0 and PMC1. pentiumP6PmcStop() stops them,
and pentiumP6PmcStop1() stops only PMC1. pentiumP6PmcGet() gets contents of
PMC0 and PMC1. pentiumP6PmcGet0() gets contents of PMC0, and
pentiumP6PmcGet1() gets contents of PMC1. pentiumP6PmcReset() resets both PMC0

1: Libraries
pentiumALib

203

P

and PMC1. pentiumP6PmcReset0() resets PMC0, and pentiumP6PmcReset1() resets
PMC1. PMC is enabled in sysHwInit(). Selected events in the default configuration are
PMC0 = number of hardware interrupts received and PMC1 = number of misaligned data
memory references.

There are ten routines to interface the PMC of P5 family processors. These ten routines
are:

STATUS pentiumP5PmcStart0

(

int pmc0Cesr; /* PMC0 control and event select */

)

STATUS pentiumP5PmcStart1

(

int pmc1Cesr; /* PMC1 control and event select */

)

void pentiumP5PmcStop0 (void)

void pentiumP5PmcStop1 (void)

void pentiumP5PmcGet

(

long long int * pPmc0; /* performance monitoring counter 0 */

long long int * pPmc1; /* performance monitoring counter 1 */

)

void pentiumP5PmcGet0

(

long long int * pPmc0; /* performance monitoring counter 0 */

)

void pentiumP5PmcGet1

(

long long int * pPmc1; /* performance monitoring counter 1 */

)

void pentiumP5PmcReset (void)

void pentiumP5PmcReset0 (void)

void pentiumP5PmcReset1 (void)

pentiumP5PmcStart0() starts PMC0, and pentiumP5PmcStart1() starts PMC1.
pentiumP5PmcStop0() stops PMC0, and pentiumP5PmcStop1() stops PMC1.
pentiumP5PmcGet() gets contents of PMC0 and PMC1. pentiumP5PmcGet0() gets
contents of PMC0, and pentiumP5PmcGet1() gets contents of PMC1.
pentiumP5PmcReset() resets both PMC0 and PMC1. pentiumP5PmcReset0() resets
PMC0, and pentiumP5PmcReset1() resets PMC1. PMC is enabled in sysHwInit().
Selected events in the default configuration are PMC0 = number of hardware interrupts
received and PMC1 = number of misaligned data memory references.

MSR (Model Specific Register)

The concept of model-specific registers (MSRs) to control hardware functions in the
processor or to monitor processor activity was introduced in the PentiumPro processor.

VxWorks OS Libraries API Reference, 5.5
pentiumALib

204

The new registers control the debug extensions, the performance counters, the
machine-check exception capability, the machine check architecture, and the MTRRs. The
MSRs can be read and written to using the RDMSR and WRMSR instructions,
respectively.

There are two routines to interface the MSR. These two routines are:

void pentiumMsrGet

(

int address, /* MSR address */

long long int * pData /* MSR data */

)

void pentiumMsrSet

(

int address, /* MSR address */

long long int * pData /* MSR data */

)

pentiumMsrGet() get contents of the specified MSR, and pentiumMsrSet() sets value to
the specified MSR.

TSC (Time Stamp Counter)

The PentiumPro processor provides a 64-bit time-stamp counter that is incremented every
processor clock cycle. The counter is incremented even when the processor is halted by
the HLT instruction or the external STPCLK# pin. The time-stamp counter is set to 0
following a hardware reset of the processor. The RDTSC instruction reads the time stamp
counter and is guaranteed to return a monotonically increasing unique value whenever
executed, except for 64-bit counter wraparound. Intel guarantees, architecturally, that the
time-stamp counter frequency and configuration will be such that it will not wraparound
within 10 years after being reset to 0. The period for counter wrap is several thousands of
years in the PentiumPro and Pentium processors.

There are three routines to interface the TSC. These three routines are:

void pentiumTscReset (void)

void pentiumTscGet32 (void)

void pentiumTscGet64

(

long long int * pTsc /* TSC */

)

pentiumTscReset() resets the TSC. pentiumTscGet32() gets the lower half of the 64Bit
TSC, and pentiumTscGet64() gets the entire 64Bit TSC.

Four other routines are provided in this library. They are:

void pentiumTlbFlush (void)

void pentiumSerialize (void)

STATUS pentiumBts

1: Libraries
pentiumLib

205

P

(

char * pFlag /* flag address */

)

STATUS pentiumBtc (pFlag)

(

char * pFlag /* flag address */

)

pentiumTlbFlush() flushes TLBs (Translation Lookaside Buffers). pentiumSerialize()
does serialization by executing CPUID instruction. pentiumBts() executes an atomic
compare-and-exchange instruction to set a bit. pentiumBtc() executes an atomic
compare-and-exchange instruction to clear a bit.

SEE ALSO Pentium, PentiumPro Family Developer’s Manual

pentiumLib

NAME pentiumLib – Pentium and Pentium[234] library

ROUTINES pentiumMtrrEnable() - enable MTRR (Memory Type Range Register)
pentiumMtrrDisable() - disable MTRR (Memory Type Range Register)
pentiumMtrrGet() - get MTRRs to a specified MTRR table
pentiumMtrrSet() - set MTRRs from specified MTRR table with WRMSR instruction.
pentiumPmcStart() - start both PMC0 and PMC1
pentiumPmcStart0() - start PMC0
pentiumPmcStart1() - start PMC1
pentiumPmcStop() - stop both PMC0 and PMC1
pentiumPmcStop0() - stop PMC0
pentiumPmcStop1() - stop PMC1
pentiumPmcGet() - get the contents of PMC0 and PMC1
pentiumPmcGet0() - get the contents of PMC0
pentiumPmcGet1() - get the contents of PMC1
pentiumPmcReset() - reset both PMC0 and PMC1
pentiumPmcReset0() - reset PMC0
pentiumPmcReset1() - reset PMC1
pentiumMsrInit() - initialize all the MSRs (Model Specific Register)
pentiumMcaEnable() - enable/disable the MCA (Machine Check Architecture)

DESCRIPTION This library provides Pentium and Pentium[234] specific routines.

MTRR (Memory Type Range Register)

MTRR (Memory Type Range Register) are a new feature introduced in the P6 family

VxWorks OS Libraries API Reference, 5.5
pentiumLib

206

processor that allow the processor to optimize memory operations for different types of
memory, such as RAM, ROM, frame buffer memory, and memory-mapped IO. MTRRs
configure an internal map of how physical address ranges are mapped to various types of
memory. The processor uses this internal map to determine the cacheability of various
physical memory locations and the optimal method of accessing memory locations. For
example, if a memory location is specified in an MTRR as write-through memory, the
processor handles accesses to this location as follows. It reads data from that location in
lines and caches the read data or maps all writes to that location to the bus and updates
the cache to maintain cache coherency. In mapping the physical address space with
MTRRs, the processor recognizes five types of memory: uncacheable (UC),
write-combining (WC), write-through (WT), write-protected (WP), and write-back (WB).

There is one table - sysMtrr[] in sysLib.c - and four routines to interface the MTRR. These
four routines are:

void pentiumMtrrEnable (void)

void pentiumMtrrDisable (void)

STATUS pentiumMtrrGet

(

MTRR * pMtrr /* MTRR table */

)

STATUS pentiumMtrrSet (void)

(

MTRR * pMtrr /* MTRR table */

)

pentiumMtrrEnable() enables MTRR, pentiumMtrrDisable() disables MTRR.
pentiumMtrrGet() gets MTRRs to the specified MTRR table. pentiumMtrrGet() sets
MTRRs from the specified MTRR table. The MTRR table is defined as follows:

typedef struct mtrr_fix /* MTRR - fixed range register */

{

char type[8]; /* address range: [0]=0-7 ... [7]=56-63 */

} MTRR_FIX;

typedef struct mtrr_var /* MTRR - variable range register */

{

long long int base; /* base register */

long long int mask; /* mask register */

} MTRR_VAR;

typedef struct mtrr /* MTRR */

{

int cap[2]; /* MTRR cap register */

int deftype[2]; /* MTRR defType register */

MTRR_FIX fix[11]; /* MTRR fixed range registers */

MTRR_VAR var[8]; /* MTRR variable range registers */

} MTRR;

1: Libraries
pentiumLib

207

P

Fixed Range Register’s type array can be one of following memory types. MTRR_UC
(uncacheable), MTRR_WC (write-combining), MTRR_WT (write-through), MTRR_WP
(write-protected), and MTRR_WB (write-back). MTRR is enabled in sysHwInit().

PMC (Performance Monitoring Counters)

The P5 and P6 family of processors has two performance-monitoring counters for use in
monitoring internal hardware operations. These counters are duration or event counters
that can be programmed to count any of approximately 100 different types of events, such
as the number of instructions decoded, number of interrupts received, or number of cache
loads. However, the set of events can be counted with PMC is different in the P5 and P6
family of processors; and the locations and bit definitions of the related counter and
control registers are also different. So there are two set of PMC routines, one for P6 family
and one for P5 family respectively in pentiumALib. For convenience, the PMC routines
here are acting as wrappers to those routines in pentiumALib. They will call the P5 or P6
routine depending on the processor type.

There are twelve routines to interface the PMC. These twelve routines are:

STATUS pentiumPmcStart

(

int pmcEvtSel0; /* performance event select register 0 */

int pmcEvtSel1; /* performance event select register 1 */

)

STATUS pentiumPmcStart0

(

int pmcEvtSel0; /* performance event select register 0 */

)

STATUS pentiumPmcStart1

(

int pmcEvtSel1; /* performance event select register 1 */

)

void pentiumPmcStop (void)

void pentiumPmcStop0 (void)

void pentiumPmcStop1 (void)

void pentiumPmcGet

(

long long int * pPmc0; /* performance monitoring counter 0 */

long long int * pPmc1; /* performance monitoring counter 1 */

)

void pentiumPmcGet0

(

long long int * pPmc0; /* performance monitoring counter 0 */

)

void pentiumPmcGet1

(

long long int * pPmc1; /* performance monitoring counter 1 */

VxWorks OS Libraries API Reference, 5.5
pentiumLib

208

)

void pentiumPmcReset (void)

void pentiumPmcReset0 (void)

void pentiumPmcReset1 (void)

pentiumPmcStart() starts both PMC0 and PMC1. pentiumPmcStart0() starts PMC0, and
pentiumPmcStart1() starts PMC1. pentiumPmcStop() stops both PMC0 and PMC1.
pentiumPmcStop0() stops PMC0, and pentiumPmcStop1() stops PMC1.
pentiumPmcGet() gets contents of PMC0 and PMC1. pentiumPmcGet0() gets contents
of PMC0, and pentiumPmcGet1() gets contents of PMC1. pentiumPmcReset() resets
both PMC0 and PMC1. pentiumPmcReset0() resets PMC0, and pentiumPmcReset1()
resets PMC1. PMC is enabled in sysHwInit(). Selected events in the default configuration
are PMC0 = number of hardware interrupts received and PMC1 = number of misaligned
data memory references.

MSR (Model Specific Registers)

The P5(Pentium), P6(PentiumPro, II, III), and P7(Pentium4) family processors contain a
model-specific registers (MSRs). These registers are implementation specific. They are
provided to control a variety of hardware and software related features including the
performance monitoring, the debug extensions, the machine check architecture, etc.

There is one routine - pentiumMsrInit() - to initialize all the MSRs. This routine initializes
all the MSRs in the processor and works on either P5, P6 or P7 family processors.

MCA (Machine Check Architecture)

The P5(Pentium), P6(PentiumPro, II, III), and P7(Pentium4) family processors have a
machine-check architecture that provides a mechanism for detecting and reporting
hardware (machine) errors, such as system bus errors, ECC errors, parity errors, cache
errors and TLB errors. It consists of a set of model-specific registers (MSRs) that are used
to set up machine checking and additional banks of MSRs for recording errors that are
detected. The processor signals the detection of a machine-check error by generating a
machine-check exception, which an abort class exception. The implementation of the
machine-check architecture, does not ordinarily permit the processor to be restarted
reliably after generating a machine-check exception. However, the machine-check
exception handler can collect information about the machine-check error from the
machine-check MSRs.

There is one routine - pentiumMcaEnable() - to enable or disable the MCA. The routine
enables or disables 1) the Machine Check Architecture and its Error Reporting register
banks 2) the Machine Check Exception by toggling the MCE bit in the CR4. This routine
works on either P5, P6 or P7 family.

SEE ALSO PentiumALib, Pentium, Pentium[234] Family Developer’s Manual

1: Libraries
pingLib

209

P

pentiumShow

NAME pentiumShow – Pentium and Pentium[234] specific show routines

ROUTINES pentiumMcaShow() - show MCA (Machine Check Architecture) registers
pentiumPmcShow() - show PMCs (Performance Monitoring Counters)
pentiumMsrShow() - show all the MSR (Model Specific Register)

DESCRIPTION This library provides Pentium and Pentium[234] specific show routines.

pentiumMcaShow() shows Machine Check Global Control Registers and Error Reporting
Register Banks. pentiumPmcShow() shows PMC0 and PMC1, and reset them if the
parameter zap is TRUE.

SEE ALSO VxWorks Programmer’s Guide: Configuration

pingLib

NAME pingLib – Packet InterNet Groper (PING) library

ROUTINES pingLibInit() - initialize the ping() utility
ping() - test that a remote host is reachable

DESCRIPTION This library contains the ping() utility, which tests the reachability of a remote host.

The routine ping() is typically called from the VxWorks shell to check the network
connection to another VxWorks target or to a UNIX host. ping() may also be used
programmatically by applications that require such a test. The remote host must be
running TCP/IP networking code that responds to ICMP echo request packets. The
ping() routine is re-entrant, thus may be called by many tasks concurrently.

The routine pingLibInit() initializes the ping() utility and allocates resources used by
this library. It is called automatically when INCLUDE_PING is defined.

VxWorks OS Libraries API Reference, 5.5
pipeDrv

210

pipeDrv

NAME pipeDrv – pipe I/O driver

ROUTINES pipeDrv() - initialize the pipe driver
pipeDevCreate() - create a pipe device
pipeDevDelete() - delete a pipe device

DESCRIPTION The pipe driver provides a mechanism that lets tasks communicate with each other
through the standard I/O interface. Pipes can be read and written with normal read() and
write() calls. The pipe driver is initialized with pipeDrv(). Pipe devices are created with
pipeDevCreate().

The pipe driver uses the VxWorks message queue facility to do the actual buffering and
delivering of messages. The pipe driver simply provides access to the message queue
facility through the I/O system. The main differences between using pipes and using
message queues directly are:

– pipes are named (with I/O device names).

– pipes use the standard I/O functions -- open(), close(), read(), write() -- while
message queues use the functions msgQSend() and msgQReceive().

– pipes respond to standard ioctl() functions.

– pipes can be used in a select() call.

– message queues have more flexible options for timeouts and message priorities.

– pipes are less efficient than message queues because of the additional overhead of the
I/O system.

INSTALLING THE DRIVER

Before using the driver, it must be initialized and installed by calling pipeDrv(). This
routine must be called before any pipes are created. It is called automatically by the root
task, usrRoot(), in usrConfig.c when the configuration macro INCLUDE_PIPES is defined.

CREATING PIPES Before a pipe can be used, it must be created with pipeDevCreate(). For example, to
create a device pipe /pipe/demo with up to 10 messages of size 100 bytes, the proper call
is:

pipeDevCreate ("/pipe/demo", 10, 100);

USING PIPES Once a pipe has been created it can be opened, closed, read, and written just like any other
I/O device. Often the data that is read and written to a pipe is a structure of some type.
Thus, the following example writes to a pipe and reads back the same data:

1: Libraries
pipeDrv

211

P

{

int fd;

struct msg outMsg;

struct msg inMsg;

int len;

fd = open ("/pipe/demo", O_RDWR);

write (fd, &outMsg, sizeof (struct msg));

len = read (fd, &inMsg, sizeof (struct msg));

close (fd);

}

The data written to a pipe is kept as a single message and will be read all at once in a
single read. If read() is called with a buffer that is smaller than the message being read,
the remainder of the message will be discarded. Thus, pipe I/O is “message oriented”
rather than “stream oriented.” In this respect, VxWorks pipes differ significantly from
UNIX pipes which are stream oriented and do not preserve message boundaries.

WRITING TO PIPES FROM INTERRUPT SERVICE ROUTINES

Interrupt service routines (ISR) can write to pipes, providing one of several ways in which
ISRs can communicate with tasks. For example, an interrupt service routine may handle
the time-critical interrupt response and then send a message on a pipe to a task that will
continue with the less critical aspects. However, the use of pipes to communicate from an
ISR to a task is now discouraged in favor of the direct message queue facility, which offers
lower overhead (see the manual entry for msgQLib for more information).

SELECT CALLS An important feature of pipes is their ability to be used in a select() call. The select()
routine allows a task to wait for input from any of a selected set of I/O devices. A task can
use select() to wait for input from any combination of pipes, sockets, or serial devices. See
the manual entry for select().

IOCTL FUNCTIONS Pipe devices respond to the following ioctl() functions. These functions are defined in the
header file ioLib.h.

FIOGETNAME
Gets the file name of fd and copies it to the buffer referenced by nameBuf:

status = ioctl (fd, FIOGETNAME, &nameBuf);

FIONREAD
Copies to nBytesUnread the number of bytes remaining in the first message in the
pipe:

status = ioctl (fd, FIONREAD, &nBytesUnread);

FIONMSGS
Copies to nMessages the number of discrete messages remaining in the pipe:

status = ioctl (fd, FIONMSGS, &nMessages);

VxWorks OS Libraries API Reference, 5.5
pppHookLib

212

FIOFLUSH
Discards all messages in the pipe and releases the memory block that contained them:

status = ioctl (fd, FIOFLUSH, 0);

INCLUDE FILES ioLib.h, pipeDrv.h

SEE ALSO select(), msgQLib, VxWorks Programmer’s Guide: I/O System

pppHookLib

NAME pppHookLib – PPP hook library

ROUTINES pppHookAdd() - add a hook routine on a unit basis
pppHookDelete() - delete a hook routine on a unit basis

DESCRIPTION This library provides routines to add and delete connect and disconnect routines. The
connect routine, added on a unit basis, is called before the initial phase of link option
negotiation. The disconnect routine, added on a unit basis is called before the PPP
connection is closed. These connect and disconnect routines can be used to hook up
additional software. If either connect or disconnect hook returns ERROR, the connection is
terminated immediately.

This library is automatically linked into the VxWorks system image when the
configuration macro INCLUDE_PPP is defined.

INCLUDE FILES pppLib.h

SEE ALSO pppLib, VxWorks Programmer’s Guide: Network

pppLib

NAME pppLib – Point-to-Point Protocol library

ROUTINES pppInit() - initialize a PPP network interface
pppDelete() - delete a PPP network interface

DESCRIPTION This library implements the VxWorks Point-to-Point Protocol (PPP) facility. PPP allows
VxWorks to communicate with other machines by sending encapsulated multi-protocol
datagrams over a point-to-point serial link. VxWorks may have up to 16 PPP interfaces

1: Libraries
pppLib

213

P

active at any one time. Each individual interface (or “unit”) operates independent of the
state of other PPP units.

USER-CALLABLE ROUTINES

PPP network interfaces are initialized using the pppInit() routine. This routine’s
parameters specify the unit number, the name of the serial interface (tty) device, Internet
(IP) addresses for both ends of the link, the interface baud rate, an optional pointer to a
configuration options structure, and an optional pointer to a configuration options file.
The pppDelete() routine deletes a specified PPP interface.

DATA ENCAPSULATION

PPP uses HDLC-like framing, in which five header and three trailer octets are used to
encapsulate each datagram. In environments where bandwidth is at a premium, the total
encapsulation may be shortened to four octets with the available address/control and
protocol field compression options.

LINK CONTROL PROTOCOL

PPP incorporates a link-layer protocol called Link Control Protocol (LCP), which is
responsible for the link set up, configuration, and termination. LCP provides for
automatic negotiation of several link options, including datagram encapsulation format,
user authentication, and link monitoring (LCP echo request/reply).

NETWORK CONTROL PROTOCOLS

PPP’s Network Control Protocols (NCP) allow PPP to support different network
protocols. VxWorks supports only one NCP, the Internet Protocol Control Protocol
(IPCP), which allows the establishment and configuration of IP over PPP links. IPCP
supports the negotiation of IP addresses and TCP/IP header compression (commonly
called “VJ” compression).

AUTHENTICATION The VxWorks PPP implementation supports two separate user authentication protocols:
the Password Authentication Protocol (PAP) and the Challenge-Handshake
Authentication Protocol (CHAP). While PAP only authenticates at the time of link
establishment, CHAP may be configured to periodically require authentication
throughout the life of the link. Both protocols are independent of one another, and either
may be configured in through the PPP options structure or options file.

IMPLEMENTATION Each VxWorks PPP interface is handled by two tasks: the daemon task (tPPPunit) and the
write task (tPPPunitWrt).

The daemon task controls the various PPP control protocols (LCP, IPCP, CHAP, and
PAP). Each PPP interface has its own daemon task that handles link set up, negotiation of
link options, link-layer user authentication, and link termination. The daemon task is not
used for the actual sending and receiving of IP datagrams.

The write task controls the transmit end of a PPP driver interface. Each PPP interface has
its own write task that handles the actual sending of a packet by writing data to the tty

VxWorks OS Libraries API Reference, 5.5
pppSecretLib

214

device. Whenever a packet is ready to be sent out, the PPP driver activates this task by
giving a semaphore. The write task then completes the packet framing and writes the
packet data to the tty device.

The receive end of the PPP interface is implemented as a “hook” into the tty device driver.
The tty driver’s receive interrupt service routine (ISR) calls the PPP driver’s ISR every time
a character is received on the serial channel. When the correct PPP framing character
sequence is received, the PPP ISR schedules the tNetTask task to call the PPP input
routine. The PPP input routine reads a whole PPP packet out of the tty ring buffer and
processes it according to PPP framing rules. The packet is then queued either to the IP
input queue or to the PPP daemon task input queue.

INCLUDE FILES pppLib.h

SEE ALSO ifLib, tyLib, pppSecretLib, pppShow, VxWorks Programmer’s Guide: Network, RFC-1332:
The PPP Internet Protocol Control Protocol (IPCP), RFC-1334: PPP Authentication Protocols,
RFC-1548: The Point-to-Point Protocol (PPP), RFC-1549: PPP in HDLC Framing

ACKNOWLEDGEMENT

This program is based on original work done by Paul Mackerras of Australian National
University, Brad Parker, Greg Christy, Drew D. Perkins, Rick Adams, and Chris Torek.

pppSecretLib

NAME pppSecretLib – PPP authentication secrets library

ROUTINES pppSecretAdd() - add a secret to the PPP authentication secrets table
pppSecretDelete() - delete a secret from the PPP authentication secrets table

DESCRIPTION This library provides routines to create and manipulate a table of “secrets” for use with
Point-to-Point Protocol (PPP) user authentication protocols. The secrets in the secrets table
can be searched by peers on a PPP link so that one peer (client) can send a secret word to
the other peer (server). If the client cannot find a suitable secret when required to do so, or
the secret received by the server is not valid, the PPP link may be terminated.

This library is automatically linked into the VxWorks system image when the
configuration macro INCLUDE_PPP is defined.

INCLUDE FILES pppLib.h

SEE ALSO pppLib, pppShow, VxWorks Programmer’s Guide: Network

1: Libraries
proxyArpLib

215

P

pppShow

NAME pppShow – Point-to-Point Protocol show routines

ROUTINES pppInfoShow() - display PPP link status information
pppInfoGet() - get PPP link status information
pppstatShow() - display PPP link statistics
pppstatGet() - get PPP link statistics
pppSecretShow() - display the PPP authentication secrets table

DESCRIPTION This library provides routines to show Point-to-Point Protocol (PPP) link status
information and statistics. Also provided are routines that programmatically access this
same information.

This library is automatically linked into the VxWorks system image when the
configuration macro INCLUDE_PPP is defined.

INCLUDE FILES pppLib.h

SEE ALSO pppLib, VxWorks Programmer’s Guide: Network

proxyArpLib

NAME proxyArpLib – proxy Address Resolution Protocol (ARP) server library

ROUTINES proxyArpLibInit() - initialize proxy ARP
proxyNetCreate() - create a proxy ARP network
proxyNetDelete() - delete a proxy network
proxyNetShow() - show proxy ARP networks
proxyPortFwdOn() - enable broadcast forwarding for a particular port
proxyPortFwdOff() - disable broadcast forwarding for a particular port
proxyPortShow() - show ports enabled for broadcast forwarding

DESCRIPTION This library implements a proxy ARP server that uses the Address Resolution Protocol
(ARP) to make physically distinct networks appear as one logical network (that is, the
networks share the same address space). The server forwards ARP messages between the
separate networks so that hosts on the main network can access hosts on the proxy
network without altering their routing tables.

The proxyArpLibInit() initializes the server and adds this library to the VxWorks image.
This happens automatically if INCLUDE_PROXY_SERVER is defined at the time the image

VxWorks OS Libraries API Reference, 5.5
proxyLib

216

is built. The proxyNetCreate() and proxyNetDelete() routines will enable and disable the
forwarding of ARP messages between networks. The proxyNetShow() routine displays
the current set of proxy networks and the main network and known clients for each.

By default, this server automatically adds a client when it first detects an ARP message
from that host. A VxWorks target can also register as a client with the proxyReg() routine
and remove that registration with the proxyUnreg() routine. See the proxyLib manual
pages for details.

To minimize traffic on the main network, the proxy server will only forward broadcast
packets to the specified destination ports visible with the proxyPortShow() routine. The
proxyPortFwdOn() and proxyPortFwdOff() routines will alter the current settings.
Initially, broadcast forwarding is not active for any ports.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, the functions you assign for either proxyArpHook or
proxyBroadcastHook must be valid within the kernel protection domain. This restriction
does not apply under non-AE versions of VxWorks.

INCLUDE FILES proxyArpLib.h

SEE ALSO proxyLib, RFC 925, RFC 1027, RFC 826

proxyLib

NAME proxyLib – proxy Address Resolution Protocol (ARP) client library

ROUTINES proxyReg() - register a proxy client
proxyUnreg() - unregister a proxy client

DESCRIPTION This library implements the client side of the proxy Address Resolution Protocol (ARP). It
allows a VxWorks target to register itself as a proxy client by calling proxyReg() and to
unregister itself by calling proxyUnreg().

Both commands take an interface name and an IP address as arguments. The interface,
ifName, specifies the interface through which to send the message. ifName must be a
backplane interface. proxyAddr is the IP address associated with the interface ifName.

To use this feature, include INCLUDE_PROXY_CLIENT.

INCLUDE FILES proxyArpLib.h

SEE ALSO proxyArpLib

1: Libraries
pthreadLib

217

P

pthreadLib

NAME pthreadLib – POSIX 1003.1c thread library interfaces

ROUTINES pthreadLibInit() - initialize POSIX threads support
pthread_sigmask() - change and/or examine calling thread’s signal mask (POSIX)
pthread_kill() - send a signal to a thread (POSIX)
pthread_mutexattr_init() - initialize mutex attributes object (POSIX)
pthread_mutexattr_destroy() - destroy mutex attributes object (POSIX)
pthread_mutexattr_setprotocol() - set protocol attribute in mutex attributes object
(POSIX)
pthread_mutexattr_getprotocol() - get value of protocol in mutex attributes object
(POSIX)
pthread_mutexattr_setprioceiling() - set prioceiling attribute in mutex attributes object
(POSIX)
pthread_mutexattr_getprioceiling() - get the current value of the prioceiling attribute in a
mutex attributes object (POSIX)
pthread_mutex_getprioceiling() - get the value of the prioceiling attribute of a mutex
(POSIX)
pthread_mutex_setprioceiling() - dynamically set the prioceiling attribute of a mutex
(POSIX)
pthread_mutex_init() - initialize mutex from attributes object (POSIX)
pthread_mutex_destroy() - destroy a mutex (POSIX)
pthread_mutex_lock() - lock a mutex (POSIX)
pthread_mutex_trylock() - lock mutex if it is available (POSIX)
pthread_mutex_unlock() - unlock a mutex (POSIX)
pthread_condattr_init() - initialize a condition attribute object (POSIX)
pthread_condattr_destroy() - destroy a condition attributes object (POSIX)
pthread_cond_init() - initialize condition variable (POSIX)
pthread_cond_destroy() - destroy a condition variable (POSIX)
pthread_cond_signal() - unblock a thread waiting on a condition (POSIX)
pthread_cond_broadcast() - unblock all threads waiting on a condition (POSIX)
pthread_cond_wait() - wait for a condition variable (POSIX)
pthread_cond_timedwait() - wait for a condition variable with a timeout (POSIX)
pthread_attr_setscope() - set contention scope for thread attributes (POSIX)
pthread_attr_getscope() - get contention scope from thread attributes (POSIX)
pthread_attr_setinheritsched() - set inheritsched attribute in thread attribute object
(POSIX)
pthread_attr_getinheritsched() - get current value if inheritsched attribute in thread
attributes object (POSIX)
pthread_attr_setschedpolicy() - set schedpolicy attribute in thread attributes object
(POSIX)
pthread_attr_getschedpolicy() - get schedpolicy attribute from thread attributes object
(POSIX)

VxWorks OS Libraries API Reference, 5.5
pthreadLib

218

pthread_attr_setschedparam() - set schedparam attribute in thread attributes object
(POSIX)
pthread_attr_getschedparam() - get value of schedparam attribute from thread attributes
object (POSIX)
pthread_getschedparam() - get value of schedparam attribute from a thread (POSIX)
pthread_setschedparam() - dynamically set schedparam attribute for a thread (POSIX)
pthread_attr_init() - initialize thread attributes object (POSIX)
pthread_attr_destroy() - destroy a thread attributes object (POSIX)
pthread_attr_setname() - set name in thread attribute object
pthread_attr_getname() - get name of thread attribute object
pthread_attr_setstacksize() - set stacksize attribute in thread attributes
pthread_attr_getstacksize() - get stack value of stacksize attribute from thread attributes
object (POSIX)
pthread_attr_setstackaddr() - set stackaddr attribute in thread attributes object (POSIX)
pthread_attr_getstackaddr() - get value of stackaddr attribute from thread attributes
object (POSIX)
pthread_attr_setdetachstate() - set detachstate attribute in thread attributes object
(POSIX)
pthread_attr_getdetachstate() - get value of detachstate attribute from thread attributes
object (POSIX)
pthread_create() - create a thread (POSIX)
pthread_detach() - dynamically detach a thread (POSIX)
pthread_join() - wait for a thread to terminate (POSIX)
pthread_exit() - terminate a thread (POSIX)
pthread_equal() - compare thread IDs (POSIX)
pthread_self() - get the calling thread’s ID (POSIX)
pthread_once() - dynamic package initialization (POSIX)
pthread_key_create() - create a thread specific data key (POSIX)
pthread_setspecific() - set thread specific data (POSIX)
pthread_getspecific() - get thread specific data (POSIX)
pthread_key_delete() - delete a thread specific data key (POSIX)
pthread_cancel() - cancel execution of a thread (POSIX)
pthread_setcancelstate() - set cancellation state for calling thread (POSIX)
pthread_setcanceltype() - set cancellation type for calling thread (POSIX)
pthread_testcancel() - create a cancellation point in the calling thread (POSIX)
pthread_cleanup_push() - pushes a routine onto the cleanup stack (POSIX)
pthread_cleanup_pop() - pop a cleanup routine off the top of the stack (POSIX)

DESCRIPTION This library provides an implementation of POSIX 1003.1c threads for VxWorks. This
provides an increased level of compatibility between VxWorks applications and those
written for other operating systems that support the POSIX threads model (often called
pthreads).

VxWorks is a task based operating system, rather than one implementing the process
model in the POSIX sense. As a result of this, there are a few restrictions in the
implementation, but in general, since tasks are roughly equivalent to threads, the pthreads

1: Libraries
pthreadLib

219

P

support maps well onto VxWorks. The restrictions are explained in more detail in the
following paragraphs.

CONFIGURATION To add POSIX threads support to a system, the component INCLUDE_POSIX_PTHREADS
must be added.

Threads support also requires the POSIX scheduler to be included (see schedPxLib for
more detail).

THREADS A thread is essentially a VxWorks task, with some additional characteristics. The first is
detachability, where the creator of a thread can optionally block until the thread exits. The
second is cancelability, where one task or thread can cause a thread to exit, possibly
calling cleanup handlers. The next is private data, where data private to a thread is
created, accessed and deleted via keys. Each thread has a unique ID. A thread’s ID is
different than it’s VxWorks task ID.

MUTEXES Included with the POSIX threads facility is a mutual exclusion facility, or mutex. These are
functionally similar to the VxWorks mutex semaphores (see semMLib for more detail),
and in fact are implemented using a VxWorks mutex semaphore. The advantage they
offer, like all of the POSIX libraries, is the ability to run software designed for POSIX
platforms under VxWorks.

There are two types of locking protocols available, PTHREAD_PRIO_INHERIT and
PTHREAD_PRIO_PROTECT. PTHREAD_PRIO_INHERIT maps to a semaphore create with
SEM_PRIO_INHERIT set (see semMCreate for more detail). A thread locking a mutex
created with its protocol attribute set to PTHREAD_PRIO_PROTECT has its priority
elevated to that of the prioceiling attribute of the mutex. When the mutex is unlocked, the
priority of the calling thread is restored to its previous value.

CONDITION VARIABLES

Condition variables are another synchronization mechanism that is included in the POSIX
threads library. A condition variable allows threads to block until some condition is met.
There are really only two basic operations that a condition variable can be involved in:
waiting and signalling. Condition variables are always associated with a mutex.

A thread can wait for a condition to become true by taking the mutex and then calling
pthread_cond_wait(). That function will release the mutex and wait for the condition to
be signalled by another thread. When the condition is signalled, the function will
re-acquire the mutex and return to the caller.

Condition variable support two types of signalling: single thread wake-up using
pthread_cond_signal(), and multiple thread wake-up using pthread_cond_broadcast().
The latter of these will unblock all threads that were waiting on the specified condition
variable.

It should be noted that condition variable signals are not related to POSIX signals. In fact,
they are implemented using VxWorks semaphores.

VxWorks OS Libraries API Reference, 5.5
pthreadLib

220

RESOURCE COMPETITION

All tasks, and therefore all POSIX threads, compete for CPU time together. For that reason
the contention scope thread attribute is always PTHREAD_SCOPE_SYSTEM.

NO VXWORKS EQUIVALENT

Since there is no notion of a process (in the POSIX sense), there is no notion of sharing of
locks (mutexes) and condition variables between processes. As a result, the POSIX symbol
_POSIX_THREAD_PROCESS_SHARED is not defined in this implementation, and the
routines pthread_condattr_getpshared(), pthread_condattr_setpshared(),
pthread_mutexattr_getpshared() are not implemented.

Also, since there are no processes in VxWorks, fork(), wait(), and pthread_atfork() are
unimplemented.

VxWorks does not have password, user, or group databases, therefore there are no
implementations of getlogin(), getgrgid(), getpwnam(), getpwuid(), getlogin_r(),
getgrgid_r(), getpwnam_r(), and getpwuid_r().

SCHEDULING The default scheduling policy for a created thread is inherited from the system setting at
the time of creation.

Scheduling policies under VxWorks are global; they are not set per-thread, as the POSIX
model describes. As a result, the pthread scheduling routines, as well as the POSIX
scheduling routines native to VxWorks, do not allow you to change the scheduling policy.
Under VxWorks you may set the scheduling policy in a thread, but if it does not match the
system’s scheduling policy, an error is returned.

The detailed explanation for why this error occurs is a bit convoluted: technically the
scheduling policy is an attribute of a thread (in that there are
pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions that define
what the thread’s scheduling policy will be once it is created, and not what any thread
should do at the time they are called). A situation arises where the scheduling policy in
force at the time of a thread’s creation is not the same as set in its attributes. In this case
pthread_create() fails with an otherwise undocumented error ENOTTY.

The bottom line is that under VxWorks, if you wish to specify the scheduling policy of a
thread, you must set the desired global scheduling policy to match. Threads must then
adhere to that scheduling policy, or use the PTHREAD_INHERIT_SCHED mode to inherit
the current mode and creator’s priority.

CREATION AND CANCELLATION

Each time a thread is created, the pthreads library allocates resources on behalf of it. Each
time a VxWorks task (i.e., one not created by the pthread_create() function) uses a POSIX
threads feature such as thread private data or pushes a cleanup handler, the pthreads
library creates resources on behalf of that task as well.

1: Libraries
pthreadLib

221

P

Asynchronous thread cancellation is accomplished by way of a signal. A special signal,
SIGCANCEL, has been set aside in this version of VxWorks for this purpose. Applications
should take care not to block or handle SIGCANCEL.

SUMMARY MATRIX

pthread function Implemented? Note(s)

pthread_attr_destroy Yes
pthread_attr_getdetachstate Yes
pthread_attr_getinheritsched Yes
pthread_attr_getschedparam Yes
pthread_attr_getschedpolicy Yes
pthread_attr_getscope Yes
pthread_attr_getstackaddr Yes
pthread_attr_getstacksize Yes
pthread_attr_init Yes
pthread_attr_setdetachstate Yes
pthread_attr_setinheritsched Yes
pthread_attr_setschedparam Yes
pthread_attr_setschedpolicy Yes
pthread_attr_setscope Yes 2
pthread_attr_setstackaddr Yes
pthread_attr_setstacksize Yes
pthread_atfork No 1
pthread_cancel Yes 5
pthread_cleanup_pop Yes
pthread_cleanup_push Yes
pthread_condattr_destroy Yes
pthread_condattr_getpshared No 3
pthread_condattr_init Yes
pthread_condattr_setpshared No 3
pthread_cond_broadcast Yes
pthread_cond_destroy Yes
pthread_cond_init Yes
pthread_cond_signal Yes
pthread_cond_timedwait Yes
pthread_cond_wait Yes
pthread_create Yes
pthread_detach Yes
pthread_equal Yes
pthread_exit Yes
pthread_getschedparam Yes 4

VxWorks OS Libraries API Reference, 5.5
pthreadLib

222

NOTES 1 The pthread_atfork() function is not implemented since fork() is not implemented in
VxWorks.

2 The contention scope thread scheduling attribute is always
PTHREAD_SCOPE_SYSTEM, since threads (i.e., tasks) contend for resources with all
other threads in the system.

3 The routines pthread_condattr_getpshared(), pthread_attr_setpshared(),
pthread_mutexattr_getpshared() and pthread_mutexattr_setpshared() are not

pthread_getspecific Yes
pthread_join Yes
pthread_key_create Yes
pthread_key_delete Yes
pthread_kill Yes
pthread_once Yes
pthread_self Yes
pthread_setcancelstate Yes
pthread_setcanceltype Yes
pthread_setschedparam Yes 4
pthread_setspecific Yes
pthread_sigmask Yes
pthread_testcancel Yes
pthread_mutexattr_destroy Yes
pthread_mutexattr_getprioceiling Yes
pthread_mutexattr_getprotocol Yes
pthread_mutexattr_getpshared No 3
pthread_mutexattr_init Yes
pthread_mutexattr_setprioceiling Yes
pthread_mutexattr_setprotocol Yes
pthread_mutexattr_setpshared No 3
pthread_mutex_destroy Yes
pthread_mutex_getprioceiling Yes
pthread_mutex_init Yes
pthread_mutex_lock Yes
pthread_mutex_setprioceiling Yes
pthread_mutex_trylock Yes
pthread_mutex_unlock Yes
getlogin_r No 6
getgrgid_r No 6
getpwnam_r No 6
getpwuid_r No 6

pthread function Implemented? Note(s)

1: Libraries
ptyDrv

223

P

supported, since these interfaces describe how condition variables and mutexes relate
to a process, and VxWorks does not implement a process model.

4 The default scheduling policy is inherited from the current system setting. The POSIX
model of per-thread scheduling policies is not supported, since a basic tenet of the
design of VxWorks is a system-wide scheduling policy.

5 Thread cancellation is supported in appropriate pthread routines and those routines
already supported by VxWorks. However, the complete list of cancellation points
specified by POSIX is not supported because routines such as msync(), fcntl(),
tcdrain(), and wait() are not implemented by VxWorks.

6 The routines getlogin_r(), getgrgid_r(), getpwnam_r(), and getpwuid_r() are not
implemented.

INCLUDE FILES pthread.h

SEE ALSO taskLib, semMLib, semPxLib, VxWorks Programmer’s Guide: Multitasking

ptyDrv

NAME ptyDrv – pseudo-terminal driver

ROUTINES ptyDrv() - initialize the pseudo-terminal driver
ptyDevCreate() - create a pseudo terminal
ptyDevRemove() - destroy a pseudo terminal
ptyShow() - show the state of the Pty Buffers

DESCRIPTION The pseudo-terminal driver provides a tty-like interface between a master and slave
process, typically in network applications. The master process simulates the “hardware”
side of the driver (e.g., a USART serial chip), while the slave process is the application
program that normally talks to the driver.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. However,
the following routines must be called directly: ptyDrv() to initialize the driver,
ptyDevCreate() to create devices, and ptyDevRemove() to remove an existing device.

INITIALIZING THE DRIVER

Before using the driver, it must be initialized by calling ptyDrv(). This routine must be
called before any reads, writes, or calls to ptyDevCreate().

VxWorks OS Libraries API Reference, 5.5
ptyDrv

224

CREATING PSEUDO-TERMINAL DEVICES

Before a pseudo-terminal can be used, it must be created by calling ptyDevCreate():

STATUS ptyDevCreate

(

char *name, /* name of pseudo terminal */

int rdBufSize, /* size of terminal read buffer */

int wrtBufSize /* size of write buffer */

)

For instance, to create the device pair /pty/0.M and /pty/0.S, with read and write buffer
sizes of 512 bytes, the proper call would be:

ptyDevCreate ("/pty/0.", 512, 512);

When ptyDevCreate() is called, two devices are created, a master and slave. One is called
nameM and the other nameS. They can then be opened by the master and slave processes.
Data written to the master device can then be read on the slave device, and vice versa.
Calls to ioctl() may be made to either device, but they should only apply to the slave side,
since the master and slave are the same device.

The ptyDevRemove() routine will delete an existing pseudo-terminal device and reclaim
the associated memory. Any file descriptors associated with the device will be closed.

IOCTL FUNCTIONS Pseudo-terminal drivers respond to the same ioctl() functions used by tty devices. These
functions are defined in ioLib.h and documented in the manual entry for tyLib.

INCLUDE FILES ioLib.h, ptyDrv.h

SEE ALSO tyLib, VxWorks Programmer’s Guide: I/O System

1: Libraries
ramDrv

225

R

ramDiskCbio

NAME ramDiskCbio – RAM Disk Cached Block Driver

ROUTINES ramDiskDevCreate() - Initialize a RAM Disk device

DESCRIPTION This module implements a RAM-disk driver with a CBIO interface which can be directly
utilized by dosFsLib without the use of the Disk Cache module dcacheCbio. This results
in an ultra-compact RAM footprint. This module is implemented using the CBIO API (see
cbioLib())

This module is delivered in source as a functional example of a basic CBIO module.

WARNING: This module may be used for SRAM or other non-volatile RAM cards to store
a file system, but that configuration will be susceptible to data corruption in events of
system failure which are not normally observed with magnetic disks, i.e., using this driver
with an SRAM card can not guard against interruptions in midst of updating a particular
sector, resulting in that sector become internally inconsistent.

SEE ALSO dosFsLib, cbioLib

ramDrv

NAME ramDrv – RAM disk driver

ROUTINES ramDrv() - prepare a RAM disk driver for use (optional)
ramDevCreate() - create a RAM disk device

DESCRIPTION This driver emulates a disk driver, but actually keeps all data in memory. The memory
location and size are specified when the “disk” is created. The RAM disk feature is useful
when data must be preserved between boots of VxWorks or when sharing data between
CPUs.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. Two
routines, however, can be called directly by the user. The first, ramDrv(), provides no real
function except to parallel the initialization function found in true disk device drivers. A
call to ramDrv() is not required to use the RAM disk driver. However, the second routine,
ramDevCreate(), must be called directly to create RAM disk devices.

VxWorks OS Libraries API Reference, 5.5
rawFsLib

226

Once the device has been created, it must be associated with a name and file system
(dosFs, rt11Fs, or rawFs). This is accomplished by passing the value returned by
ramDevCreate(), a pointer to a block device structure, to the file system’s device
initialization routine or make-file-system routine. See the manual entry ramDevCreate()
for a more detailed discussion.

IOCTL FUNCTIONS The RAM driver is called in response to ioctl() codes in the same manner as a normal disk
driver. When the file system is unable to handle a specific ioctl() request, it is passed to
the ramDrv driver. Although there is no physical device to be controlled, ramDrv does
handle a FIODISKFORMAT request, which always returns OK. All other ioctl() requests
return an error and set the task’s errno to S_ioLib_UNKNOWN_REQUEST.

INCLUDE FILE ramDrv.h

SEE ALSO dosFsDevInit(), dosFsMkfs(), rt11FsDevInit(), rt11FsMkfs(), rawFsDevInit(), VxWorks
Programmer’s Guide: I/O System, Local File Systems

rawFsLib

NAME rawFsLib – raw block device file system library

ROUTINES rawFsDevInit() - associate a block device with raw volume functions
rawFsInit() - prepare to use the raw volume library
rawFsModeChange() - modify the mode of a raw device volume
rawFsReadyChange() - notify rawFsLib of a change in ready status
rawFsVolUnmount() - disable a raw device volume

DESCRIPTION This library provides basic services for disk devices that do not use a standard file or
directory structure. The disk volume is treated much like a large file. Portions of it may be
read, written, or the current position within the disk may be changed. However, there is
no high-level organization of the disk into files or directories.

USING THIS LIBRARY

The various routines provided by the VxWorks raw “file system” (rawFs) may be
separated into three broad groups: general initialization, device initialization, and file
system operation.

The rawFsInit() routine is the principal initialization function; it need only be called once,
regardless of how many rawFs devices will be used.

A separate rawFs routine is used for device initialization. For each rawFs device,
rawFsDevInit() must be called to install the device.

1: Libraries
rawFsLib

227

R

Several routines are provided to inform the file system of changes in the system
environment. The rawFsModeChange() routine may be used to modify the readability or
writability of a particular device. The rawFsReadyChange() routine is used to inform the
file system that a disk may have been swapped and that the next disk operation should
first remount the disk. The rawFsVolUnmount() routine informs the file system that a
particular device should be synchronized and unmounted, generally in preparation for a
disk change.

INITIALIZATION Before any other routines in rawFsLib can be used, rawFsInit() must be called to initialize
the library. This call specifies the maximum number of raw device file descriptors that can
be open simultaneously and allocates memory for that many raw file descriptors. Any
attempt to open more raw device file descriptors than the specified maximum will result
in errors from open() or creat().

During the rawFsInit() call, the raw device library is installed as a driver in the I/O
system driver table. The driver number associated with it is then placed in a global
variable, rawFsDrvNum.

This initialization is enabled when the configuration macro INCLUDE_RAWFS is defined;
rawFsInit() is then called from the root task, usrRoot(), in usrConfig.c.

DEFINING A RAW DEVICE

To use this library for a particular device, the device structure used by the device driver
must contain, as the very first item, a CBIO device description structure (CBIO_DEV) or
block device description structure (BLK_DEV). This must be initialized before calling
rawFsDevInit().

The rawFsDevInit() routine is used to associate a device with the rawFsLib functions.
The pVolName parameter expected by rawFsDevInit() is a pointer to a name string, to be
used to identify the device. This will serve as the pathname for I/O operations which
operate on the device. This name will appear in the I/O system device table, which may
be displayed using iosDevShow().

The syntax of the rawFsDevInit() routine is as follows:

rawFsDevInit

(

char *pVolName, /* name to be used for volume - iosDevAdd */

BLK_DEV *pDevice /* pointer to BLK_DEV device or a CBIO_DEV_ID */

)

Unlike the VxWorks DOS file system, raw volumes do not require an FIODISKINIT ioctl()
function to initialize volume structures. (Such an ioctl() call can be made for a raw
volume, but it has no effect.) As a result, there is no “make file system” routine for raw
volumes (for comparison, see the manual entry for rawFsMkfs()).

When rawFsLib receives a request from the I/O system, after rawFsDevInit() has been
called, it calls the appropriate device driver routines to access the device.

VxWorks OS Libraries API Reference, 5.5
rawFsLib

228

MULTIPLE LOGICAL DEVICES

The block number passed to the block read and write routines is an absolute number,
starting from block 0 at the beginning of the device. If desired, the driver may add an
offset from the beginning of the physical device before the start of the logical device. This
would normally be done by keeping an offset parameter in the driver’s device-specific
structure, and adding the proper number of blocks to the block number passed to the read
and write routines. See the ramDrv manual entry for an example.

UNMOUNTING VOLUMES (CHANGING DISKS)

A disk should be unmounted before it is removed. When unmounted, any modified data
that has not been written to the disk will be written out. A disk may be unmounted by
either calling rawFsVolUnmount() directly or calling ioctl() with a FIODISKCHANGE
function code.

There may be open file descriptors to a raw device volume when it is unmounted. If this is
the case, those file descriptors will be marked as obsolete. Any attempts to use them for
further I/O operations will return an S_rawFsLib_FD_OBSOLETE error. To free such file
descriptors, use the close() call, as usual. This will successfully free the descriptor, but
will still return S_rawFsLib_FD_OBSOLETE.

SYNCHRONIZING VOLUMES

A disk should be “synchronized” before it is unmounted. To synchronize a disk means to
write out all buffered data (the write buffers associated with open file descriptors), so that
the disk is updated. It may or may not be necessary to explicitly synchronize a disk,
depending on how (or if) the driver issues the rawFsVolUnmount() call.

When rawFsVolUnmount() is called, an attempt will be made to synchronize the device
before unmounting. However, if the rawFsVolUnmount() call is made by a driver in
response to a disk being removed, it is obviously too late to synchronize. Therefore, a
separate ioctl() call specifying the FIOSYNC function should be made before the disk is
removed. (This could be done in response to an operator command.)

If the disk will still be present and writable when rawFsVolUnmount() is called, it is not
necessary to first synchronize the disk. In all other circumstances, failure to synchronize
the volume before unmounting may result in lost data.

IOCTL FUNCTIONS The VxWorks raw block device file system supports the following ioctl() functions. The
functions listed are defined in the header ioLib.h.

FIODISKFORMAT
No file system is initialized on the disk by this request. This ioctl is passed directly
down to the driver-provided function:

fd = open ("DEV1:", O_WRONLY);

status = ioctl (fd, FIODISKFORMAT, 0);

FIODISKINIT
Initializes a raw file system on the disk volume. Since there are no file system

1: Libraries
rawFsLib

229

R

structures, this functions performs no action. It is provided only for compatibility
with other VxWorks file systems.

FIODISKCHANGE
Announces a media change. It performs the same function as rawFsReadyChange().
This function may be called from interrupt level:

status = ioctl (fd, FIODISKCHANGE, 0);

FIOUNMOUNT
Unmounts a disk volume. It performs the same function as rawFsVolUnmount().
This function must not be called from interrupt level:

status = ioctl (fd, FIOUNMOUNT, 0);

FIOGETNAME
Gets the file name of the file descriptor and copies it to the buffer nameBuf:

status = ioctl (fd, FIOGETNAME, &nameBuf);

FIOSEEK
Sets the current byte offset on the disk to the position specified by newOffset:

status = ioctl (fd, FIOSEEK, newOffset);

FIOWHERE
Returns the current byte position from the start of the device for the specified file
descriptor. This is the byte offset of the next byte to be read or written. It takes no
additional argument:

position = ioctl (fd, FIOWHERE, 0);

FIOFLUSH
Writes all modified file descriptor buffers to the physical device.

status = ioctl (fd, FIOFLUSH, 0);

FIOSYNC
Performs the same function as FIOFLUSH.

FIONREAD
Copies to unreadCount the number of bytes from the current file position to the end of
the device:

status = ioctl (fd, FIONREAD, &unreadCount);

INCLUDE FILES rawFsLib.h

SEE ALSO ioLib, iosLib, rawFsLib, ramDrv, VxWorks Programmer’s Guide: I/O System, Local File
Systems

VxWorks OS Libraries API Reference, 5.5
rBuffLib

230

rBuffLib

NAME rBuffLib – dynamic ring buffer (rBuff) library

ROUTINES wvRBuffMgrPrioritySet() - set the priority of the WindView rBuff manager
(WindView)

DESCRIPTION This library contains a routine for changing the default priority of the rBuff manager task.

SEE ALSO memLib, rngLib, VxWorks Programmer’s Guide: Basic OS

rdiscLib

NAME rdiscLib – ICMP router discovery server library

ROUTINES rdiscLibInit() - Initialize router discovery
rdiscInit() - initialize the ICMP router discovery function
sendAdvert() - send an advertisement to one location
sendAdvertAll() - send an advertisement to all active locations
rdiscTimerEvent() - called after watchdog timeout
rdisc() - implement the ICMP router discovery function
rdCtl() - implement the ICMP router discovery control function
rdiscIfReset() - check for new or removed interfaces for router discovery

DESCRIPTION rdiscLib contains code to implement ICMP Router Discovery. This feature allows routers
to advertise an address to the hosts on each of the routers interfaces. This address is
placed by the host into its route table as a default router. A host may also solicit the
address by multicasting the request to the ALL_ROUTERS address (224.0.0.2), to which a
router would respond with a unicast version of the advertisement.

There are three routines in this implementation of router discovery: rdiscInit(), rdisc()
and rdCtl(). rdiscInit() is the initialization routine, rdisc() handles the periodic
transmission of advertisements and processing of solicitations, and rdCtl() sets/gets user
parameters.

1: Libraries
remLib

231

R

rebootLib

NAME rebootLib – reboot support library

ROUTINES reboot() - reset network devices and transfer control to boot ROMs
rebootHookAdd() - add a routine to be called at reboot

DESCRIPTION This library provides reboot support. To restart VxWorks, the routine reboot() can be
called at any time by typing CTRL-X from the shell. Shutdown routines can be added with
rebootHookAdd(). These are typically used to reset or synchronize hardware. For
example, netLib adds a reboot hook to cause all network interfaces to be reset. Once the
reboot hooks have been run, sysToMonitor() is called to transfer control to the boot
ROMs. For more information, see the manual entry for bootInit.

DEFICIENCIES The order in which hooks are added is the order in which they are run. As a result, netLib
will kill the network, and no user-added hook routines will be able to use the network.
There is no rebootHookDelete() routine.

INCLUDE FILES rebootLib.h

SEE ALSO sysLib, bootConfig, bootInit

remLib

NAME remLib – remote command library

ROUTINES rcmd() - execute a shell command on a remote machine
rresvport() - open a socket with a privileged port bound to it
remCurIdGet() - get the current user name and password
remCurIdSet() - set the remote user name and password
iam() - set the remote user name and password
whoami() - display the current remote identity
bindresvport() - bind a socket to a privileged IP port

DESCRIPTION This library provides routines that support remote command functions. The rcmd() and
rresvport() routines use protocols implemented in BSD 4.3; they support remote
command execution, and the opening of a socket with a bound privileged port,
respectively. For more information, see Unix Network Programming by W. Richard Stevens.
This library also includes routines that authorize network file access via netDrv.

VxWorks OS Libraries API Reference, 5.5
remShellLib

232

To include remLib in a VxWorks image, include the NETWRS_REMLIB configuration
component. This component contains one parameter, RSH_STDERR_SETUP_TIMEOUT.
Use this parameter to specify how long an rcmd() call should wait for a return from its
internal call to select(). Valid values for RSH_STDERR_SETUP_TIMEOUT are 0
(NO_WAIT), -1 (WAIT_FOREVER), or a positive integer from 1 to 2147483647 inclusive.
This positive integer specifies the wait in seconds. The default value for
RSH_STDERR_SETUP_TIMEOUT is -1 (WAIT_FOREVER).

INCLUDE FILES remLib.h

SEE ALSO inetLib

remShellLib

NAME remShellLib – remote access to target shell

ROUTINES No Callable Routines

DESCRIPTION This library contains the support routines for remote access to the VxWorks target shell
for clients using the telnet or rlogin protocols. It supplies file descriptors to connection
telnet or rlogin sessions to the shell’s command interpreter.

INCLUDE FILES remShellLib.h, shellLib.h

resolvLib

NAME resolvLib – DNS resolver library

ROUTINES resolvInit() - initialize the resolver library
resolvGetHostByName() - query the DNS server for the IP address of a host
resolvGetHostByAddr() - query the DNS server for the host name of an IP address
resolvParamsSet() - set the parameters which control the resolver library
resolvParamsGet() - get the parameters which control the resolver library
resolvDNExpand() - expand a DNS compressed name from a DNS packet
resolvDNComp() - compress a DNS name in a DNS packet
resolvQuery() - construct a query, send it, wait for a response
resolvMkQuery() - create all types of DNS queries
resolvSend() - send a pre-formatted query and return the answer

1: Libraries
resolvLib

233

R

DESCRIPTION This library provides the client-side services for DNS (Domain Name Service) queries.
DNS queries come from applications that require translation of IP addresses to host
names and back. If you include this library in VxWorks, it extends the services of the host
library. The interface to this library is described in hostLib. The hostLib interface uses
resolver services to get IP and host names. In addition, the resolver can query multiple
DNS servers, if necessary, to add redundancy for queries.

There are two interfaces available for the resolver library. One is a high-level interface
suitable for most applications. The other is also a low-level interface for more specialized
applications, such as mail protocols.

USING THIS LIBRARY

By default, a VxWorks build does not include the resolver code. In addition, VxWorks is
delivered with the resolver library disabled. To include the resolver library in the
VxWorks image, edit config/all/configAll.h and include the definition:

#define INCLUDE_DNS_RESOLVER

To enable the resolver services, you need to redefine only one DNS server IP address,
changing it from a place-holder value to an actual value. Additional DNS server IP
addresses can be configured using resolvParamsSet(). To do the initial configuration, edit
configAll.h, and enter the correct IP address for your domain server in the definition:

#define RESOLVER_DOMAIN_SERVER "90.0.0.3"

If you do not provide a valid IP address, resolver initialization fails. You also need to
configure the domain to which your resolver belongs. To do this, edit configAll.h and
enter the correct domain name for your organization in the definition:

#define RESOLVER_DOMAIN "wrs.com"

The last and most important step is to make sure that you have a route to the configured
DNS server. If your VxWorks image includes a routing protocol, such as RIP or OSPF, the
routes are created for you automatically. Otherwise, you must use routeAdd() or
mRouteAdd() to add the routes to the routing table.

The resolver library comes with a debug option. To turn on debugging, edit configAll.h to
include the define:

#define INCLUDE_DNS_DEBUG

This include makes VxWorks print a log of the resolver queries to the console. This feature
assumes a single task. Thus, if you are running multiple tasks, your output to the console
is a garble of messages from all the tasks.

The resolver library uses UDP to send queries to the DNS server and expects the DNS
server to handle recursion. You can change the resolver parameters at any time after the
library has been initialized with resolvInit(). However, it is strongly recommended that
you change parameters only shortly after initialization, or when there are no other tasks
accessing the resolver library.

VxWorks OS Libraries API Reference, 5.5
ripLib

234

Your procedure for changing any of the resolver parameter should start with a call to
resolvParamsGet() to retrieve the active parameters. Then you can change the query
order (defaults to query DNS server only), the domain name, or add DNS server IP
addresses. After the parameters are changed, call resolvParamsSet(). For the values you
can use when accessing resolver library services, see the header files resolvLib.h,
resolv/resolv.h, and resolv/nameser.h.

INCLUDE FILES resolvLib.h

SEE ALSO hostLib

ripLib

NAME ripLib – Routing Information Protocol (RIP) v1 and v2 library

ROUTINES ripLibInit() - initialize the RIP routing library
ripAddrsXtract() - extract socket address pointers from the route message
ripRouteShow() - display the internal routing table maintained by RIP
ripIfShow() - display the internal interface table maintained by RIP
ripAuthHookAdd() - add an authentication hook to a RIP interface
ripAuthHookDelete() - remove an authentication hook from a RIP interface
ripAuthHook() - sample authentication hook
ripLeakHookAdd() - add a hook to bypass the RIP and kernel routing tables
ripLeakHookDelete() - remove a table bypass hook from a RIP interface
ripSendHookAdd() - add an update filter to a RIP interface
ripSendHookDelete() - remove an update filter from a RIP interface
ripRouteHookAdd() - add a hook to install static and non-RIP routes into RIP
ripRouteHookDelete() - remove the route hook
ripIfSearch() - add new interfaces to the internal list
ripIfReset() - alter the RIP configuration after an interface changes
ripFilterEnable() - activate strict border gateway filtering
ripFilterDisable() - prevent strict border gateway filtering
ripShutdown() - terminate all RIP processing
ripDebugLevelSet() - specify amount of debugging output
ripAuthKeyShow() - show current authentication configuration
ripAuthKeyAdd() - add a new RIP authentication key
ripAuthKeyDelete() - delete an existing RIP authentication key
ripAuthKeyFind() - find a RIP authentication key
ripAuthKeyFindFirst() - find a RIP authentication key
ripAuthKeyInMD5() - authenticate an incoming RIP-2 message using MD5
ripAuthKeyOut1MD5() - start MD5 authentication of an outgoing RIP-2 message
ripAuthKeyOut2MD5() - authenticate an outgoing RIP-2 message using MD5
ripIfExcludeListAdd() - Add an interface to the RIP exclusion list

1: Libraries
ripLib

235

R

ripIfExcludeListDelete() - Delete an interface from RIP exclusion list
ripIfExcludeListShow() - Show the RIP interface exclusion list

DESCRIPTION This library implements versions 1 and 2 of the Routing Information Protocol (RIP). The
protocol is intended to operate as an interior gateway protocol within a relatively small
network with a longest path of 15 hops.

HIGH-LEVEL INTERFACE

The ripLibInit() routine links this library into the VxWorks image and begins a RIP
session. This happens automatically if INCLUDE_RIP is defined at the time the image is
built. Once started, RIP will maintain the network routing table until deactivated by a call
to the ripShutdown() routine, which will remove all route entries and disable the RIP
library routines. All RIP requests and responses are handled as defined in the RFC
specifications. RFC 1058 defines the basic protocol operation and RFC 1723 details the
extensions that constitute version 2.

When acting as a supplier, outgoing route updates are filtered using simple split horizon.
Split horizon with poisoned reverse is not currently available. Additional route entries
may be excluded from the periodic update with the ripSendHookAdd() routine.

If a RIP session is terminated, the networking subsystem may not function correctly until
RIP is restarted with a new call to ripLibInit() unless routing information is provided by
some other method.

CONFIGURATION INTERFACE

By default, a RIP session only uses the network interfaces created before it started. The
ripIfSearch() routine allows RIP to recognize any interfaces added to the system after
that point. If the address or netmask of an existing interface is changed during a RIP
session, the ripIfReset() routine must be used to update the RIP configuration
appropriately. The current RIP implementation also automatically performs the border
gateway filtering required by the RFC specification. Those restrictions provide correct
operation in a mixed environment of RIP-1 and RIP-2 routers. The ripFilterDisable()
routine will remove those limitations, and can produce more efficient routing for some
topologies. However, you must not use that routine if any version 1 routers are present.
The ripFilterEnable() routine will restore the default behavior.

AUTHENTICATION INTERFACE

By default, authentication is disabled, but may be activated by an SNMP agent on an
interface-specific basis. While authentication is disabled, any RIP-2 messages containing
authentication entries are discarded. When enabled, all RIP-2 messages without
authentication entries are automatically rejected. To fully support authentication, an
authentication routine should be specified with the ripAuthHookAdd() routine. The
specified function will be called to screen every RIP-1 message and all unverified RIP-2
messages containing authentication entries. It may be removed with the
ripAuthHookDelete() routine. All RIP-1 and unverified RIP-2 messages will be discarded
while authentication is enabled unless a hook is present.

VxWorks OS Libraries API Reference, 5.5
rlogLib

236

OPTIONAL INTERFACE

The ripLeakHookAdd() routine allows the use of an alternative routing protocol that
uses RIP as a transport mechanism. The specified function can prevent the RIP session
from creating any table entries from the received messages. The ripLeakHookDelete()
routine will restore the default operation.

DEBUGGING INTERFACE

As required by the RFC specification, the obsolete traceon and traceoff messages are not
supported by this implementation. The ripRouteShow() routine will display the contents
of the internal RIP routing table. Routines such as mRouteShow() to display the
corresponding kernel routing table will also be available if INCLUDE_NET_SHOW is
defined when the image is built. If additional information is required, the
ripDebugLevelSet() routine will enable predefined debugging messages that will be sent
to the standard output.

INCLUDE FILES ripLib.h

SEE ALSO RFC 1058, RFC 1723

rlogLib

NAME rlogLib – remote login library

ROUTINES rlogInit() - initialize the remote login facility
rlogind() - the VxWorks remote login daemon
rlogin() - log in to a remote host

DESCRIPTION This library provides a remote login facility for VxWorks based on the UNIX rlogin
protocol (as implemented in UNIX BSD 4.3). On a VxWorks terminal, this command gives
users the ability to log in to remote systems on the network.

Reciprocally, the remote login daemon, rlogind(), allows remote users to log in to
VxWorks. The daemon is started by calling rlogInit(), which is called automatically when
INCLUDE_RLOGIN is defined. The remote login daemon accepts remote login requests
from another VxWorks or UNIX system, and causes the shell’s input and output to be
redirected to the remote user.

Internally, rlogind() provides a tty-like interface to the remote user through the use of the
VxWorks pseudo-terminal driver ptyDrv.

INCLUDE FILES rlogLib.h

SEE ALSO ptyDrv, telnetLib, UNIX BSD 4.3 manual entries for rlogin, rlogind, and pty

1: Libraries
rngLib

237

R

rngLib

NAME rngLib – ring buffer subroutine library

ROUTINES rngCreate() - create an empty ring buffer
rngDelete() - delete a ring buffer
rngFlush() - make a ring buffer empty
rngBufGet() - get characters from a ring buffer
rngBufPut() - put bytes into a ring buffer
rngIsEmpty() - test if a ring buffer is empty
rngIsFull() - test if a ring buffer is full (no more room)
rngFreeBytes() - determine the number of free bytes in a ring buffer
rngNBytes() - determine the number of bytes in a ring buffer
rngPutAhead() - put a byte ahead in a ring buffer without moving ring pointers
rngMoveAhead() - advance a ring pointer by n bytes

DESCRIPTION This library provides routines for creating and using ring buffers, which are
first-in-first-out circular buffers. The routines simply manipulate the ring buffer data
structure; no kernel functions are invoked. In particular, ring buffers by themselves
provide no task synchronization or mutual exclusion.

However, the ring buffer pointers are manipulated in such a way that a reader task
(invoking rngBufGet()) and a writer task (invoking rngBufPut()) can access a ring
simultaneously without requiring mutual exclusion. This is because readers only affect a
read pointer and writers only affect a write pointer in a ring buffer data structure.
However, access by multiple readers or writers must be interlocked through a mutual
exclusion mechanism (i.e., a mutual-exclusion semaphore guarding a ring buffer).

This library also supplies two macros, RNG_ELEM_PUT and RNG_ELEM_GET, for putting
and getting single bytes from a ring buffer. They are defined in rngLib.h.

int RNG_ELEM_GET (ringId, pch, fromP)

int RNG_ELEM_PUT (ringId, ch, toP)

Both macros require a temporary variable fromP or toP, which should be declared as
register int for maximum efficiency. RNG_ELEM_GET returns 1 if there was a character
available in the buffer; it returns 0 otherwise. RNG_ELEM_PUT returns 1 if there was room
in the buffer; it returns 0 otherwise. These are somewhat faster than rngBufPut() and
rngBufGet(), which can put and get multi-byte buffers.

INCLUDE FILES rngLib.h

VxWorks OS Libraries API Reference, 5.5
routeEntryLib

238

routeEntryLib

NAME routeEntryLib – route interface library for multiple matching entries

ROUTINES routeModify() - change an entry in the routing table
routeEntryAdd() - insert a route in the routing table
routeEntryDel() - remove a route from the routing table
routeTableWalk() - traverse the IP routing table
routeEntryLookup() - find a matching route for a destination

routeLib

NAME routeLib – network route manipulation library

ROUTINES routeAdd() - add a route
routeNetAdd() - add a route to a destination that is a network
routeDelete() - delete a route
mRouteAdd() - add multiple routes to the same destination
mRouteEntryAdd() - add a protocol-specific route to the routing table
mRouteEntryDelete() - delete route from the routing table
mRouteDelete() - delete a route from the routing table

DESCRIPTION This library contains the routines for inspecting the routing table, as well as routines for
adding and deleting routes from that table. If you do not configure VxWorks to include a
routing protocol, such as RIP or OSPF, you can use these routines to maintain the routing
tables manually.

To use this feature, include the following component: INCLUDE_NETWRS_ROUTELIB

INCLUDE FILES routeLib.h

SEE ALSO hostLib

routeMessageLib

NAME routeMessageLib – message routines for the routing interface library

ROUTINES routeStorageUnbind() - remove a registered handler from the routing system

1: Libraries
rt11FsLib

239

R

rpcLib

NAME rpcLib – Remote Procedure Call (RPC) support library

ROUTINES rpcInit() - initialize the RPC package
rpcTaskInit() - initialize a task’s access to the RPC package

DESCRIPTION This library supports Sun Microsystems’ Remote Procedure Call (RPC) facility. RPC
provides facilities for implementing distributed client/server-based architectures. The
underlying communication mechanism can be completely hidden, permitting applications
to be written without any reference to network sockets. The package is structured such
that lower-level routines can optionally be accessed, allowing greater control of the
communication protocols.

For more information and a tutorial on RPC, see Sun Microsystems’ Remote Procedure Call
Programming Guide. For an example of RPC usage, see /target/unsupported/demo/sprites.

The RPC facility is enabled when INCLUDE_RPC is defined.

VxWorks supports Network File System (NFS), which is built on top of RPC. If NFS is
configured into the VxWorks system, RPC is automatically included as well.

IMPLEMENTATION A task must call rpcTaskInit() before making any calls to other routines in the RPC
library. This routine creates task-specific data structures required by RPC. These
task-specific data structures are automatically deleted when the task exits.

Because each task has its own RPC context, RPC-related objects (such as SVCXPRTs and
CLIENTs) cannot be shared among tasks; objects created by one task cannot be passed to
another for use. Such additional objects must be explicitly deleted (for example, using task
deletion hooks).

INCLUDE FILES rpc.h

SEE ALSO nfsLib, nfsDrv, Sun Microsystems’ Remote Procedure Call Programming Guide

rt11FsLib

NAME rt11FsLib – RT-11 media-compatible file system library

ROUTINES rt11FsDevInit() - initialize the rt11Fs device descriptor
rt11FsInit() - prepare to use the rt11Fs library
rt11FsMkfs() - initialize a device and create an rt11Fs file system

VxWorks OS Libraries API Reference, 5.5
rt11FsLib

240

rt11FsDateSet() - set the rt11Fs file system date
rt11FsReadyChange() - notify rt11Fs of a change in ready status
rt11FsModeChange() - modify the mode of an rt11Fs volume

DESCRIPTION This library provides services for file-oriented device drivers which use the RT-11 file
standard. This module takes care of all the necessary buffering, directory maintenance,
and RT-11-specific details.

USING THIS LIBRARY

The various routines provided by the VxWorks RT-11 file system (rt11Fs) may be
separated into three broad groups: general initialization, device initialization, and file
system operation.

The rt11FsInit() routine is the principal initialization function; it need only be called once,
regardless of how many rt11Fs devices will be used.

Other rt11Fs routines are used for device initialization. For each rt11Fs device, either
rt11FsDevInit() or rt11FsMkfs() must be called to install the device and define its
configuration.

Several functions are provided to inform the file system of changes in the system
environment. The rt11FsDateSet() routine is used to set the date. The
rt11FsModeChange() routine is used to modify the readability or writability of a
particular device. The rt11FsReadyChange() routine is used to inform the file system that
a disk may have been swapped, and that the next disk operation should first remount the
disk.

INITIALIZING RT11FSLIB

Before any other routines in rt11FsLib can be used, rt11FsInit() must be called to initialize
this library. This call specifies the maximum number of rt11Fs files that can be open
simultaneously and allocates memory for that many rt11Fs file descriptors. Attempts to
open more files than the specified maximum will result in errors from open() or creat().

This initialization is enabled when the configuration macro INCLUDE_RT11FS is defined.

DEFINING AN RT-11 DEVICE

To use this library for a particular device, the device structure must contain, as the very
first item, a BLK_DEV structure. This must be initialized before calling rt11FsDevInit(). In
the BLK_DEV structure, the driver includes the addresses of five routines which it must
supply: one that reads one or more sectors, one that writes one or more sectors, one that
performs I/O control on the device (using ioctl()), one that checks the status of the device,
and one that resets the device. This structure also specifies various physical aspects of the
device (e.g., number of sectors, sectors per track, whether the media is removable). For
more information about defining block devices, see the VxWorks Programmer’s Guide: I/O
System.

The device is associated with the rt11Fs file system by the rt11FsDevInit() call. The
arguments to rt11FsDevInit() include the name to be used for the rt11Fs volume, a

1: Libraries
rt11FsLib

241

R

pointer to the BLK_DEV structure, whether the device uses RT-11 standard skew and
interleave, and the maximum number of files that can be contained in the device
directory.

Thereafter, when the file system receives a request from the I/O system, it simply calls the
provided routines in the device driver to fulfill the request.

RTFMT The RT-11 standard defines a peculiar software interleave and track-to-track skew as part
of the format. The rtFmt parameter passed to rt11FsDevInit() should be TRUE if this
formatting is desired. This should be the case if strict RT-11 compatibility is desired, or if
files must be transferred between the development and target machines using the
VxWorks-supplied RT-11 tools. Software interleave and skew will automatically be dealt
with by rt11FsLib.

When rtFmt has been passed as TRUE and the maximum number of files is specified
RT_FILES_FOR_2_BLOCK_SEG, the driver does not need to do anything else to maintain
RT-11 compatibility (except to add the track offset as described above).

Note that if the number of files specified is different than RT_FILES_FOR_2_BLOCK_SEG
under either a VxWorks system or an RT-11 system, compatibility is lost because
VxWorks allocates a contiguous directory, whereas RT-11 systems create chained
directories.

MULTIPLE LOGICAL DEVICES AND RT-11 COMPATIBILITY

The sector number passed to the sector read and write routines is an absolute number,
starting from sector 0 at the beginning of the device. If desired, the driver may add an
offset from the beginning of the physical device before the start of the logical device. This
would normally be done by keeping an offset parameter in the device-specific structure of
the driver, and adding the proper number of sectors to the sector number passed to the
read and write routines.

The RT-11 standard defines the disk to start on track 1. Track 0 is set aside for boot
information. Therefore, in order to retain true compatibility with RT-11 systems, a
one-track offset (i.e., the number of sectors in one track) needs to be added to the sector
numbers passed to the sector read and write routines, and the device size needs to be
declared as one track smaller than it actually is. This must be done by the driver using
rt11FsLib; the library does not add such an offset automatically.

In the VxWorks RT-11 implementation, the directory is a fixed size, able to contain at least
as many files as specified in the call to rt11FsDevInit(). If the maximum number of files is
specified to be RT_FILES_FOR_2_BLOCK_SEG, strict RT-11 compatibility is maintained,
because this is the initial allocation in the RT-11 standard.

RT-11 FILE NAMES File names in the RT-11 file system use six characters, followed by a period (.), followed by
an optional three-character extension.

DIRECTORY ENTRIES

An ioctl() call with the FIODIRENTRY function returns information about a particular

VxWorks OS Libraries API Reference, 5.5
rt11FsLib

242

directory entry. A pointer to a REQ_DIR_ENTRY structure is passed as the parameter. The
field entryNum in the REQ_DIR_ENTRY structure must be set to the desired entry
number. The name of the file, its size (in bytes), and its creation date are returned in the
structure. If the specified entry is empty (i.e., if it represents an unallocated section of the
disk), the name will be an empty string, the size will be the size of the available disk
section, and the date will be meaningless. Typically, the entries are accessed sequentially,
starting with entryNum = 0, until the terminating entry is reached, indicated by a return
code of ERROR.

DIRECTORIES IN MEMORY

A copy of the directory for each volume is kept in memory (in the RT_VOL_DESC
structure). This speeds up directory accesses, but requires that rt11FsLib be notified when
disks are changed (i.e., floppies are swapped). If the driver can find this out (by
interrogating controller status or by receiving an interrupt), the driver simply calls
rt11FsReadyChange() when a disk is inserted or removed. The library rt11FsLib will
automatically try to remount the device next time it needs it.

If the driver does not have access to the information that disk volumes have been
changed, the changeNoWarn parameter should be set to TRUE when the device is defined
using rt11FsDevInit(). This will cause the disk to be automatically remounted before each
open(), creat(), delete(), and directory listing.

The routine rt11FsReadyChange() can also be called by user tasks, by issuing an ioctl()
call with FIODISKCHANGE as the function code.

ACCESSING THE RAW DISK

As a special case in open() and creat() calls, rt11FsLib recognizes a NULL file name to
indicate access to the entire “raw” disk, as opposed to a file on the disk. Access in raw
mode is useful for a disk that has no file system. For example, to initialize a new file
system on the disk, use an ioctl() call with FIODISKINIT. To read the directory of a disk
for which no file names are known, open the raw disk and use an ioctl() call with the
function FIODIRENTRY.

HINTS The RT-11 file system is much simpler than the more common UNIX or MS-DOS file
systems. The advantage of RT-11 is its speed; file access is made in at most one seek
because all files are contiguous. Some of the most common errors for users with a UNIX
background are:

Only a single create at a time may be active per device.

File size is set by the first create and close sequence; use lseek() to ensure a specific file
size; there is no append function to expand a file.

Files are strictly block oriented; unused portions of a block are filled with NULLs -- there
is no end-of-file marker other than the last block.

1: Libraries
rt11FsLib

243

R

IOCTL FUNCTIONS The rt11Fs file system supports the following ioctl() functions. The functions listed are
defined in the header ioLib.h. Unless stated otherwise, the file descriptor used for these
functions can be any file descriptor open to a file or to the volume itself.

FIODISKFORMAT
Formats the entire disk with appropriate hardware track and sector marks. No file
system is initialized on the disk by this request. Note that this is a driver-provided
function:

fd = open ("DEV1:", O_WRONLY);

status = ioctl (fd, FIODISKFORMAT, 0);

FIODISKINIT
Initializes an rt11Fs file system on the disk volume. This routine does not format the
disk; formatting must be done by the driver. The file descriptor should be obtained
by opening the entire volume in raw mode:

fd = open ("DEV1:", O_WRONLY);

status = ioctl (fd, FIODISKINIT, 0);

FIODISKCHANGE
Announces a media change. It performs the same function as rt11FsReadyChange().
This function may be called from interrupt level:

status = ioctl (fd, FIODISKCHANGE, 0);

FIOGETNAME
Gets the file name of the file descriptor and copies it to the buffer nameBuf:

status = ioctl (fd, FIOGETNAME, &nameBuf);

FIORENAME
Renames the file to the string newname:

status = ioctl (fd, FIORENAME, "newname");

FIONREAD
Copies to unreadCount the number of unread bytes in the file:

status = ioctl (fd, FIONREAD, &unreadCount);

FIOFLUSH
Flushes the file output buffer. It guarantees that any output that has been requested is
actually written to the device.

status = ioctl (fd, FIOFLUSH, 0);

FIOSEEK
Sets the current byte offset in the file to the position specified by newOffset:

status = ioctl (fd, FIOSEEK, newOffset);

FIOWHERE
Returns the current byte position in the file. This is the byte offset of the next byte to

VxWorks OS Libraries API Reference, 5.5
rt11FsLib

244

be read or written. It takes no additional argument:

position = ioctl (fd, FIOWHERE, 0);

FIOSQUEEZE
Coalesces fragmented free space on an rt11Fs volume:

status = ioctl (fd, FIOSQUEEZE, 0);

FIODIRENTRY
Copies information about the specified directory entries to a REQ_DIR_ENTRY
structure that is defined in ioLib.h. The argument req is a pointer to a
REQ_DIR_ENTRY structure. On entry, the structure contains the number of the
directory entry for which information is requested. On return, the structure contains
the information on the requested entry. For example, after the following:

REQ_DIR_ENTRY req;

req.entryNum = 0;

status = ioctl (fd, FIODIRENTRY, &req);

the request structure contains the name, size, and creation date of the file in the first entry
(0) of the directory.

FIOREADDIR
Reads the next directory entry. The argument dirStruct is a DIR directory descriptor.
Normally, readdir() is used to read a directory, rather than using the FIOREADDIR
function directly. See dirLib.

DIR dirStruct;

fd = open ("directory", O_RDONLY);

status = ioctl (fd, FIOREADDIR, &dirStruct);

FIOFSTATGET
Gets file status information (directory entry data). The argument statStruct is a
pointer to a stat structure that is filled with data describing the specified file.
Normally, the stat() or fstat() routine is used to obtain file information, rather than
using the FIOFSTATGET function directly. See dirLib.

struct stat statStruct;

fd = open ("file", O_RDONLY);

status = ioctl (fd, FIOFSTATGET, &statStruct);

Any other ioctl() function codes are passed to the block device driver for handling.

INCLUDE FILES rt11FsLib.h

SEE ALSO ioLib, iosLib, ramDrv, VxWorks Programmer’s Guide: I/O System, Local File Systems

1: Libraries
schedPxLib

245

S

schedPxLib

NAME schedPxLib – scheduling library (POSIX)

ROUTINES sched_setparam() - set a task’s priority (POSIX)
sched_getparam() - get the scheduling parameters for a specified task (POSIX)
sched_setscheduler() - set scheduling policy and scheduling parameters (POSIX)
sched_getscheduler() - get the current scheduling policy (POSIX)
sched_yield() - relinquish the CPU (POSIX)
sched_get_priority_max() - get the maximum priority (POSIX)
sched_get_priority_min() - get the minimum priority (POSIX)
sched_rr_get_interval() - get the current time slice (POSIX)

DESCRIPTION This library provides POSIX-compliance scheduling routines. The routines in this library
allow the user to get and set priorities and scheduling schemes, get maximum and
minimum priority values, and get the time slice if round-robin scheduling is enabled.

The POSIX standard specifies a priority numbering scheme in which higher priorities are
indicated by larger numbers. The VxWorks native numbering scheme is the reverse of
this, with higher priorities indicated by smaller numbers. For example, in the VxWorks
native priority numbering scheme, the highest priority task has a priority of 0.

In VxWorks, POSIX scheduling interfaces are implemented using the POSIX priority
numbering scheme. This means that the priority numbers used by this library do not
match those reported and used in all the other VxWorks components. It is possible to
change the priority numbering scheme used by this library by setting the global variable
posixPriorityNumbering. If this variable is set to FALSE, the VxWorks native numbering
scheme (small number = high priority) is used, and priority numbers used by this library
will match those used by the other portions of VxWorks.

The routines in this library are compliant with POSIX 1003.1b. In particular, task priorities
are set and reported through the structure sched_setparam, which has a single member:

struct sched_param /* Scheduling parameter structure */

{

int sched_priority; /* scheduling priority */

};

POSIX 1003.1b specifies this indirection to permit future extensions through the same
calling interface. For example, because sched_setparam() takes this structure as an
argument (rather than using the priority value directly) its type signature need not change
if future schedulers require other parameters.

INCLUDE FILES sched.h

SEE ALSO POSIX 1003.1b document, taskLib

VxWorks OS Libraries API Reference, 5.5
scsi1Lib

246

scsi1Lib

NAME scsi1Lib – Small Computer System Interface (SCSI) library (SCSI-1)

ROUTINES No Callable Routines

DESCRIPTION This library implements the Small Computer System Interface (SCSI) protocol in a
controller-independent manner. It implements only the SCSI initiator function; the library
does not support a VxWorks target acting as a SCSI target. Furthermore, in the current
implementation, a VxWorks target is assumed to be the only initiator on the SCSI bus,
although there may be multiple targets (SCSI peripherals) on the bus.

The implementation is transaction based. A transaction is defined as the selection of a
SCSI device by the initiator, the issuance of a SCSI command, and the sequence of data,
status, and message phases necessary to perform the command. A transaction normally
completes with a “Command Complete” message from the target, followed by
disconnection from the SCSI bus. If the status from the target is “Check Condition,” the
transaction continues; the initiator issues a “Request Sense” command to gain more
information on the exception condition reported.

Many of the subroutines in scsi1Lib facilitate the transaction of frequently used SCSI
commands. Individual command fields are passed as arguments from which SCSI
Command Descriptor Blocks are constructed, and fields of a SCSI_TRANSACTION
structure are filled in appropriately. This structure, along with the SCSI_PHYS_DEV
structure associated with the target SCSI device, is passed to the routine whose address is
indicated by the scsiTransact field of the SCSI_CTRL structure associated with the relevant
SCSI controller.

The function variable scsiTransact is set by the individual SCSI controller driver. For
off-board SCSI controllers, this routine rearranges the fields of the SCSI_TRANSACTION
structure into the appropriate structure for the specified hardware, which then carries out
the transaction through firmware control. Drivers for an on-board SCSI-controller chip
can use the scsiTransact() routine in scsiLib (which invokes the scsi1Transact() routine
in scsi1Lib), as long as they provide the other functions specified in the SCSI_CTRL
structure.

Note that no disconnect/reconnect capability is currently supported.

SUPPORTED SCSI DEVICES

The scsi1Lib library supports use of SCSI peripherals conforming to the standards
specified in Common Command Set (CCS) of the SCSI, Rev. 4.B. Most SCSI peripherals
currently offered support CCS. While an attempt has been made to have scsi1Lib
support non-CCS peripherals, not all commands or features of this library are guaranteed
to work with them. For example, auto-configuration may be impossible with non-CCS
devices, if they do not support the INQUIRY command.

1: Libraries
scsi1Lib

247

S

Not all classes of SCSI devices are supported. However, the scsiLib library provides the
capability to transact any SCSI command on any SCSI device through the
FIOSCSICOMMAND function of the scsiIoctl() routine.

Only direct-access devices (disks) are supported by a file system. For other types of
devices, additional, higher-level software is necessary to map user-level commands to
SCSI transactions.

CONFIGURING SCSI CONTROLLERS

The routines to create and initialize a specific SCSI controller are particular to the
controller and normally are found in its library module. The normal calling sequence is:

xxCtrlCreate (...); /* parameters are controller specific */

xxCtrlInit (...); /* parameters are controller specific */

The conceptual difference between the two routines is that xxCtrlCreate() calloc’s
memory for the xx_SCSI_CTRL data structure and initializes information that is never
expected to change (for example, clock rate). The remaining fields in the xx_SCSI_CTRL
structure are initialized by xxCtrlInit() and any necessary registers are written on the
SCSI controller to effect the desired initialization. This routine can be called multiple
times, although this is rarely required. For example, the bus ID of the SCSI controller can
be changed without rebooting the VxWorks system.

CONFIGURING PHYSICAL SCSI DEVICES

Before a device can be used, it must be “created,” that is, declared. This is done with
scsiPhysDevCreate() and can only be done after a SCSI_CTRL structure exists and has
been properly initialized.

SCSI_PHYS_DEV *scsiPhysDevCreate

(

SCSI_CTRL * pScsiCtrl,/* ptr to SCSI controller info */

int devBusId, /* device’s SCSI bus ID */

int devLUN, /* device’s logical unit number */

int reqSenseLength, /* length of REQUEST SENSE data dev returns */

int devType, /* type of SCSI device */

BOOL removable, /* whether medium is removable */

int numBlocks, /* number of blocks on device */

int blockSize /* size of a block in bytes */

)

Several of these parameters can be left unspecified, as follows:

reqSenseLength
If 0, issue a REQUEST_SENSE to determine a request sense length.

devType
If -1, issue an INQUIRY to determine the device type.

VxWorks OS Libraries API Reference, 5.5
scsi1Lib

248

numBlocks, blockSize
If 0, issue a READ_CAPACITY to determine the number of blocks.

The above values are recommended, unless the device does not support the required
commands, or other non-standard conditions prevail.

LOGICAL PARTITIONS ON BLOCK DEVICES

It is possible to have more than one logical partition on a SCSI block device. This
capability is currently not supported for removable media devices. A partition is an array
of contiguously addressed blocks with a specified starting block address and a specified
number of blocks. The scsiBlkDevCreate() routine is called once for each block device
partition. Under normal usage, logical partitions should not overlap.

SCSI_BLK_DEV *scsiBlkDevCreate

(

SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device info */

int numBlocks, /* number of blocks in block device */

int blockOffset /* address of first block in volume */

)

Note that if numBlocks is 0, the rest of the device is used.

ATTACHING FILE SYSTEMS TO LOGICAL PARTITIONS

Files cannot be read or written to a disk partition until a file system (such as dosFs or
rt11Fs) has been initialized on the partition. For more information, see the documentation
in dosFsLib or rt11FsLib.

TRANSMITTING ARBITRARY COMMANDS TO SCSI DEVICES

The scsi1Lib library provides routines that implement many common SCSI commands.
Still, there are situations that require commands that are not supported by scsi1Lib (for
example, writing software to control non-direct access devices). Arbitrary commands are
handled with the FIOSCSICOMMAND option to scsiIoctl(). The arg parameter for
FIOSCSICOMMAND is a pointer to a valid SCSI_TRANSACTION structure. Typically, a call
to scsiIoctl() is written as a subroutine of the form:

STATUS myScsiCommand

(

SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device */

char * buffer, /* ptr to data buffer */

int bufLength, /* length of buffer in bytes */

int someParam /* param. specifiable in cmd block */

)

{

SCSI_COMMAND myScsiCmdBlock; /* SCSI command byte array */

SCSI_TRANSACTION myScsiXaction; /* info on a SCSI transaction */

/* fill in fields of SCSI_COMMAND structure */

myScsiCmdBlock [0] = MY_COMMAND_OPCODE; /* the required opcode */

1: Libraries
scsi2Lib

249

S

.

myScsiCmdBlock [X] = (UINT8) someParam; /* for example */

.

myScsiCmdBlock [N-1] = MY_CONTROL_BYTE; /* typically == 0 */

/* fill in fields of SCSI_TRANSACTION structure */

myScsiXaction.cmdAddress = myScsiCmdBlock;

myScsiXaction.cmdLength = <# of valid bytes in myScsiCmdBlock>;

myScsiXaction.dataAddress = (UINT8 *) buffer;

myScsiXaction.dataDirection = <O_RDONLY (0) or O_WRONLY (1)>;

myScsiXaction.dataLength = bufLength;

myScsiXaction.cmdTimeout = timeout in usec;

/* if dataDirection is O_RDONLY, and the length of the input data is

* variable, the following parameter specifies the byte # (min == 0)

* of the input data which will specify the additional number of

* bytes available

*/

myScsiXaction.addLengthByte = X;

if (scsiIoctl (pScsiPhysDev, FIOSCSICOMMAND, &myScsiXaction) == OK)

return (OK);

else

/* optionally perform retry or other action based on value of

* myScsiXaction.statusByte

*/

return (ERROR);

}

INCLUDE FILES scsiLib.h, scsi1Lib.h

SEE ALSO dosFsLib, rt11FsLib, American National Standards for Information Systems - Small Computer
System Interface (SCSI), ANSI X3.131-1986, VxWorks Programmer’s Guide: I/O System, Local
File Systems

scsi2Lib

NAME scsi2Lib – Small Computer System Interface (SCSI) library (SCSI-2)

ROUTINES scsi2IfInit() - initialize the SCSI-2 interface to scsiLib
scsiTargetOptionsSet() - set options for one or all SCSI targets
scsiTargetOptionsGet() - get options for one or all SCSI targets
scsiTargetOptionsShow() - display options for specified SCSI target
scsiPhysDevShow() - show status information for a physical device
scsiCacheSynchronize() - synchronize the caches for data coherency

VxWorks OS Libraries API Reference, 5.5
scsi2Lib

250

scsiIdentMsgBuild() - build an identification message
scsiIdentMsgParse() - parse an identification message
scsiMsgOutComplete() - perform post-processing after a SCSI message is sent
scsiMsgOutReject() - perform post-processing when an outgoing message is rejected
scsiMsgInComplete() - handle a complete SCSI message received from the target
scsiSyncXferNegotiate() - initiate or continue negotiating transfer parameters
scsiWideXferNegotiate() - initiate or continue negotiating wide parameters
scsiThreadInit() - perform generic SCSI thread initialization
scsiCacheSnoopEnable() - inform SCSI that hardware snooping of caches is enabled
scsiCacheSnoopDisable() - inform SCSI that hardware snooping of caches is disabled

DESCRIPTION This library implements the Small Computer System Interface (SCSI) protocol in a
controller-independent manner. It implements only the SCSI initiator function as defined
in the SCSI-2 ANSI specification. This library does not support a VxWorks target acting as
a SCSI target.

The implementation is transaction based. A transaction is defined as the selection of a
SCSI device by the initiator, the issuance of a SCSI command, and the sequence of data,
status, and message phases necessary to perform the command. A transaction normally
completes with a “Command Complete” message from the target, followed by
disconnection from the SCSI bus. If the status from the target is “Check Condition,” the
transaction continues; the initiator issues a “Request Sense” command to gain more
information on the exception condition reported.

Many of the subroutines in scsi2Lib facilitate the transaction of frequently used SCSI
commands. Individual command fields are passed as arguments from which SCSI
Command Descriptor Blocks are constructed, and fields of a SCSI_TRANSACTION
structure are filled in appropriately. This structure, along with the SCSI_PHYS_DEV
structure associated with the target SCSI device, is passed to the routine whose address is
indicated by the scsiTransact field of the SCSI_CTRL structure associated with the relevant
SCSI controller. The above mentioned structures are defined in scsi2Lib.h.

The function variable scsiTransact is set by the individual SCSI controller driver. For
off-board SCSI controllers, this routine rearranges the fields of the SCSI_TRANSACTION
structure into the appropriate structure for the specified hardware, which then carries out
the transaction through firmware control. Drivers for an on-board SCSI-controller chip
can use the scsiTransact() routine in scsiLib (which invokes the scsi2Transact() routine
in scsi2Lib), as long as they provide the other functions specified in the SCSI_CTRL
structure.

SCSI TRANSACTION TIMEOUT

Associated with each transaction is a time limit (specified in microseconds, but measured
with the resolution of the system clock). If the transaction has not completed within this
time limit, the SCSI library aborts it; the called routine fails with a corresponding error
code. The timeout period includes time spent waiting for the target device to become free
to accept the command.

1: Libraries
scsi2Lib

251

S

The semantics of the timeout should guarantee that the caller waits no longer than the
transaction timeout period, but in practice this may depend on the state of the SCSI bus
and the connected target device when the timeout occurs. If the target behaves correctly
according to the SCSI specification, proper timeout behavior results. However, in certain
unusual cases--for example, when the target does not respond to an asserted ATN
signal--the caller may remain blocked for longer than the timeout period.

If the transaction timeout causes problems in your system, you can set the value of either
or both the global variables “scsi{Min,Max}Timeout”. These specify (in microseconds) the
global minimum and maximum timeout periods, which override (clip) the value specified
for a transaction. They may be changed at any time and affect all transactions issued after
the new values are set. The range of both these variable is 0 to 0xffffffff (zero to about 4295
seconds).

SCSI TRANSACTION PRIORITY

Each transaction also has an associated priority used by the SCSI library when selecting
the next command to issue when the SCSI system is idle. It chooses the highest priority
transaction that can be dispatched on an available physical device. If there are several
equal-priority transactions available, the SCSI library uses a simple round-robin scheme to
avoid favoring the same physical device.

Priorities range from 0 (highest) to 255 (lowest), which is the same as task priorities. The
priority SCSI_THREAD_TASK_PRIORITY can be used to give the transaction the same
priority as the calling task (this is the method used internally by this SCSI-2 library).

SUPPORTED SCSI DEVICES

This library requires peripherals that conform to the SCSI-2 ANSI standard; in particular,
the INQUIRY, REQUEST SENSE, and TEST UNIT READY commands must be supported
as specified by this standard. In general, the SCSI library is self-configuring to work with
any device that meets these requirements.

Peripherals that support identification and the SCSI message protocol are strongly
recommended as these provide maximum performance.

In theory, all classes of SCSI devices are supported. The scsiLib library provides the
capability to transact any SCSI command on any SCSI device through the
FIOSCSICOMMAND function of the scsiIoctl() routine (which invokes the scsi2Ioctl()
routine in scsi2Lib).

Only direct-access devices (disks) are supported by file systems like dosFs, rt11Fs and
rawFs. These file systems employ routines in scsiDirectLib (most of which are described
in scsiLib but defined in scsiDirectLib). In the case of sequential-access devices (tapes),
higher-level tape file systems, like tapeFs, make use of scsiSeqLib. For other types of
devices, additional, higher-level software is necessary to map user-level commands to
SCSI transactions.

DISCONNECT/RECONNECT SUPPORT

The target device can be disconnected from the SCSI bus while it carries out a SCSI

VxWorks OS Libraries API Reference, 5.5
scsi2Lib

252

command; in this way, commands to multiple SCSI devices can be overlapped to improve
overall SCSI throughput. There are no restrictions on the number of pending,
disconnected commands or the order in which they are resumed. The SCSI library
serializes access to the device according to the capabilities and status of the device (see the
following section).

Use of the disconnect/reconnect mechanism is invisible to users of the SCSI library. It can
be enabled and disabled separately for each target device (see scsiTargetOptionsSet()).
Note that support for disconnect/reconnect depends on the capabilities of the controller
and its driver (see below).

TAGGED COMMAND QUEUEING SUPPORT

If the target device conforms to the ANSI SCSI-2 standard and indicates (using the
INQUIRY command) that it supports command queuing, the SCSI library allows new
commands to be started on the device whenever the SCSI bus is idle. That is, it executes
multiple commands concurrently on the target device. By default, commands are tagged
with a SIMPLE QUEUE TAG message. Up to 256 commands can be executing
concurrently.

The SCSI library correctly handles contingent allegiance conditions that arise while a
device is executing tagged commands. (A contingent allegiance condition exists when a
target device is maintaining sense data that the initiator should use to correctly recover
from an error condition.) It issues an untagged REQUEST SENSE command, and stops
issuing tagged commands until the sense recovery command has completed.

For devices that do not support command queuing, the SCSI library only issues a new
command when the previous one has completed. These devices can only execute a single
command at once.

Use of tagged command queuing is normally invisible to users of the SCSI library. If
necessary, the default tag type and maximum number of tags may be changed on a
per-target basis, using scsiTargetOptionsSet().

SYNCHRONOUS TRANSFER PROTOCOL SUPPORT

If the SCSI controller hardware supports the synchronous transfer protocol, scsiLib
negotiates with the target device to determine whether to use synchronous or
asynchronous transfers. Either VxWorks or the target device may start a round of
negotiation. Depending on the controller hardware, synchronous transfer rates up to the
maximum allowed by the SCSI-2 standard (10 Mtransfers/second) can be used.

Again, this is normally invisible to users of the SCSI library, but synchronous transfer
parameters may be set or disabled on a per-target basis by using scsiTargetOptionsSet().

WIDE DATA TRANSFER SUPPORT

If the SCSI controller supports the wide data transfer protocol, scsiLib negotiates wide
data transfer parameters with the target device, if that device also supports wide transfers.
Either VxWorks or the target device may start a round of negotiation. Wide data transfer
parameters are negotiated prior to the synchronous data transfer parameters, as specified

1: Libraries
scsi2Lib

253

S

by the SCSI-2 ANSI specification. In conjunction with synchronous transfer, up to a
maximum of 20MB/sec. can be attained.

Wide data transfer negotiation is invisible to users of this library, but it is possible to
enable or disable wide data transfers and the parameters on a per-target basis by using
scsiTargetOptionsSet().

SCSI BUS RESET The SCSI library implements the ANSI “hard reset” option. Any transactions in progress
when a SCSI bus reset is detected fail with an error code indicating termination due to bus
reset. Any transactions waiting to start executing are then started normally.

CONFIGURING SCSI CONTROLLERS

The routines to create and initialize a specific SCSI controller are particular to the
controller and normally are found in its library module. The normal calling sequence is:

xxCtrlCreate (...); /* parameters are controller specific */

xxCtrlInit (...); /* parameters are controller specific */

The conceptual difference between the two routines is that xxCtrlCreate() calloc’s
memory for the xx_SCSI_CTRL data structure and initializes information that is never
expected to change (for example, clock rate). The remaining fields in the xx_SCSI_CTRL
structure are initialized by xxCtrlInit() and any necessary registers are written on the
SCSI controller to effect the desired initialization. This routine can be called multiple
times, although this is rarely required. For example, the bus ID of the SCSI controller can
be changed without rebooting the VxWorks system.

CONFIGURING PHYSICAL SCSI DEVICES

Before a device can be used, it must be “created,” that is, declared. This is done with
scsiPhysDevCreate() and can only be done after a SCSI_CTRL structure exists and has
been properly initialized.

SCSI_PHYS_DEV *scsiPhysDevCreate

(

SCSI_CTRL * pScsiCtrl,/* ptr to SCSI controller info */

int devBusId, /* device’s SCSI bus ID */

int devLUN, /* device’s logical unit number */

int reqSenseLength, /* length of REQUEST SENSE data dev returns */

int devType, /* type of SCSI device */

BOOL removable, /* whether medium is removable */

int numBlocks, /* number of blocks on device */

int blockSize /* size of a block in bytes */

)

Several of these parameters can be left unspecified, as follows:

reqSenseLength
If 0, issue a REQUEST_SENSE to determine a request sense length.

VxWorks OS Libraries API Reference, 5.5
scsi2Lib

254

devType
This parameter is ignored: an INQUIRY command is used to ascertain the device
type. A value of NONE (-1) is the recommended placeholder.

numBlocks, blockSize
If 0, issue a READ_CAPACITY to determine the number of blocks.

The above values are recommended, unless the device does not support the required
commands, or other non-standard conditions prevail.

LOGICAL PARTITIONS ON DIRECT-ACCESS BLOCK DEVICES

It is possible to have more than one logical partition on a SCSI block device. This
capability is currently not supported for removable media devices. A partition is an array
of contiguously addressed blocks with a specified starting block address and specified
number of blocks. The scsiBlkDevCreate() routine is called once for each block device
partition. Under normal usage, logical partitions should not overlap.

SCSI_BLK_DEV *scsiBlkDevCreate

(

SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device info */

int numBlocks, /* number of blocks in block device */

int blockOffset /* address of first block in volume */

)

Note that if numBlocks is 0, the rest of the device is used.

ATTACHING DISK FILE SYSTEMS TO LOGICAL PARTITIONS

Files cannot be read or written to a disk partition until a file system (for example, dosFs,
rt11Fs, or rawFs) has been initialized on the partition. For more information, see the
relevant documentation in dosFsLib, rt11FsLib, or rawFsLib.

USING A SEQUENTIAL-ACCESS BLOCK DEVICE

The entire volume (tape) on a sequential-access block device is treated as a single raw file.
This raw file is made available to higher-level layers like tapeFs by the
scsiSeqDevCreate() routine, described in scsiSeqLib. The scsiSeqDevCreate() routine is
called once for a given SCSI physical device.

SEQ_DEV *scsiSeqDevCreate

(

SCSI_PHYS_DEV *pScsiPhysDev * ptr to SCSI physical device info */

)

TRANSMITTING ARBITRARY COMMANDS TO SCSI DEVICES

The scsi2Lib, scsiCommonLib, scsiDirectLib, and scsiSeqLib libraries collectively
provide routines that implement all mandatory SCSI-2 direct-access and sequential-access
commands. Still, there are situations that require commands not supported by these
libraries (for example, writing software that needs to use an optional SCSI-2 command).

1: Libraries
scsi2Lib

255

S

Arbitrary commands are handled with the FIOSCSICOMMAND option to scsiIoctl(). The
arg parameter for FIOSCSICOMMAND is a pointer to a valid SCSI_TRANSACTION
structure. Typically, a call to scsiIoctl() is written as a routine of the form:

STATUS myScsiCommand

(

SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device */

char * buffer, /* ptr to data buffer */

int bufLength, /* length of buffer in bytes */

int someParam /* param. specifiable in cmd block */

)

{

SCSI_COMMAND myScsiCmdBlock; /* SCSI command byte array */

SCSI_TRANSACTION myScsiXaction; /* info on a SCSI transaction */

/* fill in fields of SCSI_COMMAND structure */

myScsiCmdBlock [0] = MY_COMMAND_OPCODE; /* the required opcode */

.

myScsiCmdBlock [X] = (UINT8) someParam; /* for example */

.

myScsiCmdBlock [N-1] = MY_CONTROL_BYTE; /* typically == 0 */

/* fill in fields of SCSI_TRANSACTION structure */

myScsiXaction.cmdAddress = myScsiCmdBlock;

myScsiXaction.cmdLength = <# of valid bytes in myScsiCmdBlock>;

myScsiXaction.dataAddress = (UINT8 *) buffer;

myScsiXaction.dataDirection = <O_RDONLY (0) or O_WRONLY (1)>;

myScsiXaction.dataLength = bufLength;

myScsiXaction.addLengthByte = 0; /* no longer used */

myScsiXaction.cmdTimeout = <timeout in usec>;

myScsiXaction.tagType = SCSI_TAG_{DEFAULT,UNTAGGED,

SIMPLE,ORDERED,HEAD_OF_Q};

myScsiXaction.priority = [0 (highest) to 255 (lowest)];

if (scsiIoctl (pScsiPhysDev, FIOSCSICOMMAND, &myScsiXaction) == OK)

return (OK);

else

/* optionally perform retry or other action based on value of

* myScsiXaction.statusByte

*/

return (ERROR);

}

INCLUDE FILES scsiLib.h, scsi2Lib.h

SEE ALSO dosFsLib, rt11FsLib, rawFsLib, tapeFsLib, scsiLib, scsiCommonLib, scsiDirectLib,
scsiSeqLib, scsiMgrLib, scsiCtrlLib, American National Standard for Information Systems -
Small Computer System Interface (SCSI-2), ANSI X3T9, VxWorks Programmer’s Guide: I/O
System, Local File Systems

VxWorks OS Libraries API Reference, 5.5
scsiCommonLib

256

scsiCommonLib

NAME scsiCommonLib – SCSI library common commands for all devices (SCSI-2)

ROUTINES No Callable Routines.

DESCRIPTION This library contains commands common to all SCSI devices. The content of this library is
separated from the other SCSI libraries in order to create an additional layer for better
support of all SCSI devices.

Commands in this library include:

INCLUDE FILES scsiLib.h, scsi2Lib.h

SEE ALSO dosFsLib, rt11FsLib, rawFsLib, tapeFsLib, scsi2Lib, VxWorks Programmer’s Guide: I/O
System, Local File Systems

scsiCtrlLib

NAME scsiCtrlLib – SCSI thread-level controller library (SCSI-2)

ROUTINES No Callable Routines.

DESCRIPTION The purpose of the SCSI controller library is to support basic SCSI controller drivers that
rely on a higher level of software in order to manage SCSI transactions. More advanced
SCSI I/O processors do not require this protocol engine since software support for SCSI
transactions is provided at the SCSI I/O processor level.

This library provides all the high-level routines that manage the state of the SCSI threads
and guide the SCSI I/O transaction through its various stages:

– selecting a SCSI peripheral device;

– sending the identify message in order to establish the ITL nexus;

– cycling through information transfer, message and data, and status phases;

– handling bus-initiated reselects.

Command Op Code

INQUIRY (0x12)
REQUEST SENSE (0x03)
TEST UNIT READY (0x00)

1: Libraries
scsiDirectLib

257

S

The various stages of the SCSI I/O transaction are reported to the SCSI manager as SCSI
events. Event selection and management is handled by routines in this library.

INCLUDE FILES scsiLib.h, scsi2Lib.h

SEE ALSO scsiLib, scsi2Lib, scsiCommonLib, scsiDirectLib, scsiSeqLib, scsiMgrLib, American
National Standard for Information Systems - Small Computer System Interface (SCSI-2), ANSI
X3T9, VxWorks Programmer’s Guide: I/O System, Local File Systems

scsiDirectLib

NAME scsiDirectLib – SCSI library for direct access devices (SCSI-2)

ROUTINES scsiStartStopUnit() - issue a START_STOP_UNIT command to a SCSI device
scsiReserve() - issue a RESERVE command to a SCSI device
scsiRelease() - issue a RELEASE command to a SCSI device

DESCRIPTION This library contains commands common to all direct-access SCSI devices. These routines
are separated from scsi2Lib in order to create an additional layer for better support of all
SCSI direct-access devices.

Commands in this library include:

INCLUDE FILES scsiLib.h, scsi2Lib.h

SEE ALSO dosFsLib, rt11FsLib, rawFsLib, scsi2Lib, VxWorks Programmer’s Guide: I/O System, Local
File Systems

Command Op Code

FORMAT UNIT (0x04)
READ (6) (0x08)
READ (10) (0x28)
READ CAPACITY (0x25)
RELEASE (0x17)
RESERVE (0x16)
MODE SELECT (6) (0x15)
MODE SELECT (10) (0x55)
MODE SENSE (6) (0x1a)
MODE SENSE (10) (0x5a)
START STOP UNIT (0x1b)
WRITE (6) (0x0a)
WRITE (10) (0x2a)

VxWorks OS Libraries API Reference, 5.5
scsiLib

258

scsiLib

NAME scsiLib – Small Computer System Interface (SCSI) library

ROUTINES scsiPhysDevDelete() - delete a SCSI physical-device structure
scsiPhysDevCreate() - create a SCSI physical device structure
scsiPhysDevIdGet() - return a pointer to a SCSI_PHYS_DEV structure
scsiAutoConfig() - configure all devices connected to a SCSI controller
scsiShow() - list the physical devices attached to a SCSI controller
scsiBlkDevCreate() - define a logical partition on a SCSI block device
scsiBlkDevInit() - initialize fields in a SCSI logical partition
scsiBlkDevShow() - show the BLK_DEV structures on a specified physical device
scsiBusReset() - pulse the reset signal on the SCSI bus
scsiIoctl() - perform a device-specific I/O control function
scsiFormatUnit() - issue a FORMAT_UNIT command to a SCSI device
scsiModeSelect() - issue a MODE_SELECT command to a SCSI device
scsiModeSense() - issue a MODE_SENSE command to a SCSI device
scsiReadCapacity() - issue a READ_CAPACITY command to a SCSI device
scsiRdSecs() - read sector(s) from a SCSI block device
scsiWrtSecs() - write sector(s) to a SCSI block device
scsiTestUnitRdy() - issue a TEST_UNIT_READY command to a SCSI device
scsiInquiry() - issue an INQUIRY command to a SCSI device
scsiReqSense() - issue a REQUEST_SENSE command to a SCSI device and read results

DESCRIPTION The purpose of this library is to switch SCSI function calls (the common SCSI-1 and SCSI-2
calls listed above) to either scsi1Lib or scsi2Lib, depending upon the SCSI configuration
in the Board Support Package (BSP). The normal usage is to configure SCSI-2. However,
SCSI-1 is configured when device incompatibilities exist. VxWorks can be configured with
either SCSI-1 or SCSI-2, but not both SCSI-1 and SCSI-2 simultaneously.

For more information about SCSI-1 functionality, refer to scsi1Lib. For more information
about SCSI-2, refer to scsi2Lib.

INCLUDE FILES scsiLib.h, scsi1Lib.h, scsi2Lib.h

SEE ALSO dosFsLib, rt11FsLib, rawFsLib, scsi1Lib, scsi2Lib, VxWorks Programmer’s Guide: I/O
System, Local File Systems

1: Libraries
scsiMgrLib

259

S

scsiMgrLib

NAME scsiMgrLib – SCSI manager library (SCSI-2)

ROUTINES scsiMgrEventNotify() - notify the SCSI manager of a SCSI (controller) event
scsiMgrBusReset() - handle a controller-bus reset event
scsiMgrCtrlEvent() - send an event to the SCSI controller state machine
scsiMgrThreadEvent() - send an event to the thread state machine
scsiMgrShow() - show status information for the SCSI manager

DESCRIPTION This SCSI-2 library implements the SCSI manager. The SCSI manager manages SCSI
threads between requesting VxWorks tasks and the SCSI controller. The SCSI manager
handles SCSI events and SCSI threads but allocation and de-allocation of SCSI threads is
not the manager’s responsibility. SCSI thread management includes despatching threads
and scheduling multiple threads (which are performed by the SCSI manager, plus
allocation and de-allocation of threads (which are performed by routines in scsi2Lib).

The SCSI manager is spawned as a task on initialization of the SCSI interface within
VxWorks. The entry point of the SCSI manager task is scsiMgr(). The task is usually
spawned during initialization of the SCSI controller driver. The driver’s
xxCtrlCreateScsi2() routine is typically responsible for such SCSI interface initializations.

Once the SCSI manager has been initialized, it is ready to handle SCSI requests from
VxWorks tasks. The SCSI manager has the following responsibilities:

– It processes requests from client tasks.

– It activates a SCSI transaction thread by appending it to the target device’s wait
queue and allocating a specified time period to execute a transaction.

– It handles timeout events which cause threads to be aborted.

– It receives event notifications from the SCSI driver interrupt service routine (ISR) and
processes the event.

– It responds to events generated by the controller hardware, such as disconnection
and information transfer requests.

– It replies to clients when their requests have completed or aborted.

One SCSI manager task must be spawned per SCSI controller. Thus, if a particular
hardware platform contains more than one SCSI controller then that number of SCSI
manager tasks must be spawned by the controller-driver initialization routine.

INCLUDE FILES scsiLib.h, scsi2Lib.h

SEE ALSO scsiLib, scsi2Lib, scsiCommonLib, scsiDirectLib, scsiSeqLib, scsiCtrlLib, American
National Standard for Information Systems - Small Computer System Interface (SCSI-2), ANSI
X3T9, VxWorks Programmer’s Guide: I/O System, Local File Systems

VxWorks OS Libraries API Reference, 5.5
scsiSeqLib

260

scsiSeqLib

NAME scsiSeqLib – SCSI sequential access device library (SCSI-2)

ROUTINES scsiSeqDevCreate() - create a SCSI sequential device
scsiErase() - issue an ERASE command to a SCSI device
scsiTapeModeSelect() - issue a MODE_SELECT command to a SCSI tape device
scsiTapeModeSense() - issue a MODE_SENSE command to a SCSI tape device
scsiSeqReadBlockLimits() - issue a READ_BLOCK_LIMITS command to a SCSI device
scsiRdTape() - read bytes or blocks from a SCSI tape device
scsiWrtTape() - write data to a SCSI tape device
scsiRewind() - issue a REWIND command to a SCSI device
scsiReserveUnit() - issue a RESERVE UNIT command to a SCSI device
scsiReleaseUnit() - issue a RELEASE UNIT command to a SCSI device
scsiLoadUnit() - issue a LOAD/UNLOAD command to a SCSI device
scsiWrtFileMarks() - write file marks to a SCSI sequential device
scsiSpace() - move the tape on a specified physical SCSI device
scsiSeqStatusCheck() - detect a change in media
scsiSeqIoctl() - perform an I/O control function for sequential access devices

DESCRIPTION This library contains commands common to all sequential-access SCSI devices. Such
devices are usually SCSI tape devices. These routines are separated from scsi2Lib in order
to create an additional layer for better support of all SCSI sequential devices.

SCSI commands in this library include:

The SCSI routines implemented here operate mostly on a SCSI_SEQ_DEV structure. This
structure acts as an interface between this library and a higher-level layer. The SEQ_DEV
structure is analogous to the BLK_DEV structure for block devices.

Command Op Code

ERASE (0x19)
MODE SELECT (6) (0x15)
MODE_SENSE (6) (0x1a)
READ (6) (0x08)
READ BLOCK LIMITS (0x05)
RELEASE UNIT (0x17)
RESERVE UNIT (0x16)
REWIND (0x01)
SPACE (0x11)
WRITE (6) (0x0a)
WRITE FILEMARKS (0x10)
LOAD/UNLOAD (0x1b)

1: Libraries
selectLib

261

S

The scsiSeqDevCreate() routine creates a SCSI_SEQ_DEV structure whose first element is
a SEQ_DEV, operated upon by higher layers. This routine publishes all functions to be
invoked by higher layers and maintains some state information (for example, block size)
for tracking SCSI-sequential-device information.

INCLUDE FILES scsiLib.h, scsi2Lib.h

SEE ALSO tapeFsLib, scsi2Lib, VxWorks Programmer’s Guide: I/O System, Local File Systems

selectLib

NAME selectLib – UNIX BSD 4.3 select library

ROUTINES selectInit() - initialize the select facility
select() - pend on a set of file descriptors
selWakeup() - wake up a task pended in select()
selWakeupAll() - wake up all tasks in a select() wake-up list
selNodeAdd() - add a wake-up node to a select() wake-up list
selNodeDelete() - find and delete a node from a select() wake-up list
selWakeupListInit() - initialize a select() wake-up list
selWakeupListTerm() - terminate a select() wake-up list
selWakeupListLen() - get the number of nodes in a select() wake-up list
selWakeupType() - get the type of a select() wake-up node

DESCRIPTION This library provides a BSD 4.3 compatible select facility to wait for activity on a set of file
descriptors. selectLib provides a mechanism that gives a driver the ability to detect
pended tasks that are awaiting activity on the driver’s device. This allows a driver’s
interrupt service routine to wake up such tasks directly, eliminating the need for polling.

Applications can use select() with pipes and serial devices, in addition to sockets. Also,
select() examines write file descriptors in addition to read file descriptors; however,
exception file descriptors remain unsupported.

Typically, application developers need concern themselves only with the select() call.
However, driver developers should become familiar with the other routines that may be
used with select(), if they wish to support the select() mechanism.

The select facility is included in a system when VxWorks is configured with the
INCLUDE_SELECT component.

INCLUDE FILES selectLib.h

SEE ALSO VxWorks Programmer’s Guide: I/O System

VxWorks OS Libraries API Reference, 5.5
semBLib

262

semBLib

NAME semBLib – binary semaphore library

ROUTINES semBCreate() - create and initialize a binary semaphore

DESCRIPTION This library provides the interface to VxWorks binary semaphores. Binary semaphores are
the most versatile, efficient, and conceptually simple type of semaphore. They can be used
to: (1) control mutually exclusive access to shared devices or data structures, or (2)
synchronize multiple tasks, or task-level and interrupt-level processes. Binary semaphores
form the foundation of numerous VxWorks facilities.

A binary semaphore can be viewed as a cell in memory whose contents are in one of two
states, full or empty. When a task takes a binary semaphore, using semTake(),
subsequent action depends on the state of the semaphore:

(1) If the semaphore is full, the semaphore is made empty, and the calling task continues
executing.

(2) If the semaphore is empty, the task will be blocked, pending the availability of the
semaphore. If a timeout is specified and the timeout expires, the pended task will be
removed from the queue of pended tasks and enter the ready state with an ERROR
status. A pended task is ineligible for CPU allocation. Any number of tasks may be
pended simultaneously on the same binary semaphore.

When a task gives a binary semaphore, using semGive(), the next available task in the
pend queue is unblocked. If no task is pending on this semaphore, the semaphore
becomes full. Note that if a semaphore is given, and a task is unblocked that is of higher
priority than the task that called semGive(), the unblocked task will preempt the calling
task.

MUTUAL EXCLUSION

To use a binary semaphore as a means of mutual exclusion, first create it with an initial
state of full. For example:

SEM_ID semMutex;

/* create a binary semaphore that is initially full */

semMutex = semBCreate (SEM_Q_PRIORITY, SEM_FULL);

Then guard a critical section or resource by taking the semaphore with semTake(), and
exit the section or release the resource by giving the semaphore with semGive(). For
example:

semTake (semMutex, WAIT_FOREVER);

... /* critical region, accessible only by one task at a time */

semGive (semMutex);

1: Libraries
semBLib

263

S

While there is no restriction on the same semaphore being given, taken, or flushed by
multiple tasks, it is important to ensure the proper functionality of the mutual-exclusion
construct. While there is no danger in any number of processes taking a semaphore, the
giving of a semaphore should be more carefully controlled. If a semaphore is given by a
task that did not take it, mutual exclusion could be lost.

SYNCHRONIZATION

To use a binary semaphore as a means of synchronization, create it with an initial state of
empty. A task blocks by taking a semaphore at a synchronization point, and it remains
blocked until the semaphore is given by another task or interrupt service routine.

Synchronization with interrupt service routines is a particularly common need. Binary
semaphores can be given, but not taken, from interrupt level. Thus, a task can block at a
synchronization point with semTake(), and an interrupt service routine can unblock that
task with semGive().

In the following example, when init() is called, the binary semaphore is created, an
interrupt service routine is attached to an event, and a task is spawned to process the
event. Task 1 will run until it calls semTake(), at which point it will block until an event
causes the interrupt service routine to call semGive(). When the interrupt service routine
completes, task 1 can execute to process the event.

SEM_ID semSync; /* ID of sync semaphore */

init ()

{

intConnect (..., eventInterruptSvcRout, ...);

semSync = semBCreate (SEM_Q_FIFO, SEM_EMPTY);

taskSpawn (..., task1);

}

task1 ()

{

...

semTake (semSync, WAIT_FOREVER); /* wait for event */

... /* process event */

}

eventInterruptSvcRout ()

{

...

semGive (semSync); /* let task 1 process event */

...

}

A semFlush() on a binary semaphore will atomically unblock all pended tasks in the
semaphore queue, i.e., all tasks will be unblocked at once, before any actually execute.

CAVEATS There is no mechanism to give back or reclaim semaphores automatically when tasks are
suspended or deleted. Such a mechanism, though desirable, is not currently feasible.

VxWorks OS Libraries API Reference, 5.5
semCLib

264

Without explicit knowledge of the state of the guarded resource or region, reckless
automatic reclamation of a semaphore could leave the resource in a partial state. Thus, if a
task ceases execution unexpectedly, as with a bus error, currently owned semaphores will
not be given back, effectively leaving a resource permanently unavailable. The
mutual-exclusion semaphores provided by semMLib offer protection from unexpected
task deletion.

INCLUDE FILES semLib.h

SEE ALSO semLib, semCLib, semMLib, VxWorks Programmer’s Guide: Basic OS

semCLib

NAME semCLib – counting semaphore library

ROUTINES semCCreate() - create and initialize a counting semaphore

DESCRIPTION This library provides the interface to VxWorks counting semaphores. Counting
semaphores are useful for guarding multiple instances of a resource.

A counting semaphore may be viewed as a cell in memory whose contents keep track of a
count. When a task takes a counting semaphore, using semTake(), subsequent action
depends on the state of the count:

(1) If the count is non-zero, it is decremented and the calling task continues executing.

(2) If the count is zero, the task will be blocked, pending the availability of the
semaphore. If a timeout is specified and the timeout expires, the pended task will be
removed from the queue of pended tasks and enter the ready state with an ERROR
status. A pended task is ineligible for CPU allocation. Any number of tasks may be
pended simultaneously on the same counting semaphore.

When a task gives a semaphore, using semGive(), the next available task in the pend
queue is unblocked. If no task is pending on this semaphore, the semaphore count is
incremented. Note that if a semaphore is given, and a task is unblocked that is of higher
priority than the task that called semGive(), the unblocked task will preempt the calling
task.

A semFlush() on a counting semaphore will atomically unblock all pended tasks in the
semaphore queue. So all tasks will be made ready before any task actually executes. The
count of the semaphore will remain unchanged.

INTERRUPT USAGE

Counting semaphores may be given but not taken from interrupt level.

1: Libraries
semEvLib

265

S

CAVEATS There is no mechanism to give back or reclaim semaphores automatically when tasks are
suspended or deleted. Such a mechanism, though desirable, is not currently feasible.
Without explicit knowledge of the state of the guarded resource or region, reckless
automatic reclamation of a semaphore could leave the resource in a partial state. Thus, if a
task ceases execution unexpectedly, as with a bus error, currently owned semaphores will
not be given back, effectively leaving a resource permanently unavailable. The
mutual-exclusion semaphores provided by semMLib offer protection from unexpected
task deletion.

INCLUDE FILES semLib.h

SEE ALSO semLib, semBLib, semMLib, VxWorks Programmer’s Guide: Basic OS

semEvLib

NAME semEvLib – VxWorks events support for semaphores

ROUTINES semEvStart() - start event notification process for a semaphore
semEvStop() - stop event notification process for a semaphore

DESCRIPTION This library is an extension to eventLib, the events library. Its purpose is to support
events for semaphores.

The functions in this library are used to control registration of tasks on a semaphore. The
routine semEvStart() registers a task and starts the notification process. The function
semEvStop() un-registers the task, which stops the notification mechanism.

When a task is registered and the semaphore becomes available, the events specified are
sent to that task. However, if a semTake() is to be done afterwards, there is no guarantee
that the semaphore will still be available.

INCLUDE FILES semEvLib.h

SEE ALSO eventLib, semLib, VxWorks Programmer’s Guide: Basic OS

VxWorks OS Libraries API Reference, 5.5
semLib

266

semLib

NAME semLib – general semaphore library

ROUTINES semGive() - give a semaphore
semTake() - take a semaphore
semFlush() - unblock every task pended on a semaphore
semDelete() - delete a semaphore

DESCRIPTION Semaphores are the basis for synchronization and mutual exclusion in VxWorks. They are
powerful in their simplicity and form the foundation for numerous VxWorks facilities.

Different semaphore types serve different needs, and while the behavior of the types
differs, their basic interface is the same. This library provides semaphore routines
common to all VxWorks semaphore types. For all types, the two basic operations are
semTake() and semGive(), the acquisition or relinquishing of a semaphore.

Semaphore creation and initialization is handled by other libraries, depending on the type
of semaphore used. These libraries contain full functional descriptions of the semaphore
types:

semBLib - binary semaphores
semCLib - counting semaphores
semMLib - mutual exclusion semaphores
semSmLib - shared memory semaphores

Binary semaphores offer the greatest speed and the broadest applicability.

The semLib library provides all other semaphore operations, including routines for
semaphore control, deletion, and information. Semaphores must be validated before any
semaphore operation can be undertaken. An invalid semaphore ID results in ERROR, and
an appropriate errno is set.

SEMAPHORE CONTROL

The semTake() call acquires a specified semaphore, blocking the calling task or making
the semaphore unavailable. All semaphore types support a timeout on the semTake()
operation. The timeout is specified as the number of ticks to remain blocked on the
semaphore. Timeouts of WAIT_FOREVER and NO_WAIT codify common timeouts. If a
semTake() times out, it returns ERROR. Refer to the library of the specific semaphore type
for the exact behavior of this operation.

The semGive() call relinquishes a specified semaphore, unblocking a pended task or
making the semaphore available. Refer to the library of the specific semaphore type for
the exact behavior of this operation.

The semFlush() call may be used to atomically unblock all tasks pended on a semaphore
queue, i.e., all tasks will be unblocked before any are allowed to run. It may be thought of

1: Libraries
semLib

267

S

as a broadcast operation in synchronization applications. The state of the semaphore is
unchanged by the use of semFlush(); it is not analogous to semGive().

SEMAPHORE DELETION

The semDelete() call terminates a semaphore and deallocates any associated memory.
The deletion of a semaphore unblocks tasks pended on that semaphore; the routines
which were pended return ERROR. Take care when deleting semaphores, particularly
those used for mutual exclusion, to avoid deleting a semaphore out from under a task that
already has taken (owns) that semaphore. Applications should adopt the protocol of only
deleting semaphores that the deleting task has successfully taken.

SEMAPHORE INFORMATION

The semInfo() call is a useful debugging aid, reporting all tasks blocked on a specified
semaphore. It provides a snapshot of the queue at the time of the call, but because
semaphores are dynamic, the information may be out of date by the time it is available. As
with the current state of the semaphore, use of the queue of pended tasks should be
restricted to debugging uses only.

VXWORKS EVENTS If a task has registered for receiving events with a semaphore, events will be sent when
that semaphore becomes available. By becoming available, it is implied that there is a
change of state. For a binary semaphore, there is only a change of state when a semGive()
is done on a semaphore that was taken. For a counting semaphore, there is always a
change of state when the semaphore is available, since the count is incremented each time.
For a mutex, a semGive() can only be performed if the current task is the owner,
implying that the semaphore has been taken; thus, there is always a change of state.

INCLUDE FILES semLib.h

SEE ALSO taskLib, semBLib, semCLib, semMLib, semSmLib, semEvLib, eventLib, VxWorks
Programmer’s Guide: Basic OS

VxWorks OS Libraries API Reference, 5.5
semMLib

268

semMLib

NAME semMLib – mutual-exclusion semaphore library

ROUTINES semMCreate() - create and initialize a mutual-exclusion semaphore
semMGiveForce() - give a mutual-exclusion semaphore without restrictions

DESCRIPTION This library provides the interface to VxWorks mutual-exclusion semaphores.
Mutual-exclusion semaphores offer convenient options suited for situations requiring
mutually exclusive access to resources. Typical applications include sharing devices and
protecting data structures. Mutual-exclusion semaphores are used by many higher-level
VxWorks facilities.

The mutual-exclusion semaphore is a specialized version of the binary semaphore,
designed to address issues inherent in mutual exclusion, such as recursive access to
resources, priority inversion, and deletion safety. The fundamental behavior of the
mutual-exclusion semaphore is identical to the binary semaphore (see the manual entry
for semBLib), except for the following restrictions:

 - It can only be used for mutual exclusion.
 - It can only be given by the task that took it.
 - It may not be taken or given from interrupt level.
 - The semFlush() operation is illegal.

These last two operations have no meaning in mutual-exclusion situations.

RECURSIVE RESOURCE ACCESS

A special feature of the mutual-exclusion semaphore is that it may be taken “recursively,”
i.e., it can be taken more than once by the task that owns it before finally being released.
Recursion is useful for a set of routines that need mutually exclusive access to a resource,
but may need to call each other.

Recursion is possible because the system keeps track of which task currently owns a
mutual-exclusion semaphore. Before being released, a mutual-exclusion semaphore taken
recursively must be given the same number of times it has been taken; this is tracked by
means of a count which is incremented with each semTake() and decremented with each
semGive().

The example below illustrates recursive use of a mutual-exclusion semaphore. Function A
requires access to a resource which it acquires by taking semM; function A may also need
to call function B, which also requires semM:

SEM_ID semM;

semM = semMCreate (...);

funcA ()

{

semTake (semM, WAIT_FOREVER);

1: Libraries
semMLib

269

S

...

funcB ();

...

semGive (semM);

}

funcB ()

{

semTake (semM, WAIT_FOREVER);

...

semGive (semM);

}

PRIORITY-INVERSION SAFETY

If the option SEM_INVERSION_SAFE is selected, the library adopts a priority-inheritance
protocol to resolve potential occurrences of “priority inversion,” a problem stemming
from the use semaphores for mutual exclusion. Priority inversion arises when a
higher-priority task is forced to wait an indefinite period of time for the completion of a
lower-priority task.

Consider the following scenario: T1, T2, and T3 are tasks of high, medium, and low
priority, respectively. T3 has acquired some resource by taking its associated semaphore.
When T1 preempts T3 and contends for the resource by taking the same semaphore, it
becomes blocked. If we could be assured that T1 would be blocked no longer than the
time it normally takes T3 to finish with the resource, the situation would not be
problematic. However, the low-priority task is vulnerable to preemption by
medium-priority tasks; a preempting task, T2, could inhibit T3 from relinquishing the
resource. This condition could persist, blocking T1 for an indefinite period of time.

The priority-inheritance protocol solves the problem of priority inversion by elevating the
priority of T3 to the priority of T1 during the time T1 is blocked on T3. This protects T3,
and indirectly T1, from preemption by T2. Stated more generally, the priority-inheritance
protocol assures that a task which owns a resource will execute at the priority of the
highest priority task blocked on that resource. Once the task priority has been elevated, it
remains at the higher level until all mutual-exclusion semaphores that the task owns are
released; then the task returns to its normal, or standard, priority. Hence, the “inheriting”
task is protected from preemption by any intermediate-priority tasks.

The priority-inheritance protocol also takes into consideration a task’s ownership of more
than one mutual-exclusion semaphore at a time. Such a task will execute at the priority of
the highest priority task blocked on any of its owned resources. The task will return to its
normal priority only after relinquishing all of its mutual-exclusion semaphores that have
the inversion-safety option enabled.

SEMAPHORE DELETION

The semDelete() call terminates a semaphore and deallocates any associated memory.
The deletion of a semaphore unblocks tasks pended on that semaphore; the routines
which were pended return ERROR. Take special care when deleting mutual-exclusion

VxWorks OS Libraries API Reference, 5.5
semMLib

270

semaphores to avoid deleting a semaphore out from under a task that already owns (has
taken) that semaphore. Applications should adopt the protocol of only deleting
semaphores that the deleting task owns.

TASK-DELETION SAFETY

If the option SEM_DELETE_SAFE is selected, the task owning the semaphore will be
protected from deletion as long as it owns the semaphore. This solves another problem
endemic to mutual exclusion. Deleting a task executing in a critical region can be
catastrophic. The resource could be left in a corrupted state and the semaphore guarding
the resource would be unavailable, effectively shutting off all access to the resource.

As discussed in taskLib, the primitives taskSafe() and taskUnsafe() offer one solution,
but as this type of protection goes hand in hand with mutual exclusion, the
mutual-exclusion semaphore provides the option SEM_DELETE_SAFE, which enables an
implicit taskSafe() with each semTake(), and a taskUnsafe() with each semGive(). This
convenience is also more efficient, as the resulting code requires fewer entrances to the
kernel.

CAVEATS There is no mechanism to give back or reclaim semaphores automatically when tasks are
suspended or deleted. Such a mechanism, though desirable, is not currently feasible.
Without explicit knowledge of the state of the guarded resource or region, reckless
automatic reclamation of a semaphore could leave the resource in a partial state. Thus if a
task ceases execution unexpectedly, as with a bus error, currently owned semaphores will
not be given back, effectively leaving a resource permanently unavailable. The
SEM_DELETE_SAFE option partially protects an application, to the extent that unexpected
deletions will be deferred until the resource is released.

Because the priority of a task which has been elevated by the taking of a mutual-exclusion
semaphore remains at the higher priority until all mutexes held by that task are released,
unbounded priority inversion situations can result when nested mutexes are involved. If
nested mutexes are required, consider the following alternatives:

1. Avoid overlapping critical regions.

2. Adjust priorities of tasks so that there are no tasks at intermediate priority levels.

3. Adjust priorities of tasks so that priority inheritance protocol is not needed.

4. Manually implement a static priority ceiling protocol using a non-inversion-save
mutex. This involves setting all blockers on a mutex to the ceiling priority, then
taking the mutex. After semGive(), set the priorities back to the base priority. Note
that this implementation reduces the queue to a fifo queue.

INCLUDE FILES semLib.h

SEE ALSO semLib, semBLib, semCLib, VxWorks Programmer’s Guide: Basic OS

1: Libraries
semPxLib

271

S

semOLib

NAME semOLib – release 4.x binary semaphore library

ROUTINES semCreate() - create and initialize a release 4.x binary semaphore
semInit() - initialize a static binary semaphore
semClear() - take a release 4.x semaphore, if the semaphore is available

DESCRIPTION This library is provided for backward compatibility with VxWorks 4.x semaphores. The
semaphores are identical to 5.0 binary semaphores, except that timeouts -- missing or
specified -- are ignored.

For backward compatibility, semCreate() operates as before, allocating and initializing a
4.x-style semaphore. Likewise, semClear() has been implemented as a semTake(), with a
timeout of NO_WAIT.

For more information on of the behavior of binary semaphores, see the manual entry for
semBLib.

INCLUDE FILES semLib.h

SEE ALSO semLib, semBLib, VxWorks Programmer’s Guide: Basic OS

semPxLib

NAME semPxLib – semaphore synchronization library (POSIX)

ROUTINES semPxLibInit() - initialize POSIX semaphore support
sem_init() - initialize an unnamed semaphore (POSIX)
sem_destroy() - destroy an unnamed semaphore (POSIX)
sem_open() - initialize/open a named semaphore (POSIX)
sem_close() - close a named semaphore (POSIX)
sem_unlink() - remove a named semaphore (POSIX)
sem_wait() - lock (take) a semaphore, blocking if not available (POSIX)
sem_trywait() - lock (take) a semaphore, returning error if unavailable (POSIX)
sem_post() - unlock (give) a semaphore (POSIX)
sem_getvalue() - get the value of a semaphore (POSIX)

DESCRIPTION This library implements the POSIX 1003.1b semaphore interface. For alternative
semaphore routines designed expressly for VxWorks, see the manual page for semLib

VxWorks OS Libraries API Reference, 5.5
semPxLib

272

and other semaphore libraries mentioned there. POSIX semaphores are counting
semaphores; as such they are most similar to the semCLib VxWorks-specific semaphores.

The main advantage of POSIX semaphores is portability (to the extent that alternative
operating systems also provide these POSIX interfaces). However, VxWorks-specific
semaphores provide the following features absent from the semaphores implemented in
this library: priority inheritance, task-deletion safety, the ability for a single task to take a
semaphore multiple times, ownership of mutual-exclusion semaphores, semaphore
timeout, and the choice of queuing mechanism.

POSIX defines both named and unnamed semaphores; semPxLib includes separate
routines for creating and deleting each kind. For other operations, applications use the
same routines for both kinds of semaphore.

TERMINOLOGY The POSIX standard uses the terms wait or lock where take is normally used in VxWorks,
and the terms post or unlock where give is normally used in VxWorks. VxWorks
documentation that is specific to the POSIX interfaces (such as the remainder of this
manual entry, and the manual entries for subroutines in this library) uses the POSIX
terminology, in order to make it easier to read in conjunction with other references on
POSIX.

SEMAPHORE DELETION

The sem_destroy() call terminates an unnamed semaphore and deallocates any
associated memory; the combination of sem_close() and sem_unlink() has the same
effect for named semaphores. Take care when deleting semaphores, particularly those
used for mutual exclusion, to avoid deleting a semaphore out from under a task that has
already locked that semaphore. Applications should adopt the protocol of only deleting
semaphores that the deleting task has successfully locked. (Similarly, for named
semaphores, applications should take care to only close semaphores that the closing task
has opened.)

If there are tasks blocked waiting for the semaphore, sem_destroy() fails and sets errno to
EBUSY.

INCLUDE FILES semaphore.h

SEE ALSO POSIX 1003.1b document, semLib, VxWorks Programmer’s Guide: Basic OS

1: Libraries
semShow

273

S

semPxShow

NAME semPxShow – POSIX semaphore show library

ROUTINES semPxShowInit() - initialize the POSIX semaphore show facility

DESCRIPTION This library provides a show routine for POSIX semaphore objects.

semShow

NAME semShow – semaphore show routines

ROUTINES semShowInit() - initialize the semaphore show facility
semInfo() - get a list of task IDs that are blocked on a semaphore
semShow() - show information about a semaphore

DESCRIPTION This library provides routines to show semaphore statistics, such as semaphore type,
semaphore queuing method, tasks pended, etc.

The routine semShowInit() links the semaphore show facility into the VxWorks system.
It is called automatically when the semaphore show facility is configured into VxWorks
using either of the following methods:

If you use the configuration header files, define INCLUDE_SHOW_ROUTINES in config.h.

If you use the Tornado project facility, select INCLUDE_SEM_SHOW.

INCLUDE FILES semLib.h

SEE ALSO semLib, VxWorks Programmer’s Guide: Basic OS

VxWorks OS Libraries API Reference, 5.5
semSmLib

274

semSmLib

NAME semSmLib – shared memory semaphore library (VxMP Opt.)

ROUTINES semBSmCreate() - create and initialize shared memory binary semaphore (VxMP Opt.)
semCSmCreate() - create and initialize a shared memory counting semaphore (VxMP
Opt.)

DESCRIPTION This library provides the interface to VxWorks shared memory binary and counting
semaphores. Once a shared memory semaphore is created, the generic
semaphore-handling routines provided in semLib are used to manipulate it. Shared
memory binary semaphores are created using semBSmCreate(). Shared memory
counting semaphores are created using semCSmCreate().

Shared memory binary semaphores are used to: (1) control mutually exclusive access to
multiprocessor-shared data structures, or (2) synchronize multiple tasks running in a
multiprocessor system. For general information about binary semaphores, see the manual
entry semBLib.

Shared memory counting semaphores are used for guarding multiple instances of a
resource used by multiple CPUs. For general information about shared counting
semaphores, see the manual entry for semCLib.

For information about the generic semaphore-handling routines, see the manual entry for
semLib.

MEMORY REQUIREMENTS

The semaphore structure is allocated from a dedicated shared memory partition.

The shared semaphore dedicated shared memory partition is initialized by the shared
memory objects master CPU. The size of this partition is defined by the maximum number
of shared semaphores, set in the configuration parameter SM_OBJ_MAX_SEM.

This memory partition is common to shared binary and counting semaphores, thus
SM_OBJ_MAX_SEM must be set to the sum total of binary and counting semaphores to be
used in the system.

RESTRICTIONS Shared memory semaphores differ from local semaphores in the following ways:

Interrupt Use:
Shared semaphores may not be given, taken, or flushed at interrupt level.

Deletion:
There is no way to delete a shared semaphore and free its associated shared memory.
Attempts to delete a shared semaphore return ERROR and set errno to
S_smObjLib_NO_OBJECT_DESTROY.

1: Libraries
shellLib

275

S

Queuing Style:
The shared semaphore queuing style specified when the semaphore is created must
be FIFO.

INTERRUPT LATENCY

Internally, interrupts are locked while manipulating shared semaphore data structures,
thus increasing local CPU interrupt latency.

CONFIGURATION Before routines in this library can be called, the shared memory object facility must be
initialized by calling usrSmObjInit(). This is done automatically during VxWorks
initialization when the component INCLUDE_SM_OBJ is included.

AVAILABILITY This module is distributed as a component of the unbundled shared memory support
option, VxMP.

INCLUDE FILES semSmLib.h

SEE ALSO semLib, semBLib, semCLib, smObjLib, semShow, usrSmObjInit(), VxWorks
Programmer’s Guide: Shared Memory Objects, VxWorks Programmer’s Guide: Basic OS

shellLib

NAME shellLib – shell execution routines

ROUTINES shellInit() - start the shell
shell() - the shell entry point
shellScriptAbort() - signal the shell to stop processing a script
shellHistory() - display or set the size of shell history
shellPromptSet() - change the shell prompt
shellOrigStdSet() - set the shell’s default input/output/error file descriptors
shellLock() - lock access to the shell

DESCRIPTION This library contains the execution support routines for the VxWorks shell. It provides the
basic programmer’s interface to VxWorks. It is a C-expression interpreter, containing no
built-in commands.

The nature, use, and syntax of the shell are more fully described in the “Target Shell”
chapter of the VxWorks Programmer’s Guide.

INCLUDE FILES shellLib.h

SEE ALSO ledLib, VxWorks Programmer’s Guide: Target Shell

VxWorks OS Libraries API Reference, 5.5
sigLib

276

sigLib

NAME sigLib – software signal facility library

ROUTINES sigInit() - initialize the signal facilities
sigqueueInit() - initialize the queued signal facilities
sigemptyset() - initialize a signal set with no signals included (POSIX)
sigfillset() - initialize a signal set with all signals included (POSIX)
sigaddset() - add a signal to a signal set (POSIX)
sigdelset() - delete a signal from a signal set (POSIX)
sigismember() - test to see if a signal is in a signal set (POSIX)
signal() - specify the handler associated with a signal
sigaction() - examine and/or specify the action associated with a signal (POSIX)
sigprocmask() - examine and/or change the signal mask (POSIX)
sigpending() - retrieve the set of pending signals blocked from delivery (POSIX)
sigsuspend() - suspend the task until delivery of a signal (POSIX)
pause() - suspend the task until delivery of a signal (POSIX)
sigtimedwait() - wait for a signal
sigwaitinfo() - wait for real-time signals
sigwait() - wait for a signal to be delivered (POSIX)
sigvec() - install a signal handler
sigsetmask() - set the signal mask
sigblock() - add to a set of blocked signals
raise() - send a signal to the caller’s task
kill() - send a signal to a task (POSIX)
sigqueue() - send a queued signal to a task

DESCRIPTION This library provides a signal interface for tasks. Signals are used to alter the flow control
of tasks by communicating asynchronous events within or between task contexts. Any
task or interrupt service can “raise” (or send) a signal to a particular task. The task being
signaled will immediately suspend its current thread of execution and invoke a
task-specified “signal handler” routine. The signal handler is a user-supplied routine that
is bound to a specific signal and performs whatever actions are necessary whenever the
signal is received. Signals are most appropriate for error and exception handling, rather
than as a general purpose intertask communication mechanism.

This library has both a BSD 4.3 and POSIX signal interface. The POSIX interface provides a
standardized interface which is more functional than the traditional BSD 4.3 interface. The
chart below shows the correlation between BSD 4.3 and POSIX 1003.1 functions. An
application should use only one form of interface and not intermix them.

BSD 4.3 POSIX 1003.1

sigmask() sigemptyset(), sigfillset(), sigaddset(),
sigdelset(), sigismember()

1: Libraries
sigLib

277

S

POSIX 1003.1b (Real-Time Extensions) also specifies a queued-signal facility that involves
four additional routines: sigqueue(), sigwaitinfo(), and sigtimedwait().

In many ways, signals are analogous to hardware interrupts. The signal facility provides a
set of 31 distinct signals. A signal can be raised by calling kill(), which is analogous to an
interrupt or hardware exception. A signal handler is bound to a particular signal with
sigaction() in much the same way that an interrupt service routine is connected to an
interrupt vector with intConnect(). Signals are blocked for the duration of the signal
handler, just as interrupts are locked out for the duration of the interrupt service routine.
Tasks can block the occurrence of certain signals with sigprocmask(), just as the interrupt
level can be raised or lowered to block out levels of interrupts. If a signal is blocked when
it is raised, its handler routine will be called when the signal becomes unblocked.

Several routines (sigprocmask(), sigpending(), and sigsuspend()) take sigset_t data
structures as parameters. These data structures are used to specify signal set masks.
Several routines are provided for manipulating these data structures: sigemptyset() clears
all the bits in a segset_t, sigfillset() sets all the bits in a sigset_t, sigaddset() sets the bit in
a sigset_t corresponding to a particular signal number, sigdelset() resets the bit in a
sigset_t corresponding to a particular signal number, and sigismember() tests to see if the
bit corresponding to a particular signal number is set.

FUNCTION RESTARTING

If a task is pended (for instance, by waiting for a semaphore to become available) and a
signal is sent to the task for which the task has a handler installed, then the handler will
run before the semaphore is taken. When the handler is done, the task will go back to
being pended (waiting for the semaphore). If there was a timeout used for the pend, then
the original value will be used again when the task returns from the signal handler and
goes back to being pended.

Signal handlers are typically defined as:

void sigHandler

(

int sig, /* signal number */

)

{

...

}

sigblock() sigprocmask()
sigsetmask() sigprocmask()
pause() sigsuspend()
sigvec() sigaction()
(none) sigpending()
signal() signal()
kill() kill()

BSD 4.3 POSIX 1003.1

VxWorks OS Libraries API Reference, 5.5
sigLib

278

In VxWorks, the signal handler is passed additional arguments and can be defined as:

void sigHandler

(

int sig, /* signal number */

int code, /* additional code */

struct sigcontext *pSigContext /* context of task before signal */

)

{

...

}

The parameter code is valid only for signals caused by hardware exceptions. In this case, it
is used to distinguish signal variants. For example, both numeric overflow and zero
divide raise SIGFPE (floating-point exception) but have different values for code. (Note that
when the above VxWorks extensions are used, the compiler may issue warnings.)

SIGNAL HANDLER DEFINITION

Signal handling routines must follow one of two specific formats, so that they may be
correctly called by the operating system when a signal occurs.

Traditional signal handlers receive the signal number as the sole input parameter.
However, certain signals generated by routines which make up the POSIX Real-Time
Extensions (P1003.1b) support the passing of an additional application-specific value to
the handler routine. These include signals generated by the sigqueue() call, by
asynchronous I/O, by POSIX real-time timers, and by POSIX message queues.

If a signal handler routine is to receive these additional parameters, SA_SIGINFO must be
set in the sa_flags field of the sigaction structure which is a parameter to the sigaction()
routine. Such routines must take the following form:

void sigHandler (int sigNum, siginfo_t * pInfo, void * pContext);

Traditional signal handling routines must not set SA_SIGINFO in the sa_flags field, and
must take the form of:

void sigHandler (int sigNum);

EXCEPTION PROCESSING

Certain signals, defined below, are raised automatically when hardware exceptions are
encountered. This mechanism allows user-defined exception handlers to be installed. This
is useful for recovering from catastrophic events such as bus or arithmetic errors.
Typically, setjmp() is called to define the point in the program where control will be
restored, and longjmp() is called in the signal handler to restore that context. Note that
longjmp() restores the state of the task’s signal mask. If a user-defined handler is not
installed or the installed handler returns for a signal raised by a hardware exception, then
the task is suspended and a message is logged to the console.

1: Libraries
sigLib

279

S

The following is a list of hardware exceptions caught by VxWorks and delivered to the
offending task. The user may include the higher-level header file sigCodes.h in order to
access the appropriate architecture-specific header file containing the code value.

Motorola 68K

MIPS R3000/R4000

Signal Code Exception

SIGSEGV NULL bus error
SIGBUS BUS_ADDERR address error
SIGILL ILL_ILLINSTR_FAULT illegal instruction
SIGFPE FPE_INTDIV_TRAP zero divide
SIGFPE FPE_CHKINST_TRAP chk trap
SIGFPE FPE_TRAPV_TRAP trapv trap
SIGILL ILL_PRIVVIO_FAULT privilege violation
SIGTRAP NULL trace exception
SIGEMT EMT_EMU1010 line 1010 emulator
SIGEMT EMT_EMU1111 line 1111 emulator
SIGILL ILL_ILLINSTR_FAULT coprocessor protocol violation
SIGFMT NULL format error
SIGFPE FPE_FLTBSUN_TRAP compare unordered
SIGFPE FPE_FLTINEX_TRAP inexact result
SIGFPE FPE_FLTDIV_TRAP divide by zero
SIGFPE FPE_FLTUND_TRAP underflow
SIGFPE FPE_FLTOPERR_TRAP operand error
SIGFPE FPE_FLTOVF_TRAP overflow
SIGFPE FPE_FLTNAN_TRAP signaling “Not A Number”

Signal Code Exception

SIGBUS BUS_TLBMOD TLB modified
SIGBUS BUS_TLBL TLB miss on a load instruction
SIGBUS BUS_TLBS TLB miss on a store instruction
SIGBUS BUS_ADEL address error (bad alignment) on load instr
SIGBUS BUS_ADES address error (bad alignment) on store instr
SIGSEGV SEGV_IBUS bus error (instruction)
SIGSEGV SEGV_DBUS bus error (data)
SIGTRAP TRAP_SYSCALL syscall instruction executed
SIGTRAP TRAP_BP break instruction executed
SIGILL ILL_ILLINSTR_FAULT reserved instruction
SIGILL ILL_COPROC_UNUSABLE coprocessor unusable
SIGFPE FPE_FPA_UIO, SIGFPE unimplemented FPA operation

VxWorks OS Libraries API Reference, 5.5
sigLib

280

Intel i386/i486

PowerPC

SIGFPE FPE_FLTNAN_TRAP invalid FPA operation
SIGFPE FPE_FLTDIV_TRAP FPA divide by zero
SIGFPE FPE_FLTOVF_TRAP FPA overflow exception
SIGFPE FPE_FLTUND_TRAP FPA underflow exception
SIGFPE FPE_FLTINEX_TRAP FPA inexact operation

Signal Code Exception

SIGILL ILL_DIVIDE_ERROR divide error
SIGEMT EMT_DEBUG debugger call
SIGILL ILL_NON_MASKABLE NMI interrupt
SIGEMT EMT_BREAKPOINT breakpoint
SIGILL ILL_OVERFLOW INTO-detected overflow
SIGILL ILL_BOUND bound range exceeded
SIGILL ILL_INVALID_OPCODE invalid opcode
SIGFPE FPE_NO_DEVICE device not available
SIGILL ILL_DOUBLE_FAULT double fault
SIGFPE FPE_CP_OVERRUN coprocessor segment overrun
SIGILL ILL_INVALID_TSS invalid task state segment
SIGBUS BUS_NO_SEGMENT segment not present
SIGBUS BUS_STACK_FAULT stack exception
SIGILL ILL_PROTECTION_FAULT general protection
SIGBUS BUS_PAGE_FAULT page fault
SIGILL ILL_RESERVED (intel reserved)
SIGFPE FPE_CP_ERROR coprocessor error
SIGBUS BUS_ALIGNMENT alignment check

Signal Code Exception

SIGBUS _EXC_OFF_MACH machine check
SIGBUS _EXC_OFF_INST instruction access
SIGBUS _EXC_OFF_ALIGN alignment
SIGILL _EXC_OFF_PROG program
SIGBUS _EXC_OFF_DATA data access
SIGFPE _EXC_OFF_FPU floating point unavailable
SIGTRAP _EXC_OFF_DBG debug exception (PPC403)
SIGTRAP _EXC_OFF_INST_BRK inst. breakpoint (PPC603, PPCEC603, PPC604)
SIGTRAP _EXC_OFF_TRACE trace (PPC603, PPCEC603, PPC604, PPC860)
SIGBUS _EXC_OFF_CRTL critical interrupt (PPC403)

Signal Code Exception

1: Libraries
smMemLib

281

S

Hitachi SH770x

Hitachi SH7604/SH704x/SH703x/SH702x

Two signals are provided for application use: SIGUSR1 and SIGUSR2. VxWorks will
never use these signals; however, other signals may be used by VxWorks in the future.

INCLUDE FILES signal.h

SEE ALSO intLib, IEEE POSIX 1003.1b, VxWorks Programmer’s Guide: Basic OS

smMemLib

NAME smMemLib – shared memory management library (VxMP Opt.)

ROUTINES memPartSmCreate() - create a shared memory partition
smMemAddToPool() - add memory to shared memory system partition
smMemOptionsSet() - set debug options for shared memory system partition

SIGILL _EXC_OFF_SYSCALL system call

Signal Code Exception

SIGSEGV TLB_LOAD_MISS TLB miss/invalid (load)
SIGSEGV TLB_STORE_MISS TLB miss/invalid (store)
SIGSEGV TLB_INITITIAL_PAGE_WRITE Initial page write
SIGSEGV TLB_LOAD_PROTEC_VIOLATION TLB protection violation (load)
SIGSEGV TLB_STORE_PROTEC_VIOLATION TLB protection violation (store)
SIGBUS BUS_LOAD_ADDRESS_ERROR Address error (load)
SIGBUS BUS_STORE_ADDRESS_ERROR Address error (store)
SIGILL ILLEGAL_INSTR_GENERAL general illegal instruction
SIGILL ILLEGAL_SLOT_INSTR slot illegal instruction
SIGFPE FPE_INTDIV_TRAP integer zero divide

Signal Code Exception

SIGILL ILL_ILLINSTR_GENERAL general illegal instruction
SIGILL ILL_ILLINSTR_SLOT slot illegal instruction
SIGBUS BUS_ADDERR_CPU CPU address error
SIGBUS BUS_ADDERR_DMA DMA address error
SIGFPE FPE_INTDIV_TRAP integer zero divide

Signal Code Exception

VxWorks OS Libraries API Reference, 5.5
smMemLib

282

smMemMalloc() - allocate block of memory from shared memory system partition
smMemCalloc() - allocate memory for array from shared memory system partition
smMemRealloc() - reallocate block of memory from shared memory system partition
smMemFree() - free a shared memory system partition block of memory
smMemFindMax() - find largest free block in shared memory system partition

DESCRIPTION This library provides facilities for managing the allocation of blocks of shared memory
from ranges of memory called shared memory partitions. The routine
memPartSmCreate() is used to create shared memory partitions in the shared memory
pool. The created partition can be manipulated using the generic memory partition calls,
memPartAlloc(), memPartFree(), etc. (for a complete list of these routines, see the
manual entry for memPartLib). The maximum number of partitions that can be created is
determined by the configuration parameter SM_OBJ_MAX_MEM_PART.

The smMem...() routines provide an easy-to-use interface to the shared memory system
partition. The shared memory system partition is created when the shared memory object
facility is initialized.

Shared memory management information and statistics display routines are provided by
smMemShow.

The allocation of memory, using memPartAlloc() in the general case and
smMemMalloc() for the shared memory system partition, is done with a first-fit
algorithm. Adjacent blocks of memory are coalesced when freed using memPartFree()
and smMemFree().

There is a 28-byte overhead per allocated block (architecture dependent), and allocated
blocks are aligned on a 16-byte boundary.

All memory used by the shared memory facility must be in the same address space, that
is, it must be reachable from all the CPUs with the same offset as the one used for the
shared memory anchor.

CONFIGURATION Before routines in this library can be called, the shared memory objects facility must be
initialized by a call to usrSmObjInit(), which is found in
target/config/comps/src/usrSmObj.c. This is done automatically by VxWorks when the
INCLUDE_SM_OBJ component is included.

ERROR OPTIONS Various debug options can be selected for each partition using memPartOptionsSet() and
smMemOptionsSet(). Two kinds of errors are detected: attempts to allocate more
memory than is available, and bad blocks found when memory is freed. In both cases,
options can be selected for system actions to take place when the error is detected: (1)
return the error status, (2) log an error message and return the error status, or (3) log an
error message and suspend the calling task.

One of the following options can be specified to determine the action to be taken when
there is an attempt to allocate more memory than is available in the partition:

1: Libraries
smMemLib

283

S

MEM_ALLOC_ERROR_RETURN
just return the error status to the calling task.

MEM_ALLOC_ERROR_LOG_MSG
log an error message and return the status to the calling task.

MEM_ALLOC_ERROR_LOG_AND_SUSPEND
log an error message and suspend the calling task.

The following option is specified by default to check every block freed to the partition. If
this option is specified, memPartFree() and smMemFree() will make a consistency check
of various pointers and values in the header of the block being freed.

MEM_BLOCK_CHECK
check each block freed.

One of the following options can be specified to determine the action to be taken when a
bad block is detected when freed. These options apply only if the MEM_BLOCK_CHECK
option is selected.

MEM_BLOCK_ERROR_RETURN
just return the status to the calling task.

MEM_BLOCK_ERROR_LOG_MSG
log an error message and return the status to the calling task.

MEM_BLOCK_ERROR_LOG_AND_SUSPEND
log an error message and suspend the calling task.

The default options when a shared partition is created are
MEM_ALLOC_ERROR_LOG_MSG, MEM_BLOCK_CHECK, MEM_BLOCK_ERROR_RETURN.

When setting options for a partition with memPartOptionsSet() or
smMemOptionsSet(), use the logical OR operator between each specified option to
construct the options parameter. For example:

memPartOptionsSet (myPartId, MEM_ALLOC_ERROR_LOG_MSG |

MEM_BLOCK_CHECK |

MEM_BLOCK_ERROR_LOG_MSG);

AVAILABILITY This module is distributed as a component of the unbundled shared memory objects
support option, VxMP.

INCLUDE FILES smMemLib.h

SEE ALSO smMemShow, memLib, memPartLib, smObjLib, usrSmObjInit(), VxWorks
Programmer’s Guide: Shared Memory Objects

VxWorks OS Libraries API Reference, 5.5
smMemShow

284

smMemShow

NAME smMemShow – shared memory management show routines (VxMP Opt.)

ROUTINES smMemShow() - show the shared memory system partition blocks and statistics (VxMP
Opt.)

DESCRIPTION This library provides routines to show the statistics on a shared memory system partition.

General shared memory management routines are provided by smMemLib.

CONFIGURATION The routines in this library are included by default if the component INCLUDE_SM_OBJ is
included.

AVAILABILITY This module is distributed as a component of the unbundled shared memory objects
support option, VxMP.

INCLUDE FILES smLib.h, smObjLib.h, smMemLib.h

SEE ALSO smMemLib, VxWorks Programmer’s Guide: Shared Memory Objects

smNameLib

NAME smNameLib – shared memory objects name database library (VxMP Opt.)

ROUTINES smNameAdd() - add a name to the shared memory name database (VxMP Opt.)
smNameFind() - look up a shared memory object by name (VxMP Opt.)
smNameFindByValue() - look up a shared memory object by value (VxMP Opt.)
smNameRemove() - remove an object from the shared memory objects name database
(VxMP Opt.)

DESCRIPTION This library provides facilities for managing the shared memory objects name database.
The shared memory objects name database associates a name and object type with a value
and makes that information available to all CPUs. A name is an arbitrary, null-terminated
string. An object type is a small integer, and its value is a global (shared) ID or a global
shared memory address.

Names are added to the shared memory name database with smNameAdd(). They are
removed by smNameRemove().

Objects in the database can be accessed by either name or value. The routine
smNameFind() searches the shared memory name database for an object of a specified

1: Libraries
smNameLib

285

S

name. The routine smNameFindByValue() searches the shared memory name database
for an object of a specified identifier or address.

Name database contents can be viewed using smNameShow().

The maximum number of names to be entered in the database is defined in the
configuration parameter SM_OBJ_MAX_NAME. This value is used to determine the size of
a dedicated shared memory partition from which name database fields are allocated.

The estimated memory size required for the name database can be calculated as follows:

name database pool size = SM_OBJ_MAX_NAME * 40 (bytes)

The display facility for the shared memory objects name database is provided by the
smNameShow module.

EXAMPLE The following code fragment allows a task on one CPU to enter the name, associated ID,
and type of a created shared semaphore into the name database. Note that CPU numbers
can belong to any CPU using the shared memory objects facility.

On CPU 1:

#include "vxWorks.h"

#include "semLib.h"

#include "smNameLib.h"

#include "semSmLib.h"

#include "stdio.h"

testSmSem1 (void)

{

SEM_ID smSemId;

/* create a shared semaphore */

if ((smSemId = semBSmCreate(SEM_Q_FIFO, SEM_EMPTY)) == NULL)

{

printf ("Shared semaphore creation error.");

return (ERROR);

}

/*

* make created semaphore Id available to all CPUs in

* the system by entering its name in shared name database.

*/

if (smNameAdd ("smSem", smSemId, T_SM_SEM_B) != OK)

{

printf ("Cannot add smSem into shared database.");

return (ERROR);

}

...

/* now use the semaphore */

semGive (smSemId);

...

VxWorks OS Libraries API Reference, 5.5
smNameShow

286

}

On CPU 2 :

#include "vxWorks.h"

#include "semLib.h"

#include "smNameLib.h"

#include "stdio.h"

testSmSem2 (void)

{

SEM_ID smSemId;

int objType; /* place holder for smNameFind() object type */

/* get semaphore ID from name database */

smNameFind ("smSem", (void **) &smSemId, &objType, WAIT_FOREVER);

...

/* now that we have the shared semaphore ID, take it */

semTake (smSemId, WAIT_FOREVER);

...

}

CONFIGURATION Before routines in this library can be called, the shared memory object facility must be
initialized by calling usrSmObjInit(). This is done automatically during VxWorks
initialization when the component INCLUDE_SM_OBJ is included.

AVAILABILITY This module is distributed as a component of the unbundled shared memory objects
support option, VxMP.

INCLUDE FILES smNameLib.h

SEE ALSO smNameShow, smObjLib, smObjShow, usrSmObjInit(), VxWorks Programmer’s Guide:
Shared Memory Objects

smNameShow

NAME smNameShow – shared memory objects name database show routines (VxMP Opt.)

ROUTINES smNameShow() - show the contents of the shared memory objects name database
(VxMP Opt.)

1: Libraries
smNetLib

287

S

DESCRIPTION This library provides a routine to show the contents of the shared memory objects name
database. The shared memory objects name database facility is provided by the
smNameLib module.

CONFIGURATION The routines in this library are included by default if the component INCLUDE_SM_OBJ is
included.

AVAILABILITY This module is distributed as a component of the unbundled shared memory objects
support option, VxMP.

INCLUDE FILES smNameLib.h

SEE ALSO smNameLib, smObjLib, VxWorks Programmer’s Guide: Shared Memory Objects

smNetLib

NAME smNetLib – VxWorks interface to shared memory network (backplane) driver

ROUTINES No Callable Routines.

DESCRIPTION This library implements the VxWorks-specific portions of the shared memory network
interface driver. It provides the interface between VxWorks and the network driver
modules (e.g., how the OS initializes and attaches the driver, interrupt handling, etc.), as
well as VxWorks-dependent system calls.

There are no user-callable routines.

The backplane master initializes the backplane shared memory and network structures by
first calling smNetInit(). Once the backplane has been initialized, all processors can be
attached to the shared memory network via the smNetAttach() routine. Both
smNetInit() and smNetAttach() are called automatically during system initialization
when backplane parameters are specified in the boot line.

For detailed information refer to VxWorks Network Programmer’s Guide: Data Link Layer
Network Components.

INCLUDE FILES smNetLib.h, smPktLib.h, smUtilLib.h

SEE ALSO ifLib, if_sm, VxWorks Network Programmer’s Guide

VxWorks OS Libraries API Reference, 5.5
smNetShow

288

smNetShow

NAME smNetShow – shared memory network driver show routines

ROUTINES smNetShow() - show information about a shared memory network

DESCRIPTION This library provides show routines for the shared memory network interface driver.

The smNetShow() routine is provided as a diagnostic aid to show current shared
memory network status.

INCLUDE FILES smNetLib.h, smPktLib.h

SEE ALSO if_sm, smNetLib, smPktLib, VxWorks Network Programmer’s Guide

smObjLib

NAME smObjLib – shared memory objects library (VxMP Opt.)

ROUTINES smObjLibInit() - install the shared memory objects facility
smObjSetup() - initialize the shared memory objects facility
smObjInit() - initialize a shared memory objects descriptor
smObjAttach() - attach the calling CPU to the shared memory objects facility
smObjLocalToGlobal() - convert a local address to a global address
smObjGlobalToLocal() - convert a global address to a local address
smObjTimeoutLogEnable() - control logging of failed attempts to take a spin-lock

DESCRIPTION This library contains miscellaneous functions used by the shared memory objects facility
(VxMP). Shared memory objects provide high-speed synchronization and communication
among tasks running on separate CPUs that have access to a common shared memory.
Shared memory objects are system objects (e.g., semaphores and message queues) that can
be used across processors.

The main uses of shared memory objects are inter-processor synchronization, mutual
exclusion on multiprocessor shared data structures, and high-speed data exchange.

Routines for displaying shared memory objects statistics are provided by the smObjShow
module.

SHARED MEMORY MASTER CPU

One CPU node acts as the shared memory objects master. This CPU initializes the shared
memory area and sets up the shared memory anchor. These steps are performed by the

1: Libraries
smObjLib

289

S

master calling smObjSetup(). This routine should be called only once by the master CPU.
Usually smObjSetup() is called from usrSmObjInit(). (See Configuration below.)

Once smObjSetup() has completed successfully, there is little functional difference
between the master CPU and other CPUs using shared memory objects, except that the
master is responsible for maintaining the heartbeat in the shared memory objects header.

ATTACHING TO SHARED MEMORY

Each CPU, master or non-master, that will use shared memory objects must attach itself to
the shared memory objects facility, which must already be initialized.

Before it can attach to a shared memory region, each CPU must allocate and initialize a
shared memory descriptor (SM_DESC), which describes the individual CPU’s attachment
to the shared memory objects facility. Since the shared memory descriptor is used only by
the local CPU, it is not necessary for the descriptor itself to be located in shared memory.
In fact, it is preferable for the descriptor to be allocated from the CPU’s local memory,
since local memory is usually more efficiently accessed.

The shared memory descriptor is initialized by calling smObjInit(). This routine takes a
number of parameters which specify the characteristics of the calling CPU and its access
to shared memory.

Once the shared memory descriptor has been initialized, the CPU can attach itself to the
shared memory region. This is done by calling smObjAttach().

When smObjAttach() is called, it verifies that the shared memory anchor contains the
value SM_READY and that the heartbeat located in the shared memory objects header is
incrementing. If either of these conditions is not met, the routine will check periodically
until either SM_READY or an incrementing heartbeat is recognized or a time limit is
reached. The limit is expressed in seconds, and 600 seconds (10 minutes) is the default. If
the time limit is reached before SM_READY or a heartbeat is found, ERROR is returned and
errno is set to S_smLib_DOWN.

ADDRESS CONVERSION

This library also provides routines for converting between local and global shared
memory addresses, smObjLocalToGlobal() and smObjGlobalToLocal(). A local shared
memory address is the address required by the local CPU to reach a location in shared
memory. A global shared memory address is a value common to all CPUs in the system
used to reference a shared memory location. A global shared memory address is always
an offset from the shared memory anchor.

SPIN-LOCK MECHANISM

The shared memory objects facilities use a spin-lock mechanism based on an indivisible
read-modify-write (RMW) operation on a shared memory location which acts as a
low-level mutual exclusion device. The spin-lock mechanism is called with a system-wide
configuration parameter, SM_OBJ_MAX_TRIES, which specifies the maximum number of
RMW tries on a spin-lock location.

VxWorks OS Libraries API Reference, 5.5
smObjLib

290

Care must be taken that the number of RMW tries on a spin-lock on a particular CPU
never reaches SM_OBJ_MAX_TRIES, otherwise system behavior becomes unpredictable.
The default value should be sufficient for reliable operation.

The routine smObjTimeoutLogEnable() can be used to enable or disable the printing of a
message should a shared memory object call fail while trying to take a spin-lock.

RELATION TO BACKPLANE DRIVER

Shared memory objects and the shared memory network (backplane) driver use common
underlying shared memory utilities. They also use the same anchor, the same shared
memory header, and the same interrupt when they are used at the same time.

LIMITATIONS A maximum of twenty CPUs can be used concurrently with shared memory objects. Each
CPU in the system must have a hardware test-and-set (TAS) mechanism, which is called
via the system-dependent routine sysBusTas().

The use of shared memory objects raises interrupt latency, because internal mechanisms
lock interrupts while manipulating critical shared data structures. Interrupt latency does
not depend on the number of objects or CPUs used.

GETTING STATUS INFORMATION

The routine smObjShow() displays useful information regarding the current status of
shared memory objects, including the number of tasks using shared objects, shared
semaphores, and shared message queues, the number of names in the database, and also
the maximum number of tries to get spin-lock access for the calling CPU.

CONFIGURATION When the component INCLUDE_SM_OBJ is included, the init and setup routines in this
library are called automatically during VxWorks initialization.

AVAILABILITY This module is distributed as a component of the unbundled shared memory objects
support option, VxMP.

INCLUDE FILES smObjLib.h

SEE ALSO smObjShow, semSmLib, msgQSmLib, smMemLib, smNameLib, usrSmObjInit(),
VxWorks Programmer’s Guide: Shared Memory Objects

1: Libraries
sntpcLib

291

S

smObjShow

NAME smObjShow – shared memory objects show routines (VxMP Opt.)

ROUTINES smObjShow() - display the current status of shared memory objects (VxMP Opt.)

DESCRIPTION This library provides routines to show shared memory object statistics, such as the current
number of shared tasks, semaphores, message queues, etc.

CONFIGURATION The routines in this library are included by default if the component INCLUDE_SM_OBJ is
included.

AVAILABILITY This module is distributed as a component of the unbundled shared memory objects
support option, VxMP.

INCLUDE FILES smObjLib.h

SEE ALSO smObjLib, VxWorks Programmer’s Guide: Shared Memory Objects

sntpcLib

NAME sntpcLib – Simple Network Time Protocol (SNTP) client library

ROUTINES sntpcTimeGet() - retrieve the current time from a remote source

DESCRIPTION This library implements the client side of the Simple Network Time Protocol (SNTP), a
protocol that allows a system to maintain the accuracy of its internal clock based on time
values reported by one or more remote sources. The library is included in the VxWorks
image if INCLUDE_SNTPC is defined at the time the image is built.

USER INTERFACE The sntpcTimeGet() routine retrieves the time reported by a remote source and converts
that value for POSIX-compliant clocks. The routine will either send a request and extract
the time from the reply, or it will wait until a message is received from an SNTP/NTP
server executing in broadcast mode.

INCLUDE FILES sntpcLib.h

SEE ALSO clockLib, RFC 1769

VxWorks OS Libraries API Reference, 5.5
sntpsLib

292

sntpsLib

NAME sntpsLib – Simple Network Time Protocol (SNTP) server library

ROUTINES sntpsClockSet() - assign a routine to access the reference clock
sntpsNsecToFraction() - convert portions of a second to NTP format
sntpsConfigSet() - change SNTP server broadcast settings

DESCRIPTION This library implements the server side of the Simple Network Time Protocol (SNTP), a
protocol that allows a system to maintain the accuracy of its internal clock based on time
values reported by one or more remote sources. The library is included in the VxWorks
image if INCLUDE_SNTPS is defined at the time the image is built.

USER INTERFACE The routine sntpsInit() is called automatically during system startup when the SNTP
server library is included in the VxWorks image. Depending on the value of
SNTPS_MODE, the server executes in either a passive or an active mode. When
SNTPS_MODE is set to SNTP_PASSIVE (0x2), the server waits for requests from clients, and
sends replies containing an NTP timestamp. When the mode is set to SNTP_ACTIVE (0x1),
the server transmits NTP timestamp information at fixed intervals.

When executing in active mode, the SNTP server uses the SNTPS_DSTADDR and
SNTPS_INTERVAL definitions to determine the target IP address and broadcast interval.
By default, the server transmits the timestamp information to the local subnet broadcast
address every 64 seconds. These settings can be changed with sntpsConfigSet(). The
SNTP server operating in active mode will still respond to client requests.

The SNTP_PORT definition in assigns the source and destination UDP port. The default
port setting is 123 as specified by the relevant RFC. Finally, the SNTP server requires
access to a reliable external time source. The SNTPS_TIME_HOOK constant specifies the
name of a routine with the following interface:

STATUS sntpsTimeHook (int request, void *pBuffer);

This routine can be assigned directly by altering the value of SNTPS_TIME_HOOK or can
be installed by a call to sntpsClockSet(). The manual pages for sntpsClockSet() describe
the parameters and required operation of the timestamp retrieval routine. Until this
routine is specified, the SNTP server will not provide timestamp information.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, the SNPT server can run in the kernel protection domain only. The
SNTPS_TIME_HOOK MUST, if used, must reference a function in the kernel protection
domain. This restriction does not apply under non-AE versions of VxWorks.

INCLUDE FILES sntpsLib.h

SEE ALSO sntpcLib, RFC 1769

1: Libraries
sockLib

293

S

sockLib

NAME sockLib – generic socket library

ROUTINES socket() - open a socket
bind() - bind a name to a socket
listen() - enable connections to a socket
accept() - accept a connection from a socket
connect() - initiate a connection to a socket
connectWithTimeout() - attempt socket connection within a specified duration
sendto() - send a message to a socket
send() - send data to a socket
sendmsg() - send a message to a socket
recvfrom() - receive a message from a socket
recv() - receive data from a socket
recvmsg() - receive a message from a socket
setsockopt() - set socket options
getsockopt() - get socket options
getsockname() - get a socket name
getpeername() - get the name of a connected peer
shutdown() - shut down a network connection

DESCRIPTION This library provides UNIX BSD 4.4 compatible socket calls. Use these calls to open, close,
read, and write sockets. These sockets can join processes on the same CPU or on different
CPUs between which there is a network connection. The calling sequences of these
routines are identical to their equivalents under UNIX BSD 4.4.

However, although the socket interface is compatible with VxWorks, the VxWorks
environment does affect how you use sockets. Specifically, the globally accessible file
descriptors available in the single address space world of VxWorks require that you take
extra precautions when closing a file descriptor.

You must make sure that you do not close the file descriptor on which a task is pending
during an accept(). Although the accept() on the closed file descriptor sometimes returns
with an error, the accept() can also fail to return at all. Thus, if you need to be able to close
a socket connections file descriptor asynchronously, you may need to set up a
semaphore-based locking mechanism that prevents the close while an accept() is pending
on the file descriptor.

ADDRESS FAMILY VxWorks sockets support only the Internet Domain address family. Use AF_INET for the
domain argument in subroutines that require it. There is no support for the UNIX Domain
address family.

IOCTL FUNCTIONS Sockets respond to the following ioctl() functions. These functions are defined in the
header files ioLib.h and ioctl.h.

VxWorks OS Libraries API Reference, 5.5
spyLib

294

FIONBIO
Turns on/off non-blocking I/O.

on = TRUE;

status = ioctl (sFd, FIONBIO, &on);

FIONREAD
Reports the number of read-ready bytes available on the socket. On the return of
ioctl(), bytesAvailable has the number of bytes available to read from the socket.

status = ioctl (sFd, FIONREAD, &bytesAvailable);

SIOCATMARK
Reports whether there is out-of-band data to be read from the socket. On the return of
ioctl(), atMark is TRUE (1) if there is out-of-band data. Otherwise, it is FALSE (0).

status = ioctl (sFd, SIOCATMARK, &atMark);

To use this feature, include the following component: INCLUDE_BSD_SOCKET.

INCLUDE FILES types.h, mbuf.h, socket.h, socketvar.h

SEE ALSO netLib, UNIX Network Programming, by W. Richard Stevens

spyLib

NAME spyLib – spy CPU activity library

ROUTINES spyLibInit() - initialize task CPU utilization tool package

DESCRIPTION This library provides a facility to monitor tasks’ use of the CPU. The primary interface
routine, spy(), periodically calls spyReport() to display the amount of CPU time utilized
by each task, the amount of time spent at interrupt level, the amount of time spent in the
kernel, and the amount of idle time. It also displays the total usage since the start of spy()
(or the last call to spyClkStart()), and the change in usage since the last spyReport().

CPU usage can also be monitored manually by calling spyClkStart() and spyReport(),
instead of spy(). In this case, spyReport() provides a one-time report of the same
information provided by spy().

Data is gathered by an interrupt-level routine that is connected by spyClkStart() to the
auxiliary clock. Currently, this facility cannot be used with CPUs that have no auxiliary
clock. Interrupts that are at a higher level than the auxiliary clock’s interrupt level cannot
be monitored.

All user interface routine except spyLibInit() are available through usrLib.

1: Libraries
symLib

295

S

EXAMPLE The following call:

-> spy 10, 200

will generate a report in the following format every 10 seconds, gathering data at the rate
of 200 times per second.

NAME ENTRY TID PRI total % (ticks) delta % (ticks)

-------- -------- ----- --- --------------- ---------------

tExcTask _excTask fbb58 0 0% (0) 0% (0)

tLogTask _logTask fa6e0 0 0% (0) 0% (0)

tShell _shell e28a8 1 0% (4) 0% (0)

tRlogind _rlogind f08dc 2 0% (0) 0% (0)

tRlogOutTask _rlogOutTa e93e0 2 2% (173) 2% (46)

tRlogInTask _rlogInTas e7f10 2 0% (0) 0% (0)

tSpyTask _spyTask ffe9c 5 1% (116) 1% (28)

tNetTask _netTask f3e2c 50 0% (4) 0% (1)

tPortmapd _portmapd ef240 100 0% (0) 0% (0)

KERNEL 1% (105) 0% (10)

INTERRUPT 0% (0) 0% (0)

IDLE 95% (7990) 95% (1998)

TOTAL 99% (8337) 98% (2083)

The “total” column reflects CPU activity since the initial call to spy() or the last call to
spyClkStart(). The “delta” column reflects activity since the previous report. A call to
spyReport() will produce a single report; however, the initial auxiliary clock interrupts
and data collection must first be started using spyClkStart().

Data collection/clock interrupts and periodic reporting are stopped by calling:

-> spyStop

INCLUDE FILES spyLib.h

SEE ALSO usrLib

symLib

NAME symLib – symbol table subroutine library

ROUTINES symLibInit() - initialize the symbol table library
symTblCreate() - create a symbol table
symTblDelete() - delete a symbol table
symAdd() - create and add a symbol to a symbol table, including a group number
symRemove() - remove a symbol from a symbol table

VxWorks OS Libraries API Reference, 5.5
symLib

296

symFindByName() - look up a symbol by name
symFindByNameAndType() - look up a symbol by name and type
symByValueFind() - look up a symbol by value
symByValueAndTypeFind() - look up a symbol by value and type
symFindByValue() - look up a symbol by value
symFindByValueAndType() - look up a symbol by value and type
symEach() - call a routine to examine each entry in a symbol table

DESCRIPTION This library provides facilities for managing symbol tables. A symbol table associates a
name and type with a value. A name is simply an arbitrary, null-terminated string. A
symbol type is a small integer (typedef SYM_TYPE), and its value is a pointer. Though
commonly used as the basis for object loaders, symbol tables may be used whenever
efficient association of a value with a name is needed.

If you use the symLib subroutines to manage symbol tables local to your own
applications, the values for SYM_TYPE objects are completely arbitrary; you can use
whatever one-byte integers are appropriate for your application.

If you use the symLib subroutines to manipulate the VxWorks system symbol table
(whose ID is recorded in the global sysSymTbl), the values for SYM_TYPE are SYM_UNDF,
SYM_LOCAL, SYM_GLOBAL, SYM_ABS, SYM_TEXT, SYM_DATA, SYM_BSS, and
SYM_COMM (defined in symbol.h).

Tables are created with symTblCreate(), which returns a symbol table ID. This ID serves
as a handle for symbol table operations, including the adding to, removing from, and
searching of tables. All operations on a symbol table are interlocked by means of a
mutual-exclusion semaphore in the symbol table structure. Tables are deleted with
symTblDelete().

Symbols are added to a symbol table with symAdd(). Each symbol in the symbol table
has a name, a value, and a type. Symbols are removed from a symbol table with
symRemove().

Symbols can be accessed by either name or value. The routine symFindByName()
searches the symbol table for a symbol with a specified name. The routine
symByValueFind() finds a symbol with a specified value or, if there is no symbol with
the same value, the symbol in the table with the next lower value than the specified value.
The routines symFindByNameAndType() and symByValueAndTypeFind() allow the
symbol type to be used as an additional criterion in the searches.

The routines symFindByValue() and symFindByValueAndType() are obsolete. They are
replaced by the routines symByValueFind() and symByValueAndTypeFind().

Symbols in the symbol table are hashed by name into a hash table for fast look-up by
name, e.g., by symFindByName(). The size of the hash table is specified during the
creation of a symbol table. Look-ups by value, e.g., symByValueFind(), must search the
table linearly; these look-ups can thus be much slower.

The routine symEach() allows each symbol in the symbol table to be examined by a
user-specified function.

1: Libraries
symSyncLib

297

S

Name clashes occur when a symbol added to a table is identical in name and type to a
previously added symbol. Whether symbol tables can accept name clashes is set by a
parameter when the symbol table is created with symTblCreate(). If name clashes are not
allowed, symAdd() returns an error if there is an attempt to add a symbol with identical
name and type. If name clashes are allowed, adding multiple symbols with the same
name and type will be permitted. In such cases, symFindByName() will return the value
most recently added, although all versions of the symbol can be found by symEach().

The system symbol table (sysSymTbl) allows name clashes.

See the VxWorks Programmmer’s Guide for more information about configuration,
initialization, and use of the system symbol table.

INCLUDE FILES symLib.h

SEE ALSO loadLib

symSyncLib

NAME symSyncLib – host/target symbol table synchronization

ROUTINES symSyncLibInit() - initialize host/target symbol table synchronization
symSyncTimeoutSet() - set WTX timeout

DESCRIPTION This module provides host/target symbol table synchronization. With synchronization,
every module or symbol added to the run-time system from either the target or host side
can be seen by facilities on both the target and the host. Symbol table synchronization
makes it possible to use host tools to debug application modules loaded with the target
loader or from a target file system. To enable synchronization, two actions must be
performed:

1 The module is initialized by symSyncLibInit(), which is called automatically when
the configuration macro INCLUDE_SYM_TBL_SYNC is defined.

2 The target server is launched with the -s option.

If synchronization is enabled, symSyncLib spawns a synchronization task on the target,
tSymSync. This task behaves as a WTX tool and attaches itself to the target server. When
the task starts, it synchronizes target and host symbol tables so that every module loaded
on the target before the target server was started can be seen by the host tools. This feature
is particularly useful if VxWorks is started with a target-based startup script before the
target server has been launched.

The tSymSync task synchronizes new symbols that are added by either the target or the
host tools. The task waits for synchronization events on two channels: a WTX event from
the host or a message queue addition from the target.

VxWorks OS Libraries API Reference, 5.5
symSyncLib

298

The tSymSync task, like all WTX tools, must be able to connect to the WTX registry. To
make the WTX registry accessible from the target, do one of the following:

1 Boot the target from a host on the same subnet as the registry.

2 Start the registry on the same host the target boots from.

3 Add the needed routes with routeAdd() calls, possibly in a startup script.

Neither the host tools nor the target loader wait for synchronization completion to return.
To know when the synchronization is complete, you can wait for the corresponding event
sent by the target server, or, if your target server was started with the -V option, it prints a
message indicating synchronization has completed.

The event sent by the target server is of the following format:

SYNC_DONE syncType syncObj syncStatus

The following are examples of messages displayed by the target server indicating
synchronization is complete:

Added target_modules to target-server.....done

Added ttTest.o.68k to target............done

If synchronization fails, the following message is displayed:

Added gopher.o to target............failed

This error generally means that synchronization of the corresponding module or symbol
is no longer possible because it no longer exists in the original symbol table. If so, it will be
followed by:

Removed gopher.o from target..........failed

Failure can also occur if a timeout is reached. Call symSyncTimeoutSet() to modify the
WTX timeout between the target synchronization task and the target server.

LIMITATIONS Hardware: Because the synchronization task uses the WTX protocol to communicate with
the target server, the target must include network facilities. Depending on how much
synchronization is to be done (number of symbols to transfer), a reasonable throughput
between the target server and target agent is required (the wdbrpc backend is
recommended when large modules are to be loaded).

PERFORMANCE The synchronization task requires some minor overhead in target routines msgQSend(),
loadModule(), symAdd(), and symRemove(); however, if an application sends more
than 15 synchronization events, it will fill the message queue and then need to wait for a
synchronization event to be processed by tSymSync. Also, waiting for host
synchronization events is done by polling; thus there may be some impact on
performance if there are lower-priority tasks than tSymSync. If no more synchronization
is needed, tSymSync can be suspended.

1: Libraries
sysLib

299

S

KNOWN PROBLEM Modules with undefined symbols that are loaded from the target are not synchronized;
however, they are synchronized if they are loaded from the host.

SEE ALSO tgtsvr

sysLib

NAME sysLib – system-dependent library

ROUTINES sysClkConnect() - connect a routine to the system clock interrupt
sysClkDisable() - turn off system clock interrupts
sysClkEnable() - turn on system clock interrupts
sysClkRateGet() - get the system clock rate
sysClkRateSet() - set the system clock rate
sysAuxClkConnect() - connect a routine to the auxiliary clock interrupt
sysAuxClkDisable() - turn off auxiliary clock interrupts
sysAuxClkEnable() - turn on auxiliary clock interrupts
sysAuxClkRateGet() - get the auxiliary clock rate
sysAuxClkRateSet() - set the auxiliary clock rate
sysIntDisable() - disable a bus interrupt level
sysIntEnable() - enable a bus interrupt level
sysBusIntAck() - acknowledge a bus interrupt
sysBusIntGen() - generate a bus interrupt
sysMailboxConnect() - connect a routine to the mailbox interrupt
sysMailboxEnable() - enable the mailbox interrupt
sysNvRamGet() - get the contents of non-volatile RAM
sysNvRamSet() - write to non-volatile RAM
sysModel() - return the model name of the CPU board
sysBspRev() - return the BSP version and revision number
sysHwInit() - initialize the system hardware
sysPhysMemTop() - get the address of the top of memory
sysMemTop() - get the address of the top of logical memory
sysToMonitor() - transfer control to the ROM monitor
sysProcNumGet() - get the processor number
sysProcNumSet() - set the processor number
sysBusTas() - test and set a location across the bus
sysScsiBusReset() - assert the RST line on the SCSI bus (Western Digital WD33C93 only)
sysScsiInit() - initialize an on-board SCSI port
sysScsiConfig() - system SCSI configuration
sysLocalToBusAdrs() - convert a local address to a bus address
sysBusToLocalAdrs() - convert a bus address to a local address
sysSerialHwInit() - initialize the BSP serial devices to a quiesent state

VxWorks OS Libraries API Reference, 5.5
sysLib

300

sysSerialHwInit2() - connect BSP serial device interrupts
sysSerialReset() - reset all SIO devices to a quiet state
sysSerialChanGet() - get the SIO_CHAN device associated with a serial channel
sysNanoDelay() - delay for specified number of nanoseconds

DESCRIPTION This library provides board-specific routines.

NOTE: This is a generic reference entry for a BSP-specific library; this description contains
general information only. For features and capabilities specific to the system library
included in your BSP, see your BSP’s reference entry for sysLib.

The file sysLib.c provides the board-level interface on which VxWorks and application
code can be built in a hardware-independent manner. The functions addressed in this file
include:

 Initialization functions
 - initialize the hardware to a known state
 - identify the system
 - initialize drivers, such as SCSI or custom drivers

 Memory/address space functions
 - get the on-board memory size
 - make on-board memory accessible to external bus
 - map local and bus address spaces
 - enable/disable cache memory
 - set/get nonvolatile RAM (NVRAM)
 - define board’s memory map (optional)
 - virtual-to-physical memory map declarations for processors with MMUs

 Bus interrupt functions
 - enable/disable bus interrupt levels
 - generate bus interrupts

 Clock/timer functions
 - enable/disable timer interrupts
 - set the periodic rate of the timer

 Mailbox/location monitor functions
 - enable mailbox/location monitor interrupts for VME-based boards

The sysLib library does not support every feature of every board; a particular board may
have various extensions to the capabilities described here. Conversely, some boards do
not support every function provided by this library. Some boards provide some of the
functions of this library by means of hardware switches, jumpers, or PALs, instead of
software-controllable registers.

Typically, most functions in this library are not called by the user application directly. The
configuration modules usrConfig.c and bootConfig.c are responsible for invoking the

1: Libraries
sysLib

301

S

routines at the appropriate time. Device drivers may use some of the memory mapping
routines and bus functions.

INCLUDE FILES sysLib.h

SEE ALSO VxWorks Programmer’s Guide: Configuration and Build, BSP-specific reference entry for
sysLib

VxWorks OS Libraries API Reference, 5.5
tapeFsLib

302

tapeFsLib

NAME tapeFsLib – tape sequential device file system library

ROUTINES tapeFsDevInit() - associate a sequential device with tape volume functions
tapeFsInit() - initialize the tape volume library
tapeFsReadyChange() - notify tapeFsLib of a change in ready status
tapeFsVolUnmount() - disable a tape device volume

DESCRIPTION This library provides basic services for tape devices that do not use a standard file or
directory structure on tape. The tape volume is treated much like a large file. The tape
may either be read or written. However, there is no high-level organization of the tape
into files or directories, which must be provided by a higher-level layer.

USING THIS LIBRARY

The various routines provided by the VxWorks tape file system, or tapeFs, can be
categorized into three broad groupings: general initialization, device initialization, and file
system operation.

The tapeFsInit() routine is the principal general initialization function; it needs to be
called only once, regardless of how many tapeFs devices are used.

To initialize devices, tapeFsDevInit() must be called for each tapeFs device.

Use of this library typically occurs through standard use of the I/O system routines
open(), close(), read(), write() and ioctl(). Besides these standard I/O system
operations, several routines are provided to inform the file system of changes in the
system environment. The tapeFsVolUnmount() routine informs the file system that a
particular device should be unmounted; any synchronization should be done prior to
invocation of this routine, in preparation for a tape volume change. The
tapeFsReadyChange() routine is used to inform the file system that a tape may have been
swapped and that the next tape operation should first remount the tape. Information
about a ready-change is also obtained from the driver using the SEQ_DEV device
structure. Note that tapeFsVolUnmount() and tapeFsReadyChange() should be called
only after a file has been closed.

INITIALIZATION OF THE FILE SYSTEM

Before any other routines in tapeFsLib can be used, tapeFsInit() must be called to
initialize the library. This implementation of the tape file system assumes only one file
descriptor per volume. However, this constraint can be changed in case a future
implementation demands multiple file descriptors per volume.

During the tapeFsInit() call, the tape device library is installed as a driver in the I/O
system driver table. The driver number associated with it is then placed in a global
variable, tapeFsDrvNum.

1: Libraries
tapeFsLib

303

T

To enable this initialization, define INCLUDE_TAPEFS in the BSP, or simply start using the
tape file system with a call to tapeFsDevInit() and tapeFsInit() will be called
automatically if it has not been called before.

DEFINING A TAPE DEVICE

To use this library for a particular device, the device structure used by the device driver
must contain, as the very first item, a sequential device description structure (SEQ_DEV).
The SEQ_DEV must be initialized before calling tapeFsDevInit(). The driver places in the
SEQ_DEV structure the addresses of routines that it must supply: one that reads one or
more blocks, one that writes one or more blocks, one that performs I/O control (ioctl())
on the device, one that writes file marks on a tape, one that rewinds the tape volume, one
that reserves a tape device for use, one that releases a tape device after use, one that
mounts/unmounts a volume, one that spaces forward or backwards by blocks or file
marks, one that erases the tape, one that resets the tape device, and one that checks the
status of the device. The SEQ_DEV structure also contains fields that describe the physical
configuration of the device. For more information about defining sequential devices, see
the VxWorks Programmer’s Guide: I/O System.

INITIALIZATION OF THE DEVICE

The tapeFsDevInit() routine is used to associate a device with the tapeFsLib functions.
The volName parameter expected by tapeFsDevInit() is a pointer to a name string which
identifies the device. This string serves as the pathname for I/O operations which operate
on the device and appears in the I/O system device table, which can be displayed using
iosDevShow().

The pSeqDev parameter expected by tapeFsDevInit() is a pointer to the SEQ_DEV
structure describing the device and containing the addresses of the required driver
functions.

The pTapeConfig parameter is a pointer to a TAPE_CONFIG structure that contains
information specifying how the tape device should be configured. The configuration items
are fixed/variable block size, rewind/no-rewind device, and number of file marks to be
written. For more information about the TAPE_CONFIG structure, look at the header file
tapeFsLib.h.

The syntax of the tapeFsDevInit() routine is as follows:

tapeFsDevInit

(

char * volName, /* name to be used for volume */

SEQ_DEV * pSeqDev, /* pointer to device descriptor */

TAPE_CONFIG * pTapeConfig /* pointer to tape config info */

)

When tapeFsLib receives a request from the I/O system, after tapeFsDevInit() has been
called, it calls the device driver routines (whose addresses were passed in the SEQ_DEV
structure) to access the device.

VxWorks OS Libraries API Reference, 5.5
tapeFsLib

304

OPENING AND CLOSING A FILE

A tape volume is opened by calling the I/O system routine open(). A file can be opened
only with the O_RDONLY or O_WRONLY flags. The O_RDWR mode is not used by this
library. A call to open() initializes the file descriptor buffer and state information,
reserves the tape device, rewinds the tape device if it was configured as a rewind device,
and mounts a volume. Once a tape volume has been opened, that tape device is reserved,
disallowing any other system from accessing that device until the tape volume is closed.
Also, the single file descriptor is marked “in use” until the file is closed, making sure that
a file descriptor is not opened multiple times.

A tape device is closed by calling the I/O system routine close(). Upon a close() request,
any unwritten buffers are flushed, the device is rewound (if it is a rewind device), and,
finally, the device is released.

UNMOUNTING VOLUMES (CHANGING TAPES)

A tape volume should be unmounted before it is removed. When unmounting a volume,
make sure that any open file is closed first. A tape may be unmounted by calling
tapeFsVolUnmount() directly.

If a file is open, it is not correct to change the medium and continue with the same file
descriptor still open. Since tapeFs assumes only one file descriptor per device, to reuse
that device, the file must be closed and opened later for the new tape volume.

Before tapeFsVolUnmount() is called, the device should be synchronized by invoking the
ioctl() FIOSYNC or FIOFLUSH. It is the responsibility of the higher-level layer to
synchronize the tape file system before unmounting. Failure to synchronize the volume
before unmounting may result in loss of data.

IOCTL FUNCTIONS The VxWorks tape sequential device file system supports the following ioctl() functions.
The functions listed are defined in the header files ioLib.h and tapeFsLib.h.

FIOFLUSH
Writes all modified file descriptor buffers to the physical device.

status = ioctl (fd, FIOFLUSH, 0);

FIOSYNC
Performs the same function as FIOFLUSH.

FIOBLKSIZEGET
Returns the value of the block size set on the physical device. This value is compared
against the sd_blkSize value set in the SEQ_DEV device structure.

FIOBLKSIZESET
Sets a specified block size value on the physical device and also updates the value in
the SEQ_DEV and TAPE_VOL_DESC structures, unless the supplied value is zero, in
which case the device structures are updated but the device is not set to zero. This is
because zero implies variable block operations, therefore the device block size is
ignored.

1: Libraries
tapeFsLib

305

T

MTIOCTOP
Allows use of the standard UNIX MTIO ioctl operations by means of the MTOP
structure. The MTOP structure appears as follows:

typedef struct mtop

{

short mt_op; /* operation */

int mt_count; /* number of operations */

} MTOP;

Use these ioctl() operations as follows:

MTOP mtop;

mtop.mt_op = MTWEOF;

mtop.mt_count = 1;

status = ioctl (fd, MTIOCTOP, (int) &mtop);

The permissible values for mt_op are:

MTWEOF
Writes an end-of-file record to tape. An end-of-file record is a file mark.

MTFSF
Forward space over a file mark and position the tape head in the gap between the file
mark just skipped and the next data block. Any buffered data is flushed out to the
tape if the tape is in write mode.

MTBSF
Backward space over a file mark and position the tape head in the gap preceding the
file mark, that is, right before the file mark. Any buffered data is flushed out to the
tape if the tape is in write mode.

MTFSR
Forward space over a data block and position the tape head in the gap between the
block just skipped and the next block. Any buffered data is flushed out to the tape if
the tape is in write mode.

MTBSR
Backward space over a data block and position the tape head right before the block
just skipped. Any buffered data is flushed out to the tape if the tape is in write mode.

MTREW
Rewind the tape to the beginning of the medium. Any buffered data is flushed out to
the tape if the tape is in write mode.

MTOFFL
Rewind and unload the tape. Any buffered data is flushed out to the tape if the tape
is in write mode.

MTNOP
No operation, but check the status of the device, thus setting the appropriate

VxWorks OS Libraries API Reference, 5.5
tarLib

306

SEQ_DEV fields.

MTRETEN
Retention the tape. This command usually sets tape tension and can be used in either
read or write mode. Any buffered data is flushed out to tape if the tape is in write
mode.

MTERASE
Erase the entire tape and rewind it.

MTEOM
Position the tape at the end of the medium and unload the tape. Any buffered data is
flushed out to the tape if the tape is in write mode.

INCLUDE FILES tapeFsLib.h

SEE ALSO ioLib, iosLib, VxWorks Programmer’s Guide: I/O System, Local File Systems

tarLib

NAME tarLib – UNIX tar compatible library

ROUTINES tarExtract() - extract all files from a tar formatted tape
tarArchive() - archive named file/dir onto tape in tar format
tarToc() - display all contents of a tar formatted tape

DESCRIPTION This library implements functions for archiving, extracting and listing of
UNIX-compatible “tar” file archives. It can be used to archive and extract entire file
hierarchies to/from archive files on local or remote disks, or directly to/from magnetic
tapes.

SEE ALSO dosFsLib

CURRENT LIMITATIONS

This Tar utility does not handle MS-DOS file attributes, when used in conjunction with the
MS-DOS file system. The maximum subdirectory depth supported by this library is 16,
while the total maximum path name that can be handled by tar is limited at 100
characters.

1: Libraries
taskHookLib

307

T

taskArchLib

NAME taskArchLib – architecture-specific task management routines

ROUTINES taskSRSet() - set the task status register (68K, MIPS, x86)
taskSRInit() - initialize the default task status register (MIPS)

DESCRIPTION This library provides architecture-specific task management routines that set and examine
architecture-dependent registers. For information about architecture-independent task
management facilities, see the manual entry for taskLib.

NOTE: There are no application-level routines in taskArchLib for SimSolaris, SimNT or
SH.

INCLUDE FILES regs.h, taskArchLib.h

SEE ALSO taskLib

taskHookLib

NAME taskHookLib – task hook library

ROUTINES taskHookInit() - initialize task hook facilities
taskCreateHookAdd() - add a routine to be called at every task create
taskCreateHookDelete() - delete a previously added task create routine
taskSwitchHookAdd() - add a routine to be called at every task switch
taskSwitchHookDelete() - delete a previously added task switch routine
taskDeleteHookAdd() - add a routine to be called at every task delete
taskDeleteHookDelete() - delete a previously added task delete routine

DESCRIPTION This library provides routines for adding extensions to the VxWorks tasking facility. To
allow task-related facilities to be added to the system without modifying the kernel, the
kernel provides call-outs every time a task is created, switched, or deleted. The call-outs
allow additional routines, or “hooks,” to be invoked whenever these events occur. The
hook management routines below allow hooks to be dynamically added to and deleted
from the current lists of create, switch, and delete hooks:

taskCreateHookAdd() and taskCreateHookDelete()
Add and delete routines to be called when a task is created.

VxWorks OS Libraries API Reference, 5.5
taskHookShow

308

taskSwitchHookAdd() and taskSwitchHookDelete()
Add and delete routines to be called when a task is switched.

taskDeleteHookAdd() and taskDeleteHookDelete()
Add and delete routines to be called when a task is deleted.

This facility is used by dbgLib to provide task-specific breakpoints and single-stepping. It
is used by taskVarLib for the “task variable” mechanism. It is also used by fppLib for
floating-point coprocessor support.

NOTE: It is possible to have dependencies among task hook routines. For example, a
delete hook may use facilities that are cleaned up and deleted by another delete hook. In
such cases, the order in which the hooks run is important. VxWorks runs the create and
switch hooks in the order in which they were added, and runs the delete hooks in reverse
of the order in which they were added. Thus, if the hooks are added in “hierarchical”
order, such that they rely only on facilities whose hook routines have already been added,
then the required facilities will be initialized before any other facilities need them, and
will be deleted after all facilities are finished with them.

VxWorks facilities guarantee this by having each facility’s initialization routine first call
any prerequisite facility’s initialization routine before adding its own hooks. Thus, the
hooks are always added in the correct order. Each initialization routine protects itself from
multiple invocations, allowing only the first invocation to have any effect.

INCLUDE FILES taskHookLib.h

SEE ALSO dbgLib, fppLib, taskLib, taskVarLib VxWorks Programmer’s Guide: Basic OS

taskHookShow

NAME taskHookShow – task hook show routines

ROUTINES taskHookShowInit() - initialize the task hook show facility
taskCreateHookShow() - show the list of task create routines
taskSwitchHookShow() - show the list of task switch routines
taskDeleteHookShow() - show the list of task delete routines

DESCRIPTION This library provides routines which summarize the installed kernel hook routines. There
is one routine dedicated to the display of each type of kernel hook: task operation, task
switch, and task deletion.

The routine taskHookShowInit() links the task hook show facility into the VxWorks
system. It is called automatically when this show facility is configured into VxWorks
using either of the following methods:

1: Libraries
taskInfo

309

T

– If you use the configuration header files, define INCLUDE_SHOW_ROUTINES in
config.h.

– If you use the Tornado project facility, select INCLUDE_TASK_HOOK_SHOW.

INCLUDE FILES taskHookLib.h

SEE ALSO taskHookLib, VxWorks Programmer’s Guide: Basic OS

taskInfo

NAME taskInfo – task information library

ROUTINES taskOptionsSet() - change task options
taskOptionsGet() - examine task options
taskRegsGet() - get a task’s registers from the TCB
taskRegsSet() - set a task’s registers
taskName() - get the name associated with a task ID
taskNameToId() - look up the task ID associated with a task name
taskIdDefault() - set the default task ID
taskIsReady() - check if a task is ready to run
taskIsSuspended() - check if a task is suspended
taskIdListGet() - get a list of active task IDs

DESCRIPTION This library provides a programmatic interface for obtaining task information.

Task information is crucial as a debugging aid and user-interface convenience during the
development cycle of an application. The routines taskOptionsGet(), taskRegsGet(),
taskName(), taskNameToId(), taskIsReady(), taskIsSuspended(), and taskIdListGet()
are used to obtain task information. Three routines -- taskOptionsSet(), taskRegsSet(),
and taskIdDefault() -- provide programmatic access to debugging features.

The chief drawback of using task information is that tasks may change their state between
the time the information is gathered and the time it is utilized. Information provided by
these routines should therefore be viewed as a snapshot of the system, and not relied
upon unless the task is consigned to a known state, such as suspended.

Task management and control routines are provided by taskLib. Higher-level task
information display routines are provided by taskShow.

INCLUDE FILES taskLib.h

SEE ALSO taskLib, taskShow, taskHookLib, taskVarLib, semLib, kernelLib, VxWorks Programmer’s
Guide: Basic OS

VxWorks OS Libraries API Reference, 5.5
taskLib

310

taskLib

NAME taskLib – task management library

ROUTINES taskSpawn() - spawn a task
taskInit() - initialize a task with a stack at a specified address
taskActivate() - activate a task that has been initialized
exit() - exit a task (ANSI)
taskDelete() - delete a task
taskDeleteForce() - delete a task without restriction
taskSuspend() - suspend a task
taskResume() - resume a task
taskRestart() - restart a task
taskPrioritySet() - change the priority of a task
taskPriorityGet() - examine the priority of a task
taskLock() - disable task rescheduling
taskUnlock() - enable task rescheduling
taskSafe() - make the calling task safe from deletion
taskUnsafe() - make the calling task unsafe from deletion
taskDelay() - delay a task from executing
taskIdSelf() - get the task ID of a running task
taskIdVerify() - verify the existence of a task
taskTcb() - get the task control block for a task ID

DESCRIPTION This library provides the interface to the VxWorks task management facilities. Task
control services are provided by the VxWorks kernel, which is comprised of kernelLib,
taskLib, semLib, tickLib, msgQLib, and wdLib. Programmatic access to task information
and debugging features is provided by taskInfo. Higher-level task information display
routines are provided by taskShow.

TASK CREATION Tasks are created with the general-purpose routine taskSpawn(). Task creation consists of
the following: allocation of memory for the stack and task control block (WIND_TCB),
initialization of the WIND_TCB, and activation of the WIND_TCB. Special needs may
require the use of the lower-level routines taskInit() and taskActivate(), which are the
underlying primitives of taskSpawn().

Tasks in VxWorks execute in the most privileged state of the underlying architecture. In a
shared address space, processor privilege offers no protection advantages and actually
hinders performance.

There is no limit to the number of tasks created in VxWorks, as long as sufficient memory
is available to satisfy allocation requirements.

The routine sp() is provided in usrLib as a convenient abbreviation for spawning tasks. It
calls taskSpawn() with default parameters.

1: Libraries
taskLib

311

T

TASK DELETION If a task exits its “main” routine, specified during task creation, the kernel implicitly calls
exit() to delete the task. Tasks can be explicitly deleted with the taskDelete() or exit()
routine.

Task deletion must be handled with extreme care, due to the inherent difficulties of
resource reclamation. Deleting a task that owns a critical resource can cripple the system,
since the resource may no longer be available. Simply returning a resource to an available
state is not a viable solution, since the system can make no assumption as to the state of a
particular resource at the time a task is deleted.

The solution to the task deletion problem lies in deletion protection, rather than overly
complex deletion facilities. Tasks may be protected from unexpected deletion using
taskSafe() and taskUnsafe(). While a task is safe from deletion, deleters will block until it
is safe to proceed. Also, a task can protect itself from deletion by taking a
mutual-exclusion semaphore created with the SEM_DELETE_SAFE option, which enables
an implicit taskSafe() with each semTake(), and a taskUnsafe() with each semGive()
(see semMLib for more information). Many VxWorks system resources are protected in
this manner, and application designers may wish to consider this facility where dynamic
task deletion is a possibility.

The sigLib facility may also be used to allow a task to execute clean-up code before
actually expiring.

TASK CONTROL Tasks are manipulated by means of an ID that is returned when a task is created.
VxWorks uses the convention that specifying a task ID of NULL in a task control function
signifies the calling task.

The following routines control task state: taskResume(), taskSuspend(), taskDelay(),
taskRestart(), taskPrioritySet(), and taskRegsSet().

TASK SCHEDULING VxWorks schedules tasks on the basis of priority. Tasks may have priorities ranging from
0, the highest priority, to 255, the lowest priority. The priority of a task in VxWorks is
dynamic, and an existing task’s priority can be changed using taskPrioritySet().

INCLUDE FILES taskLib.h

SEE ALSO taskInfo, taskShow, taskHookLib, taskVarLib, semLib, semMLib, kernelLib, VxWorks
Programmer’s Guide: Basic OS

VxWorks OS Libraries API Reference, 5.5
taskShow

312

taskShow

NAME taskShow – task show routines

ROUTINES taskShowInit() - initialize the task show routine facility
taskInfoGet() - get information about a task
taskShow() - display task information from TCBs
taskRegsShow() - display the contents of a task’s registers
taskStatusString() - get a task’s status as a string

DESCRIPTION This library provides routines to show task-related information, such as register values,
task status, etc.

The taskShowInit() routine links the task show facility into the VxWorks system. It is
called automatically when this show facility is configured into VxWorks using either of
the following methods:

– If you use the configuration header files, define INCLUDE_SHOW_ROUTINES in
config.h.

– If you use the Tornado project facility, select INCLUDE_TASK_SHOW.

Task information is crucial as a debugging aid and user-interface convenience during the
development cycle of an application. The routines taskInfoGet(), taskShow(),
taskRegsShow(), and taskStatusString() are used to display task information.

The chief drawback of using task information is that tasks may change their state between
the time the information is gathered and the time it is utilized. Information provided by
these routines should therefore be viewed as a snapshot of the system, and not relied
upon unless the task is consigned to a known state, such as suspended.

Task management and control routines are provided by taskLib. Programmatic access to
task information and debugging features is provided by taskInfo.

INCLUDE FILES taskLib.h

SEE ALSO taskLib, taskInfo, taskHookLib, taskVarLib, semLib, kernelLib, VxWorks Programmer’s
Guide: Basic OS, Target Shell, Tornado User’s Guide: Shell

1: Libraries
tcpShow

313

T

taskVarLib

NAME taskVarLib – task variables support library

ROUTINES taskVarInit() - initialize the task variables facility
taskVarAdd() - add a task variable to a task
taskVarDelete() - remove a task variable from a task
taskVarGet() - get the value of a task variable
taskVarSet() - set the value of a task variable
taskVarInfo() - get a list of task variables of a task

DESCRIPTION VxWorks provides a facility called “task variables,” which allows 4-byte variables to be
added to a task’s context, and the variables’ values to be switched each time a task switch
occurs to or from the calling task. Typically, several tasks declare the same variable
(4-byte memory location) as a task variable and treat that memory location as their own
private variable. For example, this facility can be used when a routine must be spawned
more than once as several simultaneous tasks.

The routines taskVarAdd() and taskVarDelete() are used to add or delete a task
variable. The routines taskVarGet() and taskVarSet() are used to get or set the value of a
task variable.

NOTE: If you are using task variables in a task delete hook (see taskHookLib), refer to the
manual entry for taskVarInit() for warnings on proper usage.

INCLUDE FILES taskVarLib.h

SEE ALSO taskHookLib, VxWorks Programmer’s Guide: Basic OS

tcpShow

NAME tcpShow – TCP information display routines

ROUTINES tcpShowInit() - initialize TCP show routines
tcpDebugShow() - display debugging information for the TCP protocol
tcpstatShow() - display all statistics for the TCP protocol

DESCRIPTION This library provides routines to show TCP related statistics.

Interpreting these statistics requires detailed knowledge of Internet network protocols.
Information on these protocols can be found in the following books:

VxWorks OS Libraries API Reference, 5.5
telnetdLib

314

TCP/IP Illustrated Volume II, The Implementation, by Richard Stevens

The Design and Implementation of the 4.4 BSD UNIX Operating System, by Leffler, McKusick,
Karels and Quarterman

The tcpShowInit() routine links the TCP show facility into the VxWorks system. This is
performed automatically if INCLUDE_TCP_SHOW is defined.

SEE ALSO netLib, netShow

telnetdLib

NAME telnetdLib – server library

ROUTINES telnetdInit() - initialize the telnet services
telnetdParserSet() - specify a command interpreter for telnet sessions
telnetdStart() - initialize the telnet services
telnetdExit() - close an active telnet session
telnetdStaticTaskInitializationGet() - report whether tasks were pre-started by telnetd

DESCRIPTION The telnet protocol enables users on remote systems to login to VxWorks.

This library implements a telnet server which accepts remote telnet login requests and
transfers input and output data between a command interpreter and the remote user. The
default configuration redirects the input and output from the VxWorks shell if available.
The telnetdParserSet() routine allows the installation of an alternative command
interpreter to handle the remote input and provide the output responses. If
INCLUDE_SHELL is not defined, installing a command interpreter is required.

The telnetdInit() routine initializes the telnet service when INCLUDE_TELNET is defined.
If INCLUDE_SHELL is also defined, the telnetdStart() routine automatically starts the
server. Client sessions will connect to the shell, which only supports one client at a time.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, the telnet server runs within the kernel protection domain only. This
restriction does not apply under non-AE versions of VxWorks.

INCLUDE FILES telnetLib.h

SEE ALSO rlogLib

1: Libraries
tffsConfig

315

T

tffsConfig

NAME tffsConfig – TrueFFS configuration file for VxWorks

ROUTINES tffsShowAll() - show device information on all socket interfaces
tffsShow() - show device information on a specific socket interface
tffsBootImagePut() - write to the boot-image region of the flash device

DESCRIPTION This source file, with the help of sysTffs.c, configures TrueFFS for VxWorks. The
functions defined here are generic to all BSPs. To include these functions in the
BSP-specific module, the BSP’s sysTffs.c file includes this file. Within the sysTffs.c file,
define statements determine which functions from the tffsConfig.c file are ultimately
included in TrueFFS.

The only externally callable routines defined in this file are tffsShow(), tffsShowAll(),
and tffsBootImagePut(). You can exclude the show utilities if you edit config.h and
undefine INCLUDE_SHOW_ROUTINES. You can exclude tffsBootImagePut() if you edit
sysTffs.c and undefine INCLUDE_TFFS_BOOT_IMAGE. (If you find these utilities are
missing and you want them included, edit config.h and define
INCLUDE_SHOW_ROUTINES and INCLUDE_TFFS_BOOT_IMAGE.)

If you wish to include only the TrueFFS specific show routines you could define
INCLUDE_TFFS_SHOW instead of INCLUDE_SHOW_ROUTINES in config.h.

However, for the most part, these externally callable routines are only a small part of the
TrueFFS configuration needs handled by this file. The routines internal to this file make
calls into the MTDs and translation layer modules of TrueFFS. At link time, resolving the
symbols associated with these calls pulls MTD and translation layer modules into
VxWorks.

However, each of these calls to the MTDs and the translation layer modules is only
conditionally included. The constants that control the includes are defined in sysTffs.c. To
exclude an MTD or translation layer module, you edit sysTffs.c, undefine the appropriate
constant, and rebuild sysTffs.o. These constants are described in the reference entry for
sysTffs.

INCLUDE FILES stdcomp.h

VxWorks OS Libraries API Reference, 5.5
tffsDrv

316

tffsDrv

NAME tffsDrv – TrueFFS interface for VxWorks

ROUTINES tffsDrv() - initialize the TrueFFS system
tffsDevCreate() - create a TrueFFS block device suitable for use with dosFs
tffsDevOptionsSet() - set TrueFFS volume options
tffsDevFormat() - format a flash device for use with TrueFFS
tffsRawio() - low level I/O access to flash components

DESCRIPTION This module defines the routines that VxWorks uses to create a TrueFFS block device.
Using this block device, dosFs can access a board-resident flash memory array or a flash
memory card (in the PCMCIA slot) just as if it was a standard disk drive. Also defined in
this file are functions that you can use to format the flash medium, as well as well as
functions that handle the low-level I/O to the device.

To include TrueFFS for Tornado in a VxWorks image, you must edit your BSP’s config.h
and define INCLUDE_TFFS, or, for some hardware, INCLUDE_PCMCIA. If you define
INCLUDE_TFFS, this configures usrRoot() to call tffsDrv(). If you defined
INCLUDE_PCMCIA, the call to tffsDrv() is made from pccardTffsEnabler(). The call to
tffsDrv() sets up the structures, global variables, and mutual exclusion semaphore
needed to manage TrueFFS. This call to tffsDrv() also registers socket component drivers
for each flash device found attached to the target.

These socket component drivers are not quite block devices, but they are an essential layer
within TrueFFS. Their function is to manage the hardware interface to the flash device,
and they are intelligent enough to handle formatting and raw I/O requests to the flash
device. The other two layers within TrueFFS are known as the translation layer and the
MTD (the Memory Technology Driver). The translation layer of TrueFFS implements the
error recover and wear-leveling features of TrueFFS. The MTD implements the low-level
programming (map, read, write, and erase) of the flash medium.

To implement the socket layer, each BSP that supports TrueFFS includes a sysTffs.c file.
This file contains the code that defines the socket component driver. This file also contains
a set of defines that you can use to configure which translation layer modules and MTDs
are included in TrueFFS. Which translation layer modules and MTDs you should include
depends on which types of flash devices you need to support. Currently, there are three
basic flash memory technologies, NAND-based, NOR-based, and SSFDC. Within
sysTffs.c, define:

INCLUDE_TL_NFTL
To include the NAND-based translation layer module.

INCLUDE_TL_FTL
To include the NOR-based translation layer module.

1: Libraries
tffsDrv

317

T

INCLUDE_TL_SSFDC
To include the SSFDC-appropriate translation layer module.

To support these different technologies, TrueFFS ships with three different
implementations of the translation layer. Optionally, TrueFFS can include all three
modules. TrueFFS later binds the appropriate translation layer module to the flash device
when it registers a socket component driver for the device.

Within these three basic flash device categories there are still other differences (largely
manufacturer-specific). These differences have no impact on the translation layer.
However, they do make a difference for the MTD. Thus, TrueFFS ships with eight
different MTDs that can support a variety of flash devices from Intel, Sharp, Samsung,
National, Toshiba, AMD, and Fujitsu. Within sysTffs.c, define:

INCLUDE_MTD_I28F016
For Intel 28f016 flash devices.

INCLUDE_MTD_I28F008
For Intel 28f008 flash devices.

INCLUDE_MTD_I28F008_BAJA
For Intel 28f008 flash devices on the Heurikon Baja 4000.

INCLUDE_MTD_AMD
For AMD, Fujitsu: 29F0{40,80,16} 8-bit flash devices.

INCLUDE_MTD_CDSN
For Toshiba, Samsung: NAND CDSN flash devices.

INCLUDE_MTD_DOC2
For Toshiba, Samsung: NAND DOC flash devices.

INCLUDE_MTD_CFISCS
For CFI/SCS flash devices.

INCLUDE_MTD_WAMD
For AMD, Fujitsu 29F0{40,80,16} 16-bit flash devices.

The socket component driver and the MTDs are provided in source form. If you need to
write your own socket driver or MTD, use these working drivers as a model for your own.

EXTERNALLY CALLABLE ROUTINES

Most of the routines defined in this file are accessible through the I/O system only.
However, four routines are callable externally. These are: tffsDrv(), tffsDevCreate(),
tffsDevFormat(), and tffsRawio().

The first routine called from this library must be tffsDrv(). Call this routine exactly once.
Normally, this is handled automatically for you from within usrRoot(), if INCLUDE_TFFS
is defined, or from within pccardTffsEnabler(), if INCLUDE_PCMCIA is defined.

Internally, this call to tffsDrv() registers socket component drivers for all the flash devices
connected to your system. After registering a socket component driver for the device,

VxWorks OS Libraries API Reference, 5.5
tftpdLib

318

TrueFFS can support calls to tffsDevFormat() or tffsRawio(). However, before you can
mount dosFs on the flash device, you must call tffsDevCreate(). This call creates a block
device on top of the socket component driver, but does not mount dosFs on the device.
Because mounting dosFs on the device is what you will want to do most of the time, the
sysTffs.c file defines a helper function, usrTffsConfig(). Internally, this function calls
tffsDevCreate() and then does everything necessary (such as calling the dosFsDevInit()
routine) to mount dosFs on the resulting block device.

LOW LEVEL I/O Normally, you should handle your I/O to the flash device using dosFs. However, there
are situations when that level of indirection is a problem. To handle such situations, this
library defines tffsRawio(). Using this function, you can bypass both dosFs and the
TrueFFS translation services to program the flash medium directly.

However, you should not try to program the flash device directly unless you are
intimately familiar with the physical limits of your flash device as well as with how
TrueFFS formats the flash medium. Otherwise you risk not only corrupting the medium
entirely but permanently damaging the flash device.

If all you need to do is write a boot image to the flash device, use the tffsBootImagePut()
utility instead of tffsRawio(). This function provides safer access to the flash medium.

IOCTL This driver responds to all ioctl codes by setting a global error flag. Do not attempt to
format a flash drive using ioctl calls.

INCLUDE FILES tffsDrv.h, fatlite.h

tftpdLib

NAME tftpdLib – Trivial File Transfer Protocol server library

ROUTINES tftpdInit() - initialize the TFTP server task
tftpdTask() - TFTP server daemon task
tftpdDirectoryAdd() - add a directory to the access list
tftpdDirectoryRemove() - delete a directory from the access list

DESCRIPTION This library implements the VxWorks Trivial File Transfer Protocol (TFTP) server module.
The server can respond to both read and write requests. It is started by a call to
tftpdInit().

The server has access to a list of directories that can either be provided in the initial call to
tftpdInit() or changed dynamically using the tftpdDirectoryAdd() and
tftpDirectoryRemove() calls. Requests for files not in the directory trees specified in the
access list will be rejected, unless the list is empty, in which case all requests will be

1: Libraries
tftpLib

319

T

allowed. By default, the access list contains the directory given in the global variable
tftpdDirectory. It is possible to remove the default by calling tftpdDirectoryRemove().

For specific information about the TFTP protocol, see RFC 783, “TFTP Protocol.”

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can run the TFTP server in the kernel protection domain only.
This restriction does not apply under non-AE versions of VxWorks.

INCLUDE FILES tftpdLib.h, tftpLib.h

SEE ALSO tftpLib, RFC 783 “TFTP Protocol”

tftpLib

NAME tftpLib – Trivial File Transfer Protocol (TFTP) client library

ROUTINES tftpXfer() - transfer a file via TFTP using a stream interface
tftpCopy() - transfer a file via TFTP
tftpInit() - initialize a TFTP session
tftpModeSet() - set the TFTP transfer mode
tftpPeerSet() - set the TFTP server address
tftpPut() - put a file to a remote system
tftpGet() - get a file from a remote system
tftpInfoShow() - get TFTP status information
tftpQuit() - quit a TFTP session
tftpSend() - send a TFTP message to the remote system

DESCRIPTION This library implements the VxWorks Trivial File Transfer Protocol (TFTP) client library.
TFTP is a simple file transfer protocol (hence the name “trivial”) implemented over UDP.
TFTP was designed to be small and easy to implement. Therefore, it is limited in
functionality in comparison with other file transfer protocols, such as FTP. TFTP provides
only the read/write capability to and from a remote server.

TFTP provides no user authentication. Therefore, the remote files must have “loose”
permissions before requests for file access will be granted by the remote TFTP server. This
means that the files to be read must be publicly readable, and files to be written must exist
and be publicly writable). Some TFTP servers offer a secure option (-s) that specifies a
directory where the TFTP server is rooted. Refer to the host manuals for more information
about a particular TFTP server.

HIGH-LEVEL INTERFACE

The tftpLib library has two levels of interface. The tasks tftpXfer() and tftpCopy()

VxWorks OS Libraries API Reference, 5.5
tftpLib

320

operate at the highest level and are the main call interfaces. The tftpXfer() routine
provides a stream interface to TFTP. That is, it spawns a task to perform the TFTP transfer
and provides a descriptor from which data can be transferred interactively. The tftpXfer()
interface is similar to ftpXfer() in ftpLib. The tftpCopy() routine transfers a remote file to
or from a passed file (descriptor).

LOW-LEVEL INTERFACE

The lower-level interface is made up of various routines that act on a TFTP session. Each
TFTP session is defined by a TFTP descriptor. These routines include:

tftpInit() to initialize a session;
tftpModeSet() to set the transfer mode;
tftpPeerSet() to set a peer/server address;
tftpPut() to put a file to the remote system;
tftpGet() to get file from remote system;
tftpInfoShow() to show status information; and
tftpQuit() to quit a TFTP session.

EXAMPLE The following code provides an example of how to use the lower-level routines. It
implements roughly the same function as tftpCopy().

char * pHost;

int port;

char * pFilename;

char * pCommand;

char * pMode;

int fd;

TFTP_DESC * pTftpDesc;

int status;

if ((pTftpDesc = tftpInit ()) == NULL)

return (ERROR);

if ((tftpPeerSet (pTftpDesc, pHost, port) == ERROR) ||

(tftpModeSet (pTftpDesc, pMode) == ERROR))

{

(void) tftpQuit (pTftpDesc);

return (ERROR);

}

if (strcmp (pCommand, "get") == 0)

{

status = tftpGet (pTftpDesc, pFilename, fd, TFTP_CLIENT);

}

else if (strcmp (pCommand, "put") == 0)

{

status = tftpPut (pTftpDesc, pFilename, fd, TFTP_CLIENT);

}

else

1: Libraries
tickLib

321

T

{

errno = S_tftpLib_INVALID_COMMAND;

status = ERROR;

}

(void) tftpQuit (pTftpDesc);

To use this feature, include the following component: INCLUDE_TFTP_CLIENT

INCLUDE FILES tftpLib.h

SEE ALSO tftpdLib

tickLib

NAME tickLib – clock tick support library

ROUTINES tickAnnounce() - announce a clock tick to the kernel
tickSet() - set the value of the kernel’s tick counter
tickGet() - get the value of the kernel’s tick counter

DESCRIPTION This library is the interface to the VxWorks kernel routines that announce a clock tick to
the kernel, get the current time in ticks, and set the current time in ticks.

Kernel facilities that rely on clock ticks include taskDelay(), wdStart(),
kernelTimeslice(), and semaphore timeouts. In each case, the specified timeout is relative
to the current time, also referred to as “time to fire.” Relative timeouts are not affected by
calls to tickSet(), which only changes absolute time. The routines tickSet() and tickGet()
keep track of absolute time in isolation from the rest of the kernel.

Time-of-day clocks or other auxiliary time bases are preferable for lengthy timeouts of
days or more. The accuracy of such time bases is greater, and some external time bases
even calibrate themselves periodically.

INCLUDE FILES tickLib.h

SEE ALSO kernelLib, taskLib, semLib, wdLib, VxWorks Programmer’s Guide: Basic OS

VxWorks OS Libraries API Reference, 5.5
timerLib

322

timerLib

NAME timerLib – timer library (POSIX)

ROUTINES timer_cancel() - cancel a timer
timer_connect() - connect a user routine to the timer signal
timer_create() - allocate a timer using the specified clock for a timing base (POSIX)
timer_delete() - remove a previously created timer (POSIX)
timer_gettime() - get the remaining time before expiration and the reload value (POSIX)
timer_getoverrun() - return the timer expiration overrun (POSIX)
timer_settime() - set the time until the next expiration and arm timer (POSIX)
nanosleep() - suspend the current task until the time interval elapses (POSIX)
sleep() - delay for a specified amount of time
alarm() - set an alarm clock for delivery of a signal

DESCRIPTION This library provides a timer interface, as defined in the IEEE standard, POSIX 1003.1b.

Timers are mechanisms by which tasks signal themselves after a designated interval.
Timers are built on top of the clock and signal facilities. The clock facility provides an
absolute time-base. Standard timer functions simply consist of creation, deletion and
setting of a timer. When a timer expires, sigaction() (see sigLib) must be in place in order
for the user to handle the event. The “high resolution sleep” facility, nanosleep(), allows
sub-second sleeping to the resolution of the clock.

The clockLib library should be installed and clock_settime() set before the use of any
timer routines.

ADDITIONS Two non-POSIX functions are provided for user convenience:

– timer_cancel() quickly disables a timer by calling timer_settime().
– timer_connect() easily hooks up a user routine by calling sigaction().

CLARIFICATIONS The task creating a timer with timer_create() will receive the signal no matter which task
actually arms the timer.

When a timer expires and the task has previously exited, logMsg() indicates the expected
task is not present. Similarly, logMsg() indicates when a task arms a timer without
installing a signal handler. Timers may be armed but not created or deleted at interrupt
level.

IMPLEMENTATION The actual clock resolution is hardware-specific and in many cases is 1/60th of a second.
This is less than _POSIX_CLOCKRES_MIN, which is defined as 20 milliseconds (1/50th of a
second).

INCLUDE FILES timers.h

SEE ALSO clockLib, sigaction(), POSIX 1003.1b documentation, VxWorks Programmer’s Guide: Basic
OS

1: Libraries
timexLib

323

T

timexLib

NAME timexLib – execution timer facilities

ROUTINES timexInit() - include the execution timer library
timexClear() - clear the list of function calls to be timed
timexFunc() - specify functions to be timed
timexHelp() - display synopsis of execution timer facilities
timex() - time a single execution of a function or functions
timexN() - time repeated executions of a function or group of functions
timexPost() - specify functions to be called after timing
timexPre() - specify functions to be called prior to timing
timexShow() - display the list of function calls to be timed

DESCRIPTION This library contains routines for timing the execution of programs, individual functions,
and groups of functions. The VxWorks system clock is used as a time base. Functions that
have a short execution time relative to this time base can be called repeatedly to establish
an average execution time with an acceptable percentage of error.

Up to four functions can be specified to be timed as a group. Additionally, sets of up to
four functions can be specified as pre- or post-timing functions, to be executed before and
after the timed functions. The routines timexPre() and timexPost() are used to specify the
pre- and post-timing functions, while timexFunc() specifies the functions to be timed.

The routine timex() is used to time a single execution of a function or group of functions.
If called with no arguments, timex() uses the functions in the lists created by calls to
timexPre(), timexPost(), and timexFunc(). If called with arguments, timex() times the
function specified, instead of the previous list. The routine timexN() works in the same
manner as timex() except that it iterates the function calls to be timed.

EXAMPLES The routine timex() can be used to obtain the execution time of a single routine:

-> timex myFunc, myArg1, myArg2, ...

The routine timexN() calls a function repeatedly until a 2% or better tolerance is obtained:

-> timexN myFunc, myArg1, myArg2, ...

The routines timexPre(), timexPost(), and timexFunc() are used to specify a list of
functions to be executed as a group:

-> timexPre 0, myPreFunc1, preArg1, preArg2, ...

-> timexPre 1, myPreFunc2, preArg1, preArg2, ...

-> timexFunc 0, myFunc1, myArg1, myArg2, ...

-> timexFunc 1, myFunc2, myArg1, myArg2, ...

-> timexFunc 2, myFunc3, myArg1, myArg2, ...

-> timexPost 0, myPostFunc, postArg1, postArg2, ...

VxWorks OS Libraries API Reference, 5.5
trgLib

324

The list is executed by calling timex() or timexN() without arguments:

-> timex

or:

-> timexN

In this example, myPreFunc1 and myPreFunc2 are called with their respective arguments.
myFunc1, myFunc2, and myFunc3 are then called in sequence and timed. If timexN() was
used, the sequence is called repeatedly until a 2% or better error tolerance is achieved.
Finally, myPostFunc is called with its arguments. The timing results are reported after all
post-timing functions are called.

NOTE: The timings measure the execution time of the routine body, without the usual
subroutine entry and exit code (usually LINK, UNLINK, and RTS instructions). Also, the
time required to set up the arguments and call the routines is not included in the reported
times. This is because these timing routines automatically calibrate themselves by timing
the invocation of a null routine, and thereafter subtracting that constant overhead.

INCLUDE FILES timexLib.h

SEE ALSO spyLib

trgLib

NAME trgLib – trigger events control library

ROUTINES trgLibInit() - initialize the triggering library
trgWorkQReset() - resets the trigger work queue task and queue
trgAdd() - add a new trigger to the trigger list
trgDelete() - delete a trigger from the trigger list
trgOn() - set triggering on
trgOff() - set triggering off
trgEnable() - enable a trigger
trgDisable() - turn a trigger off
trgChainSet() - chains two triggers
trgEvent() - trigger a user-defined event

DESCRIPTION This library provides the interface for triggering events. The routines provide tools for
creating, deleting, and controlling triggers. However, in most cases it is preferable to use
the GUI to create and manage triggers, since all order and dependency factors are
automatically accounted for there.

1: Libraries
trgShow

325

T

The event types are defined as in WindView. Triggering and WindView share the same
instrumentation points. Furthermore, one of the main uses of triggering is to start and
stop WindView instrumentation. Triggering is started by the routine trgOn(), which sets
the shared variable evtAction. Once the variable is set, when an instrumented point is hit,
trgCheck() is called. The routine looks for triggers that apply to this event. The routine
trgOff() stops triggering. The routine trgEnable() enables a specific trigger that was
previously disabled with trgDisable(). (At creation time all triggers are enabled by
default.) This routine also checks the number of triggers currently enabled, and when this
is zero, it turns triggering off.

NOTE: It is important to create a trigger before calling trgOn(). trgOn() checks the trigger
list to see if there is at least one trigger there, and if not, it exits without setting evtAction.

INCLUDE FILES trgLibP.h

SEE ALSO WindView User’s Guide

trgShow

NAME trgShow – trigger show routine

ROUTINES trgShowInit() - initialize the trigger show facility
trgShow() - show trigger information

DESCRIPTION This library provides routines to show event triggering information, such as list of
triggers, associated actions, trigger states, and so on.

The routine trgShowInit() links the triggering show facility into the VxWorks system. It
is called automatically when INCLUDE_TRIGGER_SHOW is defined.

SEE ALSO trgLib

VxWorks OS Libraries API Reference, 5.5
ttyDrv

326

ttyDrv

NAME ttyDrv – provide terminal device access to serial channels

ROUTINES ttyDrv() - initialize the tty driver
ttyDevCreate() - create a VxWorks device for a serial channel

DESCRIPTION This library provides the OS-dependent functionality of a serial device, including
canonical processing and the interface to the VxWorks I/O system.

The BSP provides “raw” serial channels which are accessed via an SIO_CHAN data
structure. These raw devices provide only low level access to the devices to send and
receive characters. This library builds on that functionality by allowing the serial channels
to be accessed via the VxWorks I/O system using the standard read/write interface. It
also provides the canonical processing support of tyLib.

The routines in this library are typically called by usrRoot() in usrConfig.c to create
VxWorks serial devices at system startup time.

INCLUDE FILES ttyLib.h

SEE ALSO tyLib, sioLib.h

tyLib

NAME tyLib – tty driver support library

ROUTINES tyDevInit() - initialize the tty device descriptor
tyDevRemove() - remove the tty device descriptor
tyAbortFuncSet() - set the abort function
tyAbortSet() - change the abort character
tyBackspaceSet() - change the backspace character
tyDeleteLineSet() - change the line-delete character
tyEOFSet() - change the end-of-file character
tyMonitorTrapSet() - change the trap-to-monitor character
tyIoctl() - handle device control requests
tyWrite() - do a task-level write for a tty device
tyRead() - do a task-level read for a tty device
tyITx() - interrupt-level output
tyIRd() - interrupt-level input

1: Libraries
tyLib

327

T

DESCRIPTION This library provides routines used to implement drivers for serial devices. It provides all
the necessary device-independent functions of a normal serial channel, including:

– ring buffering of input and output

– raw mode

– optional line mode with backspace and line-delete functions

– optional processing of X-on/X-off

– optional RETURN/LINEFEED conversion

– optional echoing of input characters

– optional stripping of the parity bit from 8-bit input

– optional special characters for shell abort and system restart

Most of the routines in this library are called only by device drivers. Functions that
normally might be called by an application or interactive user are the routines to set
special characters, ty...Set().

USE IN SERIAL DEVICE DRIVERS

Each device that uses tyLib is described by a data structure of type TY_DEV. This
structure begins with an I/O system device header so that it can be added directly to the
I/O system’s device list. A driver calls tyDevInit() to initialize a TY_DEV structure for a
specific device and then calls iosDevAdd() to add the device to the I/O system.

The call to tyDevInit() takes three parameters: the pointer to the TY_DEV structure to
initialize, the desired size of the read and write ring buffers, and the address of a
transmitter start-up routine. This routine will be called when characters are added for
output and the transmitter is idle. Thereafter, the driver can call the following routines to
perform the usual device functions:

tyRead()
user read request to get characters that have been input

tyWrite()
user write request to put characters to be output

tyIoctl()
user I/O control request

tyIRd()
interrupt-level routine to get an input character

tyITx()
interrupt-level routine to deliver the next output character

Thus, tyRead(), tyWrite(), and tyIoctl() are called from the driver’s read, write, and I/O
control functions. The routines tyIRd() and tyITx() are called from the driver’s interrupt
handler in response to receive and transmit interrupts, respectively.

VxWorks OS Libraries API Reference, 5.5
tyLib

328

Examples of using tyLib in a driver can be found in the source file(s) included by
tyCoDrv. Source files are located in src/drv/serial.

TTY OPTIONS A full range of options affects the behavior of tty devices. These options are selected by
setting bits in the device option word using the FIOSETOPTIONS function in the ioctl()
routine (see I/O Control Functions below for more information). The following is a list of
available options. The options are defined in the header file ioLib.h.

OPT_LINE
Selects line mode. A tty device operates in one of two modes: raw mode (unbuffered)
or line mode. Raw mode is the default. In raw mode, each byte of input from the
device is immediately available to readers, and the input is not modified except as
directed by other options below. In line mode, input from the device is not available
to readers until a NEWLINE character is received, and the input may be modified by
backspace, line-delete, and end-of-file special characters.

OPT_ECHO
Causes all input characters to be echoed to the output of the same channel. This is
done simply by putting incoming characters in the output ring as well as the input
ring. If the output ring is full, the echoing is lost without affecting the input.

OPT_CRMOD
C language conventions use the NEWLINE character as the line terminator on both
input and output. Most terminals, however, supply a RETURN character when the
return key is hit, and require both a RETURN and a LINEFEED character to advance
the output line. This option enables the appropriate translation: NEWLINEs are
substituted for input RETURN characters, and NEWLINEs in the output file are
automatically turned into a RETURN-LINEFEED sequence.

OPT_TANDEM
Causes the driver to generate and respond to the special flow control characters
CTRL-Q and CTRL-S in what is commonly known as X-on/X-off protocol. Receipt of
a CTRL-S input character will suspend output to that channel. Subsequent receipt of a
CTRL-Q will resume the output. Also, when the VxWorks input buffer is almost full,
a CTRL-S will be output to signal the other side to suspend transmission. When the
input buffer is almost empty, a CTRL-Q will be output to signal the other side to
resume transmission.

OPT_7_BIT
Strips the most significant bit from all bytes input from the device.

OPT_MON_TRAP
Enables the special monitor trap character, by default CTRL-X. When this character is
received and this option is enabled, VxWorks will trap to the ROM resident monitor
program. Note that this is quite drastic. All normal VxWorks functioning is
suspended, and the computer system is entirely controlled by the monitor.
Depending on the particular monitor, it may or may not be possible to restart
VxWorks from the point of interruption. The default monitor trap character can be
changed by calling tyMonitorTrapSet().

1: Libraries
tyLib

329

T

OPT_ABORT
Enables the special shell abort character, by default CTRL-C. When this character is
received and this option is enabled, the VxWorks shell is restarted. This is useful for
freeing a shell stuck in an unfriendly routine, such as one caught in an infinite loop or
one that has taken an unavailable semaphore. For more information, see the VxWorks
Programmer’s Guide: Shell.

OPT_TERMINAL
This is not a separate option bit. It is the value of the option word with all the above
bits set.

OPT_RAW
This is not a separate option bit. It is the value of the option word with none of the
above bits set.

I/O CONTROL FUNCTIONS

The tty devices respond to the following ioctl() functions. The functions are defined in the
header ioLib.h.

FIOGETNAME
Gets the file name of the file descriptor and copies it to the buffer referenced to by
nameBuf:

status = ioctl (fd, FIOGETNAME, &nameBuf);

This function is common to all file descriptors for all devices.

FIOSETOPTIONS, FIOOPTIONS
Sets the device option word to the specified argument. For example, the call:

status = ioctl (fd, FIOOPTIONS, OPT_TERMINAL);

status = ioctl (fd, FIOSETOPTIONS, OPT_TERMINAL);

enables all the tty options described above, putting the device in a “normal” terminal
mode. If the line protocol (OPT_LINE) is changed, the input buffer is flushed. The
various options are described in ioLib.h.

FIOGETOPTIONS
Returns the current device option word:

options = ioctl (fd, FIOGETOPTIONS, 0);

FIONREAD
Copies to nBytesUnread the number of bytes available to be read in the device’s input
buffer:

status = ioctl (fd, FIONREAD, &nBytesUnread);

In line mode (OPT_LINE set), the FIONREAD function actually returns the number of
characters available plus the number of lines in the buffer. Thus, if five lines of just
NEWLINEs were in the input buffer, it would return the value 10 (5 characters + 5
lines).

VxWorks OS Libraries API Reference, 5.5
tyLib

330

FIONWRITE
Copies to nBytes the number of bytes queued to be output in the device’s output
buffer:

status = ioctl (fd, FIONWRITE, &nBytes);

FIOFLUSH
Discards all the bytes currently in both the input and the output buffers:

status = ioctl (fd, FIOFLUSH, 0);

FIOWFLUSH
Discards all the bytes currently in the output buffer:

status = ioctl (fd, FIOWFLUSH, 0);

FIORFLUSH
Discards all the bytes currently in the input buffers:

status = ioctl (fd, FIORFLUSH, 0);

FIOCANCEL
Cancels a read or write. A task blocked on a read or write may be released by a
second task using this ioctl() call. For example, a task doing a read can set a
watchdog timer before attempting the read; the auxiliary task would wait on a
semaphore. The watchdog routine can give the semaphore to the auxiliary task,
which would then use the following call on the appropriate file descriptor:

status = ioctl (fd, FIOCANCEL, 0);

FIOBAUDRATE
Sets the baud rate of the device to the specified argument. For example, the call:

status = ioctl (fd, FIOBAUDRATE, 9600);

Sets the device to operate at 9600 baud. This request has no meaning on a pseudo
terminal.

FIOISATTY
Returns TRUE for a tty device:

status = ioctl (fd, FIOISATTY, 0);

FIOPROTOHOOK
Adds a protocol hook function to be called for each input character. pfunction is a
pointer to the protocol hook routine which takes two arguments of type int and
returns values of type STATUS (TRUE or FALSE). The first argument passed is set by
the user via the FIOPROTOARG function. The second argument is the input character.
If no further processing of the character is required by the calling routine (the input
routine of the driver), the protocol hook routine pFunction should return TRUE.
Otherwise, it should return FALSE:

status = ioctl (fd, FIOPROTOHOOK, pFunction);

1: Libraries
tyLib

331

T

FIOPROTOARG
Sets the first argument to be passed to the protocol hook routine set by
FIOPROTOHOOK function:

status = ioctl (fd, FIOPROTOARG, arg);

FIORBUFSET
Changes the size of the receive-side buffer to size:

status = ioctl (fd, FIORBUFSET, size);

FIOWBUFSET
Changes the size of the send-side buffer to size:

status = ioctl (fd, FIOWBUFSET, size);

Any other ioctl() request will return an error and set the status to
S_ioLib_UNKNOWN_REQUEST.

INCLUDE FILES tyLib.h, ioLib.h

SEE ALSO ioLib, iosLib, tyCoDrv, VxWorks Programmer’s Guide: I/O System

VxWorks OS Libraries API Reference, 5.5
udpShow

332

udpShow

NAME udpShow – UDP information display routines

ROUTINES udpShowInit() - initialize UDP show routines
udpstatShow() - display statistics for the UDP protocol

DESCRIPTION This library provides routines to show UDP related statistics.

Interpreting these statistics requires detailed knowledge of Internet network protocols.
Information on these protocols can be found in the following books:

TCP/IP Illustrated Volume II, The Implementation, by Richard Stevens

The Design and Implementation of the 4.4 BSD UNIX Operating System, by Leffler, McKusick,
Karels and Quarterman

The udpShowInit() routine links the UDP show facility into the VxWorks system. This is
performed automatically if INCLUDE_NET_SHOW and INCLUDE_UDP are defined.

SEE ALSO netLib, netShow

unixDrv

NAME unixDrv – UNIX-file disk driver (VxSim for Solaris and VxSim for HP)

ROUTINES unixDrv() - install UNIX disk driver
unixDiskDevCreate() - create a UNIX disk device
unixDiskInit() - initialize a dosFs disk on top of UNIX

DESCRIPTION This driver emulates a VxWorks disk driver, but actually uses the UNIX file system to
store the data. The VxWorks disk appears under UNIX as a single file. The UNIX file
name, and the size of the disk, may be specified during the unixDiskDevCreate() call.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. The routine
unixDrv() must be called to initialize the driver and the unixDiskDevCreate() routine is
used to create devices.

CREATING UNIX DISKS

Before a UNIX disk can be used, it must be created. This is done with the

1: Libraries
unixDrv

333

U

unixDiskDevCreate() call. The format of this call is:

BLK_DEV *unixDiskDevCreate

(

char *unixFile, /* name of the UNIX file to use */

int bytesPerBlk, /* number of bytes per block */

int blksPerTrack, /* number of blocks per track */

int nBlocks /* number of blocks on this device */

)

The UNIX file must be pre-allocated separately. This can be done using the UNIX
mkfile(8) command. Note that you have to create an appropriately sized file. For example,
to create a UNIX file system that is used as a common floppy dosFs file system, you
would issue the command:

mkfile 1440k /tmp/floppy.dos

This will create space for a 1.44 Meg DOS floppy (1474560 bytes, or 2880 512-byte blocks).

The bytesPerBlk parameter specifies the size of each logical block on the disk. If bytesPerBlk
is zero, 512 is the default.

The blksPerTrack parameter specifies the number of blocks on each logical track of the
UNIX disk. If blksPerTrack is zero, the count of blocks per track will be set to nBlocks (i.e.,
the disk will be defined as having only one track). UNIX disk devices typically are
specified with only one track.

The nBlocks parameter specifies the size of the disk, in blocks. If nBlocks is zero the size of
the UNIX file specified, divided by the number of bytes per block, is used.

The formatting parameters (bytesPerBlk, blksPerTrack, and nBlocks) are critical only if the
UNIX disk already contains the contents of a disk created elsewhere. In that case, the
formatting parameters must be identical to those used when the image was created.
Otherwise, they may be any convenient number.

Once the device has been created it still does not have a name or file system associated
with it. This must be done by using the file system’s device initialization routine (e.g.,
dosFsDevInit()). The dosFs and rt11Fs file systems also provide make-file-system
routines (dosFsMkfs() and rt11FsMkfs()), which may be used to associate a name and
file system with the block device and initialize that file system on the device using default
configuration parameters.

The unixDiskDevCreate() call returns a pointer to a block device structure (BLK_DEV).
This structure contains fields that describe the physical properties of a disk device and
specify the addresses of routines within the UNIX disk driver. The BLK_DEV structure
address must be passed to the desired file system (dosFs, rt11Fs, or rawFs) during the file
system’s device initialization or make-file-system routine. Only then is a name and file
system associated with the device, making it available for use.

VxWorks OS Libraries API Reference, 5.5
unldLib

334

As an example, to create a 200KB disk, 512-byte blocks, and only one track, the proper call
would be:

BLK_DEV *pBlkDev;

pBlkDev = unixDiskDevCreate ("/tmp/filesys1", 512, 400, 400, 0);

This will attach the UNIX file /tmp/filesys1 as a block device.

A convenience routine, unixDiskInit(), is provided to do the unixDiskDevCreate()
followed by either a dosFsMkFs() or dosFsDevInit(), whichever is appropriate.

The format of this call is:

BLK_DEV *unixDiskInit

(

char * unixFile, /* name of the UNIX file to use */

char * volName, /* name of the dosFs volume to use */

int nBytes /* number of bytes in dosFs volume */

)

This call will create the UNIX disk if required.

IOCTL Only the FIODISKFORMAT request is supported; all other ioctl requests return an error,
and set the task’s errno to S_ioLib_UNKNOWN_REQUEST.

SEE ALSO dosFsDevInit(), dosFsMkfs(), rt11FsDevInit(), rt11FsMkfs(), rawFsDevInit(), VxWorks
Programmer’s Guide: I/O System, Local File Systems

unldLib

NAME unldLib – object module unloading library

ROUTINES unld() - unload an object module by specifying a file name or module ID
unldByModuleId() - unload an object module by specifying a module ID
unldByNameAndPath() - unload an object module by specifying a name and path
unldByGroup() - unload an object module by specifying a group number
reld() - reload an object module

DESCRIPTION This library provides a facility for unloading object modules. Once an object module has
been loaded into the system (using the facilities provided by loadLib), it can be removed
from the system by calling one of the unld...() routines in this library.

Unloading of an object module does the following:

(1) It frees the space allocated for text, data, and BSS segments, unless loadModuleAt()
was called with specific addresses, in which case the user is responsible for freeing
the space.

1: Libraries
usrAta

335

U

(2) It removes all symbols associated with the object module from the system symbol
table.

(3) It removes the module descriptor from the module list.

Once the module is unloaded, any calls to routines in that module from other modules
will fail unpredictably. The user is responsible for ensuring that no modules are unloaded
that are used by other modules. unld() checks the hooks created by the following routines
to ensure none of the unloaded code is in use by a hook:

taskCreateHookAdd()
taskDeleteHookAdd()
taskHookAdd()
taskSwapHookAdd()
taskSwitchHookAdd()

However, unld() does not check the hooks created by these routines:

etherInputHookAdd()
etherOutputHookAdd()
excHookAdd()
rebootHookAdd()
moduleCreateHookAdd()

The routines unld() and reld() are shell commands. That is, they are designed to be used
only in the shell, and not in code running on the target. In future releases, calling unld()
and reld() directly from code may not be supported.

INCLUDE FILES unldLib.h, moduleLib.h

SEE ALSO loadLib, moduleLib, Tornado User’s Guide: Cross-Development

usrAta

NAME usrAta – ATA/ATAPI initialization

ROUTINES usrAtaConfig() - mount a DOS file system from an ATA hard disk or a CDROM
usrAtaInit() - initialize the hard disk driver

VxWorks OS Libraries API Reference, 5.5
usrConfig

336

usrConfig

NAME usrConfig – user-defined system configuration library

ROUTINES usrInit() - user-defined system initialization routine
usrRoot() - the root task
usrClock() - user-defined system clock interrupt routine

DESCRIPTION This library is the WRS-supplied configuration module for VxWorks. It contains the root
task, the primary system initialization routine, the network initialization routine, and the
clock interrupt routine.

The include file config.h includes a number of system-dependent parameters used in this
file.

In an effort to simplify the presentation of the configuration of VxWorks, this file has been
split into smaller files. These additional configuration source files are located in
../../src/config/usrxxx.c and are #included into this file below. This file contains the bulk of
the code a customer is likely to customize.

The module usrDepend.c contains checks that guard against unsupported configurations
such as INCLUDE_NFS without INCLUDE_RPC. The module usrKernel.c contains the core
initialization of the kernel which is rarely customized, but provided for information. The
module usrNetwork.c now contains all network initialization code. Finally, the module
usrExtra.c contains the conditional inclusion of the optional packages selected in
configAll.h.

The source code necessary for the configuration selected is entirely included in this file
during compilation as part of a standard build in the board support package. No other
make is necessary.

INCLUDE FILES config.h

SEE ALSO Tornado User’s Guide: Getting Started, Cross-Development

usrFd

NAME usrFd – floppy disk initialization

ROUTINES usrFdConfig() - mount a DOS file system from a floppy disk

1: Libraries
usrFdiskPartLib

337

U

usrFdiskPartLib

NAME usrFdiskPartLib – FDISK-style partition handler

ROUTINES usrFdiskPartRead() - read an FDISK-style partition table
usrFdiskPartCreate() - create an FDISK-like partition table on a disk
usrFdiskPartShow() - parse and display partition data

DESCRIPTION This module is provided is source code to accommodate various customizations of
partition table handling, resulting from variations in the partition table format in a
particular configuration. It is intended for use with dpartCbio partition manager.

This code supports both mounting MSDOS file systems and displaying partition tables
written by MSDOS FDISK.exe or by any other MSDOS FDISK.exe compatible
partitioning software.

The first partition table is contained within a hard drives Master Boot Record (MBR)
sector, which is defined as sector one, cylinder zero, head zero or logical block address
zero.

The mounting and displaying routines within this code will first parse the MBR partition
tables entries (defined below) and also recursively parse any “extended” partition tables,
which may reside within another sector further into the hard disk. MSDOS file systems
within extended partitions are known to those familiar with the MSDOS FDISK.exe
utility as “Logical drives within the extended partition”.

Here is a picture showing the layout of a single disk containing multiple MSDOS file
systems:

+---+

|<---------------------The entire disk------------------->|

|M |

|B<---C:---> |

|R /---- First extended partition--------------\|

| E<---D:---><-Rest of the ext part------------>|

|P x |

|A t E<---E:--->E<Rest of the ext part->|

|R x x |

|T t t<---------F:---------->|

+---+

(Ext == extended partition sector)

C: is a primary partiion

D:, E:, and F: are logical drives within the extended partition.

A MS-DOS partition table resides within one sector on a hard disk. There is always one in
the first sector of a hard disk partitioned with FDISK.exe. There first partition table may
contain references to “extended” partition tables residing on other sectors if there are

VxWorks OS Libraries API Reference, 5.5
usrFdiskPartLib

338

multiple partitions. The first sector of the disk is the starting point. Partition tables are of
the format:

Offset from

the beginning

of the sector Description

------------- -------------------------

0x1be Partition 1 table entry (16 bytes)

0x1ce Partition 2 table entry (16 bytes)

0x1de Partition 3 table entry (16 bytes)

0x1ee Partition 4 table entry (16 bytes)

0x1fe Signature (0x55aa, 2 bytes)

Individual MSDOS partition table entries are of the format:

Offset Size Description

------ ---- ------------------------------

0x0 8 bits boot type

0x1 8 bits beginning sector head value

0x2 8 bits beginning sector (2 high bits of cylinder#)

0x3 8 bits beginning cylinder# (low order bits of cylinder#)

0x4 8 bits system indicator

0x5 8 bits ending sector head value

0x6 8 bits ending sector (2 high bits of cylinder#)

0x7 8 bits ending cylinder# (low order bits of cylinder#)

0x8 32 bits number of sectors preceding the partition

0xc 32 bits number of sectors in the partition

The Cylinder, Head and Sector values herein are not used, instead the 32-bit partition
offset and size (also known as LBA addresses) are used exclusively to determine partition
geometry.

If a non-partitioned disk is detected, in which case the 0’th block is a DosFs boot block
rather then an MBR, the entire disk will be configured as partition 0, so that disks
formatted with VxWorks and disks formatted on MS-DOS or Windows can be accepted
interchangeably.

The usrFdiskPartCreate() will create a partition table with up to four partitions, which
can be later used with usrFdiskPartRead() and dpartCbio to manage a partitioned disk
on VxWorks.

However, it can not be guaranteed that this partition table can be used on another system
due to several BIOS specific parameters in the boot area. If interchangeability via
removable disks is a requirement, partition tables should be created and volumes should
be formatted on the other system with which the data is to be interchanged.

WARNING: The partition decode function is recursive, up to the maximum number of
partitions expected, which is no more then 24.

1: Libraries
usrFsLib

339

U

Sufficient stack space needs to be provided via taskSpawn() to accommodate the
recursion level.

SEE ALSO dpartCbio

usrFsLib

NAME usrFsLib – file system user interface subroutine library

ROUTINES cd() - change the default directory
pwd() - print the current default directory
mkdir() - make a directory
rmdir() - remove a directory
rm() - remove a file
copyStreams() - copy from/to specified streams
copy() - copy in (or stdin) to out (or stdout)
chkdsk() - perform consistency checking on a MS-DOS file system
dirList() - list contents of a directory (multi-purpose)
ls() - generate a brief listing of a directory
ll() - generate a long listing of directory contents
lsr() - list the contents of a directory and any of its subdirectories
llr() - do a long listing of directory and all its subdirectories contents
cp() - copy file into other file/directory.
mv() - mv file into other directory.
xcopy() - copy a hierarchy of files with wildcards
xdelete() - delete a hierarchy of files with wildcards
attrib() - modify MS-DOS file attributes on a file or directory
xattrib() - modify MS-DOS file attributes of many files
diskFormat() - format a disk
diskInit() - initialize a file system on a block device
ioHelp() - print a synopsis of I/O utility functions

DESCRIPTION This library provides user-level utilities for managing file systems. These utilities may be
used from Tornado Shell, the Target Shell or from an application.

USAGE FROM TORNADO

Some of the functions in this library have counterparts of the same names built into the
Tornado Shell (aka Windsh). The built-in functions perform similar functions on the
Tornado host computer’s I/O systems. Hence if one of such functions needs to be
executed in order to perform any operation on the Target’s I/O system, it must be
preceded with an @ sign, e.g.: ce > @ls "/sd0" ce will list the directory of a disk named /sd0
on the target, while

VxWorks OS Libraries API Reference, 5.5
usrIde

340

-> ls "/tmp"

will list the contents of the /tmp directory on the host.

The target I/O system and the Tornado Shell running on the host, each have their own
notion of current directory, which are not related, hence

-> pwd

will display the Tornado Shell current directory on the host file system, while

-> @pwd

will display the target’s current directory on the target’s console.

WILDCARDS Some of the functions herein support wildcard characters in argument strings where file
or directory names are expected. The wildcards are limited to “*” which matches zero or
more characters and “?” which matches any single characters. Files or directories with
names beginning with a “.” are not normally matched with the “*” wildcard.

DIRECTORY LISTING

Directory listing is implemented in one function dirList(), which can be accessed using
one of these four front-end functions:

ls()
produces a short list of files

lsr()
is like ls() but ascends into subdirectories

ll()
produces a detailed list of files, with file size, modification date attributes etc.

llr()
is like ll() but also ascends into subdirectories

All of the directory listing functions accept a name of a directory or a single file to list, or a
name which contain wildcards, which will result in listing of all objects that match the
wildcard string provided.

SEE ALSO ioLib, dosFsLib, netDrv, nfsLib, VxWorks Programmer’s Guide: Target Shell VxWorks
Programmer’s Guide: Tornado Users’s Guide

usrIde

NAME usrIde – IDE initialization

ROUTINES usrIdeConfig() - mount a DOS file system from an IDE hard disk

1: Libraries
usrLib

341

U

usrLib

NAME usrLib – user interface subroutine library

ROUTINES help() - print a synopsis of selected routines
netHelp() - print a synopsis of network routines
bootChange() - change the boot line
periodRun() - call a function periodically
period() - spawn a task to call a function periodically
repeatRun() - call a function repeatedly
repeat() - spawn a task to call a function repeatedly
sp() - spawn a task with default parameters
checkStack() - print a summary of each task’s stack usage
i() - print a summary of each task’s TCB
ti() - print complete information from a task’s TCB
show() - print information on a specified object
ts() - suspend a task
tr() - resume a task
td() - delete a task
version() - print VxWorks version information
m() - modify memory
d() - display memory
ld() - load an object module into memory
devs() - list all system-known devices
lkup() - list symbols
lkAddr() - list symbols whose values are near a specified value
mRegs() - modify registers
pc() - return the contents of the program counter
printErrno() - print the definition of a specified error status value
printLogo() - print the VxWorks logo
logout() - log out of the VxWorks system
h() - display or set the size of shell history
spyReport() - display task activity data
spyTask() - run periodic task activity reports
spy() - begin periodic task activity reports
spyClkStart() - start collecting task activity data
spyClkStop() - stop collecting task activity data
spyStop() - stop spying and reporting
spyHelp() - display task monitoring help menu

DESCRIPTION This library consists of routines meant to be executed from the VxWorks shell. It provides
useful utilities for task monitoring and execution, system information, symbol table
management, etc.

VxWorks OS Libraries API Reference, 5.5
usrScsi

342

Many of the routines here are simply command-oriented interfaces to more general
routines contained elsewhere in VxWorks. Users should feel free to modify or extend this
library, and may find it preferable to customize capabilities by creating a new private
library, using this one as a model, and appropriately linking the new one into the system.

Some routines here have optional parameters. If those parameters are zero, which is what
the shell supplies if no argument is typed, default values are typically assumed.

A number of the routines in this module take an optional task name or ID as an argument.
If this argument is omitted or zero, the “current” task is used. The current task (or
“default” task) is the last task referenced. The usrLib library uses taskIdDefault() to set
and get the last-referenced task ID, as do many other VxWorks routines.

INCLUDE FILES usrLib.h

SEE ALSO usrFsLib, tarLib, spyLib, VxWorks Programmer’s Guide: Target Shell, windsh, Tornado
User’s Guide: Shell

usrScsi

NAME usrScsi – SCSI initialization

ROUTINES usrScsiConfig() - configure SCSI peripherals

1: Libraries
vmLib

343

V

vmBaseLib

NAME vmBaseLib – base virtual memory support library

ROUTINES vmBaseLibInit() - initialize base virtual memory support
vmBaseGlobalMapInit() - initialize global mapping
vmBaseStateSet() - change the state of a block of virtual memory
vmBasePageSizeGet() - return the page size

DESCRIPTION This library provides the minimal MMU (Memory Management Unit) support needed in a
system. Its primary purpose is to create cache-safe buffers for cacheLib. Buffers are
provided to optimize I/O throughput.

A call to vmBaseLibInit() initializes this library, thus permitting
vmBaseGlobalMapInit() to initialize the MMU and set up MMU translation tables.
Additionally, vmBaseStateSet() can be called to change the translation tables
dynamically.

This library is a release-bundled complement to vmLib and vmShow, modules that offer
full-featured MMU support and virtual memory information display routines. The vmLib
and vmShow libraries are distributed as the unbundled virtual memory support option,
VxVMI.

CONFIGURATION Bundled MMU support is included in VxWorks when the configuration macro
INCLUDE_MMU_BASIC is defined. If the configuration macro INCLUDE_MMU_FULL is
also defined, the default is full MMU support (unbundled).

INCLUDE FILES sysLib.h, vmLib.h

SEE ALSO vmLib, vmShow, VxWorks Programmer’s Guide: Virtual Memory

vmLib

NAME vmLib – architecture-independent virtual memory support library (VxVMI Opt.)

ROUTINES vmLibInit() - initialize the virtual memory support module (VxVMI Opt.)
vmGlobalMapInit() - initialize global mapping (VxVMI Opt.)
vmContextCreate() - create a new virtual memory context (VxVMI Opt.)
vmContextDelete() - delete a virtual memory context (VxVMI Opt.)
vmStateSet() - change the state of a block of virtual memory (VxVMI Opt.)
vmStateGet() - get the state of a page of virtual memory (VxVMI Opt.)

VxWorks OS Libraries API Reference, 5.5
vmLib

344

vmMap() - map physical space into virtual space (VxVMI Opt.)
vmGlobalMap() - map physical pages to virtual space in shared global virtual memory
(VxVMI Opt.)
vmGlobalInfoGet() - get global virtual memory information (VxVMI Opt.)
vmPageBlockSizeGet() - get the architecture-dependent page block size (VxVMI Opt.)
vmTranslate() - translate a virtual address to a physical address (VxVMI Opt.)
vmPageSizeGet() - return the page size (VxVMI Opt.)
vmCurrentGet() - get the current virtual memory context (VxVMI Opt.)
vmCurrentSet() - set the current virtual memory context (VxVMI Opt.)
vmEnable() - enable or disable virtual memory (VxVMI Opt.)
vmTextProtect() - write-protect a text segment (VxVMI Opt.)

DESCRIPTION This library provides an architecture-independent interface to the CPU’s memory
management unit (MMU). Although vmLib is implemented with architecture-specific
libraries, application code need never reference directly the architecture-dependent code
in these libraries.

A fundamental goal in the design of vmLib was to permit transparent backward
compatibility with previous versions of VxWorks that did not use the MMU. System
designers may opt to disable the MMU because of timing constraints, and some
architectures do not support MMUs; therefore VxWorks functionality must not be
dependent on the MMU. The resulting design permits a transparent configuration with no
change in the programming environment (but the addition of several protection features,
such as text segment protection) and the ability to disable virtual memory in systems that
require it.

The vmLib library provides a mechanism for creating virtual memory contexts,
vmContextCreate(). These contexts are not automatically created for individual tasks, but
may be created dynamically by tasks, and swapped in and out in an application specific
manner.

All virtual memory contexts share a global transparent mapping of virtual to physical
memory for all of local memory and the local hardware device space (defined in sysLib.c
for each board port in the sysPhysMemDesc data structure). When the system is
initialized, all of local physical memory is accessible at the same address in virtual
memory (this is done with calls to vmGlobalMap().) Modifications made to this global
mapping in one virtual memory context appear in all virtual memory contexts. For
example, if the exception vector table (which resides at address 0 in physical memory) is
made read only by calling vmStateSet() on virtual address 0, the vector table will be read
only in all virtual memory contexts.

Private virtual memory can also be created. When physical pages are mapped to virtual
memory that is not in the global transparent region, this memory becomes accessible only
in the context in which it was mapped. (The physical pages will also be accessible in the
transparent translation at the physical address, unless the virtual pages in the global
transparent translation region are explicitly invalidated.) State changes (writability,
validity, etc.) to a section of private virtual memory in a virtual memory context do not

1: Libraries
vmLib

345

V

appear in other contexts. To facilitate the allocation of regions of virtual space,
vmGlobalInfoGet() returns a pointer to an array of booleans describing which portions
of the virtual address space are devoted to global memory. Each successive array element
corresponds to contiguous regions of virtual memory the size of which is
architecture-dependent and which may be obtained with a call to
vmPageBlockSizeGet(). If the boolean array element is true, the corresponding region of
virtual memory, a “page block”, is reserved for global virtual memory and should not be
used for private virtual memory. (If vmMap() is called to map virtual memory previously
defined as global, the routine will return an error.)

All the state information for a block of virtual memory can be set in a single call to
vmStateSet(). It performs parameter checking and checks the validity of the specified
virtual memory context. It may also be used to set architecture-dependent state
information. See vmLib.h for additional architecture-dependent state information.

The routine vmContextShow() in vmShow displays the virtual memory context for a
specified context. For more information, see the manual entry for this routine.

CONFIGURATION Full MMU support (vmLib, and optionally, vmShow) is included in VxWorks when the
configuration macro INCLUDE_MMU_FULL is defined. If the configuration macro
INCLUDE_MMU_BASIC is also defined, the default is full MMU support (unbundled).

The sysLib.c library contains a data structure called sysPhysMemDesc, which is an array
of PHYS_MEM_DESC structures. Each element of the array describes a contiguous section
of physical memory. The description of this memory includes its physical address, the
virtual address where it should be mapped (typically, this is the same as the physical
address, but not necessarily so), an initial state for the memory, and a mask defining
which state bits in the state value are to be set. Default configurations are defined for each
board support package (BSP), but these mappings may be changed to suit user-specific
system configurations. For example, the user may need to map additional VME space
where the backplane network interface data structures appear.

AVAILABILITY This library and vmShow are distributed as the unbundled virtual memory support
option, VxVMI. A scaled down version, vmBaseLib, is provided with VxWorks for
systems that do not permit optional use of the MMU, or for architectures that require
certain features of the MMU to perform optimally (in particular, architectures that rely
heavily on caching, but do not support bus snooping, and thus require the ability to mark
inter-processor communications buffers as non-cacheable.) Most routines in vmBaseLib
are referenced internally by VxWorks; they are not callable by application code.

INCLUDE FILES vmLib.h

SEE ALSO sysLib, vmShow, VxWorks Programmer’s Guide: Virtual Memory

VxWorks OS Libraries API Reference, 5.5
vmShow

346

vmShow

NAME vmShow – virtual memory show routines (VxVMI Opt.)

ROUTINES vmShowInit() - include virtual memory show facility (VxVMI Opt.)
vmContextShow() - display the translation table for a context (VxVMI Opt.)

DESCRIPTION This library contains virtual memory information display routines.

The routine vmShowInit() links this facility into the VxWorks system. It is called
automatically when this facility is configured into VxWorks using either of the following
methods:

If you use the configuration header files, define both INCLUDE_MMU_FULL and
INCLUDE_SHOW_ROUTINES in config.h.

If you use the Tornado project facility, select INCLUDE_MMU_FULL_SHOW.

AVAILABILITY This module and vmLib are distributed as the unbundled virtual memory support option,
VxVMI.

INCLUDE FILES vmLib.h

SEE ALSO vmLib, VxWorks Programmer’s Guide: Virtual Memory

vxLib

NAME vxLib – miscellaneous support routines

ROUTINES vxTas() - C-callable atomic test-and-set primitive
vxMemArchProbe() - architecture specific part of vxMemProbe()
vxMemProbe() - probe an address for a bus error
vxSSEnable() - enable the superscalar dispatch (MC68060)
vxSSDisable() - disable the superscalar dispatch (MC68060)
vxPowerModeSet() - set the power management mode (PowerPC, SH, x86)
vxPowerModeGet() - get the power management mode (PowerPC, SH, x86)
vxPowerDown() - place the processor in reduced-power mode (PowerPC, SH)
vxCr0Get() - get a content of the Control Register 0 (x86)
vxCr0Set() - set a value to the Control Register 0 (x86)
vxCr2Get() - get a content of the Control Register 2 (x86)
vxCr2Set() - set a value to the Control Register 2 (x86)
vxCr3Get() - get a content of the Control Register 3 (x86)

1: Libraries
vxLib

347

V

vxCr3Set() - set a value to the Control Register 3 (x86)
vxCr4Get() - get a content of the Control Register 4 (x86)
vxCr4Set() - set a value to the Control Register 4 (x86)
vxEflagsGet() - get a content of the EFLAGS register (x86)
vxEflagsSet() - set a value to the EFLAGS register (x86)
vxDrGet() - get a content of the Debug Register 0 to 7 (x86)
vxDrSet() - set a value to the Debug Register 0 to 7 (x86)
vxTssGet() - get a content of the TASK register (x86)
vxTssSet() - set a value to the TASK register (x86)
vxGdtrGet() - get a content of the Global Descriptor Table Register (x86)
vxIdtrGet() - get a content of the Interrupt Descriptor Table Register (x86)
vxLdtrGet() - get a content of the Local Descriptor Table Register (x86)

DESCRIPTION This module contains miscellaneous VxWorks support routines.

INCLUDE FILES vxLib.h

VxWorks OS Libraries API Reference, 5.5
wdbLib

348

wdbLib

NAME wdbLib – WDB agent context management library

ROUTINES wdbSystemSuspend() - suspend the system.

DESCRIPTION This library provides a routine to transfer control from the run time system to the WDB
agent running in external mode. This agent in external mode allows a system-wide
control, including ISR debugging, from a host tool (e.g.: Crosswind, WindSh ...) through
the target server and the WDB communication link.

INCLUDE FILES wdb/wdbLib.h

SEE ALSO API Guide: WTX Protocol, Tornado User’s Guide: Overview

wdbUserEvtLib

NAME wdbUserEvtLib – WDB user event library

ROUTINES wdbUserEvtLibInit() - include the WDB user event library
wdbUserEvtPost() - post a user event string to host tools.

DESCRIPTION This library contains routines for sending WDB User Events. The event is sent through the
WDB agent, the WDB communication link and the target server to the host tools that have
registered for it. The event received by host tools will be a WTX user event string.

INCLUDE FILES wdb/wdbLib.h

SEE ALSO API Guide: WTX Protocol

1: Libraries
wdLib

349

W

wdLib

NAME wdLib – watchdog timer library

ROUTINES wdCreate() - create a watchdog timer
wdDelete() - delete a watchdog timer
wdStart() - start a watchdog timer
wdCancel() - cancel a currently counting watchdog

DESCRIPTION This library provides a general watchdog timer facility. Any task may create a watchdog
timer and use it to run a specified routine in the context of the system-clock ISR, after a
specified delay.

Once a timer has been created with wdCreate(), it can be started with wdStart(). The
wdStart() routine specifies what routine to run, a parameter for that routine, and the
amount of time (in ticks) before the routine is to be called. (The timeout value is in ticks as
determined by the system clock; see sysClkRateSet() for more information.) After the
specified delay ticks have elapsed (unless wdCancel() is called first to cancel the timer)
the timeout routine is invoked with the parameter specified in the wdStart() call. The
timeout routine is invoked whether the task which started the watchdog is running,
suspended, or deleted.

The timeout routine executes only once per wdStart() invocation; there is no need to
cancel a timer with wdCancel() after it has expired, or in the expiration callback itself.

Note that the timeout routine is invoked at interrupt level, rather than in the context of the
task. Thus, there are restrictions on what the routine may do. Watchdog routines are
constrained to the same rules as interrupt service routines. For example, they may not
take semaphores, issue other calls that may block, or use I/O system routines like
printf().

EXAMPLE In the fragment below, if maybeSlowRoutine() takes more than 60 ticks, logMsg() will
be called with the string as a parameter, causing the message to be printed on the console.
Normally, of course, more significant corrective action would be taken.

WDOG_ID wid = wdCreate ();

wdStart (wid, 60, logMsg, "Help, I’ve timed out!");

maybeSlowRoutine (); /* user-supplied routine */

wdCancel (wid);

INCLUDE FILES wdLib.h

SEE ALSO logLib, VxWorks Programmer’s Guide: Basic OS

VxWorks OS Libraries API Reference, 5.5
wdShow

350

wdShow

NAME wdShow – watchdog show routines

ROUTINES wdShowInit() - initialize the watchdog show facility
wdShow() - show information about a watchdog

DESCRIPTION This library provides routines to show watchdog statistics, such as watchdog activity, a
watchdog routine, etc.

The routine wdShowInit() links the watchdog show facility into the VxWorks system. It
is called automatically when this show facility is configured into VxWorks using either of
the following methods:

– If you use the configuration header files, define INCLUDE_SHOW_ROUTINES in
config.h.

– If you use the Tornado project facility, select INCLUDE_WATCHDOGS_SHOW.

INCLUDE FILES wdLib.h

SEE ALSO wdLib, VxWorks Programmer’s Guide: Basic OS, Target Shell, windsh, Tornado User’s Guide:
Shell

wvFileUploadPathLib

NAME wvFileUploadPathLib – file destination for event data

ROUTINES fileUploadPathLibInit() - initialize the wvFileUploadPathLib library (Windview)
fileUploadPathCreate() - create a file for depositing event data (Windview)
fileUploadPathClose() - close the event-destination file (WindView)
fileUploadPathWrite() - write to the event-destination file (WindView)

DESCRIPTION This file contains routines that write events to a file rather than uploading them to the host
using a type of socket connection. If the file indicated is a TSFS file, this routine has the
same result as uploading to a host file using other methods, allowing it to replace
evtRecv(). The file can be created anywhere, however, and event data can be kept on the
target if desired.

SEE ALSO wvSockUploadPathLib, wvTsfsUploadPathLib

1: Libraries
wvLib

351

W

wvLib

NAME wvLib – event logging control library (WindView)

ROUTINES wvLibInit() - initialize wvLib - first step (WindView)
wvLibInit2() - initialize wvLib - final step (WindView)
wvEvtLogInit() - initialize an event log (WindView)
wvEvtLogStart() - start logging events to the buffer (WindView)
wvEvtLogStop() - stop logging events to the buffer (WindView)
wvEvtClassSet() - set the class of events to log (WindView)
wvEvtClassGet() - get the current set of classes being logged (WindView)
wvEvtClassClear() - clear the specified class of events from those being logged
(WindView)
wvEvtClassClearAll() - clear all classes of events from those logged (WindView)
wvObjInstModeSet() - set object instrumentation on/off (WindView)
wvObjInst() - instrument objects (WindView)
wvSigInst() - instrument signals (WindView)
wvEventInst() - instrument VxWorks Events (WindView)
wvEvent() - log a user-defined event (WindView)
wvUploadStart() - start upload of events to the host (WindView)
wvUploadStop() - stop upload of events to host (WindView)
wvUploadTaskConfig() - set priority and stack size of tWVUpload task (WindView)
wvLogHeaderCreate() - create the event-log header (WindView)
wvLogHeaderUpload() - transfer the log header to the host (WindView)
wvEvtBufferGet() - return the ID of the WindView event buffer (WindView)
wvTaskNamesPreserve() - preserve an extra copy of task name events (WindView)
wvTaskNamesUpload() - upload preserved task name events (WindView)

DESCRIPTION This library contains routines that control event collection and upload of event data from
the target to various destinations. The routines define the interface for the target
component of WindView. When event data has been collected, the routines in this library
are used to produce event logs that can be understood by the WindView host tools.

An event log is made up of a header, followed by the task names of each task present in
the system when the log is started, followed by a string of events produced by the various
event points throughout the kernel and associated libraries. In general, this information is
gathered and stored temporarily on the target, and later uploaded to the host in the
proper order to form an event log. The routines in this file can be used to create logs in
various ways, depending on which routines are called, and in which order the routines
are called.

There are three methods for uploading event logs. The first is to defer upload of event
data until after logging has been stopped in order to eliminate events associated with
upload activity from the event log. The second is to continuously upload event data as it is
gathered. This allows the collection of very large event logs, that may contain more events

VxWorks OS Libraries API Reference, 5.5
wvLib

352

than the target event buffer can store at one time. The third is to defer upload of the data
until after a target reboot. This method allows event data to continuously overwrite earlier
data in the event buffer, creating a log of the events leading to a target failure (a
post-mortem event log).

Each of these three methods is explained in more detail in CREATING AN EVENT LOG.

EVENT BUFFERS AND UPLOAD PATHS

Many of the routines in wvLib require access to the buffer used to store event data (the
event buffer) and to the communication paths from the target to the host (the upload
paths). Both the buffer and the path are referenced with IDs that provide wvLib with the
appropriate information for access.

The event buffering mechanism used by wvLib is provided by rBuffLib. The upload
paths available for use with wvLib are provided by wvFileUploadPathLib,
wvTsfsUploadPathLib and wvSockUploadPathLib.

The upload mechanism backs off and retries writing to the upload path if an error occurs
during the write attempt with the errno EAGAIN or EWOULDBLOCK. Two global
variables are used to set the amount of time to back off and the number of retries. The
variables are:

int wvUploadMaxAttempts /* number of attempts to try writing */

int wvUploadRetryBackoff /* delay between tries (in ticks - 60/sec) */

INITIALIZATION This library is initialized in two steps. The first step, done by calling wvLibInit(),
associates event logging routines to system objects. This is done when the kernel is
initialized. The second step, done by calling wvLibInit2(), associates all other event
logging routines with the appropriate event points. Initialization is done automatically
when INCLUDE_WINDVIEW is defined.

Before event logging can be started, and each time a new event buffer is used to store
logged events, wvEvtLogInit() must be called to bind the event logging routines to a
specific buffer.

DETERMINING WHICH EVENTS ARE COLLECTED

There are three classes of events that can be collected. They are:

WV_CLASS_1 /* Events causing context switches */

WV_CLASS_2 /* Events causing task-state transitions */

WV_CLASS_3 /* Events from object and system libraries */

The second class includes all of the events contained within the first class, plus additional
events causing task-state transitions but not causing context switches. The third class
contains all of the second, and allows logging of events within system libraries. It can also
be limited to specific objects or groups of objects:

– Using wvObjInst() allows individual objects (for example, sem1) to be instrumented.

– Using wvSigInst() allows signals to be instrumented.

1: Libraries
wvLib

353

W

– Using wvObjInstModeSet() allows finer control over what type of objects are
instrumented. wvObjInstModeSet() allows types of system objects (for example,
semaphores, watchdogs) to be instrumented as they are created.

Logging events in Class 3 generates the most data, which may be helpful during analysis
of the log. It is also the most intrusive on the system, and may affect timing and
performance. Class 2 is more intrusive than Class 1. In general, it is best to use the lowest
class that still provides the required level of detail.

To manipulate the class of events being logged, the following routines can be used:
wvEvtClassSet(), wvEvtClassGet(), wvEvtClassClear(), and wvEvtClassClearAll(). To
log a user-defined event, wvEvent() can be used. It is also possible to log an event from
any point during execution using e(), located in dbgLib.

CONTROLLING EVENT LOGGING

Once the class of events has been specified, event logging can be started with
wvEvtLogStart() and stopped with wvEvtLogStop().

CREATING AN EVENT LOG

An event log consists of a header, a section of task names, and a list of events logged after
calling wvEvtLogStart(). As discussed above, there are three common ways to upload an
event log.

Deferred Upload

When creating an event log by uploading the event data after event logging has been
stopped (deferred upload), the following series of calls can be used to start and stop the
collection. In this example the memory allocated to store the log header is in the system
partition. The event buffer should be allocated from the system memory partition as well.
Error checking has been eliminated to simplify the example.

/* wvLib and rBuffLib initialized at system start up */

#include "vxWorks.h"

#include "wvLib.h"

#include "private/wvBufferP.h"

#include "private/wvUploadPathP.h"

#include "private/wvFileUploadPathLibP.h"

BUFFER_ID bufId;

UPLOAD_ID pathId;

WV_UPLOAD_TASK_ID upTaskId;

WV_LOG_HEADER_ID hdrId;

/*

* To prepare the event log and start logging:

*/

/* Create event buffer in memSysPart, yielding bufId. */

wvEvtLogInit (bufId);

hdrId = wvLogHeaderCreate (memSysPartId);

wvEvtClassSet (WV_CLASS_1); /* set to log class 1 events */

VxWorks OS Libraries API Reference, 5.5
wvLib

354

wvEvtLogStart ();

/*

* To stop logging and complete the event log.

*/

wvEvtLogStop ();

/* Create an uplaod path using wvFileUploadPathLib, yielding pathId. */

wvLogHeaderUpload (hdrId, pathId);

upTaskId = wvUploadStart (bufId, pathId, TRUE);

wvUploadStop (upTaskId);

/* Close the upload path and destroy the event buffer */

Routines which can be used as they are, or modified to meet the users needs, are located
in usrWindview.c. These routines, wvOn() and wvOff(), provide a way to produce
useful event logs without using the host user interface of WindView.

Continuous Upload

When uploading event data as it is still being logged to the event buffer (continuous
upload), simply rearrange the above calls:

/* Includes and declarations. */

/*

* To prepare the event log and start logging:

*/

/* Create event buffer in memSysPart, yielding bufId. */

/* Create an uplaod path, yielding pathId. */

wvEvtLogInit (bufId);

upTaskId = wvUploadStart (bufId, pathId, TRUE);

hdrId = wvLogHeaderCreate (memSysPartId);

wvLogHeaderUpload (hdrId, pathId);

wvEvtClassSet (WV_CLASS_1); /* set to log class 1 events */

wvEvtLogStart ();

/*

* To stop logging and complete the event log:

*/

wvEvtLogStop ();

wvUploadStop (upTaskId);

/* Close the upload path and destroy the event buffer */

Post-Mortem Event Collection

This library also contains routines that preserve task name information throughout event
logging in order to produce post-mortem event logs: wvTaskNamesPreserve() and
wvTaskNamesUpload().

Post-mortem event logs typically contain events leading up to a target failure. The
memory containing the information to be stored in the log must not be zeroed when the
system reboots. The event buffer is set up to allow event data to be logged to it
continuously, overwriting the data collected earlier. When event logging is stopped, either

1: Libraries
wvLib

355

W

by a system failure or at the request of the user, the event buffer may not contain the first
events logged due to the overwriting. As tasks are created the EVENT_TASKNAME that is
used by the WindView host tools to associate a task ID with a task name can be
overwritten, while other events pertaining to that task ID may still be present in the event
buffer. In order to assure that the WindView host tools can assign a task name to a
context, a copy of all task name events can be preserved outside the event buffer and
uploaded separately from the event buffer.

Note that several of the routines in wvLib, including wvTaskNamesPreserve(), take a
memory partition ID as an argument. This allows memory to be allocated from a
user-specified partition. For post-mortem data collection, the memory partition should be
within memory that is not zeroed upon system reboot. The event buffer, preserved task
names, and log header should be stored in this partition.

Generating a post-mortem event log is similar to generating a deferred upload log.
Typically event logging is stopped due to a system failure, but it may be stopped in any
way. To retrieve the log header, task name buffer, and event buffer after a target reboot,
these IDs must be remembered or stored along with the collected information in the
non-zeroed memory. Also, the event buffer should be set to allow continuous logging by
overwriting earlier event data. The following produces a post-mortem log. The
non-zeroed memory partition has the ID postMortemPartId.

/* Includes, as in the examples above. */

BUFFER_ID bufId;

UPLOAD_ID pathId;

WV_UPLOAD_TASK_ID upTaskId;

WV_LOG_HEADER_ID hdrId;

WV_TASKBUF_ID taskBufId;

/*

* To prepare the event log and start logging:

*/

/*

* Create event buffer in non-zeroed memory, allowing overwrite,

@ yielding bufId.

*/

wvEvtLogInit (bufId);

taskBufId = wvTaskNamesPreserve (postMortemPartId, 32);

hdrId = wvLogHeaderCreate (postMortemPartId);

wvEvtClassSet (WV_CLASS_1); /* set to log class 1 events */

wvEvtLogStart ();

/*

* System fails and reboots. Note that taskBufId, bufId and

@ hdrId must be preserved through the reboot so they can be

@ used to upload the data.

*/

/* Create an uplaod path, yielding pathId. */

wvLogHeaderUpload (hdrId, pathId);

VxWorks OS Libraries API Reference, 5.5
wvNetLib

356

upTaskId = wvUploadStart (bufId, pathId, TRUE);

wvUploadStop (upTaskId);

wvTaskNamesUpload (taskBufId, pathId);

/* Close the upload path and destroy the event buffer */

INCLUDE FILES wvLib.h, eventP.h

SEE ALSO rBuffLib, wvFileUploadPathLib, wvSockUploadPathLib, wvTsfsUploadPathLib,
WindView User’s Guide

wvNetLib

NAME wvNetLib – WindView for Networking Interface Library

ROUTINES wvNetEnable() - begin reporting network events to WindView
wvNetDisable() - end reporting of network events to WindView
wvNetLevelAdd() - enable network events with specific priority level
wvNetLevelRemove() - disable network events with specific priority level
wvNetEventEnable() - activate specific network events
wvNetEventDisable() - deactivate specific network events
wvNetAddressFilterSet() - specify an address filter for events
wvNetAddressFilterClear() - remove the address filter for events
wvNetPortFilterSet() - specify an address filter for events
wvNetPortFilterClear() - remove the port number filter for events

DESCRIPTION This library provides the user interface to the network-related events for the WindView
system visualization tool. These events are divided into two WindView classes. The
NET_CORE_EVENT class indicates events directly related to data transfer. All other events
(such as memory allocation and API routines) use the NET_AUX_EVENT class. Within each
class, events are assigned one of eight priority levels. The four highest priority levels
(EMERGENCY, ALERT, CRITICAL, and ERROR) indicate the occurrence of errors and the
remaining four (WARNING, NOTICE, INFO, and VERBOSE) provide progressively more
detailed information about the internal processing in the network stack.

USER INTERFACE If WindView support is included, the wvNetStart() and wvNetStop() routines will
enable and disable event reporting for the network stack. The start routine takes a single
parameter specifying the minimum priority level for all network components. That setting
may be modified with the wvNetLevelAdd() and wvNetLevelRemove() routines.
Individual events may be included or removed with the wvNetEventEnable() and
wvNetDisable() routines.

The wvNetAddressFilterSet() and wvNetPortFilterSet() routines provide further
screening for some events.

SEE ALSO WindView for Tornado User’s Guide

1: Libraries
wvTmrLib

357

W

wvSockUploadPathLib

NAME wvSockUploadPathLib – socket upload path library

ROUTINES sockUploadPathLibInit() - initialize wvSockUploadPathLib library (Windview)
sockUploadPathCreate() - establish an upload path to the host using a socket
(Windview)
sockUploadPathClose() - close the socket upload path (Windview)
sockUploadPathWrite() - write to the socket upload path (Windview)

DESCRIPTION This file contains routines that are used by wvLib to pass event data from the target
buffers to the host. This particular event-upload path opens a normal network socket
connected with the WindView host process to transfer the data.

SEE ALSO wvTsfsUploadPathLib, wvFileUploadPathLib

wvTmrLib

NAME wvTmrLib – timer library (WindView)

ROUTINES wvTmrRegister() - register a timestamp timer (WindView)

DESCRIPTION This library allows a WindView timestamp timer to be registered. When this timer is
enabled, events are tagged with a timestamp as they are logged.

Seven routines are required: a timestamp routine, a timestamp routine that guarantees
interrupt lockout, a routine that enables the timer driver, a routine that disables the timer
driver, a routine that specifies the routine to run when the timer hits a rollover, a routine
that returns the period of the timer, and a routine that returns the frequency of the timer.

SEE ALSO wvLib, WindView User’s Guide

VxWorks OS Libraries API Reference, 5.5
wvTsfsUploadPathLib

358

wvTsfsUploadPathLib

NAME wvTsfsUploadPathLib – target host connection library using TSFS

ROUTINES tsfsUploadPathLibInit() - initialize wvTsfsUploadPathLib library (Windview)
tsfsUploadPathCreate() - open an upload path to the host using a TSFS socket
(Windview)
tsfsUploadPathClose() - close the TSFS-socket upload path (Windview)
tsfsUploadPathWrite() - write to the TSFS upload path (Windview)

DESCRIPTION This library contains routines that are used by wvLib to transfer event data from the
target to the host. This transfer mechanism uses the socket functionality of the Target
Server File System (TSFS), and can therefore be used without including any socket or
network facilities within the target.

SEE ALSO wvSockUploadPathLib, wvFileUploadPathLib

1: Libraries
zbufLib

359

Z

zbufLib

NAME zbufLib – zbuf interface library

ROUTINES zbufCreate() - create an empty zbuf
zbufDelete() - delete a zbuf
zbufInsert() - insert a zbuf into another zbuf
zbufInsertBuf() - create a zbuf segment from a buffer and insert into a zbuf
zbufInsertCopy() - copy buffer data into a zbuf
zbufExtractCopy() - copy data from a zbuf to a buffer
zbufCut() - delete bytes from a zbuf
zbufSplit() - split a zbuf into two separate zbufs
zbufDup() - duplicate a zbuf
zbufLength() - determine the length in bytes of a zbuf
zbufSegFind() - find the zbuf segment containing a specified byte location
zbufSegNext() - get the next segment in a zbuf
zbufSegPrev() - get the previous segment in a zbuf
zbufSegData() - determine the location of data in a zbuf segment
zbufSegLength() - determine the length of a zbuf segment

DESCRIPTION This library contains routines to create, build, manipulate, and delete zbufs. Zbufs, also
known as “zero copy buffers,” are a data abstraction designed to allow software modules
to share buffers without unnecessarily copying data.

To support the data abstraction, the subroutines in this library hide the implementation
details of zbufs. This also maintains the library’s independence from any particular
implementation mechanism, thus permitting the zbuf interface to be used with other
buffering schemes.

Zbufs have three essential properties. First, a zbuf holds a sequence of bytes. Second, these
bytes are organized into one or more segments of contiguous data, although the
successive segments themselves are not usually contiguous. Third, the data within a
segment may be shared with other segments; that is, the data may be in use by more than
one zbuf at a time.

ZBUF TYPES The following data types are used in managing zbufs:

ZBUF_ID
An arbitrary (but unique) integer that identifies a particular zbuf.

ZBUF_SEG
An arbitrary (but unique within a single zbuf) integer that identifies a segment within
a zbuf.

ADDRESSING BYTES IN ZBUFS

The bytes in a zbuf are addressed by the combination zbufSeg, offset. The offset may be

VxWorks OS Libraries API Reference, 5.5
zbufLib

360

positive or negative, and is simply the number of bytes from the beginning of the segment
zbufSeg.

A zbufSeg can be specified as NULL, to identify the segment at the beginning of a zbuf. If
zbufseg is NULL, offset is the absolute offset to any byte in the zbuf. However, it is more
efficient to identify a zbuf byte location relative to the zbufSeg that contains it; see
zbufSegFind() to convert any zbufSeg, offset pair to the most efficient equivalent.

Negative offset values always refer to bytes before the corresponding zbufSeg, and are not
usually the most efficient address formulation (though using them may save your
program other work in some cases).

The following special offset values, defined as constants, allow you to specify the very
beginning or the very end of an entire zbuf, regardless of the zbufSeg value:

ZBUF_BEGIN
The beginning of the entire zbuf.

ZBUF_END
The end of the entire zbuf (useful for appending to a zbuf; see below).

INSERTION AND LIMITS ON OFFSETS

An offset is not valid if it points outside the zbuf. Thus, to address data currently within an
N-byte zbuf, the valid offsets relative to the first segment are 0 through N-1.

Insertion routines are a special case: they obey the usual convention, but they use offset to
specify where the new data begins after the insertion is complete. Therefore, the original
zbuf data is always inserted just before the byte location addressed by the offset value. The
value of this convention is that it permits inserting (or concatenating) data either before or
after the existing data. To insert before all the data currently in a zbuf segment, use 0 as
offset. To insert after all the data in an N-byte segment, use N as offset. An offset of N-1
inserts the data just before the last byte in an N-byte segment.

An offset of 0 is always a valid insertion point; for an empty zbuf, 0 is the only valid offset
(and NULL the only valid zbufSeg).

SHARING DATA The routines in this library avoid copying segment data whenever possible. Thus, by
passing and manipulating ZBUF_IDs rather than copying data, multiple programs can
communicate with greater efficiency. However, each program must be aware of data
sharing: changes to the data in a zbuf segment are visible to all zbuf segments that
reference the data.

To alter your own program’s view of zbuf data without affecting other programs, first use
zbufDup() to make a new zbuf; then you can use an insertion or deletion routine, such as
zbufInsertBuf(), to add a segment that only your program sees (until you pass a zbuf
containing it to another program). It is safest to do all direct data manipulation in a
private buffer, before enrolling it in a zbuf: in principle, you should regard all zbuf
segment data as shared.

1: Libraries
zbufSockLib

361

Z

Once a data buffer is enrolled in a zbuf segment, the zbuf library is responsible for
noticing when the buffer is no longer in use by any program, and freeing it. To support
this, zbufInsertBuf() requires that you specify a callback to a free routine each time you
build a zbuf segment around an existing buffer. You can use this callback to notify your
application when a data buffer is no longer in use.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, this feature is restricted to the kernel protection domain. This
restriction does not apply under non-AE versions of VxWorks.

To use this feature, include the following component: INCLUDE_ZBUF_SOCK

SEE ALSO zbufSockLib

zbufSockLib

NAME zbufSockLib – zbuf socket interface library

ROUTINES zbufSockLibInit() - initialize the zbuf socket interface library
zbufSockSend() - send zbuf data to a TCP socket
zbufSockSendto() - send a zbuf message to a UDP socket
zbufSockBufSend() - create a zbuf from user data and send it to a TCP socket
zbufSockBufSendto() - create a zbuf from a user message and send it to a UDP socket
zbufSockRecv() - receive data in a zbuf from a TCP socket
zbufSockRecvfrom() - receive a message in a zbuf from a UDP socket

DESCRIPTION This library contains routines that communicate over BSD sockets using the zbuf interface
described in the zbufLib manual page. These zbuf socket calls communicate over BSD
sockets in a similar manner to the socket routines in sockLib, but they avoid copying data
unnecessarily between application buffers and network buffers.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, this feature is accessible from the kernel protection domain only.
This restriction does not apply under non-AE versions of VxWorks.

To use this feature, include the INCLUDE_ZBUF_SOCK component.

SEE ALSO zbufLib, sockLib

VxWorks OS Libraries API Reference, 5.5
zbufSockLib

362

363

2
Routines

a0() – return the contents of register a0 (also a1 - a7) (68K) ... 403
abort() – cause abnormal program termination (ANSI) .. 403
abs() – compute the absolute value of an integer (ANSI)... 404
accept() – accept a connection from a socket ... 404
acos() – compute an arc cosine (ANSI) ... 405
acosf() – compute an arc cosine (ANSI) ... 406
aioPxLibInit() – initialize the asynchronous I/O (AIO) library .. 406
aioShow() – show AIO requests .. 407
aioSysInit() – initialize the AIO system driver .. 407
aio_error() – retrieve error status of asynchronous I/O operation (POSIX)............................ 408
aio_read() – initiate an asynchronous read (POSIX) .. 408
aio_return() – retrieve return status of asynchronous I/O operation (POSIX) 409
aio_suspend() – wait for asynchronous I/O request(s) (POSIX)... 410
aio_write() – initiate an asynchronous write (POSIX) ... 410
alarm() – set an alarm clock for delivery of a signal.. 411
arpAdd() – create or modify an ARP table entry .. 412
arpDelete() – remove an ARP table entry .. 413
arpFlush() – flush all entries in the system ARP table.. 413
arpResolve() – resolve a hardware address for a specified Internet address.............................. 414
arpShow() – display entries in the system ARP table... 415
arptabShow() – display the known ARP entries ... 415
asctime() – convert broken-down time into a string (ANSI) ... 416
asctime_r() – convert broken-down time into a string (POSIX) ... 416
asin() – compute an arc sine (ANSI) ... 417
asinf() – compute an arc sine (ANSI) ... 417
assert() – put diagnostics into programs (ANSI) ... 418
atan() – compute an arc tangent (ANSI) ... 418
atan2() – compute the arc tangent of y/x (ANSI) ... 419
atan2f() – compute the arc tangent of y/x (ANSI) ... 420
atanf() – compute an arc tangent (ANSI) ... 420

VxWorks OS Libraries API Reference, 5.5

364

atexit() – call a function at program termination (Unimplemented) (ANSI) 421
atof() – convert a string to a double (ANSI) ... 421
atoi() – convert a string to an int (ANSI) .. 422
atol() – convert a string to a long (ANSI).. 422
attrib() – modify MS-DOS file attributes on a file or directory 423
b() – set or display breakpoints.. 424
bcmp() – compare one buffer to another.. 425
bcopy() – copy one buffer to another .. 425
bcopyBytes() – copy one buffer to another one byte at a time .. 426
bcopyLongs() – copy one buffer to another one long word at a time 426
bcopyWords() – copy one buffer to another one word at a time .. 427
bd() – delete a breakpoint ... 427
bdall() – delete all breakpoints ... 428
bfill() – fill a buffer with a specified character ... 428
bfillBytes() – fill buffer with a specified character one byte at a time 429
bh() – set a hardware breakpoint... 429
bind() – bind a name to a socket.. 430
bindresvport() – bind a socket to a privileged IP port .. 431
binvert() – invert the order of bytes in a buffer ... 431
bootBpAnchorExtract() – extract a backplane address from a device field .. 432
bootChange() – change the boot line.. 432
bootLeaseExtract() – extract the lease information from an Internet address 433
bootNetmaskExtract() – extract the net mask field from an Internet address 434
bootParamsPrompt() – prompt for boot line parameters .. 435
bootParamsShow() – display boot line parameters... 435
bootpLibInit() – BOOTP client library initialization... 436
bootpMsgGet() – send a BOOTP request message and retrieve reply....................................... 436
bootpParamsGet() – retrieve boot parameters using BOOTP .. 437
bootStringToStruct() – interpret the boot parameters from the boot line... 441
bootStructToString() – construct a boot line ... 441
bpfDevCreate() – create Berkeley Packet Filter device ... 442
bpfDevDelete() – destroy Berkeley Packet Filter device .. 442
bpfDrv() – initialize the BPF driver ... 443
bsearch() – perform a binary search (ANSI) ... 443
bswap() – swap buffers .. 444
bzero() – zero out a buffer .. 444
c() – continue from a breakpoint ... 445
cache4kcLibInit() – initialize the 4kc cache library... 445
cacheArchClearEntry() – clear an entry from a cache (68K, x86) ... 446
cacheArchLibInit() – initialize the cache library.. 447
cacheAuLibInit() – initialize the Au cache library ... 449
cacheClear() – clear all or some entries from a cache .. 449
cacheCy604ClearLine() – clear a line from a CY7C604 cache.. 450
cacheCy604ClearPage() – clear a page from a CY7C604 cache.. 450
cacheCy604ClearRegion() – clear a region from a CY7C604 cache... 451

2: Routines

365

cacheCy604ClearSegment() – clear a segment from a CY7C604 cache ... 451
cacheCy604LibInit() – initialize the Cypress CY7C604 cache library ... 452
cacheDisable() – disable the specified cache... 452
cacheDmaFree() – free the buffer acquired with cacheDmaMalloc() 453
cacheDmaMalloc() – allocate a cache-safe buffer for DMA devices and drivers 453
cacheDrvFlush() – flush the data cache for drivers... 454
cacheDrvInvalidate() – invalidate data cache for drivers .. 454
cacheDrvPhysToVirt() – translate a physical address for drivers... 455
cacheDrvVirtToPhys() – translate a virtual address for drivers.. 455
cacheEnable() – enable the specified cache.. 456
cacheFlush() – flush all or some of a specified cache... 456
cacheInvalidate() – invalidate all or some of a specified cache .. 457
cacheLibInit() – initialize the cache library for a processor architecture 457
cacheLock() – lock all or part of a specified cache .. 458
cacheMb930ClearLine() – clear a line from an MB86930 cache ... 458
cacheMb930LibInit() – initialize the Fujitsu MB86930 cache library ... 459
cacheMb930LockAuto() – enable MB86930 automatic locking of kernel instructions/data 459
cachePipeFlush() – flush processor write buffers to memory .. 460
cacheR3kLibInit() – initialize the R3000 cache library .. 460
cacheR4kLibInit() – initialize the R4000 cache library .. 461
cacheR5kLibInit() – initialize the R5000 cache library .. 461
cacheR7kLibInit() – initialize the R7000 cache library .. 462
cacheR10kLibInit() – initialize the R10000 cache library .. 463
cacheR32kLibInit() – initialize the RC32364 cache library ... 463
cacheR32kMalloc() – allocate a cache-safe buffer, if possible .. 464
cacheR33kLibInit() – initialize the R33000 cache library .. 464
cacheR333x0LibInit() – initialize the R333x0 cache library.. 465
cacheSh7040LibInit() – initialize the SH7040 cache library ... 465
cacheSh7604LibInit() – initialize the SH7604/SH7615 cache library ... 466
cacheSh7622LibInit() – initialize the SH7622 cache library ... 466
cacheSh7700LibInit() – initialize the SH7700 cache library ... 467
cacheSh7729LibInit() – initialize the SH7729 cache library ... 468
cacheSh7750LibInit() – initialize the SH7750 cache library ... 469
cacheStoreBufDisable() – disable the store buffer (MC68060 only).. 470
cacheStoreBufEnable() – enable the store buffer (MC68060 only)... 470
cacheSun4ClearContext() – clear a specific context from a Sun-4 cache ... 470
cacheSun4ClearLine() – clear a line from a Sun-4 cache.. 471
cacheSun4ClearPage() – clear a page from a Sun-4 cache.. 471
cacheSun4ClearSegment() – clear a segment from a Sun-4 cache ... 472
cacheSun4LibInit() – initialize the Sun-4 cache library .. 472
cacheTextUpdate() – synchronize the instruction and data caches .. 473
cacheTiTms390LibInit() – initialize the TI TMS390 cache library.. 473
cacheTiTms390PhysToVirt() – translate a physical address for drivers... 474
cacheTiTms390VirtToPhys() – translate a virtual address for cacheLib .. 474
cacheTx49LibInit() – initialize the Tx49 cache library .. 475

VxWorks OS Libraries API Reference, 5.5

366

cacheUnlock() – unlock all or part of a specified cache.. 475
calloc() – allocate space for an array (ANSI).. 476
cbioBlkCopy() – block to block (sector to sector) transfer routine .. 476
cbioBlkRW() – transfer blocks to or from memory .. 477
cbioBytesRW() – transfer bytes to or from memory .. 477
cbioDevCreate() – initialize a CBIO device (Generic) .. 478
cbioDevVerify() – verify CBIO_DEV_ID ... 478
cbioIoctl() – perform ioctl operation on device .. 479
cbioLibInit() – Initialize CBIO Library... 480
cbioLock() – obtain CBIO device semaphore. ... 480
cbioModeGet() – return the mode setting for CBIO device .. 481
cbioModeSet() – set mode for CBIO device .. 481
cbioParamsGet() – fill in CBIO_PARAMS structure with CBIO device parameters.................... 482
cbioRdyChgdGet() – determine ready status of CBIO device... 482
cbioRdyChgdSet() – force a change in ready status of CBIO device ... 483
cbioShow() – print information about a CBIO device ... 484
cbioUnlock() – release CBIO device semaphore. .. 484
cbioWrapBlkDev() – create CBIO wrapper atop a BLK_DEV device ... 485
cbrt() – compute a cube root ... 485
cbrtf() – compute a cube root ... 486
cd() – change the default directory ... 486
cdromFsDevCreate() – create a cdromFsLib device... 488
cdromFsInit() – initialize cdromFsLib ... 488
cdromFsVolConfigShow() – show the volume configuration information.. 489
ceil() – compute smallest integer greater than or equal to specified value (ANSI) 489
ceilf() – compute smallest integer greater than or equal to specified value (ANSI) 490
cfree() – free a block of memory... 490
chdir() – set the current default path ... 491
checkStack() – print a summary of each task’s stack usage.. 491
chkdsk() – perform consistency checking on a MS-DOS file system.............................. 492
cleanUpStoreBuffer() – clean up store buffer after a data store error interrupt 493
clearerr() – clear end-of-file and error flags for a stream (ANSI)..................................... 493
clock() – determine the processor time in use (ANSI)... 494
clock_getres() – get the clock resolution (POSIX)... 494
clock_gettime() – get the current time of the clock (POSIX) .. 495
clock_setres() – set the clock resolution... 495
clock_settime() – set the clock to a specified time (POSIX) ... 496
close() – close a file ... 496
closedir() – close a directory (POSIX) ... 497
connect() – initiate a connection to a socket .. 497
connectWithTimeout() – attempt socket connection within a specified duration 498
copy() – copy in (or stdin) to out (or stdout).. 498
copyStreams() – copy from/to specified streams.. 499
cos() – compute a cosine (ANSI) ... 500
cosf() – compute a cosine (ANSI) ... 500

2: Routines

367

cosh() – compute a hyperbolic cosine (ANSI) .. 501
coshf() – compute a hyperbolic cosine (ANSI) .. 501
cp() – copy file into other file/directory. ... 502
cplusCallNewHandler() – call the allocation failure handler (C++)... 502
cplusCtors() – call static constructors (C++) .. 503
cplusCtorsLink() – call all linked static constructors (C++) .. 504
cplusDemanglerSet() – change C++ demangling mode (C++) .. 504
cplusDemanglerStyleSet() – change C++ demangling style (C++) .. 505
cplusDtors() – call static destructors (C++).. 505
cplusDtorsLink() – call all linked static destructors (C++) .. 506
cplusLibInit() – initialize the C++ library (C++).. 507
cplusXtorSet() – change C++ static constructor calling strategy (C++) 507
cpsr() – return the contents of the current processor status register (ARM) 508
creat() – create a file .. 508
cret() – continue until the current subroutine returns ... 509
ctime() – convert time in seconds into a string (ANSI)... 510
ctime_r() – convert time in seconds into a string (POSIX) ... 510
d() – display memory ... 512
d0() – return the contents of register d0 (also d1 - d7) (68K) 512
dbgBpTypeBind() – bind a breakpoint handler to a breakpoint type (MIPS) 513
dbgHelp() – display debugging help menu ... 513
dbgInit() – initialize the local debugging package.. 514
dcacheDevCreate() – create a disk cache.. 514
dcacheDevDisable() – disable the disk cache for this device .. 515
dcacheDevEnable() – re-enable the disk cache .. 516
dcacheDevMemResize() – set a new size to a disk cache device ... 516
dcacheDevTune() – modify tunable disk cache parameters ... 517
dcacheHashTest() – test hash table integrity ... 518
dcacheShow() – print information about disk cache ... 519
devs() – list all system-known devices... 519
dhcpcBind() – obtain a set of network configuration parameters with DHCP 520
dhcpcBootBind() – initialize the network with DHCP at boot time... 521
dhcpcBootInformGet() – obtain additional configuration parameters with DHCP 521
dhcpcBootInit() – set up the DHCP client parameters and data structures............................ 522
dhcpcCacheHookAdd() – add a routine to store and retrieve lease data.. 523
dhcpcCacheHookDelete() – delete a lease data storage routine... 524
dhcpcEventHookAdd() – add a routine to handle configuration parameters 525
dhcpcEventHookDelete() – remove the configuration parameters handler.. 526
dhcpcInformGet() – obtain additional configuration parameters with DHCP 526
dhcpcInit() – assign network interface and setup lease request 527
dhcpcLibInit() – DHCP client library initialization.. 528
dhcpcOptionAdd() – add an option to the client messages .. 529
dhcpcOptionGet() – retrieve an option provided to a client and store in a buffer..................... 530
dhcpcOptionSet() – add an option to the option request list.. 531
dhcpcParamsGet() – retrieve current configuration parameters ... 533

VxWorks OS Libraries API Reference, 5.5

368

dhcpcParamsShow() – display current lease parameters .. 534
dhcpcRelease() – relinquish specified lease.. 534
dhcpcServerGet() – retrieve the current DHCP server ... 535
dhcpcServerShow() – display current DHCP server .. 535
dhcpcShowInit() – initialize the DHCP show facility.. 536
dhcpcShutdown() – disable DHCP client library ... 536
dhcpcTimerGet() – retrieve current lease timers... 537
dhcpcTimersShow() – display current lease timers ... 537
dhcpcVerify() – renew an established lease ... 538
dhcpsAddressHookAdd() – assign a permanent address storage hook for the server 538
dhcpsInit() – set up the DHCP server parameters and data structures 540
dhcpsLeaseEntryAdd() – add another entry to the address pool ... 540
dhcpsLeaseHookAdd() – assign a permanent lease storage hook for the server................................ 541
difftime() – compute the difference between two calendar times (ANSI) 542
dirList() – list contents of a directory (multi-purpose) ... 542
diskFormat() – format a disk... 543
diskInit() – initialize a file system on a block device .. 544
distCtl() – perform a distributed objects control function (VxFusion) 544
distIfShow() – display information about installed interface adapter (VxFusion) 548
distInit() – initialize and bootstrap the current node (VxFusion) 549
distNameAdd() – add an entry to the distributed name database (VxFusion)...................... 551
distNameFilterShow() – display the distributed name database filtered by type (VxFusion)........ 552
distNameFind() – find an object by name in the local database (VxFusion) 553
distNameFindByValueAndType() – look up name of object by value and type (VxFusion) 554
distNameRemove() – remove an entry from the distributed name database (VxFusion) 555
distNameShow() – display the entire distributed name database (VxFusion)......................... 555
distTBufAlloc() – allocate a telegram buffer from the pool of buffers (VxFusion) 556
distTBufFree() – return a telegram buffer to the pool of buffers (VxFusion) 557
div() – compute a quotient and remainder (ANSI) ... 557
div_r() – compute a quotient and remainder (reentrant)... 558
dosFsChkDsk() – make volume integrity checking. .. 558
dosFsDevCreate() – create file system device. .. 559
dosFsLastAccessDateEnable() – enable last access date updating for this volume.................................... 560
dosFsLibInit() – prepare to use the dosFs library .. 560
dosFsShow() – display dosFs volume configuration data.. 561
dosFsVolDescGet() – convert a device name into a DOS volume descriptor pointer................. 561
dosFsVolFormat() – format an MS-DOS compatible volume ... 562
dosSetVolCaseSens() – set case sensitivity of volume... 563
dpartDevCreate() – initialize a partitioned disk .. 564
dpartPartGet() – retrieve handle for a partition.. 565
dspInit() – initialize DSP support ... 565
dspShowInit() – initialize the DSP show facility.. 566
dspTaskRegsShow() – print the contents of a task’s DSP registers.. 566
e() – set or display eventpoints (WindView).. 567
edi() – return the contents of register edi (also esi - eax) (x86/SimNT)............... 568

2: Routines

369

eflags() – return the contents of the status register (x86/SimNT).................................... 568
endFindByName() – find a device using its string name .. 569
envLibInit() – initialize environment variable facility ... 569
envPrivateCreate() – create a private environment .. 570
envPrivateDestroy() – destroy a private environment ... 570
envShow() – display the environment for a task .. 571
errnoGet() – get the error status value of the calling task... 571
errnoOfTaskGet() – get the error status value of a specified task .. 572
errnoOfTaskSet() – set the error status value of a specified task... 572
errnoSet() – set the error status value of the calling task ... 573
etherMultiAdd() – add multicast address to a multicast address list .. 573
etherMultiDel() – delete an Ethernet multicast address record .. 574
etherMultiGet() – retrieve a table of multicast addresses from a driver.. 574
eventClear() – clear all events for current task... 575
eventReceive() – wait for event(s) .. 575
eventSend() – send event(s) ... 577
excConnect() – connect a C routine to an exception vector (PowerPC) 577
excCrtConnect() – connect a C routine to a critical exception vector (PowerPC 403)................... 578
excHookAdd() – specify a routine to be called with exceptions.. 579
excInit() – initialize the exception handling package .. 580
excIntConnect() – connect a C routine to an asynchronous exception vector (PowerPC, ARM) 580
excIntCrtConnect() – connect a C routine to a critical interrupt vector (PowerPC 403).................... 581
excTask() – handle task-level exceptions ... 582
excVecGet() – get a CPU exception vector (PowerPC, ARM) ... 582
excVecInit() – initialize the exception/interrupt vectors... 582
excVecSet() – set a CPU exception vector (PowerPC, ARM).. 584
exit() – exit a task (ANSI).. 584
exp() – compute an exponential value (ANSI) .. 585
expf() – compute an exponential value (ANSI) .. 585
fabs() – compute an absolute value (ANSI).. 586
fabsf() – compute an absolute value (ANSI).. 586
fclose() – close a stream (ANSI)... 587
fdopen() – open a file specified by a file descriptor (POSIX) .. 587
fdprintf() – write a formatted string to a file descriptor.. 588
feof() – test the end-of-file indicator for a stream (ANSI) .. 588
ferror() – test the error indicator for a file pointer (ANSI) .. 589
fflush() – flush a stream (ANSI) .. 589
fgetc() – return the next character from a stream (ANSI) .. 590
fgetpos() – store the current value of the file position indicator for a stream (ANSI) 590
fgets() – read a specified number of characters from a stream (ANSI) 591
fileno() – return the file descriptor for a stream (POSIX) .. 591
fileUploadPathClose() – close the event-destination file (WindView) .. 592
fileUploadPathCreate() – create a file for depositing event data (Windview) ... 592
fileUploadPathLibInit() – initialize the wvFileUploadPathLib library (Windview) 593
fileUploadPathWrite() – write to the event-destination file (WindView) ... 593

VxWorks OS Libraries API Reference, 5.5

370

fioFormatV() – convert a format string ... 594
fioLibInit() – initialize the formatted I/O support library ... 595
fioRdString() – read a string from a file .. 595
fioRead() – read a buffer ... 596
floatInit() – initialize floating-point I/O support .. 596
floor() – compute the largest integer less than or equal to a specified value (ANSI)..... 597
floorf() – compute the largest integer less than or equal to a specified value (ANSI)..... 597
fmod() – compute the remainder of x/y (ANSI) .. 598
fmodf() – compute the remainder of x/y (ANSI) .. 598
fopen() – open a file specified by name (ANSI)... 599
fppInit() – initialize floating-point coprocessor support .. 600
fppProbe() – probe for the presence of a floating-point coprocessor 601
fppRestore() – restore the floating-point coprocessor context.. 601
fppSave() – save the floating-point coprocessor context .. 603
fppShowInit() – initialize the floating-point show facility... 604
fppTaskRegsGet() – get the floating-point registers from a task TCB... 605
fppTaskRegsSet() – set the floating-point registers of a task ... 605
fppTaskRegsShow() – print the contents of a task’s floating-point registers .. 606
fprintf() – write a formatted string to a stream (ANSI) ... 606
fputc() – write a character to a stream (ANSI) .. 610
fputs() – write a string to a stream (ANSI) .. 611
fread() – read data into an array (ANSI).. 611
free() – free a block of memory (ANSI) ... 612
freopen() – open a file specified by name (ANSI)... 612
frexp() – break floating-point number into normalized fraction and power of 2 (ANSI) 613
fscanf() – read and convert characters from a stream (ANSI) ... 614
fseek() – set the file position indicator for a stream (ANSI).. 618
fsetpos() – set the file position indicator for a stream (ANSI).. 619
fstat() – get file status information (POSIX)... 619
fstatfs() – get file status information (POSIX)... 620
ftell() – return the current value of the file position indicator for a stream (ANSI)...... 620
ftpCommand() – send an FTP command and get the reply .. 621
ftpCommandEnhanced() – send an FTP command and get the complete RFC reply code 622
ftpDataConnGet() – get a completed FTP data connection .. 623
ftpDataConnInit() – initialize an FTP data connection using PORT mode .. 623
ftpDataConnInitPassiveMode() – initialize an FTP data connection using PASV mode.......................... 624
ftpdDelete() – terminate the FTP server task.. 625
ftpdInit() – initialize the FTP server task.. 625
ftpHookup() – get a control connection to the FTP server on a specified host........................... 626
ftpLibDebugOptionSet() – set the debug level of the ftp library routines .. 626
ftpLogin() – log in to a remote FTP server... 627
ftpLs() – list directory contents via FTP... 627
ftpReplyGet() – get an FTP command reply.. 628
ftpReplyGetEnhanced() – get an FTP command reply... 629
ftpTransientConfigGet() – get parameters for host FTP_TRANSIENT responses.. 630

2: Routines

371

ftpTransientConfigSet() – set parameters for host FTP_TRANSIENT responses...................................... 630
ftpTransientFatalInstall() – set applette to stop FTP transient host responses... 631
ftpXfer() – initiate a transfer via FTP ... 631
ftruncate() – truncate a file (POSIX) .. 633
fwrite() – write from a specified array (ANSI) ... 633
getc() – return the next character from a stream (ANSI) ... 635
getchar() – return the next character from the standard input stream (ANSI) 635
getcwd() – get the current default path (POSIX).. 636
getenv() – get an environment variable (ANSI) .. 636
gethostname() – get the symbolic name of this machine.. 637
getpeername() – get the name of a connected peer.. 637
gets() – read characters from the standard input stream (ANSI)............................... 638
getsockname() – get a socket name .. 638
getsockopt() – get socket options.. 639
getw() – read the next word (32-bit integer) from a stream ... 640
getwd() – get the current default path ... 640
gmtime() – convert calendar time into UTC broken-down time (ANSI) 641
gmtime_r() – convert calendar time into broken-down time (POSIX) 641
h() – display or set the size of shell history .. 643
hashFuncIterScale() – iterative scaling hashing function for strings.. 643
hashFuncModulo() – hashing function using remainder technique ... 644
hashFuncMultiply() – multiplicative hashing function .. 644
hashKeyCmp() – compare keys as 32 bit identifiers... 645
hashKeyStrCmp() – compare keys based on strings they point to.. 645
hashLibInit() – initialize hash table library .. 646
hashTblCreate() – create a hash table ... 646
hashTblDelete() – delete a hash table ... 647
hashTblDestroy() – destroy a hash table .. 647
hashTblEach() – call a routine for each node in a hash table ... 648
hashTblFind() – find a hash node that matches the specified key .. 648
hashTblInit() – initialize a hash table .. 649
hashTblPut() – put a hash node into the specified hash table ... 649
hashTblRemove() – remove a hash node from a hash table... 650
hashTblTerminate() – terminate a hash table... 650
help() – print a synopsis of selected routines .. 651
hostAdd() – add a host to the host table .. 652
hostDelete() – delete a host from the host table ... 652
hostGetByAddr() – look up a host in the host table by its Internet address 653
hostGetByName() – look up a host in the host table by its name .. 654
hostShow() – display the host table .. 654
hostTblInit() – initialize the network host table.. 655
i() – print a summary of each task’s TCB... 656
iam() – set the remote user name and password ... 657
icmpShowInit() – initialize ICMP show routines... 657
icmpstatShow() – display statistics for ICMP ... 658

VxWorks OS Libraries API Reference, 5.5

372

ifAddrAdd() – add an interface address for a network interface.. 658
ifAddrDelete() – delete an interface address for a network interface .. 659
ifAddrGet() – get the Internet address of a network interface ... 659
ifAddrSet() – set an interface address for a network interface.. 660
ifAllRoutesDelete() – delete all routes associated with a network interface....................................... 660
ifBroadcastGet() – get the broadcast address for a network interface .. 661
ifBroadcastSet() – set the broadcast address for a network interface... 661
ifDstAddrGet() – get the Internet address of a point-to-point peer .. 662
ifDstAddrSet() – define an address for the other end of a point-to-point link 663
ifFlagChange() – change the network interface flags.. 663
ifFlagGet() – get the network interface flags... 664
ifFlagSet() – specify the flags for a network interface... 664
ifIndexAlloc() – return a unique interface index.. 665
ifIndexLibInit() – initializes library variables.. 666
ifIndexLibShutdown() – frees library variables .. 666
ifIndexTest() – returns true if an index has been allocated. ... 667
ifIndexToIfName() – returns the interface name given the interface index 667
ifMaskGet() – get the subnet mask for a network interface.. 668
ifMaskSet() – define a subnet for a network interface .. 668
ifMetricGet() – get the metric for a network interface ... 669
ifMetricSet() – specify a network interface hop count.. 669
ifNameToIfIndex() – returns the interface index given the interface name 670
ifRouteDelete() – delete routes associated with a network interface .. 670
ifShow() – display the attached network interfaces... 671
ifunit() – map an interface name to an interface structure pointer 671
ifUnnumberedSet() – configure an interface to be unnumbered .. 672
igmpShowInit() – initialize IGMP show routines ... 673
igmpstatShow() – display statistics for IGMP.. 674
index() – find the first occurrence of a character in a string... 674
inet_addr() – convert a dot notation Internet address to a long integer................................ 675
inet_aton() – convert a network address from dot notation, store in a structure 675
inet_lnaof() – get the local address (host number) from the Internet address 676
inet_makeaddr() – form an Internet address from network and host numbers 676
inet_makeaddr_b() – form an Internet address from network and host numbers 677
inet_netof() – return the network number from an Internet address 678
inet_netof_string() – extract the network address in dot notation .. 678
inet_network() – convert an Internet network number from string to address.......................... 679
inet_ntoa() – convert a network address to dotted decimal notation.................................... 679
inet_ntoa_b() – convert an network address to dot notation, store it in a buffer..................... 680
inetstatShow() – display all active connections for Internet protocol sockets 681
infinity() – return a very large double .. 681
infinityf() – return a very large float... 682
inflate() – inflate compressed code.. 682
intConnect() – connect a C routine to a hardware interrupt.. 683
intContext() – determine if the current state is in interrupt or task context 686

2: Routines

373

intCount() – get the current interrupt nesting depth.. 686
intCRGet() – read the contents of the cause register (MIPS) .. 686
intCRSet() – write the contents of the cause register (MIPS)... 687
intDisable() – disable corresponding interrupt bits (MIPS, PowerPC, ARM)........................... 687
intEnable() – enable corresponding interrupt bits (MIPS, PowerPC, ARM)............................ 688
intHandlerCreate() – construct an interrupt handler for a C routine (68K, x86, MIPS, SimSolaris) ... 688
intHandlerCreateI86() – construct an interrupt handler for a C routine (x86) .. 689
intLevelSet() – set the interrupt level (68K, x86, ARM, SimSolaris, SimNT and SH)................. 690
intLock() – lock out interrupts ... 691
intLockLevelGet() – get current interrupt lock-out level (68K, x86, ARM, SH, SimSolaris, SimNT) 693
intLockLevelSet() – set current interrupt lock-out level (68K, x86, ARM, SH, SimSolaris, SimNT) 693
intSRGet() – read the contents of the status register (MIPS).. 694
intSRSet() – update the contents of the status register (MIPS) ... 694
intStackEnable() – enable or disable the interrupt stack usage (x86).. 695
intUninitVecSet() – set the uninitialized vector handler (ARM) ... 695
intUnlock() – cancel interrupt locks .. 696
intVecBaseGet() – get vector (trap) base address (68K, x86, MIPS, ARM, SimSolaris, SimNT) 696
intVecBaseSet() – set vector (trap) base address (68K, x86, MIPS, ARM, SimSolaris, SimNT)...... 697
intVecGet() – get an interrupt vector (68K, x86, MIPS, SH, SimSolaris, SimNT) 698
intVecGet2() – get a CPU vector, gate type(int/trap), and gate selector (x86) 699
intVecSet() – set a CPU vector (trap) (68K, x86, MIPS, SH, SimSolaris, SimNT)..................... 699
intVecSet2() – set a CPU vector, gate type(int/trap), and selector (x86) 703
intVecTableWriteProtect() – write-protect exception vector table (68K, x86, ARM, SimSolaris, SimNT) 704
ioctl() – perform an I/O control function ... 704
ioDefPathGet() – get the current default path.. 705
ioDefPathSet() – set the current default path .. 706
ioGlobalStdGet() – get the file descriptor for global standard input/output/error 706
ioGlobalStdSet() – set the file descriptor for global standard input/output/error.......................... 707
ioHelp() – print a synopsis of I/O utility functions .. 707
iosDevAdd() – add a device to the I/O system ... 708
iosDevDelete() – delete a device from the I/O system... 708
iosDevFind() – find an I/O device in the device list ... 709
iosDevShow() – display the list of devices in the system ... 709
iosDrvInstall() – install an I/O driver .. 710
iosDrvRemove() – remove an I/O driver.. 710
iosDrvShow() – display a list of system drivers .. 711
iosFdShow() – display a list of file descriptor names in the system... 711
iosFdValue() – validate an open file descriptor and return the driver-specific value 711
iosInit() – initialize the I/O system... 712
iosShowInit() – initialize the I/O system show facility ... 712
ioTaskStdGet() – get the file descriptor for task standard input/output/error 713
ioTaskStdSet() – set the file descriptor for task standard input/output/error.............................. 713
ipAttach() – a generic attach routine for the TCP/IP network stack 714
ipDetach() – a generic detach routine for the TCP/IP network stack 714
ipFilterHookAdd() – add a routine to receive all internet protocol packets .. 715

VxWorks OS Libraries API Reference, 5.5

374

ipFilterHookDelete() – delete a IP filter hook routine .. 716
ipFilterLibInit() – initialize IP filter facility ... 716
ipstatShow() – display IP statistics.. 717
irint() – convert a double-precision value to an integer .. 717
irintf() – convert a single-precision value to an integer .. 718
iround() – round a number to the nearest integer... 718
iroundf() – round a number to the nearest integer... 719
isalnum() – test whether a character is alphanumeric (ANSI)... 719
isalpha() – test whether a character is a letter (ANSI) ... 720
isatty() – return whether the underlying driver is a tty device .. 720
iscntrl() – test whether a character is a control character (ANSI) .. 721
isdigit() – test whether a character is a decimal digit (ANSI)... 721
isgraph() – test whether a character is a printing, non-white-space character (ANSI) 722
islower() – test whether a character is a lower-case letter (ANSI) ... 722
isprint() – test whether a character is printable, including the space character (ANSI) ... 723
ispunct() – test whether a character is punctuation (ANSI) ... 723
isspace() – test whether a character is a white-space character (ANSI)................................ 724
isupper() – test whether a character is an upper-case letter (ANSI) 724
isxdigit() – test whether a character is a hexadecimal digit (ANSI)....................................... 725
kernelInit() – initialize the kernel.. 726
kernelTimeSlice() – enable round-robin selection ... 727
kernelVersion() – return the kernel revision string ... 727
kill() – send a signal to a task (POSIX).. 728
l() – disassemble and display a specified number of instructions 729
labs() – compute the absolute value of a long (ANSI) ... 729
ld() – load an object module into memory... 730
ldexp() – multiply a number by an integral power of 2 (ANSI) ... 731
ldiv() – compute the quotient and remainder of the division (ANSI)............................. 732
ldiv_r() – compute a quotient and remainder (reentrant) .. 732
ledClose() – discard the line-editor ID ... 733
ledControl() – change the line-editor ID parameters... 733
ledOpen() – create a new line-editor ID... 734
ledRead() – read a line with line-editing... 734
lio_listio() – initiate a list of asynchronous I/O requests (POSIX)... 735
listen() – enable connections to a socket... 736
lkAddr() – list symbols whose values are near a specified value.. 736
lkup() – list symbols... 737
ll() – generate a long listing of directory contents ... 737
llr() – do a long listing of directory and all its subdirectories contents 738
loadModule() – load an object module into memory... 739
loadModuleAt() – load an object module into memory... 739
localeconv() – set the components of an object with type lconv (ANSI) 742
localtime() – convert calendar time into broken-down time (ANSI).. 745
localtime_r() – convert calendar time into broken-down time (POSIX) 746
log() – compute a natural logarithm (ANSI) ... 746

2: Routines

375

log2() – compute a base-2 logarithm.. 747
log2f() – compute a base-2 logarithm.. 747
log10() – compute a base-10 logarithm (ANSI) .. 748
log10f() – compute a base-10 logarithm (ANSI) .. 748
logf() – compute a natural logarithm (ANSI)... 749
logFdAdd() – add a logging file descriptor... 749
logFdDelete() – delete a logging file descriptor ... 750
logFdSet() – set the primary logging file descriptor.. 750
loginDefaultEncrypt() – default password encryption routine.. 751
loginEncryptInstall() – install an encryption routine... 751
loginInit() – initialize the login table ... 752
logInit() – initialize message logging library .. 753
loginPrompt() – display a login prompt and validate a user entry ... 753
loginStringSet() – change the login string .. 754
loginUserAdd() – add a user to the login table.. 754
loginUserDelete() – delete a user entry from the login table .. 755
loginUserShow() – display the user login table ... 756
loginUserVerify() – verify a user name and password in the login table ... 756
logMsg() – log a formatted error message.. 757
logout() – log out of the VxWorks system .. 758
logTask() – message-logging support task.. 758
longjmp() – perform non-local goto by restoring saved environment (ANSI) 759
ls() – generate a brief listing of a directory... 759
lseek() – set a file read/write pointer.. 760
lsr() – list the contents of a directory and any of its subdirectories 761
lstAdd() – add a node to the end of a list... 761
lstConcat() – concatenate two lists .. 762
lstCount() – report the number of nodes in a list... 762
lstDelete() – delete a specified node from a list.. 763
lstExtract() – extract a sublist from a list .. 763
lstFind() – find a node in a list ... 764
lstFirst() – find first node in list ... 764
lstFree() – free up a list ... 765
lstGet() – delete and return the first node from a list ... 765
lstInit() – initialize a list descriptor ... 766
lstInsert() – insert a node in a list after a specified node ... 766
lstLast() – find the last node in a list .. 767
lstLibInit() – initializes lstLib module.. 767
lstNext() – find the next node in a list... 768
lstNStep() – find a list node nStep steps away from a specified node 768
lstNth() – find the Nth node in a list ... 769
lstPrevious() – find the previous node in a list... 769
m() – modify memory .. 770
m2Delete() – delete all the MIB-II library groups ... 770
m2IcmpDelete() – delete all resources used to access the ICMP group.. 771

VxWorks OS Libraries API Reference, 5.5

376

m2IcmpGroupInfoGet() – get the MIB-II ICMP-group global variables.. 771
m2IcmpInit() – initialize MIB-II ICMP-group access.. 772
m2If8023PacketCount() – increment the packet counters for an 802.3 device.................................. 772
m2IfAlloc() – allocate the structure for the interface table ... 773
m2IfCommonValsGet() – get the common values .. 774
m2IfCounterUpdate() – increment interface counters... 775
m2IfCtrUpdateRtnInstall() – install an interface counter update routine... 775
m2IfDefaultValsGet() – get the default values for the counters .. 776
m2IfDelete() – delete all resources used to access the interface group........................... 776
m2IfFree() – free an interface data structure... 777
m2IfGenericPacketCount() – increment the interface packet counters ... 777
m2IfGroupInfoGet() – get the MIB-II interface-group scalar variables.. 778
m2IfInit() – initialize MIB-II interface-group routines... 778
m2IfPktCountRtnInstall() – install an interface packet counter routine ... 779
m2IfRcvAddrEntryGet() – get the rcvAddress table entries for a given address 779
m2IfRcvAddrEntrySet() – modify the entries of the rcvAddressTable .. 780
m2IfStackEntryGet() – get a MIB-II interface-group table entry ... 781
m2IfStackEntrySet() – modify the status of a relationship .. 781
m2IfStackTblUpdate() – update the relationship between the sub-layers 782
m2IfTableUpdate() – insert or remove an entry in the ifTable.. 783
m2IfTblEntryGet() – get a MIB-II interface-group table entry ... 783
m2IfTblEntrySet() – set the state of a MIB-II interface entry to UP or DOWN 784
m2IfVariableUpdate() – update the contents of an interface non-counter object 785
m2IfVarUpdateRtnInstall() – install an interface variable update routine.. 786
m2Init() – initialize the SNMP MIB-2 library.. 786
m2IpAddrTblEntryGet() – get an IP MIB-II address entry.. 787
m2IpAtransTblEntryGet() – get a MIB-II ARP table entry... 787
m2IpAtransTblEntrySet() – add, modify, or delete a MIB-II ARP entry... 788
m2IpDelete() – delete all resources used to access the IP group 789
m2IpGroupInfoGet() – get the MIB-II IP-group scalar variables ... 789
m2IpGroupInfoSet() – set MIB-II IP-group variables to new values .. 790
m2IpInit() – initialize MIB-II IP-group access .. 790
m2IpRouteTblEntryGet() – get a MIB-2 routing table entry .. 791
m2IpRouteTblEntrySet() – set a MIB-II routing table entry .. 791
m2RipDelete() – delete the RIP MIB support... 792
m2RipGlobalCountersGet() – get MIB-II RIP-group global counters ... 793
m2RipIfConfEntryGet() – get MIB-II RIP-group interface entry... 793
m2RipIfConfEntrySet() – set MIB-II RIP-group interface entry ... 794
m2RipIfStatEntryGet() – get MIB-II RIP-group interface entry... 794
m2RipInit() – initialize the RIP MIB support .. 795
m2SysDelete() – delete resources used to access the MIB-II system group 795
m2SysGroupInfoGet() – get system-group MIB-II variables .. 796
m2SysGroupInfoSet() – set system-group MIB-II variables to new values 796
m2SysInit() – initialize MIB-II system-group routines.. 797
m2TcpConnEntryGet() – get a MIB-II TCP connection table entry... 797

2: Routines

377

m2TcpConnEntrySet() – set a TCP connection to the closed state.. 798
m2TcpDelete() – delete all resources used to access the TCP group .. 798
m2TcpGroupInfoGet() – get MIB-II TCP-group scalar variables.. 799
m2TcpInit() – initialize MIB-II TCP-group access .. 799
m2UdpDelete() – delete all resources used to access the UDP group ... 800
m2UdpGroupInfoGet() – get MIB-II UDP-group scalar variables... 800
m2UdpInit() – initialize MIB-II UDP-group access ... 801
m2UdpTblEntryGet() – get a UDP MIB-II entry from the UDP list of listeners 801
mach() – return the contents of system register mach (also macl, pr) (SH) 802
malloc() – allocate a block of memory from the system memory partition (ANSI)........ 802
mathHardInit() – initialize hardware floating-point math support... 803
mathSoftInit() – initialize software floating-point math support... 803
mblen() – calculate the length of a multibyte character (Unimplemented) (ANSI) 804
mbstowcs() – convert series of multibyte char’s to wide char’s (Unimplemented) (ANSI) 804
mbtowc() – convert multibyte character to a wide character (Unimplemented) (ANSI) . 805
mbufShow() – report mbuf statistics ... 805
memAddToPool() – add memory to the system memory partition ... 806
memalign() – allocate aligned memory ... 806
memchr() – search a block of memory for a character (ANSI).. 807
memcmp() – compare two blocks of memory (ANSI) ... 807
memcpy() – copy memory from one location to another (ANSI).. 808
memDevCreate() – create a memory device ... 808
memDevCreateDir() – create a memory device for multiple files... 810
memDevDelete() – delete a memory device... 810
memDrv() – install a memory driver ... 811
memFindMax() – find the largest free block in the system memory partition 811
memmove() – copy memory from one location to another (ANSI).. 812
memOptionsSet() – set the debug options for the system memory partition................................... 812
memPartAddToPool() – add memory to a memory partition .. 813
memPartAlignedAlloc() – allocate aligned memory from a partition .. 813
memPartAlloc() – allocate a block of memory from a partition .. 814
memPartCreate() – create a memory partition ... 814
memPartFindMax() – find the size of the largest available free block .. 815
memPartFree() – free a block of memory in a partition .. 815
memPartInfoGet() – get partition information... 816
memPartOptionsSet() – set the debug options for a memory partition ... 816
memPartRealloc() – reallocate a block of memory in a specified partition 817
memPartShow() – show partition blocks and statistics... 818
memPartSmCreate() – create a shared memory partition (VxMP) ... 818
memset() – set a block of memory (ANSI) .. 819
memShow() – show system memory partition blocks and statistics 820
memShowInit() – initialize the memory partition show facility ... 821
mkdir() – make a directory ... 821
mktime() – convert broken-down time into calendar time (ANSI) 822
mlock() – lock specified pages into memory (POSIX) .. 822

VxWorks OS Libraries API Reference, 5.5

378

mlockall() – lock all pages used by a process into memory (POSIX).......................... 823
mmuPhysToVirt() – translate a physical address to a virtual address (ARM)........................ 823
mmuPro32LibInit() – initialize module... 825
mmuSh7700LibInit() – initialize module... 825
mmuSh7750LibInit() – initialize module... 826
mmuVirtToPhys() – translate a virtual address to a physical address (ARM)........................ 826
modf() – separate floating-point number into integer and fraction parts (ANSI) 827
moduleCheck() – verify checksums on all modules... 827
moduleCreate() – create and initialize a module... 828
moduleCreateHookAdd() – add a routine to be called when a module is added 829
moduleCreateHookDelete() – delete a previously added module create hook routine 829
moduleDelete() – delete module ID information (use unld() to reclaim space)................ 830
moduleFindByGroup() – find a module by group number.. 830
moduleFindByName() – find a module by name.. 831
moduleFindByNameAndPath() – find a module by file name and path... 832
moduleFlagsGet() – get the flags associated with a module ID .. 832
moduleIdListGet() – get a list of loaded modules .. 833
moduleInfoGet() – get information about an object module ... 833
moduleNameGet() – get the name associated with a module ID... 834
moduleSegFirst() – find the first segment in a module ... 834
moduleSegGet() – get (delete and return) the first segment from a module 835
moduleSegNext() – find the next segment in a module .. 835
moduleShow() – show the current status for all the loaded modules 836
mountdInit() – initialize the mount daemon... 836
mqPxLibInit() – initialize the POSIX message queue library.. 837
mqPxShowInit() – initialize the POSIX message queue show facility................................... 838
mq_close() – close a message queue (POSIX) .. 838
mq_getattr() – get message queue attributes (POSIX) .. 839
mq_notify() – notify a task that a message is available on a queue (POSIX)................ 840
mq_open() – open a message queue (POSIX).. 841
mq_receive() – receive a message from a message queue (POSIX).................................. 842
mq_send() – send a message to a message queue (POSIX)... 843
mq_setattr() – set message queue attributes (POSIX)... 844
mq_unlink() – remove a message queue (POSIX) ... 845
mRegs() – modify registers .. 845
mRouteAdd() – add multiple routes to the same destination.. 846
mRouteDelete() – delete a route from the routing table... 847
mRouteEntryAdd() – add a protocol-specific route to the routing table 848
mRouteEntryDelete() – delete route from the routing table.. 849
mRouteShow() – display all IP routes (verbose information) .. 849
msgQCreate() – create and initialize a message queue ... 850
msgQDelete() – delete a message queue ... 851
msgQDistCreate() – create a distributed message queue (VxFusion) 851
msgQDistGrpAdd() – add a distributed message queue to a group (VxFusion)....................... 853
msgQDistGrpDelete() – delete a distributed message queue from a group (VxFusion).............. 854

2: Routines

379

msgQDistGrpShow() – display all or one group with its members (VxFusion) 854
msgQDistNumMsgs() – get number of messages in a distributed message queue (VxFusion) 855
msgQDistReceive() – receive a message from a distributed message queue (VxFusion) 856
msgQDistSend() – send a message to a distributed message queue (VxFusion)........................ 857
msgQDistShowInit() – initialize the distributed message queue show package (VxFusion)........... 859
msgQEvStart() – start event notification process for a message queue..................................... 859
msgQEvStop() – stop event notification process for a message queue..................................... 860
msgQInfoGet() – get information about a message queue .. 861
msgQNumMsgs() – get the number of messages queued to a message queue............................. 863
msgQReceive() – receive a message from a message queue.. 864
msgQSend() – send a message to a message queue ... 865
msgQShow() – show information about a message queue .. 866
msgQShowInit() – initialize the message queue show facility .. 867
msgQSmCreate() – create and initialize a shared memory message queue (VxMP) 868
munlock() – unlock specified pages (POSIX) .. 869
munlockall() – unlock all pages used by a process (POSIX).. 869
muxAddressForm() – form a frame with a link-layer address.. 870
muxAddrResFuncAdd() – replace the default address resolution function ... 871
muxAddrResFuncDel() – delete an address resolution function .. 872
muxAddrResFuncGet() – get the address resolution function for ifType/protocol 873
muxBind() – create a binding between a network service and an END 874
muxDevExists() – tests whether a device is already loaded into the MUX 876
muxDevLoad() – load a driver into the MUX.. 876
muxDevStart() – start a device by calling its start routine .. 877
muxDevStop() – stop a device by calling its stop routine... 878
muxDevUnload() – unloads a device from the MUX ... 879
muxIoctl() – send control information to the MUX or to a device 880
muxLibInit() – initialize global state for the MUX.. 881
muxLinkHeaderCreate() – attach a link-level header to a packet ... 881
muxMCastAddrAdd() – add a multicast address to a device’s multicast table 882
muxMCastAddrDel() – delete a multicast address from a device’s multicast table 883
muxMCastAddrGet() – get the multicast address table from the MUX/Driver 884
muxPacketAddrGet() – get addressing information from a packet .. 885
muxPacketDataGet() – return the data from a packet .. 886
muxPollDevAdd() – adds a device to list polled by tMuxPollTask ... 887
muxPollDevDel() – removes a device from the list polled by tMuxPollTask 887
muxPollDevStat() – reports whether device is on list polled by tMuxPollTask............................ 888
muxPollEnd() – shuts down tMuxPollTask and returns devices to interrupt mode............. 888
muxPollReceive() – now deprecated, see muxTkPollReceive() .. 889
muxPollSend() – now deprecated, see muxTkPollSend() ... 890
muxPollStart() – initialize and start the MUX poll task .. 891
muxSend() – send a packet out on a network interface .. 892
muxShow() – display configuration of devices registered with the MUX.......................... 893
muxTaskDelayGet() – get the delay on the polling task ... 893
muxTaskDelaySet() – set the inter-cycle delay on the polling task .. 894

VxWorks OS Libraries API Reference, 5.5

380

muxTaskPriorityGet() – get the priority of tMuxPollTask.. 894
muxTaskPrioritySet() – reset the priority of tMuxPollTask ... 895
muxTkBind() – bind an NPT protocol to a driver ... 895
muxTkCookieGet() – returns the cookie for a device.. 897
muxTkDrvCheck() – checks if the device is an NPT or an END interface 898
muxTkPollReceive() – poll for a packet from a NPT or END driver.. 898
muxTkPollSend() – send a packet out in polled mode to an END or NPT interface 899
muxTkReceive() – receive a packet from a NPT driver ... 901
muxTkSend() – send a packet out on a Toolkit or END network interface 902
muxUnbind() – detach a network service from the specified device 904
mv() – mv file into other directory. .. 905
nanosleep() – suspend the current task until the time interval elapses (POSIX)......... 906
netBufLibInit() – initialize netBufLib .. 907
netClBlkFree() – free a clBlk-cluster construct back to the memory pool.......................... 907
netClBlkGet() – get a clBlk... 908
netClBlkJoin() – join a cluster to a clBlk structure .. 908
netClFree() – free a cluster back to the memory pool ... 909
netClPoolIdGet() – return a CL_POOL_ID for a specified buffer size 910
netClusterGet() – get a cluster from the specified cluster pool... 911
netDevCreate() – create a remote file device ... 911
netDevCreate2() – create a remote file device with fixed buffer size 912
netDrv() – install the network remote file driver.. 913
netDrvDebugLevelSet() – set the debug level of the netDrv library routines 913
netDrvFileDoesNotExistInstall() – install an applette to test if a file exists.. 914
netHelp() – print a synopsis of network routines... 914
netLibInit() – initialize the network package.. 915
netMblkChainDup() – duplicate an mBlk chain .. 916
netMblkClChainFree() – free a chain of mBlk-clBlk-cluster constructs ... 917
netMblkClFree() – free an mBlk-clBlk-cluster construct.. 917
netMblkClGet() – get a clBlk-cluster and join it to the specified mBlk 918
netMblkClJoin() – join an mBlk to a clBlk-cluster construct... 919
netMblkDup() – duplicate an mBlk... 920
netMblkFree() – free an mBlk back to its memory pool... 921
netMblkGet() – get an mBlk from a memory pool .. 921
netMblkToBufCopy() – copy data from an mBlk to a buffer ... 922
netPoolDelete() – delete a memory pool .. 923
netPoolInit() – initialize a netBufLib-managed memory pool .. 923
netPoolKheapInit() – kernel heap version of netPoolInit() .. 927
netPoolShow() – show pool statistics .. 927
netShowInit() – initialize network show routines.. 928
netStackDataPoolShow() – show network stack data pool statistics.. 929
netStackSysPoolShow() – show network stack system pool statistics ... 929
netTask() – network task entry point ... 930
netTupleGet() – get an mBlk-clBlk-cluster .. 930
nextIndex() – the comparison routine for the AVL tree.. 932

2: Routines

381

nfsAuthUnixGet() – get the NFS UNIX authentication parameters .. 932
nfsAuthUnixPrompt() – modify the NFS UNIX authentication parameters... 933
nfsAuthUnixSet() – set the NFS UNIX authentication parameters... 933
nfsAuthUnixShow() – display the NFS UNIX authentication parameters... 934
nfsDevInfoGet() – read configuration information from the requested NFS device 934
nfsDevListGet() – create list of all the NFS devices in the system ... 935
nfsDevShow() – display the mounted NFS devices .. 935
nfsdInit() – initialize the NFS server ... 936
nfsDrv() – install the NFS driver.. 937
nfsDrvNumGet() – return the IO system driver number for the NFS driver 937
nfsdStatusGet() – get the status of the NFS server... 938
nfsdStatusShow() – show the status of the NFS server... 938
nfsExport() – specify a file system to be NFS exported ... 939
nfsExportShow() – display the exported file systems of a remote host .. 939
nfsHelp() – display the NFS help menu ... 940
nfsIdSet() – set the ID number of the NFS UNIX authentication parameters 941
nfsMount() – mount an NFS file system .. 941
nfsMountAll() – mount all file systems exported by a specified host 942
nfsUnexport() – remove a file system from the list of exported file systems.......................... 942
nfsUnmount() – unmount an NFS device... 943
ntPassFsDevInit() – associate a device with ntPassFs file system functions.................................. 943
ntPassFsInit() – prepare to use the ntPassFs library... 944
open() – open a file ... 945
opendir() – open a directory for searching (POSIX) ... 946
operator delete() – default run-time support for memory deallocation (C++)............................ 946
operator new() – default run-time support for operator new (C++) ... 947
operator new() – default run-time support for operator new (nothrow) (C++) 947
operator new() – run-time support for operator new with placement (C++)........................... 948
passFsDevInit() – associate a device with passFs file system functions 949
passFsInit() – prepare to use the passFs library .. 949
pause() – suspend the task until delivery of a signal (POSIX)....................................... 950
pc() – return the contents of the program counter .. 950
pentiumBtc() – execute atomic compare-and-exchange instruction to clear a bit 951
pentiumBts() – execute atomic compare-and-exchange instruction to set a bit.................... 951
pentiumCr4Get() – get contents of CR4 register ... 952
pentiumCr4Set() – sets specified value to the CR4 register.. 952
pentiumMcaEnable() – enable/disable the MCA (Machine Check Architecture).............................. 953
pentiumMcaShow() – show MCA (Machine Check Architecture) registers 953
pentiumMsrGet() – get the contents of the specified MSR (Model Specific Register) 954
pentiumMsrInit() – initialize all the MSRs (Model Specific Register) .. 954
pentiumMsrSet() – set a value to the specified MSR (Model Specific Registers)......................... 955
pentiumMsrShow() – show all the MSR (Model Specific Register) ... 955
pentiumMtrrDisable() – disable MTRR (Memory Type Range Register) .. 956
pentiumMtrrEnable() – enable MTRR (Memory Type Range Register) ... 956
pentiumMtrrGet() – get MTRRs to a specified MTRR table.. 957

VxWorks OS Libraries API Reference, 5.5

382

pentiumMtrrSet() – set MTRRs from specified MTRR table with WRMSR instruction. 957
pentiumP5PmcGet() – get the contents of P5 PMC0 and PMC1... 958
pentiumP5PmcGet0() – get the contents of P5 PMC0... 958
pentiumP5PmcGet1() – get the contents of P5 PMC1... 959
pentiumP5PmcReset() – reset both PMC0 and PMC1 ... 959
pentiumP5PmcReset0() – reset PMC0 .. 960
pentiumP5PmcReset1() – reset PMC1 .. 960
pentiumP5PmcStart0() – start PMC0... 961
pentiumP5PmcStart1() – start PMC1... 961
pentiumP5PmcStop() – stop both P5 PMC0 and PMC1... 962
pentiumP5PmcStop0() – stop P5 PMC0 ... 962
pentiumP5PmcStop1() – stop P5 PMC1 ... 963
pentiumP6PmcGet() – get the contents of PMC0 and PMC1 .. 963
pentiumP6PmcGet0() – get the contents of PMC0 .. 964
pentiumP6PmcGet1() – get the contents of PMC1 .. 964
pentiumP6PmcReset() – reset both PMC0 and PMC1 ... 965
pentiumP6PmcReset0() – reset PMC0 .. 965
pentiumP6PmcReset1() – reset PMC1 .. 965
pentiumP6PmcStart() – start both PMC0 and PMC1.. 966
pentiumP6PmcStop() – stop both PMC0 and PMC1 .. 966
pentiumP6PmcStop1() – stop PMC1... 967
pentiumPmcGet() – get the contents of PMC0 and PMC1 .. 967
pentiumPmcGet0() – get the contents of PMC0 .. 968
pentiumPmcGet1() – get the contents of PMC1 .. 968
pentiumPmcReset() – reset both PMC0 and PMC1 ... 969
pentiumPmcReset0() – reset PMC0 .. 969
pentiumPmcReset1() – reset PMC1 .. 969
pentiumPmcShow() – show PMCs (Performance Monitoring Counters)... 970
pentiumPmcStart() – start both PMC0 and PMC1.. 970
pentiumPmcStart0() – start PMC0... 971
pentiumPmcStart1() – start PMC1... 971
pentiumPmcStop() – stop both PMC0 and PMC1 .. 972
pentiumPmcStop0() – stop PMC0... 972
pentiumPmcStop1() – stop PMC1... 972
pentiumSerialize() – execute a serializing instruction CPUID... 973
pentiumTlbFlush() – flush TLBs (Translation Lookaside Buffers)... 973
pentiumTscGet32() – get the lower half of the 64Bit TSC (Timestamp Counter) 974
pentiumTscGet64() – get 64Bit TSC (Timestamp Counter).. 974
pentiumTscReset() – reset the TSC (Timestamp Counter) .. 974
period() – spawn a task to call a function periodically... 975
periodRun() – call a function periodically ... 976
perror() – map an error number in errno to an error message (ANSI) 976
ping() – test that a remote host is reachable.. 977
pingLibInit() – initialize the ping() utility.. 978
pipeDevCreate() – create a pipe device.. 979

2: Routines

383

pipeDevDelete() – delete a pipe device ... 979
pipeDrv() – initialize the pipe driver ... 980
pow() – compute the value of a number raised to a specified power (ANSI)................. 981
powf() – compute the value of a number raised to a specified power (ANSI)................. 982
pppDelete() – delete a PPP network interface .. 982
pppHookAdd() – add a hook routine on a unit basis .. 983
pppHookDelete() – delete a hook routine on a unit basis .. 983
pppInfoGet() – get PPP link status information ... 984
pppInfoShow() – display PPP link status information ... 985
pppInit() – initialize a PPP network interface ... 985
pppSecretAdd() – add a secret to the PPP authentication secrets table... 993
pppSecretDelete() – delete a secret from the PPP authentication secrets table.................................... 994
pppSecretShow() – display the PPP authentication secrets table ... 994
pppstatGet() – get PPP link statistics .. 995
pppstatShow() – display PPP link statistics... 995
printErr() – write a formatted string to the standard error stream ... 996
printErrno() – print the definition of a specified error status value .. 996
printf() – write a formatted string to the standard output stream (ANSI) 997
printLogo() – print the VxWorks logo .. 1001
proxyArpLibInit() – initialize proxy ARP .. 1001
proxyNetCreate() – create a proxy ARP network .. 1002
proxyNetDelete() – delete a proxy network ... 1002
proxyNetShow() – show proxy ARP networks .. 1003
proxyPortFwdOff() – disable broadcast forwarding for a particular port .. 1003
proxyPortFwdOn() – enable broadcast forwarding for a particular port ... 1004
proxyPortShow() – show ports enabled for broadcast forwarding.. 1004
proxyReg() – register a proxy client.. 1005
proxyUnreg() – unregister a proxy client... 1005
psrShow() – display the meaning of a specified psr value, symbolically (ARM) 1006
pthreadLibInit() – initialize POSIX threads support... 1007
pthread_attr_destroy() – destroy a thread attributes object (POSIX)... 1007
pthread_attr_getdetachstate() – get value of detachstate attribute in thread attributes object (POSIX) .. 1008
pthread_attr_getinheritsched() – get value of inheritsched attribute in thread attributes object (POSIX) 1008
pthread_attr_getname() – get name of thread attribute object ... 1009
pthread_attr_getschedparam() – get value of schedparam attribute in thread attributes object (POSIX) 1009
pthread_attr_getschedpolicy() – get schedpolicy attribute from thread attributes object (POSIX).......... 1010
pthread_attr_getscope() – get contention scope from thread attributes (POSIX) .. 1011
pthread_attr_getstackaddr() – get value of stackaddr attribute from thread attributes object (POSIX) .. 1011
pthread_attr_getstacksize() – get stack value of stacksize attribute in thread attributes object (POSIX) 1012
pthread_attr_init() – initialize thread attributes object (POSIX).. 1012
pthread_attr_setdetachstate() – set detachstate attribute in thread attributes object (POSIX) 1013
pthread_attr_setinheritsched() – set inheritsched attribute in thread attribute object (POSIX)................ 1014
pthread_attr_setname() – set name in thread attribute object .. 1015
pthread_attr_setschedparam() – set schedparam attribute in thread attributes object (POSIX) 1015
pthread_attr_setschedpolicy() – set schedpolicy attribute in thread attributes object (POSIX)................ 1016

VxWorks OS Libraries API Reference, 5.5

384

pthread_attr_setscope() – set contention scope for thread attributes (POSIX) 1017
pthread_attr_setstackaddr() – set stackaddr attribute in thread attributes object (POSIX)....... 1017
pthread_attr_setstacksize() – set stacksize attribute in thread attributes object (POSIX)......... 1018
pthread_cancel() – cancel execution of a thread (POSIX).. 1018
pthread_cleanup_pop() – pop a cleanup routine off the top of the stack (POSIX).............. 1019
pthread_cleanup_push() – pushes a routine onto the cleanup stack (POSIX)....................... 1019
pthread_cond_broadcast() – unblock all threads waiting on a condition (POSIX) 1020
pthread_cond_destroy() – destroy a condition variable (POSIX) ... 1020
pthread_cond_init() – initialize condition variable (POSIX) .. 1021
pthread_cond_signal() – unblock a thread waiting on a condition (POSIX) 1022
pthread_cond_timedwait() – wait for a condition variable with a timeout (POSIX)................ 1022
pthread_cond_wait() – wait for a condition variable (POSIX)... 1023
pthread_condattr_destroy() – destroy a condition attributes object (POSIX) 1024
pthread_condattr_init() – initialize a condition attribute object (POSIX) 1024
pthread_create() – create a thread (POSIX)... 1025
pthread_detach() – dynamically detach a thread (POSIX) .. 1025
pthread_equal() – compare thread IDs (POSIX).. 1026
pthread_exit() – terminate a thread (POSIX) .. 1026
pthread_getschedparam() – get value of schedparam attribute from a thread (POSIX) 1027
pthread_getspecific() – get thread specific data (POSIX).. 1027
pthread_join() – wait for a thread to terminate (POSIX)... 1028
pthread_key_create() – create a thread specific data key (POSIX) 1029
pthread_key_delete() – delete a thread specific data key (POSIX) 1029
pthread_kill() – send a signal to a thread (POSIX).. 1030
pthread_mutex_destroy() – destroy a mutex (POSIX) .. 1030
pthread_mutex_getprioceiling() – get the value of the prioceiling attribute of a mutex (POSIX) ... 1031
pthread_mutex_init() – initialize mutex from attributes object (POSIX) 1031
pthread_mutex_lock() – lock a mutex (POSIX) .. 1032
pthread_mutex_setprioceiling() – dynamically set the prioceiling attribute of a mutex (POSIX) .. 1033
pthread_mutex_trylock() – lock mutex if it is available (POSIX) ... 1033
pthread_mutex_unlock() – unlock a mutex (POSIX) ... 1034
pthread_mutexattr_destroy() – destroy mutex attributes object (POSIX) 1034
pthread_mutexattr_getprioceiling() – get value of prioceiling attr in a mutex attr object (POSIX)....... 1035
pthread_mutexattr_getprotocol() – get value of protocol in mutex attributes object (POSIX) 1036
pthread_mutexattr_init() – initialize mutex attributes object (POSIX) 1036
pthread_mutexattr_setprioceiling() – set prioceiling attr in mutex attributes object (POSIX)............... 1037
pthread_mutexattr_setprotocol() – set protocol attribute in mutex attribute object (POSIX)............ 1037
pthread_once() – dynamic package initialization (POSIX) 1038
pthread_self() – get the calling thread’s ID (POSIX) ... 1039
pthread_setcancelstate() – set cancellation state for calling thread (POSIX) 1039
pthread_setcanceltype() – set cancellation type for calling thread (POSIX) 1040
pthread_setschedparam() – dynamically set schedparam attribute for a thread (POSIX) 1040
pthread_setspecific() – set thread specific data (POSIX) .. 1041
pthread_sigmask() – change and/or examine calling thread’s signal mask (POSIX) 1042
pthread_testcancel() – create a cancellation point in the calling thread (POSIX) 1043

2: Routines

385

ptyDevCreate() – create a pseudo terminal .. 1043
ptyDevRemove() – destroy a pseudo terminal ... 1044
ptyDrv() – initialize the pseudo-terminal driver ... 1044
ptyShow() – show the state of the Pty Buffers... 1045
putc() – write a character to a stream (ANSI) .. 1045
putchar() – write a character to the standard output stream (ANSI)............................... 1046
putenv() – set an environment variable .. 1046
puts() – write a string to the standard output stream (ANSI)..................................... 1047
putw() – write a word (32-bit integer) to a stream ... 1047
pwd() – print the current default directory.. 1048
qsort() – sort an array of objects (ANSI) .. 1049
r0() – return the contents of register r0 (also r1 - r14, r1-r15 for SH) (ARM, SH). 1050
raise() – send a signal to the caller’s task .. 1050
ramDevCreate() – create a RAM disk device... 1051
ramDiskDevCreate() – initialize a RAM Disk device ... 1052
ramDrv() – prepare a RAM disk driver for use (optional) .. 1053
rand() – generate a pseudo-random integer between 0 and RAND_MAX (ANSI).... 1054
rawFsDevInit() – associate a block device with raw volume functions..................................... 1054
rawFsInit() – prepare to use the raw volume library... 1055
rawFsModeChange() – modify the mode of a raw device volume... 1055
rawFsReadyChange() – notify rawFsLib of a change in ready status... 1056
rawFsVolUnmount() – disable a raw device volume ... 1056
rcmd() – execute a shell command on a remote machine ... 1057
rcvEtherAddrAdd() – add a physical address into the linked list .. 1058
rcvEtherAddrGet() – populate the rcvAddr fields for the ifRcvAddressTable 1058
rdCtl() – implement the ICMP router discovery control function............................... 1059
rdisc() – implement the ICMP router discovery function .. 1061
rdiscIfReset() – check for new or removed interfaces for router discovery 1062
rdiscInit() – initialize the ICMP router discovery function .. 1062
rdiscLibInit() – initialize router discovery .. 1063
rdiscTimerEvent() – called after watchdog timeout... 1063
read() – read bytes from a file or device ... 1064
readdir() – read one entry from a directory (POSIX)... 1064
realloc() – reallocate a block of memory (ANSI) ... 1065
reboot() – reset network devices and transfer control to boot ROMs............................ 1066
rebootHookAdd() – add a routine to be called at reboot .. 1067
recv() – receive data from a socket.. 1067
recvfrom() – receive a message from a socket ... 1068
recvmsg() – receive a message from a socket ... 1069
reld() – reload an object module ... 1069
remCurIdGet() – get the current user name and password .. 1070
remCurIdSet() – set the remote user name and password ... 1070
remove() – remove a file (ANSI) ... 1071
rename() – change the name of a file.. 1072
repeat() – spawn a task to call a function repeatedly .. 1072

VxWorks OS Libraries API Reference, 5.5

386

repeatRun() – call a function repeatedly .. 1073
resolvDNComp() – compress a DNS name in a DNS packet ... 1074
resolvDNExpand() – expand a DNS compressed name from a DNS packet............................ 1074
resolvGetHostByAddr() – query the DNS server for the host name of an IP address 1075
resolvGetHostByName() – query the DNS server for the IP address of a host 1076
resolvInit() – initialize the resolver library... 1077
resolvMkQuery() – create all types of DNS queries... 1078
resolvParamsGet() – get the parameters which control the resolver library............................ 1078
resolvParamsSet() – set the parameters which control the resolver library 1079
resolvQuery() – construct a query, send it, wait for a response... 1080
resolvSend() – send a pre-formatted query and return the answer 1081
rewind() – set the file position indicator to the beginning of a file (ANSI) 1082
rewinddir() – reset position to the start of a directory (POSIX) 1082
rindex() – find the last occurrence of a character in a string 1083
ripAddrsXtract() – extract socket address pointers from the route message 1083
ripAuthHook() – sample authentication hook.. 1084
ripAuthHookAdd() – add an authentication hook to a RIP interface ... 1085
ripAuthHookDelete() – remove an authentication hook from a RIP interface 1087
ripAuthKeyAdd() – add a new RIP authentication key ... 1088
ripAuthKeyDelete() – delete an existing RIP authentication key... 1088
ripAuthKeyFind() – find a RIP authentication key ... 1089
ripAuthKeyFindFirst() – find a RIP authentication key ... 1089
ripAuthKeyInMD5() – authenticate an incoming RIP-2 message using MD5............................. 1090
ripAuthKeyOut1MD5() – start MD5 authentication of an outgoing RIP-2 message 1090
ripAuthKeyOut2MD5() – authenticate an outgoing RIP-2 message using MD5 1091
ripAuthKeyShow() – show current authentication configuration .. 1091
ripDebugLevelSet() – specify amount of debugging output .. 1092
ripFilterDisable() – prevent strict border gateway filtering ... 1092
ripFilterEnable() – activate strict border gateway filtering ... 1093
ripIfExcludeListAdd() – add an interface to the RIP exclusion list .. 1093
ripIfExcludeListDelete() – delete an interface from RIP exclusion list.. 1094
ripIfExcludeListShow() – show the RIP interface exclusion list ... 1094
ripIfReset() – alter the RIP configuration after an interface changes 1095
ripIfSearch() – add new interfaces to the internal list ... 1095
ripIfShow() – display the internal interface table maintained by RIP........................... 1096
ripLeakHookAdd() – add a hook to bypass the RIP and kernel routing tables 1096
ripLeakHookDelete() – remove a table bypass hook from a RIP interface 1097
ripLibInit() – initialize the RIP routing library .. 1097
ripRouteHookAdd() – add a hook to install static and non-RIP routes into RIP........................ 1099
ripRouteHookDelete() – remove the route hook... 1102
ripRouteShow() – display the internal routing table maintained by RIP............................. 1102
ripSendHookAdd() – add an update filter to a RIP interface... 1103
ripSendHookDelete() – remove an update filter from a RIP interface... 1104
ripShutdown() – terminate all RIP processing ... 1104
rlogin() – log in to a remote host ... 1105

2: Routines

387

rlogind() – the VxWorks remote login daemon .. 1105
rlogInit() – initialize the remote login facility .. 1106
rm() – remove a file.. 1107
rmdir() – remove a directory... 1107
rngBufGet() – get characters from a ring buffer ... 1108
rngBufPut() – put bytes into a ring buffer ... 1108
rngCreate() – create an empty ring buffer .. 1109
rngDelete() – delete a ring buffer... 1109
rngFlush() – make a ring buffer empty ... 1110
rngFreeBytes() – determine the number of free bytes in a ring buffer................................... 1110
rngIsEmpty() – test if a ring buffer is empty ... 1111
rngIsFull() – test if a ring buffer is full (no more room).. 1111
rngMoveAhead() – advance a ring pointer by n bytes ... 1112
rngNBytes() – determine the number of bytes in a ring buffer .. 1112
rngPutAhead() – put a byte ahead in a ring buffer without moving ring pointers.............. 1113
romStart() – generic ROM initialization.. 1113
round() – round a number to the nearest integer ... 1114
roundf() – round a number to the nearest integer ... 1114
routeAdd() – add a route .. 1115
routeDelete() – delete a route .. 1116
routeEntryAdd() – insert a route in the routing table .. 1116
routeEntryDel() – remove a route from the routing table.. 1117
routeEntryLookup() – find a matching route for a destination .. 1118
routeModify() – change an entry in the routing table ... 1119
routeNetAdd() – add a route to a destination that is a network ... 1120
routeShow() – display all IP routes (summary information) .. 1120
routestatShow() – display routing statistics ... 1122
routeStorageUnbind() – remove a registered handler from the routing system............................... 1122
routeTableWalk() – traverse the IP routing table ... 1123
rpcInit() – initialize the RPC package .. 1124
rpcTaskInit() – initialize a task’s access to the RPC package.. 1124
rresvport() – open a socket with a privileged port bound to it .. 1125
rt11FsDateSet() – set the rt11Fs file system date... 1125
rt11FsDevInit() – initialize the rt11Fs device descriptor ... 1126
rt11FsInit() – prepare to use the rt11Fs library.. 1127
rt11FsMkfs() – initialize a device and create an rt11Fs file system 1127
rt11FsModeChange() – modify the mode of an rt11Fs volume.. 1128
rt11FsReadyChange() – notify rt11Fs of a change in ready status .. 1128
s() – single-step a task .. 1130
scanf() – read and convert characters from the standard input stream (ANSI) 1130
sched_get_priority_max() – get the maximum priority (POSIX) ... 1131
sched_get_priority_min() – get the minimum priority (POSIX).. 1132
sched_getparam() – get the scheduling parameters for a specified task (POSIX)...................... 1132
sched_getscheduler() – get the current scheduling policy (POSIX)... 1133
sched_rr_get_interval() – get the current time slice (POSIX).. 1134

VxWorks OS Libraries API Reference, 5.5

388

sched_setparam() – set a task’s priority (POSIX) .. 1134
sched_setscheduler() – set scheduling policy and scheduling parameters (POSIX) 1135
sched_yield() – relinquish the CPU (POSIX).. 1136
scsi2IfInit() – initialize the SCSI-2 interface to scsiLib.. 1136
scsiAutoConfig() – configure all devices connected to a SCSI controller 1137
scsiBlkDevCreate() – define a logical partition on a SCSI block device..................................... 1137
scsiBlkDevInit() – initialize fields in a SCSI logical partition... 1138
scsiBlkDevShow() – show the BLK_DEV structures on a specified physical device............... 1139
scsiBusReset() – pulse the reset signal on the SCSI bus ... 1139
scsiCacheSnoopDisable() – inform SCSI that hardware snooping of caches is disabled................... 1140
scsiCacheSnoopEnable() – inform SCSI that hardware snooping of caches is enabled.................... 1140
scsiCacheSynchronize() – synchronize the caches for data coherency .. 1141
scsiErase() – issue an ERASE command to a SCSI device... 1142
scsiFormatUnit() – issue a FORMAT_UNIT command to a SCSI device 1142
scsiIdentMsgBuild() – build an identification message.. 1143
scsiIdentMsgParse() – parse an identification message ... 1143
scsiInquiry() – issue an INQUIRY command to a SCSI device .. 1144
scsiIoctl() – perform a device-specific I/O control function 1145
scsiLoadUnit() – issue a LOAD/UNLOAD command to a SCSI device 1145
scsiMgrBusReset() – handle a controller-bus reset event.. 1146
scsiMgrCtrlEvent() – send an event to the SCSI controller state machine................................. 1146
scsiMgrEventNotify() – notify the SCSI manager of a SCSI (controller) event 1147
scsiMgrShow() – show status information for the SCSI manager 1147
scsiMgrThreadEvent() – send an event to the thread state machine.. 1148
scsiModeSelect() – issue a MODE_SELECT command to a SCSI device................................. 1149
scsiModeSense() – issue a MODE_SENSE command to a SCSI device................................... 1149
scsiMsgInComplete() – handle a complete SCSI message received from the target.................... 1150
scsiMsgOutComplete() – perform post-processing after a SCSI message is sent............................ 1150
scsiMsgOutReject() – perform post-processing when an outgoing message is rejected.......... 1151
scsiPhysDevCreate() – create a SCSI physical device structure... 1151
scsiPhysDevDelete() – delete a SCSI physical-device structure .. 1152
scsiPhysDevIdGet() – return a pointer to a SCSI_PHYS_DEV structure 1152
scsiPhysDevShow() – show status information for a physical device... 1153
scsiRdSecs() – read sector(s) from a SCSI block device .. 1154
scsiRdTape() – read bytes or blocks from a SCSI tape device .. 1154
scsiReadCapacity() – issue a READ_CAPACITY command to a SCSI device............................. 1155
scsiRelease() – issue a RELEASE command to a SCSI device.. 1155
scsiReleaseUnit() – issue a RELEASE UNIT command to a SCSI device 1156
scsiReqSense() – issue a REQUEST_SENSE command to a SCSI device and read results 1156
scsiReserve() – issue a RESERVE command to a SCSI device ... 1157
scsiReserveUnit() – issue a RESERVE UNIT command to a SCSI device................................. 1157
scsiRewind() – issue a REWIND command to a SCSI device .. 1158
scsiSeqDevCreate() – create a SCSI sequential device .. 1158
scsiSeqIoctl() – perform an I/O control function for sequential access devices............. 1159
scsiSeqReadBlockLimits() – issue a READ_BLOCK_LIMITS command to a SCSI device 1159

2: Routines

389

scsiSeqStatusCheck() – detect a change in media... 1160
scsiShow() – list the physical devices attached to a SCSI controller................................ 1160
scsiSpace() – move the tape on a specified physical SCSI device 1161
scsiStartStopUnit() – issue a START_STOP_UNIT command to a SCSI device............................. 1162
scsiSyncXferNegotiate() – initiate or continue negotiating transfer parameters 1162
scsiTapeModeSelect() – issue a MODE_SELECT command to a SCSI tape device............................ 1163
scsiTapeModeSense() – issue a MODE_SENSE command to a SCSI tape device.............................. 1163
scsiTargetOptionsGet() – get options for one or all SCSI targets... 1164
scsiTargetOptionsSet() – set options for one or all SCSI targets ... 1164
scsiTargetOptionsShow() – display options for specified SCSI target.. 1165
scsiTestUnitRdy() – issue a TEST_UNIT_READY command to a SCSI device............................. 1166
scsiThreadInit() – perform generic SCSI thread initialization... 1166
scsiWideXferNegotiate() – initiate or continue negotiating wide parameters 1167
scsiWrtFileMarks() – write file marks to a SCSI sequential device .. 1167
scsiWrtSecs() – write sector(s) to a SCSI block device ... 1168
scsiWrtTape() – write data to a SCSI tape device .. 1168
select() – pend on a set of file descriptors ... 1169
selectInit() – initialize the select facility... 1170
selNodeAdd() – add a wake-up node to a select() wake-up list... 1171
selNodeDelete() – find and delete a node from a select() wake-up list 1171
selWakeup() – wake up a task pended in select() .. 1172
selWakeupAll() – wake up all tasks in a select() wake-up list... 1172
selWakeupListInit() – initialize a select() wake-up list .. 1173
selWakeupListLen() – get the number of nodes in a select() wake-up list 1173
selWakeupListTerm() – terminate a select() wake-up list... 1174
selWakeupType() – get the type of a select() wake-up node... 1174
semBCreate() – create and initialize a binary semaphore.. 1175
semBSmCreate() – create and initialize a shared memory binary semaphore (VxMP) 1175
semCCreate() – create and initialize a counting semaphore.. 1176
semClear() – take a release 4.x semaphore, if the semaphore is available 1177
semCreate() – create and initialize a release 4.x binary semaphore................................... 1177
semCSmCreate() – create and initialize shared memory counting semaphore (VxMP)......... 1178
semDelete() – delete a semaphore .. 1179
semEvStart() – start event notification process for a semaphore... 1179
semEvStop() – stop event notification process for a semaphore ... 1181
semFlush() – unblock every task pended on a semaphore.. 1181
semGive() – give a semaphore ... 1182
semInfo() – get a list of task IDs that are blocked on a semaphore 1183
semInit() – initialize a static binary semaphore... 1183
semMCreate() – create and initialize a mutual-exclusion semaphore 1184
semMGiveForce() – give a mutual-exclusion semaphore without restrictions.......................... 1185
semPxLibInit() – initialize POSIX semaphore support ... 1185
semPxShowInit() – initialize the POSIX semaphore show facility.. 1186
semShow() – show information about a semaphore .. 1186
semShowInit() – initialize the semaphore show facility .. 1187

VxWorks OS Libraries API Reference, 5.5

390

semTake() – take a semaphore.. 1188
sem_close() – close a named semaphore (POSIX).. 1188
sem_destroy() – destroy an unnamed semaphore (POSIX) .. 1189
sem_getvalue() – get the value of a semaphore (POSIX) .. 1190
sem_init() – initialize an unnamed semaphore (POSIX) .. 1191
sem_open() – initialize/open a named semaphore (POSIX).. 1191
sem_post() – unlock (give) a semaphore (POSIX) .. 1193
sem_trywait() – lock (take) a semaphore, returning error if unavailable (POSIX) 1194
sem_unlink() – remove a named semaphore (POSIX) ... 1194
sem_wait() – lock (take) a semaphore, blocking if not available (POSIX)............................. 1195
send() – send data to a socket.. 1196
sendAdvert() – send an advertisement to one location ... 1196
sendAdvertAll() – send an advertisement to all active locations .. 1197
sendmsg() – send a message to a socket.. 1197
sendto() – send a message to a socket.. 1198
set_new_handler() – set new_handler to user-defined function (C++) .. 1199
set_terminate() – set terminate to user-defined function (C++) .. 1199
setbuf() – specify the buffering for a stream (ANSI) .. 1200
setbuffer() – specify buffering for a stream .. 1200
sethostname() – set the symbolic name of this machine ... 1201
setjmp() – save the calling environment in a jmp_buf argument (ANSI) 1201
setlinebuf() – set line buffering for standard output or standard error 1202
setlocale() – set the appropriate locale (ANSI) .. 1203
setsockopt() – set socket options ... 1203
setvbuf() – specify buffering for a stream (ANSI)... 1211
shell() – the shell entry point ... 1212
shellHistory() – display or set the size of shell history ... 1212
shellInit() – start the shell... 1213
shellLock() – lock access to the shell ... 1213
shellOrigStdSet() – set the shell’s default input/output/error file descriptors.............................. 1214
shellPromptSet() – change the shell prompt.. 1214
shellScriptAbort() – signal the shell to stop processing a script ... 1215
show() – print information on a specified object ... 1215
shutdown() – shut down a network connection .. 1216
sigaction() – examine and/or specify the action associated with a signal (POSIX)............ 1216
sigaddset() – add a signal to a signal set (POSIX)... 1217
sigblock() – add to a set of blocked signals.. 1217
sigdelset() – delete a signal from a signal set (POSIX).. 1218
sigemptyset() – initialize a signal set with no signals included (POSIX)................................... 1218
sigfillset() – initialize a signal set with all signals included (POSIX) 1219
sigInit() – initialize the signal facilities ... 1219
sigismember() – test to see if a signal is in a signal set (POSIX) ... 1220
signal() – specify the handler associated with a signal.. 1220
sigpending() – retrieve the set of pending signals blocked from delivery (POSIX) 1221
sigprocmask() – examine and/or change the signal mask (POSIX) .. 1221

2: Routines

391

sigqueue() – send a queued signal to a task.. 1222
sigqueueInit() – initialize the queued signal facilities ... 1223
sigsetmask() – set the signal mask ... 1223
sigsuspend() – suspend the task until delivery of a signal (POSIX).. 1224
sigtimedwait() – wait for a signal .. 1224
sigvec() – install a signal handler... 1226
sigwait() – wait for a signal to be delivered (POSIX).. 1226
sigwaitinfo() – wait for real-time signals... 1227
sin() – compute a sine (ANSI)... 1228
sincos() – compute both a sine and cosine ... 1228
sincosf() – compute both a sine and cosine ... 1229
sinf() – compute a sine (ANSI)... 1229
sinh() – compute a hyperbolic sine (ANSI)... 1230
sinhf() – compute a hyperbolic sine (ANSI)... 1230
sleep() – delay for a specified amount of time ... 1231
smMemAddToPool() – add memory to shared memory system partition (VxMP) 1231
smMemCalloc() – allocate memory for array from shared memory system partition (VxMP).. 1232
smMemFindMax() – find largest free block in shared memory system partition (VxMP) 1233
smMemFree() – free a shared memory system partition block of memory (VxMP)................. 1233
smMemMalloc() – allocate block of memory from shared memory system partition (VxMP) ... 1234
smMemOptionsSet() – set debug options for shared memory system partition (VxMP).................... 1234
smMemRealloc() – reallocate block of memory from shared memory system partition (VxMP) 1235
smMemShow() – show the shared memory system partition blocks and statistics (VxMP) 1236
smNameAdd() – add a name to the shared memory name database (VxMP) 1237
smNameFind() – look up a shared memory object by name (VxMP) ... 1238
smNameFindByValue() – look up a shared memory object by value (VxMP) ... 1239
smNameRemove() – remove an object from the shared memory objects name database (VxMP). 1240
smNameShow() – show the contents of the shared memory objects name database (VxMP).... 1240
smNetShow() – show information about a shared memory network .. 1241
smObjAttach() – attach the calling CPU to the shared memory objects facility (VxMP)........... 1242
smObjGlobalToLocal() – convert a global address to a local address (VxMP) ... 1243
smObjInit() – initialize a shared memory objects descriptor (VxMP)..................................... 1244
smObjLibInit() – install the shared memory objects facility (VxMP).. 1245
smObjLocalToGlobal() – convert a local address to a global address (VxMP) ... 1245
smObjSetup() – initialize the shared memory objects facility (VxMP) 1246
smObjShow() – display the current status of shared memory objects (VxMP)......................... 1247
smObjTimeoutLogEnable() – control logging of failed attempts to take a spin-lock (VxMP).................. 1248
sntpcTimeGet() – retrieve the current time from a remote source ... 1249
sntpsClockSet() – assign a routine to access the reference clock... 1250
sntpsConfigSet() – change SNTP server broadcast settings .. 1251
sntpsNsecToFraction() – convert portions of a second to NTP format .. 1251
so() – single-step, but step over a subroutine ... 1252
socket() – open a socket ... 1252
sockUploadPathClose() – close the socket upload path (Windview)... 1253
sockUploadPathCreate() – establish an upload path to the host using a socket (Windview) 1254

VxWorks OS Libraries API Reference, 5.5

392

sockUploadPathLibInit() – initialize wvSockUploadPathLib library (Windview) 1254
sockUploadPathWrite() – write to the socket upload path (Windview)... 1255
sp() – spawn a task with default parameters ... 1255
sprintf() – write a formatted string to a buffer (ANSI) ... 1256
spy() – begin periodic task activity reports... 1257
spyClkStart() – start collecting task activity data ... 1257
spyClkStop() – stop collecting task activity data ... 1258
spyHelp() – display task monitoring help menu.. 1258
spyLibInit() – initialize task CPU utilization tool package... 1259
spyReport() – display task activity data.. 1259
spyStop() – stop spying and reporting .. 1260
spyTask() – run periodic task activity reports .. 1260
sqrt() – compute a non-negative square root (ANSI)... 1261
sqrtf() – compute a non-negative square root (ANSI)... 1261
sr() – return the contents of the status register (68K, SH).................................... 1262
srand() – reset the value of the seed used to generate random numbers (ANSI) ... 1262
sscanf() – read and convert characters from an ASCII string (ANSI)........................ 1263
stackEntryIsBottom() – test if an interface has no layers beneath it .. 1267
stackEntryIsTop() – test if an ifStackTable interface has no layers above 1267
stat() – get file status information using a pathname (POSIX)............................... 1268
statfs() – get file status information using a pathname (POSIX)............................... 1268
stdioFp() – return the standard input/output/error FILE of the current task........... 1269
stdioInit() – initialize standard I/O support ... 1269
stdioShow() – display file pointer internals .. 1270
stdioShowInit() – initialize the standard I/O show facility.. 1270
strcat() – concatenate one string to another (ANSI).. 1271
strchr() – find the first occurrence of a character in a string (ANSI)......................... 1271
strcmp() – compare two strings lexicographically (ANSI) ... 1272
strcoll() – compare two strings as appropriate to LC_COLLATE (ANSI)................... 1272
strcpy() – copy one string to another (ANSI) .. 1273
strcspn() – return the string length up to first character from a given set (ANSI) 1273
strerror() – map an error number to an error string (ANSI).. 1274
strerror_r() – map an error number to an error string (POSIX).. 1274
strftime() – convert broken-down time into a formatted string (ANSI) 1275
strlen() – determine the length of a string (ANSI)... 1277
strncat() – concatenate characters from one string to another (ANSI) 1277
strncmp() – compare the first n characters of two strings (ANSI) 1278
strncpy() – copy characters from one string to another (ANSI).................................... 1278
strpbrk() – find first occurrence in a string of a character from a given set (ANSI) .. 1279
strrchr() – find last occurrence of a character in a string (ANSI) 1279
strspn() – return the string length up to first character not in a given set (ANSI)... 1280
strstr() – find the first occurrence of a substring in a string (ANSI) 1280
strtod() – convert the initial portion of a string to a double (ANSI).......................... 1281
strtok() – break down a string into tokens (ANSI) .. 1282
strtok_r() – break down a string into tokens (reentrant) (POSIX)................................. 1283

2: Routines

393

strtol() – convert a string to a long integer (ANSI) .. 1284
strtoul() – convert a string to an unsigned long integer (ANSI) 1285
strxfrm() – transform up to n characters of s2 into s1 (ANSI).................................... 1287
swab() – swap bytes.. 1287
symAdd() – create and add a symbol to a symbol table, including a group number 1288
symByValueAndTypeFind() – look up a symbol by value and type.. 1289
symByValueFind() – look up a symbol by value... 1290
symEach() – call a routine to examine each entry in a symbol table 1290
symFindByName() – look up a symbol by name... 1291
symFindByNameAndType() – look up a symbol by name and type.. 1292
symFindByValue() – look up a symbol by value... 1292
symFindByValueAndType() – look up a symbol by value and type.. 1293
symLibInit() – initialize the symbol table library... 1294
symRemove() – remove a symbol from a symbol table... 1294
symSyncLibInit() – initialize host/target symbol table synchronization 1295
symSyncTimeoutSet() – set WTX timeout ... 1295
symTblCreate() – create a symbol table .. 1296
symTblDelete() – delete a symbol table .. 1296
sysAuxClkConnect() – connect a routine to the auxiliary clock interrupt.................................... 1297
sysAuxClkDisable() – turn off auxiliary clock interrupts .. 1297
sysAuxClkEnable() – turn on auxiliary clock interrupts... 1298
sysAuxClkRateGet() – get the auxiliary clock rate... 1298
sysAuxClkRateSet() – set the auxiliary clock rate ... 1299
sysBspRev() – return the BSP version and revision number.. 1299
sysBusIntAck() – acknowledge a bus interrupt .. 1300
sysBusIntGen() – generate a bus interrupt... 1300
sysBusTas() – test and set a location across the bus ... 1301
sysBusToLocalAdrs() – convert a bus address to a local address ... 1301
sysClkConnect() – connect a routine to the system clock interrupt 1302
sysClkDisable() – turn off system clock interrupts.. 1302
sysClkEnable() – turn on system clock interrupts .. 1303
sysClkRateGet() – get the system clock rate .. 1303
sysClkRateSet() – set the system clock rate... 1304
sysHwInit() – initialize the system hardware.. 1304
sysIntDisable() – disable a bus interrupt level .. 1305
sysIntEnable() – enable a bus interrupt level ... 1305
sysLocalToBusAdrs() – convert a local address to a bus address ... 1306
sysMailboxConnect() – connect a routine to the mailbox interrupt ... 1306
sysMailboxEnable() – enable the mailbox interrupt... 1307
sysMemTop() – get the address of the top of logical memory ... 1307
sysModel() – return the model name of the CPU board... 1308
sysNanoDelay() – delay for specified number of nanoseconds ... 1308
sysNvRamGet() – get the contents of non-volatile RAM .. 1309
sysNvRamSet() – write to non-volatile RAM... 1310
sysPhysMemTop() – get the address of the top of memory .. 1310

VxWorks OS Libraries API Reference, 5.5

394

sysProcNumGet() – get the processor number ... 1311
sysProcNumSet() – set the processor number.. 1311
sysScsiBusReset() – assert the RST line on the SCSI bus (Western Digital WD33C93 only) ... 1312
sysScsiConfig() – system SCSI configuration ... 1313
sysScsiInit() – initialize an on-board SCSI port .. 1314
sysSerialChanGet() – get the SIO_CHAN device associated with a serial channel 1315
sysSerialHwInit() – initialize the BSP serial devices to a quiescent state 1315
sysSerialHwInit2() – connect BSP serial device interrupts... 1316
sysSerialReset() – reset all SIO devices to a quiet state.. 1316
system() – pass a string to a command processor (Unimplemented) (ANSI) 1317
sysToMonitor() – transfer control to the ROM monitor .. 1317
tan() – compute a tangent (ANSI).. 1318
tanf() – compute a tangent (ANSI).. 1318
tanh() – compute a hyperbolic tangent (ANSI).. 1319
tanhf() – compute a hyperbolic tangent (ANSI).. 1319
tapeFsDevInit() – associate a sequential device with tape volume functions 1320
tapeFsInit() – initialize the tape volume library .. 1321
tapeFsReadyChange() – notify tapeFsLib of a change in ready status .. 1321
tapeFsVolUnmount() – disable a tape device volume... 1322
tarArchive() – archive named file/dir onto tape in tar format... 1322
tarExtract() – extract all files from a tar formatted tape... 1323
tarToc() – display all contents of a tar formatted tape ... 1324
taskActivate() – activate a task that has been initialized .. 1325
taskCreateHookAdd() – add a routine to be called at every task create .. 1325
taskCreateHookDelete() – delete a previously added task create routine... 1326
taskCreateHookShow() – show the list of task create routines.. 1326
taskDelay() – delay a task from executing ... 1327
taskDelete() – delete a task .. 1327
taskDeleteForce() – delete a task without restriction .. 1328
taskDeleteHookAdd() – add a routine to be called at every task delete .. 1329
taskDeleteHookDelete() – delete a previously added task delete routine .. 1329
taskDeleteHookShow() – show the list of task delete routines.. 1330
taskHookInit() – initialize task hook facilities ... 1330
taskHookShowInit() – initialize the task hook show facility .. 1331
taskIdDefault() – set the default task ID ... 1331
taskIdListGet() – get a list of active task IDs .. 1332
taskIdSelf() – get the task ID of a running task ... 1332
taskIdVerify() – verify the existence of a task .. 1333
taskInfoGet() – get information about a task .. 1333
taskInit() – initialize a task with a stack at a specified address 1334
taskIsReady() – check if a task is ready to run... 1335
taskIsSuspended() – check if a task is suspended ... 1335
taskLock() – disable task rescheduling ... 1336
taskName() – get the name associated with a task ID .. 1336
taskNameToId() – look up the task ID associated with a task name .. 1337

2: Routines

395

taskOptionsGet() – examine task options ... 1337
taskOptionsSet() – change task options ... 1338
taskPriorityGet() – examine the priority of a task... 1339
taskPrioritySet() – change the priority of a task ... 1339
taskRegsGet() – get a task’s registers from the TCB .. 1340
taskRegsSet() – set a task’s registers ... 1340
taskRegsShow() – display the contents of a task’s registers .. 1341
taskRestart() – restart a task.. 1341
taskResume() – resume a task .. 1342
taskSafe() – make the calling task safe from deletion .. 1342
taskShow() – display task information from TCBs ... 1343
taskShowInit() – initialize the task show routine facility... 1344
taskSpawn() – spawn a task.. 1345
taskSRInit() – initialize the default task status register (MIPS).. 1346
taskSRSet() – set the task status register (68K, MIPS, x86)... 1347
taskStatusString() – get a task’s status as a string... 1347
taskSuspend() – suspend a task .. 1348
taskSwitchHookAdd() – add a routine to be called at every task switch.. 1349
taskSwitchHookDelete() – delete a previously added task switch routine.. 1350
taskSwitchHookShow() – show the list of task switch routines ... 1350
taskTcb() – get the task control block for a task ID ... 1351
taskUnlock() – enable task rescheduling... 1351
taskUnsafe() – make the calling task unsafe from deletion.. 1352
taskVarAdd() – add a task variable to a task ... 1352
taskVarDelete() – remove a task variable from a task.. 1354
taskVarGet() – get the value of a task variable... 1354
taskVarInfo() – get a list of task variables of a task .. 1355
taskVarInit() – initialize the task variables facility .. 1355
taskVarSet() – set the value of a task variable ... 1356
tcpDebugShow() – display debugging information for the TCP protocol 1357
tcpShowInit() – initialize TCP show routines .. 1357
tcpstatShow() – display all statistics for the TCP protocol... 1358
td() – delete a task... 1358
telnetdExit() – close an active telnet session.. 1359
telnetdInit() – initialize the telnet services .. 1359
telnetdParserSet() – specify a command interpreter for telnet sessions 1360
telnetdStart() – initialize the telnet services .. 1361
telnetdStaticTaskInitializationGet() – report whether tasks were pre-started by telnetd........................ 1362
tffsBootImagePut() – write to the boot-image region of the flash device...................................... 1362
tffsDevCreate() – create a TrueFFS block device suitable for use with dosFs........................ 1363
tffsDevFormat() – format a flash device for use with TrueFFS ... 1364
tffsDevOptionsSet() – set TrueFFS volume options ... 1365
tffsDrv() – initialize the TrueFFS system ... 1365
tffsRawio() – low level I/O access to flash components .. 1366
tffsShow() – show device information on a specific socket interface 1367

VxWorks OS Libraries API Reference, 5.5

396

tffsShowAll() – show device information on all socket interfaces 1368
tftpCopy() – transfer a file via TFTP.. 1368
tftpdDirectoryAdd() – add a directory to the access list.. 1369
tftpdDirectoryRemove() – delete a directory from the access list ... 1369
tftpdInit() – initialize the TFTP server task ... 1370
tftpdTask() – TFTP server daemon task ... 1371
tftpGet() – get a file from a remote system.. 1372
tftpInfoShow() – get TFTP status information... 1372
tftpInit() – initialize a TFTP session.. 1373
tftpModeSet() – set the TFTP transfer mode .. 1373
tftpPeerSet() – set the TFTP server address ... 1374
tftpPut() – put a file to a remote system .. 1374
tftpQuit() – quit a TFTP session.. 1375
tftpSend() – send a TFTP message to the remote system .. 1375
tftpXfer() – transfer a file via TFTP using a stream interface... 1376
ti() – print complete information from a task’s TCB.. 1378
tickAnnounce() – announce a clock tick to the kernel ... 1379
tickGet() – get the value of the kernel’s tick counter ... 1379
tickSet() – set the value of the kernel’s tick counter .. 1380
time() – determine the current calendar time (ANSI)... 1380
timer_cancel() – cancel a timer.. 1381
timer_connect() – connect a user routine to the timer signal .. 1381
timer_create() – allocate a timer using the specified clock for a timing base (POSIX)....... 1382
timer_delete() – remove a previously created timer (POSIX) .. 1383
timer_getoverrun() – return the timer expiration overrun (POSIX) .. 1383
timer_gettime() – get the remaining time before expiration and the reload value (POSIX) 1384
timer_settime() – set the time until the next expiration and arm timer (POSIX) 1384
timex() – time a single execution of a function or functions 1385
timexClear() – clear the list of function calls to be timed... 1386
timexFunc() – specify functions to be timed ... 1386
timexHelp() – display synopsis of execution timer facilities.. 1387
timexInit() – include the execution timer library... 1388
timexN() – time repeated executions of a function or group of functions 1388
timexPost() – specify functions to be called after timing ... 1389
timexPre() – specify functions to be called prior to timing.. 1390
timexShow() – display the list of function calls to be timed .. 1390
tmpfile() – create a temporary binary file (Unimplemented) (ANSI).......................... 1391
tmpnam() – generate a temporary file name (ANSI) ... 1391
tolower() – convert an upper-case letter to its lower-case equivalent (ANSI) 1392
toupper() – convert a lower-case letter to its upper-case equivalent (ANSI) 1392
tr() – resume a task.. 1393
trgAdd() – add a new trigger to the trigger list .. 1393
trgChainSet() – chains two triggers .. 1395
trgDelete() – delete a trigger from the trigger list .. 1395
trgDisable() – turn a trigger off... 1396

2: Routines

397

trgEnable() – enable a trigger ... 1396
trgEvent() – trigger a user-defined event ... 1397
trgLibInit() – initialize the triggering library ... 1397
trgOff() – set triggering off ... 1398
trgOn() – set triggering on ... 1398
trgShow() – show trigger information.. 1399
trgShowInit() – initialize the trigger show facility .. 1399
trgWorkQReset() – reset the trigger work queue task and queue .. 1400
trunc() – truncate to integer .. 1400
truncf() – truncate to integer .. 1401
ts() – suspend a task .. 1401
tsfsUploadPathClose() – close the TSFS-socket upload path (Windview) .. 1402
tsfsUploadPathCreate() – open an upload path to the host using a TSFS socket (Windview) 1402
tsfsUploadPathLibInit() – initialize wvTsfsUploadPathLib library (Windview) 1403
tsfsUploadPathWrite() – write to the TSFS upload path (Windview) ... 1403
tt() – display a stack trace of a task ... 1404
ttyDevCreate() – create a VxWorks device for a serial channel .. 1405
ttyDrv() – initialize the tty driver... 1405
tyAbortFuncSet() – set the abort function... 1406
tyAbortSet() – change the abort character.. 1406
tyBackspaceSet() – change the backspace character ... 1407
tyDeleteLineSet() – change the line-delete character... 1407
tyDevInit() – initialize the tty device descriptor ... 1408
tyDevRemove() – remove the tty device descriptor ... 1408
tyEOFSet() – change the end-of-file character... 1409
tyIoctl() – handle device control requests... 1409
tyIRd() – interrupt-level input .. 1410
tyITx() – interrupt-level output.. 1410
tyMonitorTrapSet() – change the trap-to-monitor character ... 1411
tyRead() – do a task-level read for a tty device... 1411
tyWrite() – do a task-level write for a tty device ... 1412
udpShowInit() – initialize UDP show routines ... 1413
udpstatShow() – display statistics for the UDP protocol ... 1413
ungetc() – push a character back into an input stream (ANSI).................................... 1413
unixDiskDevCreate() – create a UNIX disk device... 1414
unixDiskInit() – initialize a dosFs disk on top of UNIX.. 1415
unixDrv() – install UNIX disk driver.. 1416
unld() – unload an object module by specifying a file name or module ID........... 1416
unldByGroup() – unload an object module by specifying a group number 1417
unldByModuleId() – unload an object module by specifying a module ID................................. 1417
unldByNameAndPath() – unload an object module by specifying a name and path 1418
unlink() – delete a file (POSIX) ... 1418
usrAtaConfig() – mount a DOS file system from an ATA hard disk or a CDROM.............. 1419
usrAtaInit() – initialize the hard disk driver... 1420
usrClock() – user-defined system clock interrupt routine.. 1420

VxWorks OS Libraries API Reference, 5.5

398

usrFdConfig() – mount a DOS file system from a floppy disk.. 1420
usrFdiskPartCreate() – create an FDISK-like partition table on a disk .. 1421
usrFdiskPartRead() – read an FDISK-style partition table .. 1422
usrFdiskPartShow() – parse and display partition data ... 1423
usrIdeConfig() – mount a DOS file system from an IDE hard disk... 1424
usrInit() – user-defined system initialization routine... 1424
usrRoot() – the root task.. 1425
usrScsiConfig() – configure SCSI peripherals .. 1425
uswab() – swap bytes with buffers that are not necessarily aligned 1426
utime() – update time on a file ... 1427
va_arg() – expand to expression having type and value of call’s next argument 1428
va_end() – facilitate a normal return from a routine using a va_list object 1428
va_start() – initialize a va_list object for use by va_arg() and va_end()............................... 1429
valloc() – allocate memory on a page boundary.. 1429
version() – print VxWorks version information ... 1430
vfdprintf() – write a string formatted with variable argument list to file descriptor 1430
vfprintf() – write a formatted string to a stream (ANSI) ... 1431
vmBaseGlobalMapInit() – initialize global mapping ... 1431
vmBaseLibInit() – initialize base virtual memory support.. 1432
vmBasePageSizeGet() – return the page size... 1433
vmBaseStateSet() – change the state of a block of virtual memory.. 1433
vmContextCreate() – create a new virtual memory context (VxVMI) .. 1434
vmContextDelete() – delete a virtual memory context (VxVMI)... 1435
vmContextShow() – display the translation table for a context (VxVMI)... 1435
vmCurrentGet() – get the current virtual memory context (VxVMI) .. 1436
vmCurrentSet() – set the current virtual memory context (VxVMI) ... 1436
vmEnable() – enable or disable virtual memory (VxVMI) .. 1437
vmGlobalInfoGet() – get global virtual memory information (VxVMI)... 1437
vmGlobalMap() – map physical pages to virtual space in shared global virtual mem (VxVMI).. 1438
vmGlobalMapInit() – initialize global mapping (VxVMI)... 1439
vmLibInit() – initialize the virtual memory support module (VxVMI)..................................... 1440
vmMap() – map physical space into virtual space (VxVMI) ... 1440
vmPageBlockSizeGet() – get the architecture-dependent page block size (VxVMI) 1441
vmPageSizeGet() – return the page size (VxVMI) .. 1442
vmShowInit() – include virtual memory show facility (VxVMI) ... 1442
vmStateGet() – get the state of a page of virtual memory (VxVMI) ... 1443
vmStateSet() – change the state of a block of virtual memory (VxVMI) 1444
vmTextProtect() – write-protect a text segment (VxVMI) ... 1445
vmTranslate() – translate a virtual address to a physical address (VxVMI) 1445
vprintf() – write string formatted with variable argument list to standard output (ANSI) 1446
vsprintf() – write a string formatted with a variable argument list to a buffer (ANSI)....... 1446
vxCr2Get() – get a content of the Control Register 2 (x86) ... 1447
vxCr2Set() – set a value to the Control Register 2 (x86) ... 1447
vxCr3Get() – get a content of the Control Register 3 (x86) ... 1448
vxCr3Set() – set a value to the Control Register 3 (x86) ... 1448

2: Routines

399

vxCr4Get() – get a content of the Control Register 4 (x86).. 1448
vxCr4Set() – set a value to the Control Register 4 (x86).. 1449
vxCr0Get() – get a content of the Control Register 0 (x86).. 1449
vxCr0Set() – set a value to the Control Register 0 (x86).. 1450
vxDrGet() – get a content of the Debug Register 0 to 7 (x86) .. 1450
vxDrSet() – set a value to the Debug Register 0 to 7 (x86).. 1451
vxEflagsGet() – get a content of the EFLAGS register (x86) .. 1451
vxEflagsSet() – set a value to the EFLAGS register (x86) .. 1452
vxGdtrGet() – get a content of the Global Descriptor Table Register (x86) 1452
vxIdtrGet() – get a content of the Interrupt Descriptor Table Register (x86)............................ 1453
vxLdtrGet() – get a content of the Local Descriptor Table Register (x86) 1453
vxMemArchProbe() – architecture-specific part of vxMemProbe()... 1454
vxMemProbe() – probe an address for a bus error ... 1454
vxPowerDown() – place the processor in reduced-power mode (PowerPC, SH)............................. 1455
vxPowerModeGet() – get the power management mode (PowerPC, SH, x86)....................................... 1456
vxPowerModeSet() – set the power management mode (PowerPC, SH, x86) 1456
vxSSDisable() – disable the superscalar dispatch (MC68060) ... 1458
vxSSEnable() – enable the superscalar dispatch (MC68060) .. 1458
vxTas() – C-callable atomic test-and-set primitive... 1459
vxTssGet() – get a content of the TASK register (x86)... 1460
vxTssSet() – set a value to the TASK register (x86)... 1460
wcstombs() – convert a series of wide char’s to multibyte char’s (Unimplemented) (ANSI) 1461
wctomb() – convert a wide character to a multibyte character (Unimplemented) (ANSI) . 1461
wdbSystemSuspend() – suspend the system. .. 1462
wdbUserEvtLibInit() – include the WDB user event library.. 1463
wdbUserEvtPost() – post a user event string to host tools. ... 1463
wdCancel() – cancel a currently counting watchdog.. 1464
wdCreate() – create a watchdog timer.. 1465
wdDelete() – delete a watchdog timer ... 1465
wdShow() – show information about a watchdog.. 1466
wdShowInit() – initialize the watchdog show facility .. 1466
wdStart() – start a watchdog timer .. 1467
whoami() – display the current remote identity .. 1468
write() – write bytes to a file .. 1468
wvEvent() – log a user-defined event (WindView) .. 1469
wvEventInst() – instrument VxWorks Events (WindView) ... 1469
wvEvtBufferGet() – return the ID of the WindView event buffer (WindView) 1470
wvEvtClassClear() – clear a class of events from those being logged (WindView) 1470
wvEvtClassClearAll() – clear all classes of events from those logged (WindView) 1470
wvEvtClassGet() – get the current set of classes being logged (WindView)...................................... 1471
wvEvtClassSet() – set the class of events to log (WindView) .. 1471
wvEvtLogInit() – initialize an event log (WindView) ... 1472
wvEvtLogStart() – start logging events to the buffer (WindView).. 1472
wvEvtLogStop() – stop logging events to the buffer (WindView).. 1473
wvLibInit() – initialize wvLib - first step (WindView) .. 1473

VxWorks OS Libraries API Reference, 5.5

400

wvLibInit2() – initialize wvLib - final step (WindView) ... 1473
wvLogHeaderCreate() – create the event-log header (WindView) ... 1474
wvLogHeaderUpload() – transfer the log header to the host (WindView).. 1474
wvNetAddressFilterClear() – remove the address filter for events ... 1475
wvNetAddressFilterSet() – specify an address filter for events.. 1475
wvNetDisable() – end reporting of network events to WindView .. 1476
wvNetEnable() – begin reporting network events to WindView.. 1476
wvNetEventDisable() – deactivate specific network events ... 1477
wvNetEventEnable() – activate specific network events.. 1478
wvNetLevelAdd() – enable network events with specific priority level 1479
wvNetLevelRemove() – disable network events with specific priority level.................................... 1479
wvNetPortFilterClear() – remove the port number filter for events... 1480
wvNetPortFilterSet() – specify an address filter for events.. 1481
wvObjInst() – instrument objects (WindView)... 1481
wvObjInstModeSet() – set object instrumentation on/off (WindView)... 1482
wvRBuffMgrPrioritySet() – set the priority of the WindView rBuff manager (WindView) 1483
wvSigInst() – instrument signals (WindView) .. 1483
wvTaskNamesPreserve() – preserve an extra copy of task name events (WindView) 1484
wvTaskNamesUpload() – upload preserved task name events (WindView) 1485
wvTmrRegister() – register a timestamp timer (WindView) .. 1485
wvUploadStart() – start upload of events to the host (WindView) ... 1486
wvUploadStop() – stop upload of events to host (WindView) .. 1487
wvUploadTaskConfig() – set priority and stack size of tWVUpload task (WindView)..................... 1488
xattrib() – modify MS-DOS file attributes of many files .. 1489
xcopy() – copy a hierarchy of files with wildcards .. 1490
xdelete() – delete a hierarchy of files with wildcards .. 1490
zbufCreate() – create an empty zbuf ... 1492
zbufCut() – delete bytes from a zbuf.. 1492
zbufDelete() – delete a zbuf ... 1493
zbufDup() – duplicate a zbuf.. 1494
zbufExtractCopy() – copy data from a zbuf to a buffer .. 1495
zbufInsert() – insert a zbuf into another zbuf... 1496
zbufInsertBuf() – create a zbuf segment from a buffer and insert into a zbuf....................... 1497
zbufInsertCopy() – copy buffer data into a zbuf ... 1498
zbufLength() – determine the length in bytes of a zbuf.. 1499
zbufSegData() – determine the location of data in a zbuf segment....................................... 1499
zbufSegFind() – find the zbuf segment containing a specified byte location 1500
zbufSegLength() – determine the length of a zbuf segment... 1501
zbufSegNext() – get the next segment in a zbuf ... 1501
zbufSegPrev() – get the previous segment in a zbuf ... 1502
zbufSockBufSend() – create a zbuf from user data and send it to a TCP socket.......................... 1502
zbufSockBufSendto() – create a zbuf from a user message and send it to a UDP socket............... 1503
zbufSockLibInit() – initialize the zbuf socket interface library.. 1505
zbufSockRecv() – receive data in a zbuf from a TCP socket ... 1505
zbufSockRecvfrom() – receive a message in a zbuf from a UDP socket.. 1506

2: Routines

401

zbufSockSend() – send zbuf data to a TCP socket.. 1507
zbufSockSendto() – send a zbuf message to a UDP socket... 1508
zbufSplit() – split a zbuf into two separate zbufs .. 1509

VxWorks OS Libraries API Reference, 5.5

402

2: Routines
abort()

403

Aa0()

NAME a0() – return the contents of register a0 (also a1 - a7) (68K)

SYNOPSIS int a0

(

int taskId /* task ID, 0 means default task */

)

DESCRIPTION This command extracts the contents of register a0 from the TCB of a specified task. If
taskId is omitted or zero, the last task referenced is assumed.

Similar routines are provided for all address registers (a0 - a7): a0() - a7().

The stack pointer is accessed via a7().

RETURNS The contents of register a0 (or the requested register).

SEE ALSO dbgArchLib, VxWorks Programmer’s Guide: Target Shell

abort()

NAME abort() – cause abnormal program termination (ANSI)

SYNOPSIS void abort (void)

DESCRIPTION This routine causes abnormal program termination, unless the signal SIGABRT is being
caught and the signal handler does not return. VxWorks does not flush output streams,
close open streams, or remove temporary files. abort() returns unsuccessful status
termination to the host environment by calling:

raise (SIGABRT);

INCLUDE FILES stdlib.h

RETURNS This routine cannot return to the caller.

SEE ALSO ansiStdlib

VxWorks OS Libraries API Reference, 5.5
abs()

404

abs()

NAME abs() – compute the absolute value of an integer (ANSI)

SYNOPSIS int abs

(

int i /* integer for which to return absolute value

*/

)

DESCRIPTION This routine computes the absolute value of a specified integer. If the result cannot be
represented, the behavior is undefined.

INCLUDE FILES stdlib.h

RETURNS The absolute value of i.

SEE ALSO ansiStdlib

accept()

NAME accept() – accept a connection from a socket

SYNOPSIS int accept

(

int s, /* socket descriptor */

struct sockaddr * addr, /* peer address */

int * addrlen /* peer address length */

)

DESCRIPTION This routine accepts a connection on a socket, and returns a new socket created for the
connection. The socket must be bound to an address with bind(), and enabled for
connections by a call to listen(). The accept() routine dequeues the first connection and
creates a new socket with the same properties as s. It blocks the caller until a connection is
present, unless the socket is marked as non-blocking.

The addrlen parameter should be initialized to the size of the available buffer pointed to by
addr. Upon return, addrlen contains the size in bytes of the peer’s address stored in addr.

WARNING: You must make sure that you do not close the file descriptor on which a task is
pending during an accept(). Although the accept() on the closed file descriptor

2: Routines
acos()

405

A
sometimes returns with an error, the accept() can also fail to return at all. Thus, if you
need to be able to close a socket connections file descriptor asynchronously, you may need
to set up a semaphore-based locking mechanism that prevents the close while an accept()
is pending on the file descriptor.

RETURNS A socket descriptor, or ERROR if the call fails.

SEE ALSO sockLib

acos()

NAME acos() – compute an arc cosine (ANSI)

SYNOPSIS double acos

(

double x /* number between -1 and 1 */

)

DESCRIPTION This routine returns principal value of the arc cosine of x in double precision (IEEE
double, 53 bits). If x is the cosine of an angle T, this function returns T.

A domain error occurs for arguments not in the range [-1,+1].

INCLUDE FILES math.h

RETURNS The double-precision arc cosine of x in the range [0,pi] radians.

Special cases:
 If x is NaN, acos() returns x.
 If |x|>1, it returns NaN.

SEE ALSO ansiMath, mathALib

VxWorks OS Libraries API Reference, 5.5
acosf()

406

acosf()

NAME acosf() – compute an arc cosine (ANSI)

SYNOPSIS float acosf

(

float x /* number between -1 and 1 */

)

DESCRIPTION This routine computes the arc cosine of x in single precision. If x is the cosine of an angle
T, this function returns T.

INCLUDE FILES math.h

RETURNS The single-precision arc cosine of x in the range 0 to pi radians.

SEE ALSO mathALib

aioPxLibInit()

NAME aioPxLibInit() – initialize the asynchronous I/O (AIO) library

SYNOPSIS STATUS aioPxLibInit

(

int lioMax /* max outstanding lio calls */

)

DESCRIPTION This routine initializes the AIO library. It should be called only once after the I/O system
has been initialized. lioMax specifies the maximum number of outstanding lio_listio()
calls at one time. If lioMaxis zero, the default value of AIO_CLUST_MAX is used.

RETURNS OK if successful, otherwise ERROR.

ERRNO S_aioPxLib_IOS_NOT_INITIALIZED

SEE ALSO aioPxLib

2: Routines
aioSysInit()

407

AaioShow()

NAME aioShow() – show AIO requests

SYNOPSIS STATUS aioShow

(

int drvNum /* drv num to show (IGNORED) */

)

DESCRIPTION This routine displays the outstanding AIO requests.

WARNING: The drvNum parameter is not currently used.

RETURNS OK, always.

SEE ALSO aioPxShow

aioSysInit()

NAME aioSysInit() – initialize the AIO system driver

SYNOPSIS STATUS aioSysInit

(

int numTasks, /* number of system tasks */

int taskPrio, /* AIO task priority */

int taskStackSize /* AIO task stack size */

)

DESCRIPTION This routine initializes the AIO system driver. It should be called once after the AIO
library has been initialized. It spawns numTasks system I/O tasks to be executed at
taskPrio priority level, with a stack size of taskStackSize. It also starts the wait task and sets
the system driver as the default driver for AIO. If numTasks, taskPrio, or taskStackSize is 0, a
default value (AIO_IO_TASKS_DFLT, AIO_IO_PRIO_DFLT, or AIO_IO_STACK_DFLT,
respectively) is used.

RETURNS OK if successful, otherwise ERROR.

SEE ALSO aioSysDrv

VxWorks OS Libraries API Reference, 5.5
aio_error()

408

aio_error()

NAME aio_error() – retrieve error status of asynchronous I/O operation (POSIX)

SYNOPSIS int aio_error

(

const struct aiocb * pAiocb /* AIO control block */

)

DESCRIPTION This routine returns the error status associated with the I/O operation specified by pAiocb.
If the operation is not yet completed, the error status will be EINPROGRESS.

RETURNS EINPROGRESS if the AIO operation has not yet completed, OK if the AIO operation
completed successfully, the error status if the AIO operation failed, otherwise ERROR.

ERRNO EINVAL

INCLUDE FILES aio.h

SEE ALSO aioPxLib

aio_read()

NAME aio_read() – initiate an asynchronous read (POSIX)

SYNOPSIS int aio_read

(

struct aiocb * pAiocb /* AIO control block */

)

DESCRIPTION This routine asynchronously reads data based on the following parameters specified by
members of the AIO control structure pAiocb. It reads aio_nbytes bytes of data from the
file aio_fildes into the buffer aio_buf.

The requested operation takes place at the absolute position in the file as specified by
aio_offset.

aio_reqprio can be used to lower the priority of the AIO request; if this parameter is
nonzero, the priority of the AIO request is aio_reqprio lower than the calling task priority.

2: Routines
aio_return()

409

A
The call returns when the read request has been initiated or queued to the device.
aio_error() can be used to determine the error status and of the AIO operation. On
completion, aio_return() can be used to determine the return status.

aio_sigevent defines the signal to be generated on completion of the read request. If this
value is zero, no signal is generated.

RETURNS OK if the read queued successfully, otherwise ERROR.

ERRNO EBADF, EINVAL

INCLUDE FILES aio.h

SEE ALSO aioPxLib, aio_error(), aio_return(), read()

aio_return()

NAME aio_return() – retrieve return status of asynchronous I/O operation (POSIX)

SYNOPSIS size_t aio_return

(

struct aiocb * pAiocb /* AIO control block */

)

DESCRIPTION This routine returns the return status associated with the I/O operation specified by
pAiocb. The return status for an AIO operation is the value that would be returned by the
corresponding read(), write(), or fsync() call. aio_return() may be called only after the
AIO operation has completed (aio_error() returns a valid error code--not EINPROGRESS).
Furthermore, aio_return() may be called only once; subsequent calls will fail.

RETURNS The return status of the completed AIO request, or ERROR.

ERRNO EINVAL, EINPROGRESS

INCLUDE FILES aio.h

SEE ALSO aioPxLib

VxWorks OS Libraries API Reference, 5.5
aio_suspend()

410

aio_suspend()

NAME aio_suspend() – wait for asynchronous I/O request(s) (POSIX)

SYNOPSIS int aio_suspend

(

const struct aiocb * list[], /* AIO requests */

int nEnt, /* number of requests */

const struct timespec * timeout /* wait timeout */

)

DESCRIPTION This routine suspends the caller until one of the following occurs:

– at least one of the previously submitted asynchronous I/O operations

referenced by list has completed,

– a signal interrupts the function, or

– the time interval specified by timeout has passed

(if timeout is not NULL).

RETURNS OK if an AIO request completes, otherwise ERROR.

ERRNO EAGAIN, EINTR

INCLUDE FILES aio.h

SEE ALSO aioPxLib

aio_write()

NAME aio_write() – initiate an asynchronous write (POSIX)

SYNOPSIS int aio_write

(

struct aiocb * pAiocb /* AIO control block */

)

DESCRIPTION This routine asynchronously writes data based on the following parameters specified by
members of the AIO control structure pAiocb. It writes aio_nbytes of data to the file
aio_fildes from the buffer aio_buf.

2: Routines
alarm()

411

A
The requested operation takes place at the absolute position in the file as specified by
aio_offset.

aio_reqprio can be used to lower the priority of the AIO request; if this parameter is
nonzero, the priority of the AIO request is aio_reqprio lower than the calling task priority.

The call returns when the write request has been initiated or queued to the device.
aio_error() can be used to determine the error status and of the AIO operation. On
completion, aio_return() can be used to determine the return status.

aio_sigevent defines the signal to be generated on completion of the write request. If this
value is zero, no signal is generated.

RETURNS OK if write queued successfully, otherwise ERROR.

ERRNO EBADF, EINVAL

INCLUDE FILES aio.h

SEE ALSO aioPxLib, aio_error(), aio_return(), write()

alarm()

NAME alarm() – set an alarm clock for delivery of a signal

SYNOPSIS unsigned int alarm

(

unsigned int secs

)

DESCRIPTION This routine arranges for a SIGALRM signal to be delivered to the calling task after secs
seconds.

If secs is zero, no new alarm is scheduled. In all cases, any previously set alarm is
cancelled.

RETURNS Time remaining until a previously scheduled alarm was due to be delivered, zero if there
was no previous alarm, or ERROR in case of an error.

SEE ALSO timerLib

VxWorks OS Libraries API Reference, 5.5
arpAdd()

412

arpAdd()

NAME arpAdd() – create or modify an ARP table entry

SYNOPSIS STATUS arpAdd

(

char * pHost, /* host name or IP address */

char * pEther, /* Ethernet address */

int flags /* ARP flags */

)

DESCRIPTION This routine assigns an Ethernet address to an IP address in the ARP table. The pHost
parameter specifies the host by name or by Internet address using standard dotted
decimal notation. The pEther parameter provides the Ethernet address as six hexadecimal
bytes (between 0 and ff) separated by colons. A new entry is created for the specified host
if necessary. Otherwise, the existing entry is changed to use the given Ethernet address.

The flags parameter combines any of the following options:

ATF_PERM (0x04)
Create a permanent ARP entry which will not time out.

ATF_PUBL (0x08)
Publish this entry. The host will respond to ARP requests even if the pHost parameter
does not match a local IP address. This setting provides a limited form of proxy ARP.

ATF_PROXY (0x10)
Use a "wildcard" hardware address. The proxy server uses this setting to support
multiple proxy networks. The entry always supplies the hardware address of the
sending interface.

EXAMPLE Create a permanent ARP table entry for "myHost" with Ethernet address 0:80:f9:1:2:3:

arpAdd ("myHost", "0:80:f9:1:2:3", 0x4);

Assuming "myHost" has the Internet address "90.0.0.3", the following call changes the
Ethernet address to 0:80:f9:1:2:4. No additional flags are set for that entry.

arpAdd ("90.0.0.3", "0:80:f9:1:2:4", 0);

RETURNS OK, or ERROR if unsuccessful.

ERRNO S_arpLib_INVALID_ARGUMENT
S_arpLib_INVALID_HOST
S_arpLib_INVALID_ENET_ADDRESS
S_arpLib_INVALID_FLAG
or results of low-level ioctl call.

2: Routines
arpFlush()

413

A
SEE ALSO arpLib

arpDelete()

NAME arpDelete() – remove an ARP table entry

SYNOPSIS STATUS arpDelete

(

char * pHost /* host name or IP address */

)

DESCRIPTION This routine deletes an ARP table entry. The pHost parameter indicates the target entry
using the host name or Internet address.

EXAMPLE arpDelete ("91.0.0.3")

arpDelete ("myHost")

RETURNS OK, or ERROR if unsuccessful.

ERRNO S_arpLib_INVALID_ARGUMENT
S_arpLib_INVALID_HOST

SEE ALSO arpLib

arpFlush()

NAME arpFlush() – flush all entries in the system ARP table

SYNOPSIS void arpFlush (void)

DESCRIPTION This routine flushes all non-permanent entries in the ARP cache.

RETURNS N/A

SEE ALSO arpLib

VxWorks OS Libraries API Reference, 5.5
arpResolve()

414

arpResolve()

NAME arpResolve() – resolve a hardware address for a specified Internet address

SYNOPSIS STATUS arpResolve

(

char * targetAddr, /* name or Internet address of target */

char * pHwAddr, /* where to return the H/W address */

int numTries, /* number of times to try ARPing (-1 means */

/* try forever) */

int numTicks /* number of ticks between ARPs */

)

DESCRIPTION This routine uses the Address Resolution Protocol (ARP) and internal ARP cache to
resolve the hardware address of a machine that owns the Internet address given in
targetAddr.

The hardware address is copied to pHwAddr as network byte order, if the resolution of
targetAddr is successful. pHwAddr must point to a buffer which is large enough to receive
the address.

NOTE: RFC 1122 prohibits sending more than one arp request per second. Any numTicks
value that would result in a shorter time than this is ignored.

RETURNS OK if the address is resolved successfully, or ERROR if pHwAddr is NULL, targetAddr is
invalid, or address resolution is unsuccessful.

ERRNO S_arpLib_INVALID_ARGUMENT
S_arpLib_INVALID_HOST

SEE ALSO arpLib

2: Routines
arptabShow()

415

AarpShow()

NAME arpShow() – display entries in the system ARP table

SYNOPSIS void arpShow (void)

DESCRIPTION This routine displays the current Internet-to-Ethernet address mappings in the ARP table.

EXAMPLE -> arpShow

LINK LEVEL ARP TABLE

Destination LL Address Flags Refcnt Use Interface

90.0.0.63 08:00:3e:23:79:e7 0x405 0 82 lo0

Some configuration is required when this routine is to be used remotely over the network,
e.g., through a telnet session or through the host shell using WDB_COMM_NETWORK. If
more than 5 entries are expected in the table the parameter RT_BUFFERED_DISPLAY
should be set to TRUE to prevent a possible deadlock. This requires a buffer whose size
can be set with RT_DISPLAY_MEMORY. It will limit the number of entries that can be
displayed (each entry requires approx. 70 bytes).

RETURNS N/A

SEE ALSO netShow

arptabShow()

NAME arptabShow() – display the known ARP entries

SYNOPSIS void arptabShow (void)

DESCRIPTION This routine displays current Internet-to-Ethernet address mappings in the ARP table.

RETURNS N/A

SEE ALSO netShow

VxWorks OS Libraries API Reference, 5.5
asctime()

416

asctime()

NAME asctime() – convert broken-down time into a string (ANSI)

SYNOPSIS char * asctime

(

const struct tm * timeptr /* broken-down time */

)

DESCRIPTION This routine converts the broken-down time pointed to by timeptr into a string of the form:

SUN SEP 16 01:03:52 1973\n\0

This routine is not reentrant. For a reentrant version, see asctime_r().

INCLUDE FILES time.h

RETURNS A pointer to the created string.

SEE ALSO ansiTime

asctime_r()

NAME asctime_r() – convert broken-down time into a string (POSIX)

SYNOPSIS int asctime_r

(

const struct tm * timeptr, /* broken-down time */

char * asctimeBuf, /* buffer to contain string */

size_t * buflen /* size of buffer */

)

DESCRIPTION This routine converts the broken-down time pointed to by timeptr into a string of the form:

SUN SEP 16 01:03:52 1973\n\0

The string is copied to asctimeBuf. asctimer() is the POSIX re-entrant version of asctime().

INCLUDE FILES time.h

RETURNS The size of the created string.

SEE ALSO ansiTime

2: Routines
asinf()

417

Aasin()

NAME asin() – compute an arc sine (ANSI)

SYNOPSIS double asin

(

double x /* number between -1 and 1 */

)

DESCRIPTION This routine returns the principal value of the arc sine of x in double precision (IEEE
double, 53 bits). If x is the sine of an angle T, this function returns T.

A domain error occurs for arguments not in the range [-1,+1].

INCLUDE FILES math.h

RETURNS The double-precision arc sine of x in the range [-pi/2,pi/2] radians.

Special cases:
 If x is NaN, asin() returns x.
 If |x>1, it returns NaN.

SEE ALSO ansiMath, mathALib

asinf()

NAME asinf() – compute an arc sine (ANSI)

SYNOPSIS float asinf

(

float x /* number between -1 and 1 */

)

DESCRIPTION This routine computes the arc sine of x in single precision. If x is the sine of an angle T,
this function returns T.

INCLUDE FILES math.h

RETURNS The single-precision arc sine of x in the range -pi/2 to pi/2 radians.

SEE ALSO mathALib

VxWorks OS Libraries API Reference, 5.5
assert()

418

assert()

NAME assert() – put diagnostics into programs (ANSI)

SYNOPSIS void assert

(

int a

)

DESCRIPTION If an expression is false (that is, equal to zero), the assert() macro writes information
about the failed call to standard error in an implementation-defined format. It then calls
abort(). The diagnostic information includes:

- the text of the argument
- the name of the source file (value of preprocessor macro __FILE__)
- the source line number (value of preprocessor macro __LINE__)

INCLUDE stdio.h, stdlib.h, assert.h

RETURNS N/A

SEE ALSO ansiAssert

atan()

NAME atan() – compute an arc tangent (ANSI)

SYNOPSIS double atan

(

double x /* tangent of an angle */

)

DESCRIPTION This routine returns the principal value of the arc tangent of x in double precision (IEEE
double, 53 bits). If x is the tangent of an angle T, this function returns T (in radians).

INCLUDE FILES math.h

RETURNS The double-precision arc tangent of x in the range [-pi/2,pi/2] radians. Special case: if x is
NaN, atan() returns x itself.

SEE ALSO ansiMath, mathALib

2: Routines
atan2()

419

Aatan2()

NAME atan2() – compute the arc tangent of y/x (ANSI)

SYNOPSIS double atan2

(

double y, /* numerator */

double x /* denominator */

)

DESCRIPTION This routine returns the principal value of the arc tangent of y/x in double precision (IEEE
double, 53 bits). This routine uses the signs of both arguments to determine the quadrant
of the return value. A domain error may occur if both arguments are zero.

INCLUDE FILES math.h

RETURNS The double-precision arc tangent of y/x, in the range [-pi,pi] radians.

Special cases:
 Notations: atan2(y,x) == ARG (x+iy) == ARG(x,y).

SEE ALSO ansiMath, mathALib

ARG(NAN, (anything)) is NaN
ARG((anything), NaN) is NaN
ARG(+(anything but NaN), +-0) is +-0
ARG(-(anything but NaN), +-0) is +-PI
ARG(0, +-(anything but 0 and NaN)) is +-PI/2
ARG(+INF, +-(anything but INF and NaN)) is +-0
ARG(-INF, +-(anything but INF and NaN)) is +-PI
ARG(+INF, +-INF) is +-PI/4
ARG(-INF, +-INF) is +-3PI/4
ARG((anything but 0, NaN, and INF),+-INF) is +-PI/2

VxWorks OS Libraries API Reference, 5.5
atan2f()

420

atan2f()

NAME atan2f() – compute the arc tangent of y/x (ANSI)

SYNOPSIS float atan2f

(

float y, /* numerator */

float x /* denominator */

)

DESCRIPTION This routine returns the principal value of the arc tangent of y/x in single precision.

INCLUDE FILES math.h

RETURNS The single-precision arc tangent of y/x in the range -pi to pi.

SEE ALSO mathALib

atanf()

NAME atanf() – compute an arc tangent (ANSI)

SYNOPSIS float atanf

(

float x /* tangent of an angle */

)

DESCRIPTION This routine computes the arc tangent of x in single precision. If x is the tangent of an
angle T, this function returns T (in radians).

INCLUDE FILES math.h

RETURNS The single-precision arc tangent of x in the range -pi/2 to pi/2.

SEE ALSO mathALib

2: Routines
atof()

421

Aatexit()

NAME atexit() – call a function at program termination (Unimplemented) (ANSI)

SYNOPSIS int atexit

(

void (* __func)(void) /* pointer to a function */

)

DESCRIPTION This routine is unimplemented. VxWorks task exit hooks provide this functionality.

INCLUDE FILES stdlib.h

RETURNS ERROR, always.

SEE ALSO ansiStdlib, taskHookLib

atof()

NAME atof() – convert a string to a double (ANSI)

SYNOPSIS double atof

(

const char * s /* pointer to string */

)

DESCRIPTION This routine converts the initial portion of the string s to double-precision representation.

Its behavior is equivalent to:

strtod (s, (char **) NULL);

INCLUDE FILES stdlib.h

RETURNS The converted value in double-precision representation.

SEE ALSO ansiStdlib

VxWorks OS Libraries API Reference, 5.5
atoi()

422

atoi()

NAME atoi() – convert a string to an int (ANSI)

SYNOPSIS int atoi

(

const char * s /* pointer to string */

)

DESCRIPTION This routine converts the initial portion of the string s to int representation.

Its behavior is equivalent to:

(int) strtol (s, (char **) NULL, 10);

INCLUDE FILES stdlib.h

RETURNS The converted value represented as an int.

SEE ALSO ansiStdlib

atol()

NAME atol() – convert a string to a long (ANSI)

SYNOPSIS long atol

(

const register char * s /* pointer to string */

)

DESCRIPTION This routine converts the initial portion of the string s to long integer representation.

Its behavior is equivalent to:

strtol (s, (char **) NULL, 10);

INCLUDE FILES stdlib.h

RETURNS The converted value represented as a long.

SEE ALSO ansiStdlib

2: Routines
attrib()

423

Aattrib()

NAME attrib() – modify MS-DOS file attributes on a file or directory

SYNOPSIS STATUS attrib

(

const char * fileName, /* file or dir name on which to change flags */

const char * attr /* flag settings to change */

)

DESCRIPTION This function provides means for the user to modify the attributes of a single file or
directory. There are four attribute flags which may be modified: “Archive”, “System”,
“Hidden” and “Read-only”. Among these flags, only “Read-only” has a meaning in
VxWorks, namely, read-only files can not be modified deleted or renamed.

The attr argument string may contain must start with either “+” or “-”, meaning the
attribute flags which will follow should be either set or cleared. After “+” or “-” any of
these four letter will signify their respective attribute flags - “A”, “S”, “H” and “R”.

For example, to write-protect a particular file and flag that it is a system file:

-> attrib("bootrom.sys", "+RS")

RETURNS OK, or ERROR if the file can not be opened.

SEE ALSO usrFsLib

VxWorks OS Libraries API Reference, 5.5
b()

424

b()

NAME b() – set or display breakpoints

SYNOPSIS STATUS b

(

INSTR * addr, /* where to set breakpoint, or 0 = display */

/* all breakpoints */

int task, /* task for which to set breakboint, 0 = */

/* set all tasks */

int count, /* number of passes before hit */

BOOL quiet /* TRUE = don’t print debugging info, FALSE */

/* = print debugging info */

)

DESCRIPTION This routine sets or displays breakpoints. To display the list of currently active
breakpoints, call b() without arguments:

-> b

The list shows the address, task, and pass count of each breakpoint. Temporary
breakpoints inserted by so() and cret() are also indicated.

To set a breakpoint with b(), include the address, which can be specified numerically or
symbolically with an optional offset. The other arguments are optional:

-> b addr[,task[,count[,quiet]]]

If task is zero or omitted, the breakpoint will apply to all breakable tasks. If count is zero or
omitted, the breakpoint will occur every time it is hit. If count is specified, the break will
not occur until the count +1th time an eligible task hits the breakpoint (i.e., the breakpoint
is ignored the first count times it is hit).

If quiet is specified, debugging information destined for the console will be suppressed
when the breakpoint is hit. This option is included for use by external source code
debuggers that handle the breakpoint user interface themselves.

Individual tasks can be unbreakable, in which case breakpoints that otherwise would
apply to a task are ignored. Tasks can be spawned unbreakable by specifying the task
option VX_UNBREAKABLE. Tasks can also be set unbreakable or breakable by resetting
VX_UNBREAKABLE with the routine taskOptionsSet().

RETURNS OK, or ERROR if addr is illegal or the breakpoint table is full.

SEE ALSO dbgLib, bd(), taskOptionsSet(), VxWorks Programmer’s Guide: Target Shell, windsh,
Tornado User’s Guide: Shell

2: Routines
bcopy()

425

B
bcmp()

NAME bcmp() – compare one buffer to another

SYNOPSIS int bcmp

(

char * buf1, /* pointer to first buffer */

char * buf2, /* pointer to second buffer */

int nbytes /* number of bytes to compare */

)

DESCRIPTION This routine compares the first nbytes characters of buf1 to buf2.

RETURNS 0 if the first nbytes of buf1 and buf2 are identical,
less than 0 if buf1 is less than buf2, or
greater than 0 if buf1 is greater than buf2.

SEE ALSO bLib

bcopy()

NAME bcopy() – copy one buffer to another

SYNOPSIS void bcopy

(

const char * source, /* pointer to source buffer */

char * destination, /* pointer to destination buffer */

int nbytes /* number of bytes to copy */

)

DESCRIPTION This routine copies the first nbytes characters from source to destination. Overlapping
buffers are handled correctly. Copying is done in the most efficient way possible, which
may include long-word, or even multiple-long-word moves on some architectures. In
general, the copy will be significantly faster if both buffers are long-word aligned. (For
copying that is restricted to byte, word, or long-word moves, see the manual entries for
bcopyBytes(), bcopyWords(), and bcopyLongs().)

RETURNS N/A

SEE ALSO bLib, bcopyBytes(), bcopyWords(), bcopyLongs()

VxWorks OS Libraries API Reference, 5.5
bcopyBytes()

426

bcopyBytes()

NAME bcopyBytes() – copy one buffer to another one byte at a time

SYNOPSIS void bcopyBytes

(

char * source, /* pointer to source buffer */

char * destination, /* pointer to destination buffer */

int nbytes /* number of bytes to copy */

)

DESCRIPTION This routine copies the first nbytes characters from source to destination one byte at a time.
This may be desirable if a buffer can only be accessed with byte instructions, as in certain
byte-wide memory-mapped peripherals.

RETURNS N/A

SEE ALSO bLib, bcopy()

bcopyLongs()

NAME bcopyLongs() – copy one buffer to another one long word at a time

SYNOPSIS void bcopyLongs

(

char * source, /* pointer to source buffer */

char * destination, /* pointer to destination buffer */

int nlongs /* number of longs to copy */

)

DESCRIPTION This routine copies the first nlongs characters from source to destination one long word at a
time. This may be desirable if a buffer can only be accessed with long instructions, as in
certain long-word-wide memory-mapped peripherals. The source and destination must
be long-aligned.

RETURNS N/A

SEE ALSO bLib, bcopy()

2: Routines
bd()

427

B
bcopyWords()

NAME bcopyWords() – copy one buffer to another one word at a time

SYNOPSIS void bcopyWords

(

char * source, /* pointer to source buffer */

char * destination, /* pointer to destination buffer */

int nwords /* number of words to copy */

)

DESCRIPTION This routine copies the first nwords words from source to destinationone word at a time.
This may be desirable if a buffer can only be accessed with word instructions, as in certain
word-wide memory-mapped peripherals. The source and destination must be
word-aligned.

RETURNS N/A

SEE ALSO bLib, bcopy()

bd()

NAME bd() – delete a breakpoint

SYNOPSIS STATUS bd

(

INSTR * addr, /* address of breakpoint to delete */

int task /* task for which to delete breakpoint, 0 = */

/* delete for all tasks */

)

DESCRIPTION This routine deletes a specified breakpoint.

To execute, enter:

-> bd addr [,task]

If task is omitted or zero, the breakpoint will be removed for all tasks. If the breakpoint
applies to all tasks, removing it for only a single task will be ineffective. It must be
removed for all tasks and then set for just those tasks desired. Temporary breakpoints
inserted by the routines so() or cret() can also be deleted.

VxWorks OS Libraries API Reference, 5.5
bdall()

428

RETURNS OK, or ERROR if there is no breakpoint at the specified address.

SEE ALSO dbgLib, b(), VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s Guide:
Shell

bdall()

NAME bdall() – delete all breakpoints

SYNOPSIS STATUS bdall

(

int task /* task for which to delete breakpoints, 0 */

/* = delete for all tasks */

)

DESCRIPTION This routine removes all breakpoints.

To execute, enter:

-> bdall [task]

If task is specified, all breakpoints that apply to that task are removed. If task is omitted, all
breakpoints for all tasks are removed. Temporary breakpoints inserted by so() or cret()
are not deleted; use bd() instead.

RETURNS OK, always.

SEE ALSO dbgLib, bd(), VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s Guide:
Shell

bfill()

NAME bfill() – fill a buffer with a specified character

SYNOPSIS void bfill

(

char * buf, /* pointer to buffer */

int nbytes, /* number of bytes to fill */

int ch /* char with which to fill buffer */

)

2: Routines
bh()

429

B

DESCRIPTION This routine fills the first nbytes characters of a buffer with the character ch. Filling is done
in the most efficient way possible, which may be long-word, or even multiple-long-word
stores, on some architectures. In general, the fill will be significantly faster if the buffer is
long-word aligned. (For filling that is restricted to byte stores, see the manual entry for
bfillBytes().)

RETURNS N/A

SEE ALSO bLib, bfillBytes()

bfillBytes()

NAME bfillBytes() – fill buffer with a specified character one byte at a time

SYNOPSIS void bfillBytes

(

char * buf, /* pointer to buffer */

int nbytes, /* number of bytes to fill */

int ch /* char with which to fill buffer */

)

DESCRIPTION This routine fills the first nbytes characters of the specified buffer with the character ch one
byte at a time. This may be desirable if a buffer can only be accessed with byte
instructions, as in certain byte-wide memory-mapped peripherals.

RETURNS N/A

SEE ALSO bLib, bfill()

bh()

NAME bh() – set a hardware breakpoint

SYNOPSIS STATUS bh

(

INSTR * addr, /* where to set breakpoint, or 0 = display */

/* all breakpoints */

int access, /* access type (arch dependant) */

int task, /* task for which to set breakboint, 0 = */

VxWorks OS Libraries API Reference, 5.5
bind()

430

/* set all tasks */

int count, /* number of passes before hit */

BOOL quiet /* TRUE = don’t print debugging info, FALSE */

/* = print debugging info */

)

DESCRIPTION This routine is used to set a hardware breakpoint. If the architecture allows it, this
function will add the breakpoint to the list of breakpoints and set the hardware
breakpoint register(s). For more information, see the manual entry for b().

NOTE: The types of hardware breakpoints vary with the architectures. Generally, a
hardware breakpoint can be a data breakpoint or an instruction breakpoint.

RETURNS OK, or ERROR if addr is illegal or the hardware breakpoint table is full.

SEE ALSO dbgLib, b(), VxWorks Programmer’s Guide: Target Shell

bind()

NAME bind() – bind a name to a socket

SYNOPSIS STATUS bind

(

int s, /* socket descriptor */

struct sockaddr * name, /* name to be bound */

int namelen /* length of name */

)

DESCRIPTION This routine associates a network address (also referred to as its “name”) with a specified
socket so that other processes can connect or send to it. When a socket is created with
socket(), it belongs to an address family but has no assigned name.

RETURNS OK, or ERROR if there is an invalid socket, the address is either unavailable or in use, or
the socket is already bound.

SEE ALSO sockLib

2: Routines
binvert()

431

B
bindresvport()

NAME bindresvport() – bind a socket to a privileged IP port

SYNOPSIS STATUS bindresvport

(

int sd, /* socket to be bound */

struct sockaddr_in * sin /* socket address -- value/result */

)

DESCRIPTION This routine picks a port number between 600 and 1023 that is not being used by any
other programs and binds the socket passed as sd to that port. Privileged IP ports
(numbers between and including 0 and 1023) are reserved for privileged programs.

RETURNS OK, or ERROR if the address family specified in sin is not supported or the call fails.

SEE ALSO remLib

binvert()

NAME binvert() – invert the order of bytes in a buffer

SYNOPSIS void binvert

(

char * buf, /* pointer to buffer to invert */

int nbytes /* number of bytes in buffer */

)

DESCRIPTION This routine inverts an entire buffer, byte by byte. For example, the buffer {1, 2, 3, 4, 5}
would become {5, 4, 3, 2, 1}.

RETURNS N/A

SEE ALSO bLib

VxWorks OS Libraries API Reference, 5.5
bootBpAnchorExtract()

432

bootBpAnchorExtract()

NAME bootBpAnchorExtract() – extract a backplane address from a device field

SYNOPSIS STATUS bootBpAnchorExtract

(

char * string, /* string containing adrs field */

char * *pAnchorAdrs /* pointer where to return anchor address */

)

DESCRIPTION This routine extracts the optional backplane anchor address field from a boot device field.
The anchor can be specified for the backplane driver by appending to the device name
(i.e., “bp”) an equal sign (=) and the address in hexadecimal. For example, the “boot
device” field of the boot parameters could be specified as:

boot device: bp=800000

In this case, the backplane anchor address would be at address 0x800000, instead of the
default specified in config.h.

This routine picks off the optional trailing anchor address by replacing the equal sign (=)
in the specified string with an EOS and then scanning the remainder as a hex number.
This number, the anchor address, is returned via the pAnchorAdrs pointer.

RETURNS 1 if the anchor address in string is specified correctly,
0 if the anchor address in string is not specified, or
-1 if an invalid anchor address is specified in string.

SEE ALSO bootLib

bootChange()

NAME bootChange() – change the boot line

SYNOPSIS void bootChange (void)

DESCRIPTION This command changes the boot line used in the boot ROMs. This is useful during a
remote login session. After changing the boot parameters, you can reboot the target with
the reboot() command, and then terminate your login (~.) and remotely log in again. As
soon as the system has rebooted, you will be logged in again.

This command stores the new boot line in non-volatile RAM, if the target has it.

2: Routines
bootLeaseExtract()

433

B

RETURNS N/A

SEE ALSO usrLib, windsh, Tornado User’s Guide: Shell

bootLeaseExtract()

NAME bootLeaseExtract() – extract the lease information from an Internet address

SYNOPSIS int bootLeaseExtract

(

char * string, /* string containing addr field */

u_long * pLeaseLen, /* pointer to storage for lease duration */

u_long * pLeaseStart /* pointer to storage for lease origin */

)

DESCRIPTION This routine extracts the optional lease duration and lease origin fields from an Internet
address field for use with DHCP. The lease duration can be specified by appending a
colon and the lease duration to the netmask field. For example, the “inet on ethernet” field
of the boot parameters could be specified as:

inet on ethernet: 90.1.0.1:ffff0000:1000

If no netmask is specified, the contents of the field could be:

inet on ethernet: 90.1.0.1::ffffffff

In the first case, the lease duration for the address is 1000 seconds. The second case
indicates an infinite lease, and does not specify a netmask for the address. At the
beginning of the boot process, the value of the lease duration field is used to specify the
requested lease duration. If the field not included, the value of DHCP_DEFAULT_LEASE is
used instead.

The lease origin is specified with the same format as the lease duration, but is added
during the boot process. The presence of the lease origin field distinguishes addresses
assigned by a DHCP server from addresses entered manually. Addresses assigned by a
DHCP server may be replaced if the bootstrap loader uses DHCP to obtain configuration
parameters. The value of the lease origin field at the beginning of the boot process is
ignored.

This routine extracts the optional lease duration by replacing the preceding colon in the
specified string with an EOS and then scanning the remainder as a number. The lease
duration and lease origin values are returned via the pLeaseLen and pLeaseStart pointers, if
those parameters are not NULL.

VxWorks OS Libraries API Reference, 5.5
bootNetmaskExtract()

434

RETURNS 2 if both lease values are specified correctly in string, or
-2 if one of the two values is specified incorrectly.

If only the lease duration is found, it returns:
1 if the lease duration in string is specified correctly,
0 if the lease duration is not specified in string, or
-1 if an invalid lease duration is specified in string.

SEE ALSO bootLib

bootNetmaskExtract()

NAME bootNetmaskExtract() – extract the net mask field from an Internet address

SYNOPSIS STATUS bootNetmaskExtract

(

char * string, /* string containing addr field */

int * pNetmask /* pointer where to return net mask */

)

DESCRIPTION This routine extracts the optional subnet mask field from an Internet address field. Subnet
masks can be specified for an Internet interface by appending to the Internet address a
colon and the net mask in hexadecimal. For example, the “inet on ethernet” field of the
boot parameters could be specified as:

inet on ethernet: 90.1.0.1:ffff0000

In this case, the network portion of the address (normally just 90) is extended by the
subnet mask (to 90.1). This routine extracts the optional trailing subnet mask by replacing
the colon in the specified string with an EOS and then scanning the remainder as a hex
number. This number, the net mask, is returned via the pNetmask pointer.

This routine also handles an empty netmask field used as a placeholder for the lease
duration field (see bootLeaseExtract()). In that case, the colon separator is replaced with
an EOS and the value of netmask is set to 0.

RETURNS 1 if the subnet mask in string is specified correctly,
0 if the subnet mask in string is not specified, or
-1 if an invalid subnet mask is specified in string.

SEE ALSO bootLib

2: Routines
bootParamsShow()

435

B
bootParamsPrompt()

NAME bootParamsPrompt() – prompt for boot line parameters

SYNOPSIS void bootParamsPrompt

(

char * string /* default boot line */

)

DESCRIPTION This routine displays the current value of each boot parameter and prompts the user for a
new value. Typing a RETURN leaves the parameter unchanged. Typing a period (.) clears
the parameter.

The parameter string holds the initial values. The new boot line is copied over string. If
there are no initial values, string is empty on entry.

RETURNS N/A

SEE ALSO bootLib

bootParamsShow()

NAME bootParamsShow() – display boot line parameters

SYNOPSIS void bootParamsShow

(

char * paramString /* boot parameter string */

)

DESCRIPTION This routine displays the boot parameters in the specified boot string one parameter per
line.

RETURNS N/A

SEE ALSO bootLib

VxWorks OS Libraries API Reference, 5.5
bootpLibInit()

436

bootpLibInit()

NAME bootpLibInit() – BOOTP client library initialization

SYNOPSIS STATUS bootpLibInit

(

int maxSize /* largest link-level header, in bytes */

)

DESCRIPTION This routine creates and initializes the global data structures used by the BOOTP client
library to obtain configuration parameters. The maxSizeparameter specifies the largest link
level header for all supported devices. This value determines the maximum length of the
outgoing IP packet containing a BOOTP message.

This routine must be called before using any other library routines. The routine is called
automatically if INCLUDE_BOOTP is defined at the time the system is built and uses the
BOOTP_MAXSIZE configuration setting for the maxSize parameter.

RETURNS OK, or ERROR if initialization fails.

ERRNO S_bootpLib_MEM_ERROR

SEE ALSO bootpLib

bootpMsgGet()

NAME bootpMsgGet() – send a BOOTP request message and retrieve reply

SYNOPSIS STATUS bootpMsgGet

(

struct ifnet * pIf, /* network device for message exchange */

struct in_addr * pIpDest, /* destination IP address for request */

USHORT srcPort, /* UDP source port for request */

USHORT dstPort, /* UDP destination port for request */

BOOTP_MSG * pBootpMsg, /* request template and reply storage */

u_int maxSends /* maximum number of transmit attempts */

)

DESCRIPTION This routine sends a BOOTP request using the pIf network interface and waits for a reply.
pIpDest specifies the destination IP address. It must be equal to either the broadcast
address (255.255.255.255) or the IP address of a specific BOOTP server directly reachable
using the network interface. The interface must support broadcasting in the first case.

2: Routines
bootpParamsGet()

437

B

The srcPort and dstPort arguments support sending and receiving BOOTP messages with
arbitrary UDP ports. To receive replies, any BOOTP server must send those responses to
the source port from the request. To comply with the RFC 1542 clarification, the request
message must be sent to the reserved BOOTP server port (67) using the reserved BOOTP
client port (68).

Except for the UDP port numbers, this routine only sets the bp_xid and bp_secs fields in
the outgoing BOOTP message. All other fields in that message use the values from the
pBootpMsg argument, which later holds the contents of any BOOTP reply received.

The maxSends parameter specifies the total number of requests to transmit if no reply is
received. The retransmission interval starts at 4 seconds and doubles with each attempt
up to a maximum of 64 seconds. Any subsequent retransmissions will occur at that
maximum interval. To reduce the chances of network flooding, the timeout interval before
each retransmission includes a randomized delay of plus or minus one second from the
base value. After the final transmission, this routine will wait for the current interval to
expire before returning a timeout error.

NOTE: The target must be able to respond to an ARP request for any IP address specified
in the request template’s bp_ciaddr field.

RETURNS OK, or ERROR.

ERRNO S_bootpLib_INVALID_ARGUMENT
S_bootpLib_NO_BROADCASTS
S_bootpLib_TIME_OUT

SEE ALSO bootpLib

bootpParamsGet()

NAME bootpParamsGet() – retrieve boot parameters using BOOTP

SYNOPSIS STATUS bootpParamsGet

(

struct ifnet * pIf, /* network device used by client */

u_int maxSends, /* maximum transmit attempts */

struct in_addr * pClientAddr, /* retrieved client address buffer */

struct in_addr * pServerAddr, /* buffer for server’s IP address */

char * pHostName, /* 64 byte (max) host name buffer */

char * pBootFile, /* 128 byte (max) file name buffer */

struct bootpParams * pBootpParams /* parameters descriptor */

)

VxWorks OS Libraries API Reference, 5.5
bootpParamsGet()

438

DESCRIPTION This routine performs a BOOTP message exchange according to the process described in
RFC 1542, so the server and client UDP ports are always equal to the defined values of 67
and 68.

The pIf argument indicates the network device which will be used to send and receive
BOOTP messages. The BOOTP client only supports devices attached to the IP protocol
with the MUX/END interface. The MTU size must be large enough to receive an IP packet
of 328 bytes (corresponding to the BOOTP message length of 300 bytes). The specified
device also must be capable of sending broadcast messages, unless this routine sends the
request messages directly to the IP address of a specific server.

The maxSends parameter specifies the total number of requests before this routine stops
waiting for a reply. After the final request, this routine will wait for the current interval
before returning error. The timeout interval following each request follows RFC 1542,
beginning at 4 seconds and doubling until a maximum limit of 64 seconds.

The pClientAddr parameter provides optional storage for the assigned IP address from the
yiaddr field of a BOOTP reply. Since this routine can execute before the system is capable
of accepting unicast datagrams or responding to ARP requests for a specific IP address,
the corresponding ciaddr field in the BOOTP request message is equal to zero.

The pServerAddr parameter provides optional storage for the IP address of the responding
server (from the siaddr field of a BOOTP reply). This routine broadcasts the BOOTP
request message unless this buffer is available (i.e., not NULL) and contains the explicit IP
address of a BOOTP server as a non-zero value.

The pHostName parameter provides optional storage for the server’s host name (from the
sname field of a BOOTP reply). This routine also copies any initial string in that buffer
into the sname field of the BOOTP request (which restricts booting to a specified host).

The pBootFile parameter provides optional storage for the boot file name (from the file
field of a BOOTP reply). This routine also copies any initial string in that buffer into the
file field of the BOOTP request message, which typically supplies a generic name to the
server.

The remaining fields in the BOOTP request message use the values which RFC 1542
defines. In particular, the giaddr field is set to zero and the suggested “magic cookie” is
always inserted in the (otherwise empty) vend field.

The pBootpParams argument provides access to any options defined in RFC 1533 using the
following definition:

struct bootpParams

{

struct in_addr * netmask;

unsigned short * timeOffset;

struct in_addr_list * routers;

struct in_addr_list * timeServers;

struct in_addr_list * nameServers;

struct in_addr_list * dnsServers;

2: Routines
bootpParamsGet()

439

B

struct in_addr_list * logServers;

struct in_addr_list * cookieServers;

struct in_addr_list * lprServers;

struct in_addr_list * impressServers;

struct in_addr_list * rlpServers;

char * clientName;

unsigned short * filesize;

char * dumpfile;

char * domainName;

struct in_addr * swapServer;

char * rootPath;

char * extoptPath;

unsigned char * ipForward;

unsigned char * nonlocalSourceRoute;

struct in_addr_list * policyFilter;

unsigned short * maxDgramSize;

unsigned char * ipTTL;

unsigned long * mtuTimeout;

struct ushort_list * mtuTable;

unsigned short * intfaceMTU;

unsigned char * allSubnetsLocal;

struct in_addr * broadcastAddr;

unsigned char * maskDiscover;

unsigned char * maskSupplier;

unsigned char * routerDiscover;

struct in_addr * routerDiscAddr;

struct in_addr_list * staticRoutes;

unsigned char * arpTrailers;

unsigned long * arpTimeout;

unsigned char * etherPacketType;

unsigned char * tcpTTL;

unsigned long * tcpInterval;

unsigned char * tcpGarbage;

char * nisDomain;

struct in_addr_list * nisServers;

struct in_addr_list * ntpServers;

char * vendString;

struct in_addr_list * nbnServers;

struct in_addr_list * nbddServers;

unsigned char * nbNodeType;

char * nbScope;

struct in_addr_list * xFontServers;

struct in_addr_list * xDisplayManagers;

char * nispDomain;

struct in_addr_list * nispServers;

struct in_addr_list * ipAgents;

VxWorks OS Libraries API Reference, 5.5
bootpParamsGet()

440

struct in_addr_list * smtpServers;

struct in_addr_list * pop3Servers;

struct in_addr_list * nntpServers;

struct in_addr_list * wwwServers;

struct in_addr_list * fingerServers;

struct in_addr_list * ircServers;

struct in_addr_list * stServers;

struct in_addr_list * stdaServers;

};

This structure allows the retrieval of any BOOTP option specified in RFC 1533. The list of
2-byte (unsigned short) values is defined as:

struct ushort_list

{

unsigned char num;

unsigned short * shortlist;

};

The IP address lists use the following similar definition:

struct in_addr_list

{

unsigned char num;

struct in_addr * addrlist;

};

When these lists are present, the routine stores values retrieved from the BOOTP reply in
the location indicated by the shortlist or addrlist members. The amount of space available
is indicated by the num member. When the routine returns, the num member indicates
the actual number of entries retrieved. In the case of bootpParams.policyFilter.num and
bootpParams.staticRoutes.num, the num member value should be interpreted as the
number of IP address pairs requested and received.

The contents of the BOOTP parameter descriptor implicitly selects options for retrieval
from the BOOTP server. This routine attempts to retrieve the values for any options
whose corresponding field pointers are non-NULL values. To obtain these parameters, the
BOOTP server must support the vendor-specific options described in RFC 1048 (or its
successors) and the corresponding parameters must be specified in the BOOTP server
database. Where meaningful, the values are returned in host byte order.

The BOOTP request issued during system startup with this routine attempts to retrieve a
subnet mask for the boot device, in addition to the host and client addresses and the boot
file name.

RETURNS OK, or ERROR if unsuccessful.

SEE ALSO bootpLib, bootLib, RFC 1048, RFC 1533

2: Routines
bootStructToString()

441

B
bootStringToStruct()

NAME bootStringToStruct() – interpret the boot parameters from the boot line

SYNOPSIS char *bootStringToStruct

(

char * bootString, /* boot line to be parsed */

BOOT_PARAMS * pBootParams /* where to return parsed boot line */

)

DESCRIPTION This routine parses the ASCII string and returns the values into the provided parameters.

For a description of the format of the boot line, see the manual entry for bootLib

RETURNS A pointer to the last character successfully parsed plus one (points to EOS, if OK). The
entire boot line is parsed.

SEE ALSO bootLib

bootStructToString()

NAME bootStructToString() – construct a boot line

SYNOPSIS STATUS bootStructToString

(

char * paramString, /* where to return the encoded boot line */

BOOT_PARAMS * pBootParams /* boot line structure to be encoded */

)

DESCRIPTION This routine encodes a boot line using the specified boot parameters.

For a description of the format of the boot line, see the manual entry for bootLib.

RETURNS OK.

SEE ALSO bootLib

VxWorks OS Libraries API Reference, 5.5
bpfDevCreate()

442

bpfDevCreate()

NAME bpfDevCreate() – create Berkeley Packet Filter device

SYNOPSIS STATUS bpfDevCreate

(

char * pDevName, /* I/O system device name */

int numUnits, /* number of device units */

int bufSize /* BPF device block size (0 for default) */

)

DESCRIPTION This routine creates a Berkeley Packet Filter device. Each of the numUnits units
corresponds to a single available file descriptor for monitoring a network device. The
pDevName parameter provides the name of the BPF device to the I/O system. The default
name of “/bpf” (assigned if pDevName is NULL) produces units named “/bpf0”, “/bpf1”,
etc., up to the numUnits limit.

RETURNS OK, or ERROR if device creation failed.

ERRNO S_ioLib_NO_DRIVER

SEE ALSO bpfDrv

bpfDevDelete()

NAME bpfDevDelete() – destroy Berkeley Packet Filter device

SYNOPSIS STATUS bpfDevDelete

(

char * pDevName /* name of BPF device to remove */

)

DESCRIPTION This routine removes a Berkeley Packet Filter device and releases all allocated memory. It
will close any open files using the device.

RETURNS OK, or ERROR if device not found

ERRNO S_ioLib_NO_DRIVER

SEE ALSO bpfDrv

2: Routines
bsearch()

443

B
bpfDrv()

NAME bpfDrv() – initialize the BPF driver

SYNOPSIS STATUS bpfDrv (void)

DESCRIPTION This routine installs the Berkeley Packet Filter driver for access through the I/O system. It
is required before performing any I/O operations and is executed automatically if
INCLUDE_BPF is defined at the time the system is built. Subsequent calls to the routine
just count the number of users with BPF access.

RETURNS OK, or ERROR if initialization fails.

ERRNO N/A

SEE ALSO bpfDrv

bsearch()

NAME bsearch() – perform a binary search (ANSI)

SYNOPSIS void * bsearch

(

const void * key, /* element to match */

const void * base0, /* initial element in array */

size_t nmemb, /* array to search */

size_t size, /* size of array element */

int (* compar) (const void * , const void *)

/* comparison function */

)

DESCRIPTION This routine searches an array of nmemb objects, the initial element of which is pointed to
by base0, for an element that matches the object pointed to by key. The size of each element
of the array is specified by size.

The comparison function pointed to by compar is called with two arguments that point to
the key object and to an array element, in that order. The function shall return an integer
less than, equal to, or greater than zero if the key object is considered, respectively, to be
less than, to match, or to be greater than the array element. The array shall consist of all
the elements that compare greater than the key object, in that order.

VxWorks OS Libraries API Reference, 5.5
bswap()

444

INCLUDE FILES stdlib.h

RETURNS A pointer to a matching element of the array, or a NULL pointer if no match is found. If
two elements compare as equal, which element is matched is unspecified.

SEE ALSO ansiStdlib

bswap()

NAME bswap() – swap buffers

SYNOPSIS void bswap

(

char * buf1, /* pointer to first buffer */

char * buf2, /* pointer to second buffer */

int nbytes /* number of bytes to swap */

)

DESCRIPTION This routine exchanges the first nbytes of the two specified buffers.

RETURNS N/A

SEE ALSO bLib

bzero()

NAME bzero() – zero out a buffer

SYNOPSIS void bzero

(

char * buffer, /* buffer to be zeroed */

int nbytes /* number of bytes in buffer */

)

DESCRIPTION This routine fills the first nbytes characters of the specified buffer with 0.

RETURNS N/A

SEE ALSO bLib

2: Routines
cache4kcLibInit()

445

C

c()

NAME c() – continue from a breakpoint

SYNOPSIS STATUS c

(

int task, /* task that should proceed from breakpoint */

INSTR * addr, /* address to continue at; 0 = next instruction */

)

DESCRIPTION This routine continues the execution of a task that has stopped at a breakpoint.

To execute, enter:

-> c [task [,addr[,addr1]]]

If task is omitted or zero, the last task referenced is assumed. If addr is non-zero, the
program counter is changed to addr; if addr1 is non-zero, the next program counter is
changed to addr1, and the task is continued.

WARNING: When a task is continued, c() does not distinguish between a suspended task
or a task suspended by the debugger. Therefore, its use should be restricted to only those
tasks being debugged.

RETURNS OK, or ERROR if the specified task does not exist.

SEE ALSO dbgLib, tr(), VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s Guide:
Shell

cache4kcLibInit()

NAME cache4kcLibInit() – initialize the 4kc cache library

SYNOPSIS STATUS cache4kcLibInit

(

CACHE_MODE instMode, /* instruction cache mode */

CACHE_MODE dataMode, /* data cache mode */

UINT32 iCacheSize,

UINT32 iCacheLineSize,

UINT32 dCacheSize,

UINT32 dCacheLineSize

)

VxWorks OS Libraries API Reference, 5.5
cacheArchClearEntry()

446

DESCRIPTION This routine initializes the function pointers for the 4kc cache library. The board support
package can select this cache library by assigning the function pointer sysCacheLibInit to
cache4kcLibInit().

RETURNS OK.

SEE ALSO cache4kcLib

cacheArchClearEntry()

NAME cacheArchClearEntry() – clear an entry from a cache (68K, x86)

SYNOPSIS STATUS cacheArchClearEntry

(

CACHE_TYPE cache, /* cache to clear entry for */

void * address /* entry to clear */

)

DESCRIPTION This routine clears a specified entry from the specified cache.

For 68040 processors, this routine clears the cache line from the cache in which the cache
entry resides.

For the MC68060 processor, when the instruction cache is cleared (invalidated) the branch
cache is also invalidated by the hardware. One line in the branch cache cannot be
invalidated so each time the branch cache is entirely invalidated.

For 386 family processors do not have a cache, thus it does nothing. The 486, P5(Pentium),
and P6(PentiumPro, II, III) family processors do have a cache but does not support a line
by line cache control, thus it performs WBINVD instruction. The P7(Pentium4) family
processors support the line by line cache control with CLFLUSH instruction, thus flushes
the specified cache line.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

SEE ALSO cacheArchLib

2: Routines
cacheArchLibInit()

447

C

cacheArchLibInit()

NAME cacheArchLibInit() – initialize the cache library

SYNOPSIS STATUS cacheArchLibInit

(

CACHE_MODE instMode, /* instruction cache mode */

CACHE_MODE dataMode /* data cache mode */

)

DESCRIPTION This routine initializes the cache library for the following processor cache families:
Motorola 68K, Intel 960, Intel x86, PowerPC ARM, and the Solaris and Windows
simulators. It initializes the function pointers and configures the caches to the specified
cache modes.

68K PROCESSORS The caching modes vary for members of the 68K processor family:

The write-through, copy-back, serial, non-serial, precise and non precise modes change
the state of the data transparent translation register (DTTR0) CM bits. Only DTTR0 is
modified, since it typically maps DRAM space.

x86 PROCESSORS The caching mode CACHE_WRITETHROUGH is available for the 486 family processors.
The caching mode CACHE_COPYBACK becomes available for the P5(Pentium) family

68020 CACHE_WRITETHROUGH (instruction cache only)
68030 CACHE_WRITETHROUGH

CACHE_BURST_ENABLE

CACHE_BURST_DISABLE

CACHE_WRITEALLOCATE (data cache only)
CACHE_NO_WRITEALLOCATE (data cache only)

68040 CACHE_WRITETHROUGH

CACHE_COPYBACK (data cache only)
CACHE_INH_SERIAL (data cache only)
CACHE_INH_NONSERIAL (data cache only)
CACHE_BURST_ENABLE (data cache only)
CACHE_NO_WRITEALLOCATE (data cache only)

68060 CACHE_WRITETHROUGH

CACHE_COPYBACK (data cache only)
CACHE_INH_PRECISE (data cache only)
CACHE_INH_IMPRECISE (data cache only)
CACHE_BURST_ENABLE (data cache only)

VxWorks OS Libraries API Reference, 5.5
cacheArchLibInit()

448

processors. The caching mode (CACHE_COPYBACK | CACHE_SNOOP_ENABLE) becomes
available for the P6(PentiumPro, II, III) and P7(Pentium4) family processors.

POWER PC PROCESSORS

Modes should be set before caching is enabled. If two contradictory flags are set (for
example, enable/disable), no action is taken for any of the input flags.

ARM PROCESSORS

The caching capabilities and modes vary for members of the ARM processor family. All
caches are provided on-chip, so cache support is mostly an architecture issue, not a BSP
issue. However, the memory map is BSP-specific and some functions need knowledge of
the memory map, so they have to be provided in the BSP.

ARM7TDMI (In ARM or Thumb state)
No cache or MMU at all. Dummy routine provided, so that
INCLUDE_CACHE_SUPPORT can be defined (the default BSP configuration).

ARM710A
Combined instruction and data cache. Actually a write-through cache, but separate
write-buffer effectively makes this a copy-back cache if the write-buffer is enabled.
Use write-through/copy-back argument to decide whether to enable write buffer.
Data and instruction cache modes must be identical.

ARM810
Combined instruction and data cache. Write-through and copy-back cache modes,
but separate write-buffer effectively makes even write-through a copy-back cache as
all writes are buffered, when cache is enabled. Data and instruction cache modes
must be identical.

ARMSA110
Separate instruction and data caches. Write-through and copy-back cache mode for
data, but separate write-buffer effectively makes even write-through a copy-back
cache as all writes are buffered, when cache is enabled.

RETURNS OK

SEE ALSO cacheArchLib

2: Routines
cacheClear()

449

C

cacheAuLibInit()

NAME cacheAuLibInit() – initialize the Au cache library

SYNOPSIS STATUS cacheAuLibInit

(

CACHE_MODE instMode, /* instruction cache mode */

CACHE_MODE dataMode, /* data cache mode */

UINT32 iCacheSize,

UINT32 iCacheLineSize,

UINT32 dCacheSize,

UINT32 dCacheLineSize

)

DESCRIPTION This routine initializes the function pointers for the Au cache library. The board support
package can select this cache library by assigning the function pointer sysCacheLibInit to
cacheAuLibInit().

RETURNS OK.

SEE ALSO cacheAuLib

cacheClear()

NAME cacheClear() – clear all or some entries from a cache

SYNOPSIS STATUS cacheClear

(

CACHE_TYPE cache, /* cache to clear */

void * address, /* virtual address */

size_t bytes /* number of bytes to clear */

)

DESCRIPTION This routine flushes and invalidates all or some entries in the specified cache.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

SEE ALSO cacheLib

VxWorks OS Libraries API Reference, 5.5
cacheCy604ClearLine()

450

cacheCy604ClearLine()

NAME cacheCy604ClearLine() – clear a line from a CY7C604 cache

SYNOPSIS STATUS cacheCy604ClearLine

(

CACHE_TYPE cache, /* cache to clear */

void * address /* virtual address */

)

DESCRIPTION This routine flushes and invalidates a specified line from the specified CY7C604 cache.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

SEE ALSO cacheCy604Lib

cacheCy604ClearPage()

NAME cacheCy604ClearPage() – clear a page from a CY7C604 cache

SYNOPSIS STATUS cacheCy604ClearPage

(

CACHE_TYPE cache, /* cache to clear */

void * address /* virtual address */

)

DESCRIPTION This routine flushes and invalidates the specified page from the specified CY7C604 cache.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

SEE ALSO cacheCy604Lib

2: Routines
cacheCy604ClearSegment()

451

C

cacheCy604ClearRegion()

NAME cacheCy604ClearRegion() – clear a region from a CY7C604 cache

SYNOPSIS STATUS cacheCy604ClearRegion

(

CACHE_TYPE cache, /* cache to clear */

void * address /* virtual address */

)

DESCRIPTION This routine flushes and invalidates a specified region from the specified CY7C604 cache.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

SEE ALSO cacheCy604Lib

cacheCy604ClearSegment()

NAME cacheCy604ClearSegment() – clear a segment from a CY7C604 cache

SYNOPSIS STATUS cacheCy604ClearSegment

(

CACHE_TYPE cache, /* cache to clear */

void * address /* virtual address */

)

DESCRIPTION This routine flushes and invalidates a specified segment from the specified CY7C604
cache.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

SEE ALSO cacheCy604Lib

VxWorks OS Libraries API Reference, 5.5
cacheCy604LibInit()

452

cacheCy604LibInit()

NAME cacheCy604LibInit() – initialize the Cypress CY7C604 cache library

SYNOPSIS STATUS cacheCy604LibInit

(

CACHE_MODE instMode, /* instruction cache mode */

CACHE_MODE dataMode /* data cache mode */

)

DESCRIPTION This routine initializes the function pointers for the Cypress CY7C604 cache library. The
board support package can select this cache library by assigning the function pointer
sysCacheLibInit to cacheCy604LibInit().

The available cache modes are CACHE_WRITETHROUGH and CACHE_COPYBACK.
Write-through uses “no-write allocate”; copyback uses “write allocate.”

RETURNS OK, or ERROR if cache control is not supported.

SEE ALSO cacheCy604Lib

cacheDisable()

NAME cacheDisable() – disable the specified cache

SYNOPSIS STATUS cacheDisable

(

CACHE_TYPE cache /* cache to disable */

)

DESCRIPTION This routine flushes the cache and disables the instruction or data cache.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

SEE ALSO cacheLib

2: Routines
cacheDmaMalloc()

453

C

cacheDmaFree()

NAME cacheDmaFree() – free the buffer acquired with cacheDmaMalloc()

SYNOPSIS STATUS cacheDmaFree

(

void * pBuf /* pointer to malloc/free buffer */

)

DESCRIPTION This routine frees the buffer returned by cacheDmaMalloc().

RETURNS OK, or ERROR if the cache control is not supported.

SEE ALSO cacheLib

cacheDmaMalloc()

NAME cacheDmaMalloc() – allocate a cache-safe buffer for DMA devices and drivers

SYNOPSIS void * cacheDmaMalloc

(

size_t bytes /* number of bytes to allocate */

)

DESCRIPTION This routine returns a pointer to a section of memory that will not experience any cache
coherency problems. Function pointers in the CACHE_FUNCS structure provide access to
DMA support routines.

RETURNS A pointer to the cache-safe buffer, or NULL.

SEE ALSO cacheLib

VxWorks OS Libraries API Reference, 5.5
cacheDrvFlush()

454

cacheDrvFlush()

NAME cacheDrvFlush() – flush the data cache for drivers

SYNOPSIS STATUS cacheDrvFlush

(

CACHE_FUNCS * pFuncs, /* pointer to CACHE_FUNCS */

void * address, /* virtual address */

size_t bytes /* number of bytes to flush */

)

DESCRIPTION This routine flushes the data cache entries using the function pointer from the specified
set.

RETURNS OK, or ERROR if the cache control is not supported.

SEE ALSO cacheLib

cacheDrvInvalidate()

NAME cacheDrvInvalidate() – invalidate data cache for drivers

SYNOPSIS STATUS cacheDrvInvalidate

(

CACHE_FUNCS * pFuncs, /* pointer to CACHE_FUNCS */

void * address, /* virtual address */

size_t bytes /* no. of bytes to invalidate */

)

DESCRIPTION This routine invalidates the data cache entries using the function pointer from the
specified set.

RETURNS OK, or ERROR if the cache control is not supported.

SEE ALSO cacheLib

2: Routines
cacheDrvVirtToPhys()

455

C

cacheDrvPhysToVirt()

NAME cacheDrvPhysToVirt() – translate a physical address for drivers

SYNOPSIS void * cacheDrvPhysToVirt

(

CACHE_FUNCS * pFuncs, /* pointer to CACHE_FUNCS */

void * address /* physical address */

)

DESCRIPTION This routine performs a physical-to-virtual address translation using the function pointer
from the specified set.

RETURNS The virtual address that maps to the physical address argument.

SEE ALSO cacheLib

cacheDrvVirtToPhys()

NAME cacheDrvVirtToPhys() – translate a virtual address for drivers

SYNOPSIS void * cacheDrvVirtToPhys

(

CACHE_FUNCS * pFuncs, /* pointer to CACHE_FUNCS */

void * address /* virtual address */

)

DESCRIPTION This routine performs a virtual-to-physical address translation using the function pointer
from the specified set.

RETURNS The physical address translation of a virtual address argument.

SEE ALSO cacheLib

VxWorks OS Libraries API Reference, 5.5
cacheEnable()

456

cacheEnable()

NAME cacheEnable() – enable the specified cache

SYNOPSIS STATUS cacheEnable

(

CACHE_TYPE cache /* cache to enable */

)

DESCRIPTION This routine invalidates the cache tags and enables the instruction or data cache.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

SEE ALSO cacheLib

cacheFlush()

NAME cacheFlush() – flush all or some of a specified cache

SYNOPSIS STATUS cacheFlush

(

CACHE_TYPE cache, /* cache to flush */

void * address, /* virtual address */

size_t bytes /* number of bytes to flush */

)

DESCRIPTION This routine flushes (writes to memory) all or some of the entries in the specified cache.
Depending on the cache design, this operation may also invalidate the cache tags. For
write-through caches, no work needs to be done since RAM already matches the cached
entries. Note that write buffers on the chip may need to be flushed to complete the flush.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

SEE ALSO cacheLib

2: Routines
cacheLibInit()

457

C

cacheInvalidate()

NAME cacheInvalidate() – invalidate all or some of a specified cache

SYNOPSIS STATUS cacheInvalidate

(

CACHE_TYPE cache, /* cache to invalidate */

void * address, /* virtual address */

size_t bytes /* number of bytes to invalidate */

)

DESCRIPTION This routine invalidates all or some of the entries in the specified cache. Depending on the
cache design, the invalidation may be similar to the flush, or one may invalidate the tags
directly.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

SEE ALSO cacheLib

cacheLibInit()

NAME cacheLibInit() – initialize the cache library for a processor architecture

SYNOPSIS STATUS cacheLibInit

(

CACHE_MODE instMode, /* inst cache mode */

CACHE_MODE dataMode /* data cache mode */

)

DESCRIPTION This routine initializes the function pointers for the appropriate cache library. For
architectures with more than one cache implementation, the board support package must
select the appropriate cache library with sysCacheLibInit. Systems without cache
coherency problems (i.e., bus snooping) should NULLify the flush and invalidate function
pointers in the cacheLib structure to enhance driver and overall system performance. This
can be done in sysHwInit().

RETURNS OK, or ERROR if there is no cache library installed.

SEE ALSO cacheLib

VxWorks OS Libraries API Reference, 5.5
cacheLock()

458

cacheLock()

NAME cacheLock() – lock all or part of a specified cache

SYNOPSIS STATUS cacheLock

(

CACHE_TYPE cache, /* cache to lock */

void * address, /* virtual address */

size_t bytes /* number of bytes to lock */

)

DESCRIPTION This routine locks all (global) or some (local) entries in the specified cache. Cache locking
is useful in real-time systems. Not all caches can perform locking.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

SEE ALSO cacheLib

cacheMb930ClearLine()

NAME cacheMb930ClearLine() – clear a line from an MB86930 cache

SYNOPSIS STATUS cacheMb930ClearLine

(

CACHE_TYPE cache, /* cache to clear entry */

void * address /* virtual address */

)

DESCRIPTION This routine flushes and invalidates a specified line from the specified MB86930 cache.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

SEE ALSO cacheMb930Lib

2: Routines
cacheMb930LockAuto()

459

C

cacheMb930LibInit()

NAME cacheMb930LibInit() – initialize the Fujitsu MB86930 cache library

SYNOPSIS STATUS cacheMb930LibInit

(

CACHE_MODE instMode, /* instruction cache mode */

CACHE_MODE dataMode /* data cache mode */

)

DESCRIPTION This routine installs the function pointers for the Fujitsu MB86930 cache library and
performs other necessary cache library initialization. The board support package selects
this cache library by setting the function pointer sysCacheLibInit equal to
cacheMb930LibInit(). Note that sysCacheLibInit must be initialized on declaration,
placing it in the “.data” section.

This routine invalidates the cache tags and leaves the cache disabled. It should only be
called during initialization, before any cache locking has taken place.

The only available mode for the MB86930 is CACHE_WRITETHROUGH.

RETURNS OK, or ERROR if cache control is not supported.

SEE ALSO cacheMb930Lib

cacheMb930LockAuto()

NAME cacheMb930LockAuto() – enable MB86930 automatic locking of kernel instructions/data

SYNOPSIS void cacheMb930LockAuto (void)

DESCRIPTION This routine enables automatic cache locking of kernel instructions and data into MB86930
caches. Once entries are locked into the caches, they cannot be unlocked.

RETURNS N/A

SEE ALSO cacheMb930Lib

VxWorks OS Libraries API Reference, 5.5
cachePipeFlush()

460

cachePipeFlush()

NAME cachePipeFlush() – flush processor write buffers to memory

SYNOPSIS STATUS cachePipeFlush (void)

DESCRIPTION This routine forces the processor output buffers to write their contents to RAM. A cache
flush may have forced its data into the write buffers, then the buffers need to be flushed to
RAM to maintain coherency.

RETURNS OK, or ERROR if the cache control is not supported.

SEE ALSO cacheLib

cacheR3kLibInit()

NAME cacheR3kLibInit() – initialize the R3000 cache library

SYNOPSIS STATUS cacheR3kLibInit

(

CACHE_MODE instMode, /* instruction cache mode */

CACHE_MODE dataMode /* data cache mode */

)

DESCRIPTION This routine initializes the function pointers for the R3000 cache library. The board
support package can select this cache library by calling this routine.

RETURNS OK.

SEE ALSO cacheR3kLib

2: Routines
cacheR5kLibInit()

461

C

cacheR4kLibInit()

NAME cacheR4kLibInit() – initialize the R4000 cache library

SYNOPSIS STATUS cacheR4kLibInit

(

CACHE_MODE instMode, /* instruction cache mode */

CACHE_MODE dataMode, /* data cache mode */

UINT32 iCacheSize,

UINT32 iCacheLineSize,

UINT32 dCacheSize,

UINT32 dCacheLineSize,

UINT32 sCacheSize,

UINT32 sCacheLineSize

)

DESCRIPTION This routine initializes the function pointers for the R4000 cache library. The board
support package can select this cache library by assigning the function pointer
sysCacheLibInit to cacheR4kLibInit().

RETURNS OK.

SEE ALSO cacheR4kLib

cacheR5kLibInit()

NAME cacheR5kLibInit() – initialize the R5000 cache library

SYNOPSIS STATUS cacheR5kLibInit

(

CACHE_MODE instMode, /* instruction cache mode */

CACHE_MODE dataMode, /* data cache mode */

UINT32 iCacheSize,

UINT32 iCacheLineSize,

UINT32 dCacheSize,

UINT32 dCacheLineSize,

UINT32 sCacheSize,

UINT32 sCacheLineSize

)

VxWorks OS Libraries API Reference, 5.5
cacheR7kLibInit()

462

DESCRIPTION This routine initializes the function pointers for the R5000 cache library. The board
support package can select this cache library by assigning the function pointer
sysCacheLibInit to cacheR5kLibInit().

RETURNS OK.

SEE ALSO cacheR5kLib

cacheR7kLibInit()

NAME cacheR7kLibInit() – initialize the R7000 cache library

SYNOPSIS STATUS cacheR7kLibInit

(

CACHE_MODE instMode, /* instruction cache mode */

CACHE_MODE dataMode, /* data cache mode */

UINT32 iCacheSize,

UINT32 iCacheLineSize,

UINT32 dCacheSize,

UINT32 dCacheLineSize,

UINT32 sCacheSize,

UINT32 sCacheLineSize,

UINT32 tCacheSize,

UINT32 tCacheLineSize

)

DESCRIPTION This routine initializes the function pointers for the R7000 cache library. The board
support package can select this cache library by assigning the function pointer
sysCacheLibInit to cacheR7kLibInit().

RETURNS OK.

SEE ALSO cacheR7kLib

2: Routines
cacheR32kLibInit()

463

C

cacheR10kLibInit()

NAME cacheR10kLibInit() – initialize the R10000 cache library

SYNOPSIS STATUS cacheR10kLibInit

(

CACHE_MODE instMode, /* instruction cache mode */

CACHE_MODE dataMode, /* data cache mode */

UINT32 iCacheSize,

UINT32 iCacheLineSize,

UINT32 dCacheSize,

UINT32 dCacheLineSize,

UINT32 sCacheSize,

UINT32 sCacheLineSize

)

DESCRIPTION This routine initializes the function pointers for the R10000 cache library. The board
support package can select this cache library by assigning the function pointer
sysCacheLibInit to cacheR10kLibInit().

RETURNS OK.

SEE ALSO cacheR10kLib

cacheR32kLibInit()

NAME cacheR32kLibInit() – initialize the RC32364 cache library

SYNOPSIS STATUS cacheR32kLibInit

(

CACHE_MODE instMode, /* instruction cache mode */

CACHE_MODE dataMode /* data cache mode */

)

DESCRIPTION This routine initializes the function pointers for the RC32364 cache library. The board
support package can select this cache library by assigning the function pointer
sysCacheLibInit to cacheR32kLibInit().

This routine determines the cache size and cache line size for the instruction and data
cache automatically by reading the CP0 configuration register. This is different than most

VxWorks OS Libraries API Reference, 5.5
cacheR32kMalloc()

464

of the other cache library initialization calls, which take the cache and line sizes as
parameters.

RETURNS OK.

SEE ALSO cacheR32kLib

cacheR32kMalloc()

NAME cacheR32kMalloc() – allocate a cache-safe buffer, if possible

SYNOPSIS void * cacheR32kMalloc

(

size_t bytes

)

DESCRIPTION This routine will attempt to return a pointer to a section of memory that will not
experience any cache coherency problems.

RETURNS A pointer to the non-cached buffer, or NULL.

SEE ALSO cacheR32kLib

cacheR33kLibInit()

NAME cacheR33kLibInit() – initialize the R33000 cache library

SYNOPSIS STATUS cacheR33kLibInit

(

CACHE_MODE instMode, /* instruction cache mode */

CACHE_MODE dataMode /* data cache mode */

)

DESCRIPTION This routine initializes the function pointers for the R33000 cache library. The board
support package can select this cache library by calling this routine.

RETURNS OK.

SEE ALSO cacheR33kLib

2: Routines
cacheSh7040LibInit()

465

C

cacheR333x0LibInit()

NAME cacheR333x0LibInit() – initialize the R333x0 cache library

SYNOPSIS STATUS cacheR333x0LibInit

(

CACHE_MODE instMode, /* instruction cache mode */

CACHE_MODE dataMode /* data cache mode */

)

DESCRIPTION This routine initializes the function pointers for the R333x0 cache library. The board
support package can select this cache library by calling this routine.

RETURNS OK.

SEE ALSO cacheR333x0Lib

cacheSh7040LibInit()

NAME cacheSh7040LibInit() – initialize the SH7040 cache library

SYNOPSIS STATUS cacheSh7040LibInit

(

CACHE_MODE instMode, /* instruction cache mode */

CACHE_MODE dataMode /* data cache mode (ignored) */

)

DESCRIPTION This routine initializes the cache library for the Hitachi SH7040 processors. It initializes the
function pointers and configures the caches to the specified cache modes. Modes should
be set before caching is enabled. If two complementary flags are set (enable/disable), no
action is taken for any of the input flags.

Next caching modes are available for the SH7040 processors:

SH7040: CACHE_WRITETHROUGH (cache for instruction)
CACHE_SH7040_DRAM (enable caching for DRAM space)
CACHE_SH7040_CS3 (enable caching for CS3 space)
CACHE_SH7040_CS2 (enable caching for CS2 space)
CACHE_SH7040_CS1 (enable caching for CS1 space)
CACHE_SH7040_CS0 (enable caching for CS0 space)

VxWorks OS Libraries API Reference, 5.5
cacheSh7604LibInit()

466

RETURNS OK, or ERROR if the specified caching modes were invalid.

SEE ALSO cacheSh7040Lib

cacheSh7604LibInit()

NAME cacheSh7604LibInit() – initialize the SH7604/SH7615 cache library

SYNOPSIS STATUS cacheSh7604LibInit

(

CACHE_MODE instMode, /* instruction cache mode (ignored) */

CACHE_MODE dataMode /* data cache mode */

)

DESCRIPTION This routine initializes the cache library for the Hitachi SH7604/SH7615 processor. It
initializes the function pointers and configures the caches to the specified cache modes.
Modes should be set before caching is enabled.

The following caching modes are available for the SH7604/SH7615 processor:

RETURNS OK, or ERROR if the specified caching modes were invalid.

SEE ALSO cacheSh7604Lib

cacheSh7622LibInit()

NAME cacheSh7622LibInit() – initialize the SH7622 cache library

SYNOPSIS STATUS cacheSh7622LibInit

(

CACHE_MODE instMode, /* instruction cache mode */

CACHE_MODE dataMode /* data cache mode */

)

DESCRIPTION This routine initializes the cache library for the Hitachi SH7622 processor. It initializes the
function pointers and configures the caches to the specified cache modes. Modes should

SH7604: CACHE_WRITETHROUGH (cache for instruction and data)
CACHE_2WAY_MODE (2KB 2-way cache + 2KB RAM)

2: Routines
cacheSh7700LibInit()

467

C

be set before caching is enabled. If two complementary flags are set (enable/disable), no
action is taken for any of the input flags. Data cache and instruction cache are mixed
together in the SH7622.

Next caching modes are available for the SH7622 processor:

RETURNS OK, or ERROR if the specified caching modes were invalid.

SEE ALSO cacheSh7622Lib

cacheSh7700LibInit()

NAME cacheSh7700LibInit() – initialize the SH7700 cache library

SYNOPSIS STATUS cacheSh7700LibInit

(

CACHE_MODE instMode, /* instruction cache mode (ignored) */

CACHE_MODE dataMode /* data cache mode */

)

DESCRIPTION This routine initializes the cache library for the Hitachi SH7700 processor. It initializes the
function pointers and configures the caches to the specified cache modes. Modes should
be set before caching is enabled. If two complementary flags are set (enable/disable), no
action is taken for any of the input flags.

The following caching modes are available for the SH7700 processor:

The CACHE_DMA_BYPASS_Px modes allow to allocate “cache-safe” buffers without
MMU. If none of CACHE_DMA_BYPASS_Px modes is specified, cacheDmaMalloc()
returns a cache-safe buffer on logical space, which is created by the MMU. If
CACHE_DMA_BYPASS_P0 is selected, cacheDmaMalloc() returns a cache-safe buffer on

SH7622: CACHE_WRITETHROUGH (cache for instruction and data)
CACHE_COPYBACK_P1 (write-back cache for P1)

SH7700: CACHE_WRITETHROUGH (cache for instruction and data)
CACHE_COPYBACK (cache for instruction and data)
CACHE_COPYBACK_P1 (copy-back cache for P1, SH7709 only)
CACHE_2WAY_MODE (4KB 2-way cache + 4KB RAM)
CACHE_1WAY_MODE (2KB direct mapped cache, SH7702 only)
CACHE_DMA_BYPASS_P0 (allocate DMA buffer to P2, free it to P0)
CACHE_DMA_BYPASS_P1 (allocate DMA buffer to P2, free it to P1)
CACHE_DMA_BYPASS_P3 (allocate DMA buffer to P2, free it to P3)

VxWorks OS Libraries API Reference, 5.5
cacheSh7729LibInit()

468

P2 space, and cacheDmaFree() releases the buffer to P0 space. Namely, if the system
memory partition is located on P0, cache-safe buffers can be allocated and freed without
MMU, by selecting CACHE_DMA_BYPASS_P0.

RETURNS OK, or ERROR.

SEE ALSO cacheSh7700Lib

cacheSh7729LibInit()

NAME cacheSh7729LibInit() – initialize the SH7729 cache library

SYNOPSIS STATUS cacheSh7729LibInit

(

CACHE_MODE instMode, /* instruction cache mode (ignored) */

CACHE_MODE dataMode /* data cache mode */

)

DESCRIPTION This routine initializes the cache library for the Hitachi SH7729 processor. It initializes the
function pointers and configures the caches to the specified cache modes. Modes should
be set before caching is enabled. If two complementary flags are set (enable/disable), no
action is taken for any of the input flags.

The following caching modes are available for the SH7729 processor:

The CACHE_DMA_BYPASS_Px modes allow to allocate “cache-safe” buffers without
MMU. If none of CACHE_DMA_BYPASS_Px modes is specified, cacheDmaMalloc()
returns a cache-safe buffer on logical space, which is created by the MMU. If
CACHE_DMA_BYPASS_P0 is selected, cacheDmaMalloc() returns a cache-safe buffer on
P2 space, and cacheDmaFree() releases the buffer to P0 space. Namely, if the system
memory partition is located on P0, cache-safe buffers can be allocated and freed without
MMU, by selecting CACHE_DMA_BYPASS_P0.

RETURNS OK, or ERROR.

SEE ALSO cacheSh7729Lib

SH7729: CACHE_WRITETHROUGH (cache for instruction and data)
CACHE_COPYBACK (cache for instruction and data)
CACHE_COPYBACK_P1 (copy-back cache for P1)
CACHE_DMA_BYPASS_P0 (allocate DMA buffer to P2, free it to P0)
CACHE_DMA_BYPASS_P1 (allocate DMA buffer to P2, free it to P1)
CACHE_DMA_BYPASS_P3 (allocate DMA buffer to P2, free it to P3)

2: Routines
cacheSh7750LibInit()

469

C

cacheSh7750LibInit()

NAME cacheSh7750LibInit() – initialize the SH7750 cache library

SYNOPSIS STATUS cacheSh7750LibInit

(

CACHE_MODE instMode, /* instruction cache mode */

CACHE_MODE dataMode /* data cache mode */

)

DESCRIPTION This routine initializes the cache library for the Hitachi SH7750 processor. It initializes the
function pointers and configures the caches to the specified cache modes. Modes should
be set before caching is enabled. If two complementary flags are set (enable/disable), no
action is taken for any of the input flags.

The following caching modes are available for the SH7750 processor:

The CACHE_DMA_BYPASS_Px modes allow to allocate “cache-safe” buffers without
MMU. If none of CACHE_DMA_BYPASS_Px modes is specified, cacheDmaMalloc()
returns a cache-safe buffer on logical space, which is created by the MMU. If
CACHE_DMA_BYPASS_P0 is selected, cacheDmaMalloc() returns a cache-safe buffer on
P2 space, and cacheDmaFree() releases the buffer to P0 space. Namely, if the system
memory partition is located on P0, cache-safe buffers can be allocated and freed without
MMU, by selecting CACHE_DMA_BYPASS_P0.

RETURNS OK, or ERROR if specified cache mode is invalid.

SEE ALSO cacheSh7750Lib

SH7750: CACHE_WRITETHROUGH

CACHE_COPYBACK (copy-back cache for P0/P3, data cache only)
CACHE_COPYBACK_P1 (copy-back cache for P1, data cache only)
CACHE_RAM_MODE (use half of cache as RAM, data cache only)
CACHE_2WAY_MODE (use RAM in 2way associ. mode, data cache only)
CACHE_A25_INDEX (use A25 as MSB of cache index)
CACHE_DMA_BYPASS_P0 (allocate DMA buffer to P2, free it to P0)
CACHE_DMA_BYPASS_P1 (allocate DMA buffer to P2, free it to P1)
CACHE_DMA_BYPASS_P3 (allocate DMA buffer to P2, free it to P3)

VxWorks OS Libraries API Reference, 5.5
cacheStoreBufDisable()

470

cacheStoreBufDisable()

NAME cacheStoreBufDisable() – disable the store buffer (MC68060 only)

SYNOPSIS void cacheStoreBufDisable (void)

DESCRIPTION This routine resets the ESB bit of the Cache Control Register (CACR) to disable the store
buffer.

RETURNS N/A

SEE ALSO cacheArchLib

cacheStoreBufEnable()

NAME cacheStoreBufEnable() – enable the store buffer (MC68060 only)

SYNOPSIS void cacheStoreBufEnable (void)

DESCRIPTION This routine sets the ESB bit of the Cache Control Register (CACR) to enable the store
buffer. To maximize performance, the four-entry first-in-first-out (FIFO) store buffer is
used to defer pending writes to writethrough or cache-inhibited imprecise pages.

RETURNS N/A

SEE ALSO cacheArchLib

cacheSun4ClearContext()

NAME cacheSun4ClearContext() – clear a specific context from a Sun-4 cache

SYNOPSIS STATUS cacheSun4ClearContext

(

CACHE_TYPE cache, /* cache to clear */

void * address /* virtual address */

)

2: Routines
cacheSun4ClearPage()

471

C

DESCRIPTION This routine flushes and invalidates a specified context from the specified Sun-4 cache.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

SEE ALSO cacheSun4Lib

cacheSun4ClearLine()

NAME cacheSun4ClearLine() – clear a line from a Sun-4 cache

SYNOPSIS STATUS cacheSun4ClearLine

(

CACHE_TYPE cache, /* cache to clear */

void * address /* virtual address */

)

DESCRIPTION This routine flushes and invalidates a specified line from the specified Sun-4 cache.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

SEE ALSO cacheSun4Lib

cacheSun4ClearPage()

NAME cacheSun4ClearPage() – clear a page from a Sun-4 cache

SYNOPSIS STATUS cacheSun4ClearPage

(

CACHE_TYPE cache, /* cache to clear */

void * address /* virtual address */

)

DESCRIPTION This routine flushes and invalidates a specified page from the specified Sun-4 cache.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

SEE ALSO cacheSun4Lib

VxWorks OS Libraries API Reference, 5.5
cacheSun4ClearSegment()

472

cacheSun4ClearSegment()

NAME cacheSun4ClearSegment() – clear a segment from a Sun-4 cache

SYNOPSIS STATUS cacheSun4ClearSegment

(

CACHE_TYPE cache, /* cache to clear */

void * address /* virtual address */

)

DESCRIPTION This routine flushes and invalidates a specified segment from the specified Sun-4 cache.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

SEE ALSO cacheSun4Lib

cacheSun4LibInit()

NAME cacheSun4LibInit() – initialize the Sun-4 cache library

SYNOPSIS STATUS cacheSun4LibInit

(

CACHE_MODE instMode, /* instruction cache mode */

CACHE_MODE dataMode /* data cache mode */

)

DESCRIPTION This routine initializes the function pointers for the Sun Microsystems Sun-4 cache library.
The board support package can select this cache library by assigning the function pointer
sysCacheLibInit to cacheSun4LibInit().

The only available mode for the Sun-4 cache is CACHE_WRITETHROUGH.

RETURNS OK, or ERROR if cache control is not supported.

SEE ALSO cacheSun4Lib

2: Routines
cacheTiTms390LibInit()

473

C

cacheTextUpdate()

NAME cacheTextUpdate() – synchronize the instruction and data caches

SYNOPSIS STATUS cacheTextUpdate

(

void * address, /* virtual address */

size_t bytes /* number of bytes to sync */

)

DESCRIPTION This routine flushes the data cache, then invalidates the instruction cache. This operation
forces the instruction cache to fetch code that may have been created via the data path.

RETURNS OK, or ERROR if the cache control is not supported.

SEE ALSO cacheLib

cacheTiTms390LibInit()

NAME cacheTiTms390LibInit() – initialize the TI TMS390 cache library

SYNOPSIS STATUS cacheTiTms390LibInit

(

CACHE_MODE instMode, /* instruction cache mode */

CACHE_MODE dataMode /* data cache mode */

)

DESCRIPTION This routine initializes the function pointers for the TI TMS390 cache library. The board
support package can select this cache library by assigning the function pointer
sysCacheLibInit to cacheTiTms390LibInit().

The only available cache mode is CACHE_COPYBACK.

RETURNS OK, or ERROR if cache control is not supported.

SEE ALSO cacheTiTms390Lib

VxWorks OS Libraries API Reference, 5.5
cacheTiTms390PhysToVirt()

474

cacheTiTms390PhysToVirt()

NAME cacheTiTms390PhysToVirt() – translate a physical address for drivers

SYNOPSIS void * cacheTiTms390PhysToVirt

(

void * address /* physical address */

)

DESCRIPTION This routine performs a 32-bit physical to 32-bit virtual address translation in the current
context.

It works for only DRAM addresses of the first EMC.

It guesses likely virtual addresses, and checks its guesses with VM_TRANSLATE. A likely
virtual address is the same as the physical address, or some multiple of 16M less. If any
match, it succeeds. If all guesses are wrong, it fails.

RETURNS The virtual address that maps to the physical address bits [31:0] argument, or NULL if it
fails.

SEE ALSO cacheTiTms390Lib

cacheTiTms390VirtToPhys()

NAME cacheTiTms390VirtToPhys() – translate a virtual address for cacheLib

SYNOPSIS void * cacheTiTms390VirtToPhys

(

void * address /* virtual address */

)

DESCRIPTION This routine performs a 32-bit virtual to 32-bit physical address translation in the current
context.

RETURNS The physical address translation bits [31:0] of a virtual address argument, or NULL if the
virtual address is not valid, or the physical address does not fit in 32 bits.

RETURNS N/A

SEE ALSO cacheTiTms390Lib

2: Routines
cacheUnlock()

475

C

cacheTx49LibInit()

NAME cacheTx49LibInit() – initialize the Tx49 cache library

SYNOPSIS STATUS cacheTx49LibInit

(

CACHE_MODE instMode, /* instruction cache mode */

CACHE_MODE dataMode, /* data cache mode */

UINT32 iCacheSize, /* instruction cache size */

UINT32 iCacheLineSize, /* instruction cache line size */

UINT32 dCacheSize, /* data cache size */

UINT32 dCacheLineSize /* data cache line size */

)

DESCRIPTION This routine initializes the function pointers for the Tx49 cache library. The board support
package can select this cache library by assigning the function pointer sysCacheLibInit to
cacheTx49LibInit().

RETURNS OK.

SEE ALSO cacheTx49Lib

cacheUnlock()

NAME cacheUnlock() – unlock all or part of a specified cache

SYNOPSIS STATUS cacheUnlock

(

CACHE_TYPE cache, /* cache to unlock */

void * address, /* virtual address */

size_t bytes /* number of bytes to unlock */

)

DESCRIPTION This routine unlocks all (global) or some (local) entries in the specified cache. Not all
caches can perform unlocking.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

SEE ALSO cacheLib

VxWorks OS Libraries API Reference, 5.5
calloc()

476

calloc()

NAME calloc() – allocate space for an array (ANSI)

SYNOPSIS void *calloc

(

size_t elemNum, /* number of elements */

size_t elemSize /* size of elements */

)

DESCRIPTION This routine allocates a block of memory for an array that contains elemNum elements of
size elemSize. This space is initialized to zeros.

RETURNS A pointer to the block, or NULL if the call fails.

SEE ALSO memLib, American National Standard for Information Systems -Programming Language - C,
ANSI X3.159-1989: General Utilities (stdlib.h)

cbioBlkCopy()

NAME cbioBlkCopy() – block to block (sector to sector) transfer routine

SYNOPSIS STATUS cbioBlkCopy

(

CBIO_DEV_ID dev, /* CBIO handle */

block_t srcBlock, /* source start block */

block_t dstBlock, /* destination start block */

block_t numBlocks /* number of blocks to copy */

)

DESCRIPTION This routine verifies the CBIO device is valid and if so calls the devices block to block
transfer routine which makes copies of one or more blocks on the lower layer (hardware,
subordinate CBIO, or BLK_DEV). It is optimized for block to block copies on the
subordinate layer.

If the CBIO_DEV_ID passed to this routine is not a valid CBIO handle, ERROR will be
returned with errno set to S_cbioLib_INVALID_CBIO_DEV_ID

RETURNS OK if sucessful, or ERROR if the handle is invalid or the CBIO device routine returns
ERROR.

SEE ALSO cbioLib

2: Routines
cbioBytesRW()

477

C

cbioBlkRW()

NAME cbioBlkRW() – transfer blocks to or from memory

SYNOPSIS STATUS cbioBlkRW

(

CBIO_DEV_ID dev, /* CBIO handle */

block_t startBlock, /* starting block of transfer */

block_t numBlocks, /* number of blocks to transfer */

addr_t buffer, /* address of the memory buffer */

CBIO_RW rw, /* direction of transfer R/W */

cookie_t * pCookie /* pointer to cookie */

)

DESCRIPTION This routine verifies the CBIO device is valid and if so calls the devices block transfer
routine. The CBIO device performs block transfers between the device and memory.

If the CBIO_DEV_ID passed to this routine is not a valid CBIO handle, ERROR will be
returned with errno set to S_cbioLib_INVALID_CBIO_DEV_ID

RETURNS OK if successful or ERROR if the handle is invalid, or if the CBIO device routine returns
ERROR.

SEE ALSO cbioLib

cbioBytesRW()

NAME cbioBytesRW() – transfer bytes to or from memory

SYNOPSIS STATUS cbioBytesRW

(

CBIO_DEV_ID dev, /* CBIO handle */

block_t startBlock, /* starting block of the transfer */

off_t offset, /* offset into block in bytes */

addr_t buffer, /* address of data buffer */

size_t nBytes, /* number of bytes to transfer */

CBIO_RW rw, /* direction of transfer R/W */

cookie_t * pCookie /* pointer to cookie */

)

VxWorks OS Libraries API Reference, 5.5
cbioDevCreate()

478

DESCRIPTION This routine verifies the CBIO device is valid and if so calls the devices byte transfer
routine which transfers between a user buffer and the lower layer (hardware, subordinate
CBIO, or BLK_DEV). It is optimized for byte transfers.

If the CBIO_DEV_ID passed to this routine is not a valid CBIO handle, ERROR will be
returned with errno set to S_cbioLib_INVALID_CBIO_DEV_ID

RETURNS OK if sucessful or ERROR if the handle is invalid, or if the CBIO device routine returns
ERROR.

SEE ALSO cbioLib

cbioDevCreate()

NAME cbioDevCreate() – initialize a CBIO device (Generic)

SYNOPSIS CBIO_DEV_ID cbioDevCreate

(

caddr_t ramAddr, /* where it is in memory (0 = KHEAP_ALLOC) */

size_t ramSize /* pool size */

)

DESCRIPTION This routine will create an empty CBIO_DEV structure and return a handle to that
structure (CBIO_DEV_ID).

This routine is intended to be used by CBIO modules only. See cbioLibP.h

RETURNS CBIO_DEV_ID or NULL if ERROR.

SEE ALSO cbioLib

cbioDevVerify()

NAME cbioDevVerify() – verify CBIO_DEV_ID

SYNOPSIS STATUS cbioDevVerify

(

CBIO_DEV_ID device /* CBIO_DEV_ID to be verified */

)

2: Routines
cbioIoctl()

479

C

DESCRIPTION The purpose of this function is to determine if the device complies with the CBIO
interface. It can be used to verify a CBIO handle before it is passed to dosFsLib, rawFsLib,
usrFdiskPartLib, or other CBIO modules which expect a valid CBIO interface.

The device handle provided to this function, device is verified to be a CBIO device. If device
is not a CBIO device ERROR is returned with errno set to
S_cbioLib_INVALID_CBIO_DEV_ID

The dcacheCbio and dpartCbio CBIO modules (and dosFsLib) use this function
internally, and therefore this function need not be otherwise invoked when using
compliant CBIO modules.

RETURNS OK or ERROR if not a CBIO device, if passed a NULL address, or if the check could cause
an unaligned access.

SEE ALSO cbioLib, dosFsLib, dcacheCbio, dpartCbio

cbioIoctl()

NAME cbioIoctl() – perform ioctl operation on device

SYNOPSIS STATUS cbioIoctl

(

CBIO_DEV_ID dev, /* CBIO handle */

int command, /* ioctl command to be issued */

addr_t arg /* arg - specific to ioctl */

)

DESCRIPTION This routine verifies the CBIO device is valid and if so calls the devices I/O control
operation routine.

CBIO modules expect the following ioctl() codes:

– CBIO_RESET - reset the CBIO device. When the third argument to the ioctl call
accompaning CBIO_RESET is NULL, the code verifies that the disk is inserted and is
ready, after getting it to a known state. When the 3rd argument is a non-zero, it is
assumed to be a BLK_DEV pointer and CBIO_RESET will install a new subordinate
block device. This work is performed at the BLK_DEV to CBIO layer, and all layers
shall account for it. A CBIO_RESET indicates a possible change in device geometry,
and the CBIO_PARAMS members will be reinitialized after a CBIO_RESET.

– CBIO_STATUS_CHK - check device status of CBIO device and lower layer

– CBIO_DEVICE_LOCK - Prevent disk removal

– CBIO_DEVICE_UNLOCK - Allow disk removal

VxWorks OS Libraries API Reference, 5.5
cbioLibInit()

480

– CBIO_DEVICE_EJECT - Unmount and eject device

– CBIO_CACHE_FLUSH - Flush any dirty cached data

– CBIO_CACHE_INVAL - Flush & Invalidate all cached data

– CBIO_CACHE_NEWBLK - Allocate scratch block

If the CBIO_DEV_ID passed to this routine is not a valid CBIO handle, ERROR will be
returned with errno set to S_cbioLib_INVALID_CBIO_DEV_ID

RETURNS OK if sucessful or ERROR if the handle is invalid, or if the CBIO device routine returns
ERROR.

SEE ALSO cbioLib

cbioLibInit()

NAME cbioLibInit() – Initialize CBIO Library

SYNOPSIS STATUS cbioLibInit (void)

DESCRIPTION This function initializes the CBIO library, and will be called when the first CBIO device is
created, hence it does not need to be called during system initialization. It can be called
multiple times, but will do nothing after the first call.

RETURNS OK or ERROR

SEE ALSO cbioLib

cbioLock()

NAME cbioLock() – obtain CBIO device semaphore.

SYNOPSIS STATUS cbioLock

(

CBIO_DEV_ID dev, /* CBIO handle */

int timeout /* timeout in ticks */

)

2: Routines
cbioModeSet()

481

C

DESCRIPTION If the CBIO_DEV_ID passed to this routine is not a valid CBIO handle, ERROR will be
returned with errno set to S_cbioLib_INVALID_CBIO_DEV_ID

RETURNS OK or ERROR if the CBIO handle is invalid or semTake() fails.

SEE ALSO cbioLib

cbioModeGet()

NAME cbioModeGet() – return the mode setting for CBIO device

SYNOPSIS int cbioModeGet

(

CBIO_DEV_ID dev /* CBIO handle */

)

DESCRIPTION If the CBIO_DEV_ID passed to this routine is not a valid CBIO handle, ERROR will be
returned with errno set to S_cbioLib_INVALID_CBIO_DEV_IDThis routine is not protected
by a semaphore.

This routine confirms if the current layer is a CBIO to BLKDEV wrapper or a CBIO to
CBIO layer. Depending on the current layer it either returns the mode from BLK_DEV or
calls cbioModeGet() recursively.

RETURNS O_RDONLY, O_WRONLY, or O_RDWR or ERROR

SEE ALSO cbioLib

cbioModeSet()

NAME cbioModeSet() – set mode for CBIO device

SYNOPSIS STATUS cbioModeSet

(

CBIO_DEV_ID dev, /* CBIO handle */

int mode /* O_RDONLY, O_WRONLY, or O_RDWR */

)

DESCRIPTION Valid modes are O_RDONLY, O_WRONLY, or O_RDWR.

VxWorks OS Libraries API Reference, 5.5
cbioParamsGet()

482

If the CBIO_DEV_ID passed to this routine is not a valid CBIO handle, ERROR will be
returned with errno set to S_cbioLib_INVALID_CBIO_DEV_IDThis routine is not protected
by a semaphore.

This routine confirms if the current layer is a CBIO to BLKDEV wrapper or a CBIO to
CBIO layer. Depending on the current layer it either sets the mode of the BLK_DEV or calls
cbioModeSet() recursively.

RETURNS OK or ERROR if mode is not set.

SEE ALSO cbioLib

cbioParamsGet()

NAME cbioParamsGet() – fill in CBIO_PARAMS structure with CBIO device parameters

SYNOPSIS STATUS cbioParamsGet

(

CBIO_DEV_ID dev, /* CBIO handle */

CBIO_PARAMS * pCbioParams /* pointer to CBIO_PARAMS */

)

DESCRIPTION If the CBIO_DEV_ID passed to this routine is not a valid CBIO handle, ERROR will be
returned with errno set to S_cbioLib_INVALID_CBIO_DEV_ID

RETURNS OK or ERROR if the CBIO handle is invalid.

SEE ALSO cbioLib

cbioRdyChgdGet()

NAME cbioRdyChgdGet() – determine ready status of CBIO device

SYNOPSIS int cbioRdyChgdGet

(

CBIO_DEV_ID dev /* CBIO handle */

)

DESCRIPTION For example

2: Routines
cbioRdyChgdSet()

483

C

switch (cbioRdyChgdGet (cbioDeviceId))

{

case TRUE:

printf ("Disk changed.\n");

break;

case FALSE:

printf ("Disk has not changed.\n");

break;

case ERROR:

printf ("Not a valid CBIO device.\n");

break;

default:

break;

}

If the CBIO_DEV_ID passed to this routine is not a valid CBIO handle, ERROR will be
returned with errno set to S_cbioLib_INVALID_CBIO_DEV_IDThis routine is not protected
by a semaphore.

This routine will check down to the driver layer to see if any lower layer has its ready
changed bit set to TRUE. If so, this routine returns TRUE. If no lower layer has its ready
changed bit set to TRUE, this layer returns FALSE.

RETURNS TRUE if device ready status has changed, else FALSE if the ready status has not changed,
else ERROR if the CBIO_DEV_ID is invalid.

SEE ALSO cbioLib

cbioRdyChgdSet()

NAME cbioRdyChgdSet() – force a change in ready status of CBIO device

SYNOPSIS STATUS cbioRdyChgdSet

(

CBIO_DEV_ID dev, /* CBIO handle */

BOOL status /* TRUE/FALSE */

)

DESCRIPTION Pass TRUE in status to force READY status change.

If the CBIO_DEV_ID passed to this routine is not a valid CBIO handle, ERROR will be
returned with errno set to S_cbioLib_INVALID_CBIO_DEV_IDIf status is not passed as
TRUE or FALSE, ERROR is returned. This routine is not protected by a semaphore.

This routine sets readyChanged bit of passed CBIO_DEV.

VxWorks OS Libraries API Reference, 5.5
cbioShow()

484

RETURNS OK or ERROR if the device is invalid or status is not TRUE or FALSE.

SEE ALSO cbioLib

cbioShow()

NAME cbioShow() – print information about a CBIO device

SYNOPSIS STATUS cbioShow

(

CBIO_DEV_ID dev /* CBIO handle */

)

DESCRIPTION This function will display on standard output all information which is generic for all
CBIO devices. See the CBIO modules particular device show routines for displaying
implementation-specific information.

It takes two arguments:

A CBIO_DEV_ID which is the CBIO handle to display or NULL for the most recent device.

RETURNS OK or ERROR if no valid CBIO_DEV is found.

SEE ALSO cbioLib, dcacheShow(), dpartShow()

cbioUnlock()

NAME cbioUnlock() – release CBIO device semaphore.

SYNOPSIS STATUS cbioUnlock

(

CBIO_DEV_ID dev /* CBIO handle */

)

DESCRIPTION If the CBIO_DEV_ID passed to this routine is not a valid CBIO handle, ERROR will be
returned with errno set to S_cbioLib_INVALID_CBIO_DEV_ID

RETURNS OK or ERROR if the CBIO handle is invalid or the semGive() fails.

SEE ALSO cbioLib

2: Routines
cbrt()

485

C

cbioWrapBlkDev()

NAME cbioWrapBlkDev() – create CBIO wrapper atop a BLK_DEV device

SYNOPSIS CBIO_DEV_ID cbioWrapBlkDev

(

BLK_DEV * pDevice /* BLK_DEV * device pointer */

)

DESCRIPTION The purpose of this function is to make a blkIo (BLK_DEV) device comply with the CBIO
interface via a wrapper.

The device handle provided to this function, device is verified to be a blkIo device. A lean
CBIO to BLK_DEV wrapper is then created for a valid blkIo device. The returned
CBIO_DEV_ID device handle may be used with dosFsDevCreate(), dcacheDevCreate(),
and any other routine expecting a valid CBIO_DEV_ID handle.

To verify a blkIo pointer we see that all mandatory functions are not NULL.

Note that if a valid CBIO_DEV_ID is passed to this function, it will simply be returned
without modification.

The dosFsLib, dcacheCbio, and dpartCbio CBIO modules use this function internally, and
therefore this function need not be otherwise invoked when using those CBIO modules.

RETURNS a CBIO device pointer, or NULL if not a blkIo device

SEE ALSO cbioLib, dosFsLib, dcacheCbio, dpartCbio

cbrt()

NAME cbrt() – compute a cube root

SYNOPSIS double cbrt

(

double x /* value to compute the cube root of */

)

DESCRIPTION This routine returns the cube root of x in double precision.

INCLUDE FILES math.h

VxWorks OS Libraries API Reference, 5.5
cbrtf()

486

RETURNS The double-precision cube root of x.

SEE ALSO mathALib

cbrtf()

NAME cbrtf() – compute a cube root

SYNOPSIS float cbrtf

(

float x /* argument */

)

DESCRIPTION This routine returns the cube root of x in single precision.

INCLUDE FILES math.h

RETURNS The single-precision cube root of x.

SEE ALSO mathALib

cd()

NAME cd() – change the default directory

SYNOPSIS STATUS cd

(

const char * name /* new directory name */

)

DESCRIPTION NOTE: This is a target resident function, which manipulates the target I/O system. It must
be preceded with the @ letter if executed from the Tornado Shell (windsh), which has a
built-in command of the same name that operates on the Host’s I/O system.

This command sets the default directory to name. The default directory is a device name,
optionally followed by a directory local to that device.

To change to a different directory, specify one of the following:

– an entire path name with a device name, possibly followed by a directory name. The

2: Routines
cd()

487

C

entire path name will be changed.

– a directory name starting with a ~ or / or $. The directory part of the path,
immediately after the device name, will be replaced with the new directory name.

– a directory name to be appended to the current default directory. The directory name
will be appended to the current default directory.

An instance of “..” indicates one level up in the directory tree.

Note that when accessing a remote file system via RSH or FTP, the VxWorks network
device must already have been created using netDevCreate().

WARNING: The cd() command does very little checking that name represents a valid path.
If the path is invalid, cd() may return OK, but subsequent calls that depend on the default
path will fail.

EXAMPLES The following example changes the directory to device /fd0/:

-> cd "/fd0/"

This example changes the directory to device wrs: with the local directory ~leslie/target:

-> cd "wrs:~leslie/target"

After the previous command, the following changes the directory to
wrs:~leslie/target/config:

-> cd "config"

After the previous command, the following changes the directory to
wrs:~leslie/target/demo:

-> cd "../demo"

After the previous command, the following changes the directory to wrs:/etc.

-> cd "/etc"

Note that ~ can be used only on network devices (RSH or FTP).

RETURNS OK or ERROR.

SEE ALSO usrFsLib, pwd(), VxWorks Programmer’s Guide: Target Shell

VxWorks OS Libraries API Reference, 5.5
cdromFsDevCreate()

488

cdromFsDevCreate()

NAME cdromFsDevCreate() – create a cdromFsLib device

SYNOPSIS CDROM_VOL_DESC_ID cdromFsDevCreate

(

char * devName, /* device name */

BLK_DEV * pBlkDev /* ptr to block device */

)

DESCRIPTION This routine creates an instance of a cdromFsLib device in the I/O system. As input, this
function requires a pointer to a BLK_DEV structure for the CD-ROM drive on which you
want to create a cdromFsLib device. Thus, you should already have called
scsiBlkDevCreate() prior to calling cdfromFsDevCreate().

RETURNS CDROM_VOL_DESC_ID, or NULL if error.

SEE ALSO cdromFsLib, cdromFsInit()

cdromFsInit()

NAME cdromFsInit() – initialize cdromFsLib

SYNOPSIS STATUS cdromFsInit (void)

DESCRIPTION This routine initializes cdromFsLib. It must be called exactly once before calling any other
routine in cdromFsLib.

ERRNO S_cdromFsLib_ALREADY_INIT

RETURNS OK or ERROR, if cdromFsLib has already been initialized.

SEE ALSO cdromFsLib, cdromFsDevCreate(), iosLib.h

2: Routines
ceil()

489

C

cdromFsVolConfigShow()

NAME cdromFsVolConfigShow() – show the volume configuration information

SYNOPSIS VOID cdromFsVolConfigShow

(

void * arg /* device name or CDROM_VOL_DESC * */

)

DESCRIPTION This routine retrieves the volume configuration for the named cdromFsLib device and
prints it to standard output. The information displayed is retrieved from the BLK_DEV
structure for the specified device.

RETURNS N/A

SEE ALSO cdromFsLib

ceil()

NAME ceil() – compute the smallest integer greater than or equal to a specified value (ANSI)

SYNOPSIS double ceil

(

double v /* value to find the ceiling of */

)

DESCRIPTION This routine returns the smallest integer greater than or equal to v, in double precision.

INCLUDE FILES math.h

RETURNS The smallest integral value greater than or equal to v, in double precision.

SEE ALSO ansiMath, mathALib

VxWorks OS Libraries API Reference, 5.5
ceilf()

490

ceilf()

NAME ceilf() – compute the smallest integer greater than or equal to a specified value (ANSI)

SYNOPSIS float ceilf

(

float v /* value to find the ceiling of */

)

DESCRIPTION This routine returns the smallest integer greater than or equal to v, in single precision.

INCLUDE FILES math.h

RETURNS The smallest integral value greater than or equal to v, in single precision.

SEE ALSO mathALib

cfree()

NAME cfree() – free a block of memory

SYNOPSIS STATUS cfree

(

char * pBlock /* pointer to block of memory to free */

)

DESCRIPTION This routine returns to the free memory pool a block of memory previously allocated with
calloc().

It is an error to free a memory block that was not previously allocated.

RETURNS OK, or ERROR if the the block is invalid.

SEE ALSO memLib

2: Routines
checkStack()

491

C

chdir()

NAME chdir() – set the current default path

SYNOPSIS STATUS chdir

(

char * pathname /* name of the new default path */

)

DESCRIPTION This routine sets the default I/O path. All relative pathnames specified to the I/O system
will be prepended with this pathname. This pathname must be an absolute pathname, i.e.,
name must begin with an existing device name.

RETURNS OK, or ERROR if the first component of the pathname is not an existing device.

SEE ALSO ioLib, ioDefPathSet(), ioDefPathGet(), getcwd()

checkStack()

NAME checkStack() – print a summary of each task’s stack usage

SYNOPSIS void checkStack

(

int taskNameOrId /* task name or task ID; 0 = summarize all */

)

DESCRIPTION This command displays a summary of stack usage for a specified task, or for all tasks if no
argument is given. The summary includes the total stack size (SIZE), the current number
of stack bytes used (CUR), the maximum number of stack bytes used (HIGH), and the
number of bytes never used at the top of the stack (MARGIN = SIZE - HIGH). For
example:

-> checkStack tShell

NAME ENTRY TID SIZE CUR HIGH MARGIN

------------ ------------ -------- ----- ----- ----- ------

tShell _shell 23e1c78 9208 832 3632 5576

The maximum stack usage is determined by scanning down from the top of the stack for
the first byte whose value is not 0xee. In VxWorks, when a task is spawned, all bytes of a
task’s stack are initialized to 0xee.

VxWorks OS Libraries API Reference, 5.5
chkdsk()

492

DEFICIENCIES It is possible for a task to write beyond the end of its stack, but not write into the last part
of its stack. This will not be detected by checkStack().

RETURNS N/A

SEE ALSO usrLib, taskSpawn(), VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s
Guide: Shell

chkdsk()

NAME chkdsk() – perform consistency checking on a MS-DOS file system

SYNOPSIS STATUS chkdsk

(

const char * pDevName, /* device name */

u_int repairLevel, /* how to fix errors */

u_int verbose /* verbosity level */

)

DESCRIPTION This function invokes the integral consistency checking built into the dosFsLib file system,
via FIOCHKDSK ioctl. During the test, the file system will be blocked from application
code access, and will emit messages describing any inconsistencies found on the disk, as
well as some statistics, depending on the value of the verbose argument. Depending the
value of repairLevel, the inconsistencies will be repaired, and changes written to disk.

These are the values for repairLevel:

These are the values for verbose:

Note that the consistency check procedure will unmount the file system, meaning the all
currently open file descriptors will be deemed unusable.

0 Same as DOS_CHK_ONLY (1)
DOS_CHK_ONLY (1) Only report errors, do not modify disk.
DOS_CHK_REPAIR (2) Repair any errors found.

0 similar to DOS_CHK_VERB_1

DOS_CHK_VERB_SILENT (0xff00) Do not emit any messages, except errors
encountered.

DOS_CHK_VERB_1 (0x0100) Display some volume statistics when done testing,
as well as errors encountered during the test.

DOS_CHK_VERB_2 (0x0200) In addition to the above option, display path of
every file, while it is being checked. This option
may significantly slow down the test process.

2: Routines
clearerr()

493

C

RETURNS OK or ERROR if device can not be checked or could not be repaired.

SEE ALSO usrFsLib

cleanUpStoreBuffer()

NAME cleanUpStoreBuffer() – clean up store buffer after a data store error interrupt

SYNOPSIS void cleanUpStoreBuffer

(

UINT mcntl, /* Value of MMU Control Register */

BOOL exception /* TRUE if exception, FALSE if int */

)

DESCRIPTION This routine cleans up the store buffer after a data store error interrupt. The first queued
store is retried. It is logged as either a recoverable or unrecoverable error. Then the store
buffer is re-enabled and other queued stores are processed by the store buffer.

RETURNS N/A

SEE ALSO cacheTiTms390Lib

clearerr()

NAME clearerr() – clear end-of-file and error flags for a stream (ANSI)

SYNOPSIS void clearerr

(

FILE * fp /* stream to clear EOF and ERROR flags for */

)

DESCRIPTION This routine clears the end-of-file and error flags for a specified stream.

INCLUDE FILES stdio.h

RETURNS N/A

SEE ALSO ansiStdio, feof(), ferror()

VxWorks OS Libraries API Reference, 5.5
clock()

494

clock()

NAME clock() – determine the processor time in use (ANSI)

SYNOPSIS clock_t clock (void)

DESCRIPTION This routine returns the implementation’s best approximation of the processor time used
by the program since the beginning of an implementation-defined era related only to the
program invocation. To determine the time in seconds, the value returned by clock()
should be divided by the value of the macro CLOCKS_PER_SEC. If the processor time used
is not available or its value cannot be represented, clock() returns -1.

NOTE: This routine always returns -1 in VxWorks. VxWorks does not track per-task time
or system idle time. There is no method of determining how long a task or the entire
system has been doing work. tickGet() can be used to query the number of system ticks
since system start. clock_gettime() can be used to get the current clock time.

INCLUDE FILES time.h

RETURNS -1

SEE ALSO ansiTime, tickGet(), clock_gettime()

clock_getres()

NAME clock_getres() – get the clock resolution (POSIX)

SYNOPSIS int clock_getres

(

clockid_t clock_id, /* clock ID (always CLOCK_REALTIME) */

struct timespec * res /* where to store resolution */

)

DESCRIPTION This routine gets the clock resolution, in nanoseconds, based on the rate returned by
sysClkRateGet(). If res is non-NULL, the resolution is stored in the location pointed to.

RETURNS 0 (OK), or -1 (ERROR) if clock_id is invalid.

ERRNO EINVAL

SEE ALSO clockLib, clock_settime(), sysClkRateGet(), clock_setres()

2: Routines
clock_setres()

495

C

clock_gettime()

NAME clock_gettime() – get the current time of the clock (POSIX)

SYNOPSIS int clock_gettime

(

clockid_t clock_id, /* clock ID (always CLOCK_REALTIME) */

struct timespec * tp /* where to store current time */

)

DESCRIPTION This routine gets the current value tp for the clock.

RETURNS 0 (OK), or -1 (ERROR) if clock_id is invalid or tp is NULL.

ERRNO EINVAL, EFAULT

SEE ALSO clockLib

clock_setres()

NAME clock_setres() – set the clock resolution

SYNOPSIS int clock_setres

(

clockid_t clock_id, /* clock ID (always CLOCK_REALTIME) */

struct timespec * res /* resolution to be set */

)

DESCRIPTION This routine is obsolete. It will always return OK.

NOTE: Non-POSIX.

RETURNS OK always.

ERRNO EINVAL

SEE ALSO clockLib, clock_getres(), sysClkRateSet()

VxWorks OS Libraries API Reference, 5.5
clock_settime()

496

clock_settime()

NAME clock_settime() – set the clock to a specified time (POSIX)

SYNOPSIS int clock_settime

(

clockid_t clock_id, /* clock ID (always CLOCK_REALTIME) */

const struct timespec * tp /* time to set */

)

DESCRIPTION This routine sets the clock to the value tp, which should be a multiple of the clock
resolution. If tp is not a multiple of the resolution, it is truncated to the next smallest
multiple of the resolution.

RETURNS 0 (OK), or -1 (ERROR) if clock_id is invalid, tp is outside the supported range, or the tp
nanosecond value is less than 0 or equal to or greater than 1,000,000,000.

ERRNO EINVAL

SEE ALSO clockLib, clock_getres()

close()

NAME close() – close a file

SYNOPSIS STATUS close

(

int fd /* file descriptor to close */

)

DESCRIPTION This routine closes the specified file and frees the file descriptor. It calls the device driver
to do the work.

RETURNS The status of the driver close routine, or ERROR if the file descriptor is invalid.

SEE ALSO ioLib

2: Routines
connect()

497

C

closedir()

NAME closedir() – close a directory (POSIX)

SYNOPSIS STATUS closedir

(

DIR * pDir /* pointer to directory descriptor */

)

DESCRIPTION This routine closes a directory which was previously opened using opendir(). The pDir
parameter is the directory descriptor pointer that was returned by opendir().

RETURNS OK or ERROR.

SEE ALSO dirLib, opendir(), readdir(), rewinddir()

connect()

NAME connect() – initiate a connection to a socket

SYNOPSIS STATUS connect

(

int s, /* socket descriptor */

struct sockaddr * name, /* addr of socket to connect */

int namelen /* length of name, in bytes */

)

DESCRIPTION If s is a socket of type SOCK_STREAM, this routine establishes a virtual circuit between s
and another socket specified by name. If s is of type SOCK_DGRAM, it permanently
specifies the peer to which messages are sent. If s is of type SOCK_RAW, it specifies the
raw socket upon which data is to be sent and received. The name parameter specifies the
address of the other socket.

NOTE: If a socket with type SOCK_STREAM is marked non-blocking, this routine will
return ERROR with an error number of EINPROGRESS or EALREADY if a connection
attempt is pending. A later call will return ERROR and set the error number to EISCONN
once the connection is established. The connection attempt must be repeated until that
result occurs or until this routine establishes a connection immediately and returns OK.

RETURNS OK, or ERROR if the connection attempt does not complete.

SEE ALSO sockLib

VxWorks OS Libraries API Reference, 5.5
connectWithTimeout()

498

connectWithTimeout()

NAME connectWithTimeout() – attempt socket connection within a specified duration

SYNOPSIS STATUS connectWithTimeout

(

int sock, /* socket descriptor */

struct sockaddr * adrs, /* addr of the socket to connect */

int adrsLen, /* length of the socket, in bytes */

struct timeval * timeVal /* time-out value */

)

DESCRIPTION Use this routine as an alternative to connect() when your application requires a shorter
time out on a connection attempt. By design, a TCP connection attempt times out after 75
seconds if unsuccessful. Thus, a blocking TCP socket connect() call might not return for
75 seconds. A connectWithTimeout() call lets you reduce this time out by scheduling an
abort of the connection attempt if it is not successful before timeVal. However,
connectWithTimeout() does not actually change the TCP timeout value. Thus, you
cannot use connectWithTimeout() to lengthen the connection time out beyond the TCP
default.

In all respects other than the time out value, a connectWithTimeout() call behaves exactly
like connect(). Thus, if no application is listening for connections at the other end,
connectWithTimeout() returns immediately just like connect(). If you specify a NULL
pointer for timeVal, connectWithTimeout() behaves exactly like a connect() call.

RETURNS OK, or ERROR if a new connection is not established before timeout.

SEE ALSO sockLib, connect()

copy()

NAME copy() – copy in (or stdin) to out (or stdout)

SYNOPSIS STATUS copy

(

const char * in, /* name of file to read (if NULL assume stdin) */

const char * out /* name of file to write (if NULL assume */

/* stdout) */

)

2: Routines
copyStreams()

499

C

DESCRIPTION This command copies from the input file to the output file, until an end-of-file is reached.

EXAMPLES The following example displays the file dog, found on the default file device:

-> copy <dog

This example copies from the console to the file dog, on device /ct0/, until an EOF (default
CTRL+D) is typed:

-> copy >/ct0/dog

This example copies the file dog, found on the default file device, to device /ct0/:

-> copy <dog >/ct0/dog

This example makes a conventional copy from the file named file1 to the file named file2:

-> copy "file1", "file2"

Remember that standard input and output are global; therefore, spawning the first three
constructs will not work as expected.

RETURNS OK, or ERROR if in or out cannot be opened/created, or if there is an error copying from in
to out.

SEE ALSO usrFsLib, copyStreams(), tyEOFSet(), cp(), xcopy(), VxWorks Programmer’s Guide: Target
Shell

copyStreams()

NAME copyStreams() – copy from/to specified streams

SYNOPSIS STATUS copyStreams

(

int inFd, /* file descriptor of stream to copy from */

int outFd /* file descriptor of stream to copy to */

)

DESCRIPTION This command copies from the stream identified by inFd to the stream identified by outFd
until an end of file is reached in inFd. This command is used by copy().

RETURNS OK, or ERROR if there is an error reading from inFd or writing to outFd.

SEE ALSO usrFsLib, copy(), VxWorks Programmer’s Guide: Target Shell

VxWorks OS Libraries API Reference, 5.5
cos()

500

cos()

NAME cos() – compute a cosine (ANSI)

SYNOPSIS double cos

(

double x /* angle in radians */

)

DESCRIPTION This routine computes the cosine of x in double precision. The angle x is expressed in
radians.

INCLUDE FILES math.h

RETURNS The double-precision cosine of x.

SEE ALSO ansiMath, mathALib

cosf()

NAME cosf() – compute a cosine (ANSI)

SYNOPSIS float cosf

(

float x /* angle in radians */

)

DESCRIPTION This routine returns the cosine of x in single precision. The angle x is expressed in radians.

INCLUDE FILES math.h

RETURNS The single-precision cosine of x.

SEE ALSO mathALib

2: Routines
coshf()

501

C

cosh()

NAME cosh() – compute a hyperbolic cosine (ANSI)

SYNOPSIS double cosh

(

double x /* value to compute the hyperbolic cosine of */

)

DESCRIPTION This routine returns the hyperbolic cosine of x in double precision (IEEE double, 53 bits).

A range error occurs if x is too large.

INCLUDE FILES math.h

RETURNS The double-precision hyperbolic cosine of x.

Special cases:
 If x is +INF, -INF, or NaN, cosh() returns x.

SEE ALSO ansiMath, mathALib

coshf()

NAME coshf() – compute a hyperbolic cosine (ANSI)

SYNOPSIS float coshf

(

float x /* value to compute the hyperbolic cosine of */

)

DESCRIPTION This routine returns the hyperbolic cosine of x in single precision.

INCLUDE FILES math.h

RETURNS The single-precision hyperbolic cosine of x if the parameter is greater than 1.0, or NaN if
the parameter is less than 1.0.

Special cases:
 If x is +INF, -INF, or NaN, coshf() returns x.

SEE ALSO mathALib

VxWorks OS Libraries API Reference, 5.5
cp()

502

cp()

NAME cp() – copy file into other file/directory.

SYNOPSIS STATUS cp

(

const char * src, /* source file or wildcard pattern */

const char * dest /* destination file name or directory */

)

DESCRIPTION This command copies from the input file to the output file. If destination name is
directory, a source file is copied into this directory, using the last element of the source file
name to be the name of the destination file.

This function is very similar to copy(), except it is somewhat more similar to the UNIX
“cp” program in its handling of the destination.

src may contain a wildcard pattern, in which case all files matching the pattern will be
copied to the directory specified in dest. This function does not copy directories, and is not
recursive. To copy entire subdirectories recursively, use xcopy().

EXAMPLES -> cp("/sd0/FILE1.DAT","/sd0/dir2/f001.dat")

-> cp("/sd0/dir1/file88","/sd0/dir2")

-> cp("/sd0/*.tmp","/sd0/junkdir")

RETURNS OK or ERROR if destination is not a directory while src is a wildcard pattern, or if any of
the files could not be copied.

SEE ALSO xcopy()

SEE ALSO usrFsLib

cplusCallNewHandler()

NAME cplusCallNewHandler() – call the allocation failure handler (C++)

SYNOPSIS extern void cplusCallNewHandler ()

DESCRIPTION This function provides a procedural-interface to the new-handler. It can be used by
user-defined new operators to call the current new-handler. This function is specific to
VxWorks and may not be available in other C++ environments.

2: Routines
cplusCtors()

503

C

RETURNS N/A

SEE ALSO cplusLib

cplusCtors()

NAME cplusCtors() – call static constructors (C++)

SYNOPSIS extern "C" void cplusCtors

(

const char * moduleName /* name of loaded module */

)

DESCRIPTION This function is used to call static constructors under the manual strategy (see
cplusXtorSet()). moduleName is the name of an object module that was “munched” before
loading. If moduleName is 0, then all static constructors, in all modules loaded by the
VxWorks module loader, are called.

EXAMPLES The following example shows how to initialize the static objects in modules called
“applx.out” and “apply.out”.

-> cplusCtors "applx.out"

value = 0 = 0x0

-> cplusCtors "apply.out"

value = 0 = 0x0

The following example shows how to initialize all the static objects that are currently
loaded, with a single invocation of cplusCtors():

-> cplusCtors

value = 0 = 0x0

WARNING: cplusCtors() should only be called once per module otherwise unpredictable
behavior may result.

RETURNS N/A

SEE ALSO cplusLib, cplusXtorSet()

VxWorks OS Libraries API Reference, 5.5
cplusCtorsLink()

504

cplusCtorsLink()

NAME cplusCtorsLink() – call all linked static constructors (C++)

SYNOPSIS extern "C" void cplusCtorsLink ()

DESCRIPTION This function calls constructors for all of the static objects linked with a VxWorks bootable
image. When creating bootable applications, this function should be called from
usrRoot() to initialize all static objects. Correct operation depends on correctly munching
the C++ modules that are linked with VxWorks.

RETURNS N/A

SEE ALSO cplusLib

cplusDemanglerSet()

NAME cplusDemanglerSet() – change C++ demangling mode (C++)

SYNOPSIS extern "C" void cplusDemanglerSet

(

int mode

)

DESCRIPTION This command sets the C++ demangling mode to mode. The default mode is 2.

There are three demangling modes, complete, terse, and off. These modes are represented
by numeric codes:

In complete mode, when C++ function names are printed, the class name (if any) is
prefixed and the function’s parameter type list is appended.

In terse mode, only the function name is printed. The class name and parameter type list
are omitted.

In off mode, the function name is not demangled.

Mode Code

off 0
terse 1
complete 2

2: Routines
cplusDtors()

505

C

EXAMPLES The following example shows how one function name would be printed under each
demangling mode:

RETURNS N/A

SEE ALSO cplusLib

cplusDemanglerStyleSet()

NAME cplusDemanglerStyleSet() – change C++ demangling style (C++)

SYNOPSIS extern "C" void cplusDemanglerStyleSet

(

DEMANGLER_STYLE style

)

DESCRIPTION This command sets the C++ demangling mode to style. The available demangler styles are
enumerated in demangler.h. The default demangling style depends on the toolchain used
to build the kernel. For example if the Diab toolchain is used to build the kernel then the
default demangler style is DMGL_STYLE_DIAB.

RETURNS N/A

SEE ALSO cplusLib

cplusDtors()

NAME cplusDtors() – call static destructors (C++)

SYNOPSIS extern "C" void cplusDtors

(

const char * moduleName

)

Mode Printed symbol

off _member__5classFPFl_PvPFPv_v
terse _member
complete foo::_member(void* (*)(long),void (*)(void*))

VxWorks OS Libraries API Reference, 5.5
cplusDtorsLink()

506

DESCRIPTION This function is used to call static destructors under the manual strategy (see
cplusXtorSet()). moduleName is the name of an object module that was “munched” before
loading. If moduleName is 0, then all static destructors, in all modules loaded by the
VxWorks module loader, are called.

EXAMPLES The following example shows how to destroy the static objects in modules called
“applx.out” and “apply.out”:

-> cplusDtors "applx.out"

value = 0 = 0x0

-> cplusDtors "apply.out"

value = 0 = 0x0

The following example shows how to destroy all the static objects that are currently
loaded, with a single invocation of cplusDtors():

-> cplusDtors

value = 0 = 0x0

WARNING: cplusDtors() should only be called once per module otherwise unpredictable
behavior may result.

RETURNS N/A

SEE ALSO cplusLib, cplusXtorSet()

cplusDtorsLink()

NAME cplusDtorsLink() – call all linked static destructors (C++)

SYNOPSIS extern "C" void cplusDtorsLink ()

DESCRIPTION This function calls destructors for all of the static objects linked with a VxWorks bootable
image. When creating bootable applications, this function should be called during system
shutdown to decommission all static objects. Correct operation depends on correctly
munching the C++ modules that are linked with VxWorks.

RETURNS N/A

SEE ALSO cplusLib

2: Routines
cplusXtorSet()

507

C

cplusLibInit()

NAME cplusLibInit() – initialize the C++ library (C++)

SYNOPSIS extern "C" STATUS cplusLibInit (void)

DESCRIPTION This routine initializes the C++ library and forces all C++ run-time support to be linked
with the bootable VxWorks image. If the configuration macro INCLUDE_CPLUS is defined,
cplusLibInit() is called automatically from the root task, usrRoot(), in usrConfig.c.

RETURNS OK or ERROR.

SEE ALSO cplusLib

cplusXtorSet()

NAME cplusXtorSet() – change C++ static constructor calling strategy (C++)

SYNOPSIS extern "C" void cplusXtorSet

(

int strategy

)

DESCRIPTION This command sets the C++ static constructor calling strategy to strategy. The default
strategy is 1.

There are two static constructor calling strategies: automatic and manual. These modes are
represented by numeric codes:

Under the manual strategy, a module’s static constructors and destructors are called by
cplusCtors() and cplusDtors(), which are themselves invoked manually.

Under the automatic strategy, a module’s static constructors are called as a side-effect of
loading the module using the VxWorks module loader. A module’s static destructors are
called as a side-effect of unloading the module.

Strategy Code

manual 0
automatic 1

VxWorks OS Libraries API Reference, 5.5
cpsr()

508

NOTE: The manual strategy is applicable only to modules that are loaded by the VxWorks
module loader. Static constructors and destructors contained by modules linked with the
VxWorks image are called using cplusCtorsLink() and cplusDtorsLink().

RETURNS N/A

SEE ALSO cplusLib

cpsr()

NAME cpsr() – return the contents of the current processor status register (ARM)

SYNOPSIS int cpsr

(

int taskId /* task ID, 0 means default task */

)

DESCRIPTION This command extracts the contents of the status register from the TCB of a specified task.
If taskId is omitted or zero, the last task referenced is assumed.

RETURNS The contents of the current processor status register.

SEE ALSO dbgArchLib, VxWorks Programmer’s Guide: Debugging

creat()

NAME creat() – create a file

SYNOPSIS int creat

(

const char * name, /* name of the file to create */

int flag /* O_RDONLY, O_WRONLY, or O_RDWR */

)

DESCRIPTION This routine creates a file called name and opens it with a specified flag. This routine
determines on which device to create the file; it then calls the create routine of the device
driver to do most of the work. Therefore, much of what transpires is
device/driver-dependent.

2: Routines
cret()

509

C

The parameter flag is set to O_RDONLY (0), O_WRONLY (1), or O_RDWR (2) for the
duration of time the file is open. To create NFS files with a UNIX chmod-type file mode,
call open() with the file mode specified in the third argument.

NOTE: For more information about situations when there are no file descriptors available,
see the manual entry for iosInit().

RETURNS A file descriptor number, or ERROR if a filename is not specified, the device does not exist,
no file descriptors are available, or the driver returns ERROR.

SEE ALSO ioLib, open()

cret()

NAME cret() – continue until the current subroutine returns

SYNOPSIS STATUS cret

(

int task /* task to continue, 0 = default */

)

DESCRIPTION This routine places a breakpoint at the return address of the current subroutine of a
specified task, then continues execution of that task.

To execute, enter:

-> cret [task]

If task is omitted or zero, the last task referenced is assumed.

When the breakpoint is hit, information about the task will be printed in the same format
as in single-stepping. The breakpoint is automatically removed when hit, or if the task hits
another breakpoint first.

RETURNS OK, or ERROR if there is no such task or the breakpoint table is full.

SEE ALSO dbgLib, so(), VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s Guide:
Shell

VxWorks OS Libraries API Reference, 5.5
ctime()

510

ctime()

NAME ctime() – convert time in seconds into a string (ANSI)

SYNOPSIS char * ctime

(

const time_t * timer /* calendar time in seconds */

)

DESCRIPTION This routine converts the calendar time pointed to by timer into local time in the form of a
string. It is equivalent to:

asctime (localtime (timer));

This routine is not reentrant. For a reentrant version, see ctime_r().

INCLUDE FILES time.h

RETURNS The pointer returned by asctime() with local broken-down time as the argument.

SEE ALSO ansiTime, asctime(), localtime()

ctime_r()

NAME ctime_r() – convert time in seconds into a string (POSIX)

SYNOPSIS char * ctime_r

(

const time_t * timer, /* calendar time in seconds */

char * asctimeBuf, /* buffer to contain the string */

size_t * buflen /* size of the buffer */

)

DESCRIPTION This routine converts the calendar time pointed to by timer into local time in the form of a
string. It is equivalent to:

asctime (localtime (timer));

This routine is the POSIX re-entrant version of ctime().

INCLUDE FILES time.h

2: Routines
ctime_r()

511

C

RETURNS The pointer returned by asctime() with local broken-down time as the argument.

SEE ALSO ansiTime, asctime(), localtime()

VxWorks OS Libraries API Reference, 5.5
d()

512

d()

NAME d() – display memory

SYNOPSIS void d

(

void * adrs, /* address to display (if 0, display next block */

int nunits, /* number of units to print (if 0, use default) */

int width /* width of displaying unit (1, 2, 4, 8) */

)

DESCRIPTION This command displays the contents of memory, starting at adrs. If adrs is omitted or zero,
d() displays the next memory block, starting from where the last d() command
completed.

Memory is displayed in units specified by width. If nunits is omitted or zero, the number
of units displayed defaults to last use. If nunits is non-zero, that number of units is
displayed and that number then becomes the default. If width is omitted or zero, it
defaults to the previous value. If width is an invalid number, it is set to 1. The valid values
for width are 1, 2, 4, and 8. The number of units d() displays is rounded up to the nearest
number of full lines.

RETURNS N/A

SEE ALSO usrLib, m(), VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s Guide:
Shell

d0()

NAME d0() – return the contents of register d0 (also d1 - d7) (68K)

SYNOPSIS int d0

(

int taskId /* task ID, 0 means default task */

)

DESCRIPTION This command extracts the contents of register d0 from the TCB of a specified task. If
taskId is omitted or zero, the last task referenced is assumed.

Similar routines are provided for all data registers (d0 - d7): d0() - d7().

RETURNS The contents of register d0 (or the requested register).

SEE ALSO dbgArchLib, VxWorks Programmer’s Guide: Target Shell

2: Routines
dbgHelp()

513

D

dbgBpTypeBind()

NAME dbgBpTypeBind() – bind a breakpoint handler to a breakpoint type (MIPS)

SYNOPSIS STATUS dbgBpTypeBind

(

int bpType, /* breakpoint type */

FUNCPTR routine /* function to bind */

)

DESCRIPTION Dynamically bind a breakpoint handler to breakpoints of type 0 - 7. By default only
breakpoints of type zero are handled with the vxWorks breakpoint handler (see dbgLib).
Other types may be used for Ada stack overflow or other such functions. The installed
handler must take the same parameters as excExcHandle() (see excLib).

RETURNS OK, or ERROR if bpType is out of bounds.

SEE ALSO dbgArchLib, dbgLib, excLib

dbgHelp()

NAME dbgHelp() – display debugging help menu

SYNOPSIS void dbgHelp (void)

DESCRIPTION This routine displays a summary of dbgLib utilities with a short description of each,
similar to the following:

dbgHelp Print this list

dbgInit Install debug facilities

b Display breakpoints

b addr[,task[,count]] Set breakpoint

e addr[,eventNo[,task[,func[,arg]]]]] Set eventpoint (WindView)

bd addr[,task] Delete breakpoint

bdall [task] Delete all breakpoints

c [task[,addr[,addr1]]] Continue from breakpoint

cret [task] Continue to subroutine return

s [task[,addr[,addr1]]] Single step

so [task] Single step/step over subroutine

l [adr[,nInst]] List disassembled memory

tt [task] Do stack trace on task

VxWorks OS Libraries API Reference, 5.5
dbgInit()

514

bh addr[,access[,task[,count[,quiet]]]] set hardware breakpoint

(if supported by the architecture)

RETURNS N/A

SEE ALSO dbgLib, VxWorks Programmer’s Guide: Target Shell

dbgInit()

NAME dbgInit() – initialize the local debugging package

SYNOPSIS STATUS dbgInit (void)

DESCRIPTION This routine initializes the local debugging package and enables the basic breakpoint and
single-step functions.

This routine also enables the shell abort function, CTRL-C.

NOTE: The debugging package should be initialized before any debugging routines are
used. If the configuration macro INCLUDE_DEBUG is defined, dbgInit() is called by the
root task, usrRoot(), in usrConfig.c.

RETURNS OK, always.

SEE ALSO dbgLib, VxWorks Programmer’s Guide: Target Shell

dcacheDevCreate()

NAME dcacheDevCreate() – create a disk cache

SYNOPSIS CBIO_DEV_ID dcacheDevCreate

(

CBIO_DEV_ID subDev, /* block device handle */

char * pRamAddr, /* where it is in memory (NULL = KHEAP_ALLOC) */

int memSize, /* amount of memory to use */

char * pDesc /* device description string */

)

2: Routines
dcacheDevDisable()

515

D

DESCRIPTION This routine creates a CBIO layer disk data cache instance. The disk cache unit accesses
the disk through the subordinate CBIO device driver, provided with the subDev
argument.

A valid block device BLK_DEV handle may be provided instead of a CBIO handle, in
which case it will be automatically converted into a CBIO device by using the wrapper
functionality from cbioLib.

Memory which will be used for caching disk data may be provided by the caller with
pRamAddr, or it will be allocated by dcacheDevCreate() from the common system
memory pool, if memAddr is passed as NULL. memSize is the amount of memory to use for
disk caching, if 0 is passed, then a certain default value will be calculated, based on
available memory. pDesc is a string describing the device, used later by dcacheShow(),
and is useful when there are many cached disk devices.

A maximum of 16 disk cache devices are supported at this time.

RETURNS disk cache device handle, or NULL if there is not enough memory to satisfy the request, or
the blkDev handle is invalid.

SEE ALSO dcacheCbio

dcacheDevDisable()

NAME dcacheDevDisable() – disable the disk cache for this device

SYNOPSIS STATUS dcacheDevDisable

(

CBIO_DEV_ID dev /* CBIO device handle */

)

DESCRIPTION This function disables the cache by setting the bypass count to zero and storing the old
value, if there is already an old value then we won’t repeat the process though.

RETURNS OK if cache is sucessfully disabled or ERROR.

SEE ALSO dcacheCbio

VxWorks OS Libraries API Reference, 5.5
dcacheDevEnable()

516

dcacheDevEnable()

NAME dcacheDevEnable() – re-enable the disk cache

SYNOPSIS STATUS dcacheDevEnable

(

CBIO_DEV_ID dev /* CBIO device handle */

)

DESCRIPTION This function re-enables the cache if we disabled it. If we did not disable it, then we
cannot re-enable it.

RETURNS OK if cache is sucessfully enabled or ERROR.

SEE ALSO dcacheCbio

dcacheDevMemResize()

NAME dcacheDevMemResize() – set a new size to a disk cache device

SYNOPSIS STATUS dcacheDevMemResize

(

CBIO_DEV_ID dev, /* device handle */

size_t newSize /* new cache size in bytes */

)

DESCRIPTION This routine is used to resize the dcache layer. This routine is also useful after a disk
change event, for example a PCMCIA disk swap. The routine pccardDosDevCreate() in
pccardLib.c uses this routine for that function. This should be invoked each time a new
disk is inserted on media where the device geometry could possibly change. This function
will re-read all device geometry data from the block driver, carve out and initialize all
cache descriptors and blocks.

RETURNS OK or ERROR if the device is invalid or if the device geometry is invalid (EINVAL) or if
there is not enough memory to perform the operation.

SEE ALSO dcacheCbio

2: Routines
dcacheDevTune()

517

D

dcacheDevTune()

NAME dcacheDevTune() – modify tunable disk cache parameters

SYNOPSIS STATUS dcacheDevTune

(

CBIO_DEV_ID dev, /* device handle */

int dirtyMax, /* max # of dirty cache blocks allowed */

int bypassCount, /* request size for bypassing cache */

int readAhead, /* how many blocks to read ahead */

int syncInterval /* how many seconds between disk updates */

)

DESCRIPTION This function allows the user to tune some disk cache parameters to obtain better
performance for a given application or workload pattern. These parameters are checked
for sanity before being used, hence it is recommended to verify the actual parameters
being set with dcacheShow().

Following is the description of each tunable parameter:

bypassCount
In order to achieve maximum performance, Disk Cache is bypassed for very large
requests. This parameter sets the threshold number of blocks for bypassing the cache,
resulting usually in the data being transferred by the low level driver directly
to/from application data buffers (also known as cut-through DMA). Passing the
value of 0 in this argument preserves the previous value of the associated parameter.

syncInterval
The Disk Cache provides a low priority task that will update all modified blocks onto
the disk periodically. This parameters controls the time between these updates in
seconds. The longer this period, the better throughput is likely to be achieved, while
risking to loose more data in the event of a failure. For removable devices this interval
is fixed at 1 second. Setting this parameter to 0 results in immediate writes to disk
when requested, resulting in minimal data loss risk at the cost of somewhat degraded
performance.

readAhead
In order to avoid accessing the disk in small units, the Disk Cache will read many
contiguous blocks once a block which is absent from the cache is needed. Increasing
this value increases read performance, but a value which is too large may cause
blocks which are frequently used to be removed from the cache, resulting in a low Hit
Ratio, and increasing the number of Seeks, slowing down performance dramatically.
Passing the value of 0 in this argument preserves the pervious value of the associated
parameter.

VxWorks OS Libraries API Reference, 5.5
dcacheHashTest()

518

dirtyMax
Routinely the Disk Cache will keep modified blocks in memory until it is specifically
instructed to update these blocks to the disk, or until the specified time interval
between disk updates has elapsed, or until the number of modified blocks is large
enough to justify an update. Because the disk is updated in an ordered manner, and
the blocks are written in groups when adjacent blocks have been modified, a larger
dirtyMax parameter will minimize the number of Seek operation, but a value which is
too large may decrease the Hit Ratio, thus degrading performance. Passing the value
of 0 in this argument preserves the pervious value of the associated parameter.

RETURNS OK or ERROR if device handle is invalid. Parameter value which is out of range will be
silently corrected.

SEE ALSO dcacheCbio, dcacheShow()

dcacheHashTest()

NAME dcacheHashTest() – test hash table integrity

SYNOPSIS void dcacheHashTest

(

CBIO_DEV_ID dev

)

DESCRIPTION

SEE ALSO dcacheCbio

2: Routines
devs()

519

D

dcacheShow()

NAME dcacheShow() – print information about disk cache

SYNOPSIS void dcacheShow

(

CBIO_DEV_ID dev, /* device handle */

int verbose /* 1 - display state of each cache block */

)

DESCRIPTION This routine displays various information regarding a disk cache, namely current disk
parameters, cache size, tunable parameters and performance statistics. The information is
displayed on the standard output.

The dev argument is the device handle, if it is NULL, all disk caches are displayed.

RETURNS N/A

SEE ALSO dcacheCbio

devs()

NAME devs() – list all system-known devices

SYNOPSIS void devs (void)

DESCRIPTION This command displays a list of all devices known to the I/O system.

RETURNS N/A

SEE ALSO usrLib, iosDevShow(), VxWorks Programmer’s Guide: Target Shell, windsh, Tornado
User’s Guide: Shell

VxWorks OS Libraries API Reference, 5.5
dhcpcBind()

520

dhcpcBind()

NAME dhcpcBind() – obtain a set of network configuration parameters with DHCP

SYNOPSIS STATUS dhcpcBind

(

void * pCookie, /* identifier returned by dhcpcInit() */

BOOL syncFlag /* synchronous or asynchronous execution */

)

DESCRIPTION This routine initiates a DHCP negotiation according to the process described in RFC 1541.
The pCookie argument contains the return value of an earlier dhcpcInit() call and is used
to identify a particular lease.

The syncFlag parameter specifies whether the DHCP negotiation started by this routine
will execute synchronously or asynchronously. An asynchronous execution will return
after starting the DHCP negotiation, but a synchronous execution will only return once
the negotiation process completes.

When a new lease is established, any event hook provided for the lease will be called to
process the configuration parameters. The hook is also called when the lease expires or the
negotiation process fails. The results of an asynchronous DHCP negotiation are not
available unless an event hook is installed.

If automatic configuration of the underlying network interface was specified during the
lease initialization, this routine will prevent all higher-level protocols from accessing the
underlying network interface used during the initial lease negotiation until that process is
complete. In addition, any addressing information obtained will be applied to that
network interface, which will remain disabled if the initial negotiation fails. Finally, the
interface will be disabled if the lease expires.

NOTE: If the DHCP client is used to obtain the VxWorks boot parameters, this routine is
called automatically during system startup using the automatic reconfiguration.
Therefore, any calls to this routine which use the network boot device for message transfer
when the DHCP client was used at boot time must not request automatic reconfiguration
during initialization. Otherwise, the resulting lease settings will conflict with the
configuration maintained by the lease established during system startup.

RETURNS OK if routine completes, or ERROR otherwise.

ERRNO S_dhcpcLib_BAD_COOKIE, S_dhcpcLib_NOT_INITIALIZED, S_dhcpcLib_BAD_OPTION,
S_dhcpcLib_BAD_DEVICE

SEE ALSO dhcpcLib

2: Routines
dhcpcBootInformGet()

521

D

dhcpcBootBind()

NAME dhcpcBootBind() – initialize the network with DHCP at boot time

SYNOPSIS STATUS dhcpcBootBind (void)

DESCRIPTION This routine performs the client side of a DHCP negotiation according to RFC 2131. The
negotiation uses the network device specified with the initialization call. The addressing
information retrieved is applied to that network device. Because the boot image is
replaced by the downloaded target image, the resulting lease cannot be renewed.
Therefore, the minimum lease length specified by DHCPC_MIN_LEASE must be set so that
the target image has sufficient time to download and begin monitoring the lease. This
routine is called automatically by the boot program when INCLUDE_DHCPC is defined
and the automatic configuration option is set in the boot flags and no target address is
present.

RETURNS OK if negotiation is successful, or ERROR otherwise.

ERRNO N/A

SEE ALSO dhcpcBootLib

dhcpcBootInformGet()

NAME dhcpcBootInformGet() – obtain additional configuration parameters with DHCP

SYNOPSIS STATUS dhcpcBootInformGet

(

char * pAddrString /* known address assigned to client */

)

DESCRIPTION This routine uses DHCP to retrieve additional configuration parameters for a client with
the externally configured network address given by the pAddrString parameter. It sends
an INFORM message and waits for a reply following the process described in RFC 2131.
The message exchange uses the network device specified with the initialization call. Any
interface information retrieved is applied to that network device. Since this process does
not establish a lease, the target address will not contain any timestamp information so that
the runtime image will not attempt to verify the configuration parameters. This routine is
called automatically by the boot program when INCLUDE_DHCPC is defined and the
automatic configuration option is set in the boot flags if a target address is already
present.

VxWorks OS Libraries API Reference, 5.5
dhcpcBootInit()

522

RETURNS OK if negotiation is successful, or ERROR otherwise.

ERRNO N/A

SEE ALSO dhcpcBootLib

dhcpcBootInit()

NAME dhcpcBootInit() – set up the DHCP client parameters and data structures

SYNOPSIS void * dhcpcBootInit

(

struct ifnet * pIf, /* network device used by client */

int serverPort, /* port used by DHCP servers (default 67) */

int clientPort, /* port used by DHCP clients (default 68) */

int maxSize, /* largest DHCP message supported, in bytes */

int offerTimeout, /* interval to get additional DHCP offers */

int defaultLease, /* default value for requested lease length */

int minLease /* minimum accepted lease length */

)

DESCRIPTION This routine creates any necessary data structures and sets the client’s option request list
to retrieve a subnet mask and broadcast address for the network interface indicated by pIf.
The routine is executed automatically by the boot program when INCLUDE_DHCPC is
defined and the automatic configuration option is set in the boot flags. The network
interface specified by pIf is used to transmit and receive all DHCP messages during the
lease negotiation. The DHCP client supports interfaces attached to the IP protocol using
the MUX/END interface and BSD Ethernet devices attached to that protocol. The interface
must be capable of sending broadcast messages. The maxSize parameter specifies the
maximum length supported for any DHCP message, including the UDP and IP headers
and the link level header. The maximum length of the DHCP options field is based on this
value or the MTU size for the given interface, whichever is less. The smallest valid value
for the maxSize parameter is 576 bytes, corresponding to the minimum IP datagram a host
must accept. The MTU size of the network interface must be large enough to handle those
datagrams.

ERRNO N/A

RETURNS Lease handle for later use, or NULL if lease startup fails.

SEE ALSO dhcpcBootLib

2: Routines
dhcpcCacheHookAdd()

523

D

dhcpcCacheHookAdd()

NAME dhcpcCacheHookAdd() – add a routine to store and retrieve lease data

SYNOPSIS STATUS dhcpcCacheHookAdd

(

FUNCPTR pCacheHookRtn /* routine to store/retrieve lease data */

)

DESCRIPTION This routine adds a hook routine that is called at the bound state (to store the lease data)
and during the INIT_REBOOT state (to re-use the parameters if the lease is still active).
The calling sequence of the input hook routine is:

STATUS dhcpcCacheHookRtn

(

int command, /* requested cache operation */

unsigned long *pTimeStamp, /* lease timestamp data */

int *pDataLen, /* length of data to access */

char *pBuffer /* pointer to data buffer */

)

The hook routine should return OK if the requested operation is completed successfully,
or ERROR otherwise. All the supplied pointers reference memory locations that are reused
upon return from the hook. The hook routine must copy the data elsewhere.

NOTE: The setting of the cache hook routine during a dhcpcInit() call is recorded and
used by the resulting lease throughout its lifetime. Since the hook routine is intended to
store a single lease record, a separate hook routine should be specified before the
dhcpcInit() call for each lease which will re-use its parameters across reboots.

IMPLEMENTATION The command parameter specifies one of the following operations:

DHCP_CACHE_WRITE
Save the indicated data. The write operation must preserve the value referenced by
pTimeStamp and the contents of pBuffer. The pDataLen parameter indicates the number
of bytes in that buffer.

DHCP_CACHE_READ
Restore the saved data. The read operation must copy the data from the most recent
write operation into the location indicated by pBuffer, set the contents of pDataLen to
the amount of data provided, and store the corresponding timestamp value in
pTimeStamp.

– The read operation has very specific requirements. On entry, the value referenced by
pDataLen indicates the maximum buffer size available at pBuffer. If the amount of data
stored by the previous write exceeds this value, the operation must return ERROR. A

VxWorks OS Libraries API Reference, 5.5
dhcpcCacheHookDelete()

524

read must also return ERROR if the saved timestamp value is 0. Finally, the read
operation must return ERROR if it is unable to retrieve all the data stored by the write
operation or if the previous write was unsuccessful.

DHCP_CACHE_ERASE
Ignore all stored data. Following this operation, subsequent read operations must
return ERROR until new data is written. All parameters except command are NULL.

RETURNS OK, always.

ERRNO N/A

SEE ALSO dhcpcLib

dhcpcCacheHookDelete()

NAME dhcpcCacheHookDelete() – delete a lease data storage routine

SYNOPSIS STATUS dhcpcCacheHookDelete (void)

DESCRIPTION This routine deletes the hook used to store lease data, preventing re-use of the
configuration parameters across system reboots for all subsequent lease attempts.
Currently active leases will continue to use the routine specified before the lease
initialization.

RETURNS OK, always.

ERRNO N/A

SEE ALSO dhcpcLib

2: Routines
dhcpcEventHookAdd()

525

D

dhcpcEventHookAdd()

NAME dhcpcEventHookAdd() – add a routine to handle configuration parameters

SYNOPSIS STATUS dhcpcEventHookAdd

(

void * pCookie, /* identifier returned by dhcpcInit() */

FUNCPTR pEventHook /* routine to handle lease parameters */

)

DESCRIPTION This routine installs a hook routine to handle changes in the configuration parameters
provided for the lease indicated by pCookie. The hook provides an alternate configuration
method for DHCP leases and uses the following interface:

void dhcpcEventHookRtn

(

int leaseEvent, /* new or expired parameters */

void * pCookie /* lease identifier from dhcpcInit() */

)

The routine is called with the leaseEvent parameter set to DHCPC_LEASE_NEWwhenever a
lease is successfully established. The DHCPC_LEASE_NEW event does not occur when a
lease is renewed by the same DHCP server, since the parameters do not change in that
case. However, it does occur if the client rebinds to a different DHCP server. The
DHCPC_LEASE_INVALID event indicates that the configuration parameters for the
corresponding lease may no longer be used. That event occurs when a lease expires or a
renewal or verification attempt fails, and coincides with re-entry into the initial state of the
negotiation process.

If the lease initialization specified automatic configuration of the corresponding network
interface, any installed hook routine will be invoked after the new address information is
applied.

RETURNS OK if notification hook added, or ERROR otherwise.

ERRNO S_dhcpcLib_BAD_COOKIE, S_dhcpcLib_NOT_INITIALIZED

SEE ALSO dhcpcLib

VxWorks OS Libraries API Reference, 5.5
dhcpcEventHookDelete()

526

dhcpcEventHookDelete()

NAME dhcpcEventHookDelete() – remove the configuration parameters handler

SYNOPSIS STATUS dhcpcEventHookDelete

(

void * pCookie /* identifier returned by dhcpcInit() */

)

DESCRIPTION This routine removes the hook routine that handled changes in the configuration
parameters for the lease indicated by pCookie. If the lease initialization specified automatic
configuration of the corresponding network interface, the assigned address could change
without warning after this routine is executed.

RETURNS OK if notification hook removed, or ERROR otherwise.

ERRNO S_dhcpcLib_BAD_COOKIE, S_dhcpcLib_NOT_INITIALIZED

SEE ALSO dhcpcLib

dhcpcInformGet()

NAME dhcpcInformGet() – obtain additional configuration parameters with DHCP

SYNOPSIS STATUS dhcpcInformGet

(

void * pCookie, /* identifier returned by dhcpcInit() */

char * pAddrString, /* known address assigned to client */

BOOL syncFlag /* synchronous or asynchronous execution? */

)

DESCRIPTION This routine uses DHCP to retrieve additional configuration parameters for a client with
the externally configured network address given by the pAddrString parameter. It sends
an INFORM message and waits for a reply following the process described in RFC 2131.
The pCookie argument contains the return value of an earlier dhcpcInit() call and is used
to access the resulting configuration. Unlike the dhcpcBind() call, this routine does not
establish a lease with a server.

The syncFlag parameter specifies whether the message exchange started by this routine
will execute synchronously or asynchronously. An asynchronous execution will return

2: Routines
dhcpcInit()

527

D

after sending the initial message, but a synchronous execution will only return once the
process completes.

When a server responds with an acknowledgement message, any event hook provided
will be called to process the configuration parameters. The hook is also called if the
message exchange fails. The results of an asynchronous execution are not available unless
an event hook is installed.

NOTE: This routine is designed as an alternative to the dhcpcBind() routine. It should not
be used for any dhcpcInit() identifier corresponding to an active or pending lease.

RETURNS OK if routine completes, or ERROR otherwise.

ERRNO S_dhcpcLib_BAD_COOKIE, S_dhcpcLib_NOT_INITIALIZED, S_dhcpcLib_BAD_OPTION

SEE ALSO dhcpcLib

dhcpcInit()

NAME dhcpcInit() – assign network interface and setup lease request

SYNOPSIS void * dhcpcInit

(

struct ifnet * pIf, /* network device used by client */

BOOL autoConfig /* reconfigure network device? */

)

DESCRIPTION This routine creates the data structures used to obtain a set of parameters with DHCP and
must be called before each attempt at establishing a DHCP lease, but after the
dhcpcLibInit() routine has initialized the global data structures.

The pIf argument indicates the network device which will be used for transmission and
reception of DHCP messages during the lifetime of the lease. The DHCP client supports
devices attached to the IP protocol with the MUX/END interface. The specified device
must be capable of sending broadcast messages. It also supports BSD Ethernet devices
attached to the IP protocol. The MTU size of any interface must be large enough to receive
a minimum IP datagram of 576 bytes. If the interface MTU size is less than the maximum
message size set in the library initialization it also determines the maximum length of the
DHCP options field.

If the autoConfig parameter is set to TRUE, any address information obtained will
automatically be applied to the specified interface. The autoConfig parameter also selects
the default option request list for a lease. If set to FALSE, no specific lease options are

VxWorks OS Libraries API Reference, 5.5
dhcpcLibInit()

528

requested since any configuration parameters obtained are not intended for the
underlying network device. In that case, any specific options required may be added to
the request list at any time before the corresponding dhcpcBind() call. If autoConfig is
TRUE, this routine sets the configuration parameters to request the minimal address
information (subnet mask and broadcast address) necessary for reconfiguring the network
device specified by pIf.

The internal lease identifier returned by this routine must be used in subsequent calls to
the DHCP client library.

NOTE: This routine is called automatically during system startup if the DHCP client was
used to obtain the VxWorks boot parameters. The resulting lease will always reconfigure
the network boot device. Therefore, any further calls to this routine which specify the
network boot device for use in obtaining additional DHCP leases must set autoConfig to
FALSE. Otherwise, that device will be unable to maintain a stable configuration. The
global variable pDhcpcBootCookie provides access to the configuration parameters for
any DHCP lease created during system startup.

RETURNS Lease handle for later use, or NULL if lease setup fails.

ERRNO S_dhcpcLib_NOT_INITIALIZED, S_dhcpcLib_BAD_DEVICE, S_dhcpcLib_BAD_OPTION,
S_dhcpcLib_MAX_LEASES_REACHED, S_dhcpcLib_MEM_ERROR

SEE ALSO dhcpcLib, dhcpcOptionSet(), dhcpcEventHookAdd()

dhcpcLibInit()

NAME dhcpcLibInit() – DHCP client library initialization

SYNOPSIS STATUS dhcpcLibInit

(

int serverPort, /* port used by DHCP servers (default 67) */

int clientPort, /* port used by DHCP clients (default 68) */

int maxLeases, /* max number of simultaneous leases allowed */

int maxSize, /* largest DHCP message supported, in bytes */

int offerTimeout, /* interval to get additional DHCP offers */

int defaultLease, /* default value for requested lease length */

int minLease /* minimum accepted lease length */

)

DESCRIPTION This routine creates and initializes the global data structures used by the DHCP client
library to maintain multiple leases, up to the limit specified by the maxLeases parameter.

2: Routines
dhcpcOptionAdd()

529

D

Every subsequent lease attempt will collect additional DHCP offers until the interval
specified by offerTimeoutexpires and will request the lease duration indicated by
defaultLease. The maxSize parameter specifies the maximum length supported for any
DHCP message, including the UDP and IP headers and the largest link level header for all
supported devices. The maximum length of the DHCP options field is based on this value
or the MTU size for a lease’s underlying interface, whichever is less. The smallest valid
value for the maxSize parameter is 576 bytes, corresponding to the minimum IP datagram
a host must accept. Larger values will allow the client to handle longer DHCP messages.

This routine must be called before calling any other library routines. The routine is called
automatically if INCLUDE_DHCPC is defined at the time the system is built and assigns
the global lease settings to the values specified by DHCPC_SPORT, DHCPC_CPORT,
DHCPC_MAX_LEASES, DHCPC_MAX_MSGSIZE, DHCPC_DEFAULT_LEASE, and
DHCPC_OFFER_TIMEOUT.

RETURNS OK, or ERROR if initialization fails.

ERRNO S_dhcpcLib_MEM_ERROR

SEE ALSO dhcpcLib

dhcpcOptionAdd()

NAME dhcpcOptionAdd() – add an option to the client messages

SYNOPSIS STATUS dhcpcOptionAdd

(

void * pCookie, /* identifier returned by dhcpcInit() */

UCHAR option, /* RFC 2132 tag of desired option */

int length, /* length of option data */

UCHAR * pData /* option data */

)

DESCRIPTION This routine inserts option tags and associated values into the body of all outgoing
messages for the lease indicated by the pCookie parameter. Each lease can accept option
data up to the MTU size of the underlying interface, minus the link-level header size and
the additional 283 bytes required for a minimum DHCP message (including mandatory
options).

The option parameter specifies an option tag defined in RFC 2132. See the dhcp/dhcp.h
include file for a listing of defined aliases for the available option tags. This routine will
not accept the following option values, which are used for control purposes and cannot be
included arbitrarily:

VxWorks OS Libraries API Reference, 5.5
dhcpcOptionGet()

530

_DHCP_PAD_TAG
_DHCP_OPT_OVERLOAD_TAG
_DHCP_MSGTYPE_TAG
_DHCP_SERVER_ID_TAG
_DHCP_MAXMSGSIZE_TAG
_DHCP_END_TAG

This routine also will not accept option values 62 or 63, which are not currently defined.

The length parameter indicates the number of bytes in the option body provided by the
pData parameter.

The maximum length of the option field in a DHCP message depends on the MTU size of
the associated interface and the maximum DHCP message size set during the DHCP
library initialization. These option settings share that field with any option request list
created through the dhcpcOptionSet() routine. Options which exceed the limit will not be
stored.

Each call to this routine with the same option value usually replaces the value of the
existing option, if any. However, the routine will append the new data for the option
values which contain variable length lists, corresponding to tags 3-11, 21, 25, 33, 41-45,
48-49, 55, 65, and 68-76.

WARNING: The _DHCP_REQ_LIST_TAG option value (55) will replace any existing list
created with the dhcpcOptionSet() routine.

RETURNS OK if the option was inserted successfully, or ERROR if the option is invalid or storage
failed.

ERRNO S_dhcpcLib_BAD_OPTION, S_dhcpcLib_OPTION_NOT_STORED

SEE ALSO dhcpcCommonLib

dhcpcOptionGet()

NAME dhcpcOptionGet() – retrieve an option provided to a client and store in a buffer

SYNOPSIS STATUS dhcpcOptionGet

(

void * pCookie, /* identifier returned by dhcpcInit() */

int option, /* RFC 2132 option tag */

int * pLength, /* size of provided buffer and data returned */

char * pBuf /* location for option data */

)

2: Routines
dhcpcOptionSet()

531

D

DESCRIPTION This routine retrieves the data for a specified option from a lease indicated by the pCookie
parameter. The option parameter specifies an option tag as defined in RFC 2132. See the
dhcp/dhcp.h include file for a listing of defined aliases for the available option tags. This
routine will not accept the following option values, which are either used by the server for
control purposes or only supplied by the client:

_DHCP_PAD_TAG
_DHCP_REQUEST_IPADDR_TAG
_DHCP_OPT_OVERLOAD_TAG
_DHCP_MSGTYPE_TAG
_DHCP_REQ_LIST_TAG
_DHCP_MAXMSGSIZE_TAG
_DHCP_CLASS_ID_TAG
_DHCP_CLIENT_ID_TAG
_DHCP_END_TAG

If the option is found, the data is stored in the provided buffer, up to the limit specified in
the pLength parameter. The option is not available if the DHCP client is not in the bound
state or if the server did not provide it. After returning, the pLength parameter indicates
the amount of data actually retrieved. The provided buffer may contain IP addresses
stored in network byte order. All other numeric values are stored in host byte order. See
RFC 2132 for specific details on the data retrieved.

RETURNS OK if option available, or ERROR otherwise.

ERRNO S_dhcpcLib_BAD_COOKIE, S_dhcpcLib_NOT_INITIALIZED, S_dhcpcLib_NOT_BOUND,
S_dhcpcLib_OPTION_NOT_PRESENT

SEE ALSO dhcpcLib, dhcpcOptionSet()

dhcpcOptionSet()

NAME dhcpcOptionSet() – add an option to the option request list

SYNOPSIS STATUS dhcpcOptionSet

(

void * pCookie, /* identifier returned by dhcpcInit() */

int option /* RFC 2132 tag of desired option */

)

DESCRIPTION This routine specifies which options the lease indicated by the pCookie parameter will
request from a server. The option parameter specifies an option tag as defined in RFC 2132.
See the dhcp/dhcp.h include file for a listing of defined aliases for the available option

VxWorks OS Libraries API Reference, 5.5
dhcpcOptionSet()

532

tags. This routine will not accept the following option values, which are either used by the
server for control purposes or only supplied by the client:

_DHCP_PAD_TAG
_DHCP_REQUEST_IPADDR_TAG
_DHCP_LEASE_TIME_TAG
_DHCP_OPT_OVERLOAD_TAG
_DHCP_MSGTYPE_TAG
_DHCP_SERVER_ID_TAG
_DHCP_REQ_LIST_TAG
_DHCP_ERRMSG_TAG
_DHCP_MAXMSGSIZE_TAG
_DHCP_CLASS_ID_TAG
_DHCP_CLIENT_ID_TAG
_DHCP_END_TAG

This routine also will not accept option values 62 or 63, which are not currently defined.

The maximum length of the option field in a DHCP message depends on the MTU size of
the associated interface and the maximum DHCP message size set during the DHCP
library initialization. Both the option request list and the options sent by the client through
the dhcpcOptionAdd() routine share that field. Options which exceed the limit will not
be stored.

NOTE: The boot program automatically requests all options necessary for default target
configuration. This routine is only necessary to support special circumstances in which
additional options are required. Any options requested in that case may be retrieved after
the runtime image has started.

NOTE: The DHCP specification forbids changing the option request list after a lease has
been established. Therefore, this routine must not be used after the dhcpcBind() call (in a
runtime image) or the dhcpcBootBind() call (for a boot image). Changing the request list
at that point could have unpredictable results.

NOTE: Options are added directly to outgoing DHCP messages, and numeric options (e.g.,
lease duration time) are expected to be provided in network byte order. Care must be
taken on little-endian hosts to insure that numeric arguments are properly byte-swapped
before being passed to this routine.

RETURNS OK if the option was set successfully, or ERROR if the option is invalid or storage failed.

ERRNO S_dhcpcLib_BAD_OPTION, S_dhcpcLib_OPTION_NOT_STORED

SEE ALSO dhcpcCommonLib

2: Routines
dhcpcParamsGet()

533

D

dhcpcParamsGet()

NAME dhcpcParamsGet() – retrieve current configuration parameters

SYNOPSIS STATUS dhcpcParamsGet

(

void * pCookie, /* identifier returned by dhcpcInit() */

struct dhcp_param * pParamList /* requested parameters */

)

DESCRIPTION This routine copies the current configuration parameters for the lease specified by the
pCookie argument to the user-supplied and allocated dhcp_param structure referenced in
pParamList. Within this structure, defined in h/dhcp/dhcpc.h, you should supply buffer
pointers for the parameters that interest you. Set all other structure members to zero.
When dhcpcParamsGet() returns, the buffers you specified in the submitted
dhcpc_param structure will contain the information you requested. This assumes that
the specified lease is in the bound state and that DHCP knows that the lease parameters
are good.

NOTE: The temp_sname and temp_file members of the dhcp_param structure are for
internal use only. They reference temporary buffers for options that are passed using the
sname and file members. Do not request either temp_sname or temp_file. Instead,
request either sname or file if you want those parameters.

Many of the parameters within the user-supplied structure use one of the following
secondary data types: struct in_addrs, struct u_shorts, and struct vendor_list. Each of
those structures accepts a length designation and a data pointer. For the first two data
types, the num member indicates the size of the buffer in terms of the number of
underlying elements. For example, the STATIC_ROUTE option returns one or more IP
address pairs. Thus, setting the num member to 2 in the static_route entry would indicate
that the corresponding buffer contained 16 bytes. By contrast, the len member in the struct
vendor_list data type consists of the buffer size, in bytes. See RFC 1533 for specific details
on the types of data for each option.

On return, each of the length designators are set to indicate the amount of data returned.
For instance, the num member in the static_route entry could be set to 1 to indicate that
only one IP address pair of 8 bytes was available.

RETURNS OK if in bound state, or ERROR otherwise.

ERRNO S_dhcpcLib_BAD_COOKIE, S_dhcpcLib_NOT_INITIALIZED, S_dhcpcLib_NOT_BOUND

SEE ALSO dhcpcLib

VxWorks OS Libraries API Reference, 5.5
dhcpcParamsShow()

534

dhcpcParamsShow()

NAME dhcpcParamsShow() – display current lease parameters

SYNOPSIS STATUS dhcpcParamsShow

(

void * pCookie /* identifier returned by dhcpcInit() */

)

DESCRIPTION This routine prints all lease parameters for the lease identified by pCookie. It has no effect if
the indicated lease is not currently active.

RETURNS OK, or ERROR if lease identifier unknown.

ERRNO S_dhcpcLib_BAD_COOKIE

SEE ALSO dhcpcShow

dhcpcRelease()

NAME dhcpcRelease() – relinquish specified lease

SYNOPSIS STATUS dhcpcRelease

(

void * pCookie /* identifier returned by dhcpcInit() */

)

DESCRIPTION This routine schedules the lease identified by the pCookie parameter for immediate release,
regardless of time remaining, and removes all the associated data structures. After the
release completes, a new call to dhcpcInit() is required before attempting another lease.

NOTE: This routine will disable the underlying network interface if automatic
configuration was requested. This may occur without warning if no event hook is
installed.

RETURNS OK if release scheduled, or ERROR otherwise.

ERRNO S_dhcpcLib_BAD_COOKIE, S_dhcpcLib_NOT_INITIALIZED

SEE ALSO dhcpcLib

2: Routines
dhcpcServerShow()

535

D

dhcpcServerGet()

NAME dhcpcServerGet() – retrieve the current DHCP server

SYNOPSIS STATUS dhcpcServerGet

(

void * pCookie, /* identifier returned by dhcpcInit() */

struct in_addr * pServerAddr /* location for address of server */

)

DESCRIPTION This routine returns the DHCP server that supplied the configuration parameters for the
lease specified by the pCookie argument. This information is available only if the lease is in
the bound state.

RETURNS OK if in bound state and server available, or ERROR otherwise.

ERRNO S_dhcpcLib_BAD_COOKIE, S_dhcpcLib_NOT_INITIALIZED, S_dhcpcLib_NOT_BOUND

SEE ALSO dhcpcLib

dhcpcServerShow()

NAME dhcpcServerShow() – display current DHCP server

SYNOPSIS STATUS dhcpcServerShow

(

void * pCookie /* identifier returned by dhcpcInit() */

)

DESCRIPTION This routine prints the IP address of the DHCP server that provided the parameters for
the lease identified by pCookie. It has no effect if the indicated lease is not currently active.

RETURNS OK, or ERROR if lease identifier unknown.

ERRNO S_dhcpcLib_BAD_COOKIE

SEE ALSO dhcpcShow

VxWorks OS Libraries API Reference, 5.5
dhcpcShowInit()

536

dhcpcShowInit()

NAME dhcpcShowInit() – initialize the DHCP show facility

SYNOPSIS void dhcpcShowInit (void)

DESCRIPTION This routine links the DHCP show facility into the VxWorks system image. It is called
from usrNetwork.c automatically if INCLUDE_DHCP and INCLUDE_NET_SHOW are
defined at the time the image is constructed.

SEE ALSO dhcpcShow

dhcpcShutdown()

NAME dhcpcShutdown() – disable DHCP client library

SYNOPSIS STATUS dhcpcShutdown (void)

DESCRIPTION This routine schedules the lease monitor task to clean up memory and exit, after releasing
all currently active leases. The network boot device will be disabled if the DHCP client
was used to obtain the VxWorks boot parameters and the resulting lease is still active.
Any other interfaces using the addressing information from leases set for automatic
configuration will also be disabled. Notification of a disabled interface will not occur
unless an event hook has been installed. After the processing started by this request
completes, the DHCP client library is unavailable until restarted with the dhcpcLibInit()
routine.

RETURNS OK if shutdown scheduled, or ERROR otherwise.

ERRNO S_dhcpcLib_NOT_INITIALIZED

SEE ALSO dhcpcLib

2: Routines
dhcpcTimersShow()

537

D

dhcpcTimerGet()

NAME dhcpcTimerGet() – retrieve current lease timers

SYNOPSIS STATUS dhcpcTimerGet

(

void * pCookie, /* identifier returned by dhcpcInit() */

int * pT1, /* time until lease renewal */

int * pT2 /* time until lease rebinding */

)

DESCRIPTION This routine returns the number of clock ticks remaining on the timers governing the
DHCP lease specified by the pCookie argument. This information is only available if the
lease is in the bound state. Therefore, this routine will return ERROR if a BOOTP reply
was accepted.

RETURNS OK if in bound state and values available, or ERROR otherwise.

ERRNO S_dhcpcLib_BAD_COOKIE, S_dhcpcLib_NOT_INITIALIZED, S_dhcpcLib_NOT_BOUND,
S_dhcpcLib_OPTION_NOT_PRESENT, S_dhcpcLib_TIMER_ERROR

SEE ALSO dhcpcLib

dhcpcTimersShow()

NAME dhcpcTimersShow() – display current lease timers

SYNOPSIS STATUS dhcpcTimersShow

(

void * pCookie /* identifier returned by dhcpcInit() */

)

DESCRIPTION This routine prints the time remaining with each of the DHCP lease timers for the lease
identified by pCookie. It has no effect if the indicated lease is not currently active.

RETURNS OK if show routine completes, or ERROR otherwise.

ERRNO S_dhcpcLib_BAD_COOKIE

SEE ALSO dhcpcShow

VxWorks OS Libraries API Reference, 5.5
dhcpcVerify()

538

dhcpcVerify()

NAME dhcpcVerify() – renew an established lease

SYNOPSIS STATUS dhcpcVerify

(

void * pCookie /* identifier returned by dhcpcInit() */

)

DESCRIPTION This routine schedules the lease identified by the pCookie parameter for immediate
renewal according to the process described in RFC 1541. If the renewal is unsuccessful, the
lease negotiation process restarts. The routine is valid as long as the lease is currently
active. The routine is also called automatically in response to a dhcpcBind() call for an
existing lease.

NOTE: This routine is only intended for active leases obtained with the dhcpcBind()
routine. It should not be used for parameters resulting from the dhcpcInformGet()
routine.

NOTE: This routine will disable the underlying network interface if the verification fails
and automatic configuration was requested. This may occur without warning if no event
hook is installed.

RETURNS OK if verification scheduled, or ERROR otherwise.

ERRNO S_dhcpcLib_BAD_COOKIE, S_dhcpcLib_NOT_INITIALIZED, S_dhcpcLib_NOT_BOUND

SEE ALSO dhcpcLib

dhcpsAddressHookAdd()

NAME dhcpsAddressHookAdd() – assign a permanent address storage hook for the server

SYNOPSIS STATUS dhcpsAddressHookAdd

(

FUNCPTR pCacheHookRtn /* routine to store/retrieve lease entries */

)

DESCRIPTION This routine allows the server to access some form of permanent storage to preserve
additional address entries across restarts. This routine is not required, but leases using

2: Routines
dhcpsAddressHookAdd()

539

D

unsaved addresses are not renewed. The only argument provided is the name of a
function with the following interface:

STATUS dhcpsAddressStorageHook (int op,

char *name, char *start, char *end,

char *params);

The first parameter of this storage routine specifies one of the following operations:

DHCPS_STORAGE_START
DHCPS_STORAGE_READ
DHCPS_STORAGE_WRITE
DHCPS_STORAGE_STOP

In response to a START, the storage routine should prepare to return data or overwrite
data provided by earlier WRITE operations. For a WRITE, the storage routine must save
the contents of the four buffers to permanent storage. Those buffers contain the
NULL-terminated strings received by the dhcpsLeaseEntryAdd() routine. For a READ,
the storage routine should copy previously stored data (as NULL-terminated strings) into
the provided buffers in the order received by earlier WRITE operations. For a STOP, the
storage routine should do any necessary cleanup. After a STOP, the storage routine
should return an ERROR for all operations except START. However, the STOP operation
does not normally occur since the server only deliberately exits following an
unrecoverable error. This storage routine must not rely on that operation to handle READ,
WRITE, or new START attempts.

The storage routine should return OK if successful, ERROR otherwise.

Note that, unlike the lease storage routine, there is no CLEAR operation.

Before the server is initialized, VxWorks calls this routine automatically passing in the
function named in DHCPS_ADDRESS_HOOK.

RETURNS OK, or ERROR if function pointer is NULL.

ERRNO N/A

SEE ALSO dhcpsLib

VxWorks OS Libraries API Reference, 5.5
dhcpsInit()

540

dhcpsInit()

NAME dhcpsInit() – set up the DHCP server parameters and data structures

SYNOPSIS STATUS dhcpsInit

(

DHCPS_CFG_PARAMS * pDhcpsCfg /* configuration parameters */

)

DESCRIPTION This routine creates the necessary data structures, builds the server address pool, retrieves
any lease or address information from permanent storage through the user-provided
hooks, and initializes the network interfaces for monitoring. It is called at system startup if
INCLUDE_DHCPS is defined at the time the VxWorks image is built.

The maxSize parameter specifies the maximum length supported for any DHCP message,
including the UDP and IP headers and the largest link level header for all supported
devices. The smallest valid value is 576 bytes, corresponding to the minimum IP datagram
a host must accept. Larger values will allow the server to handle longer DHCP messages.

RETURNS OK, or ERROR if could not initialize.

SEE ALSO dhcpsLib

dhcpsLeaseEntryAdd()

NAME dhcpsLeaseEntryAdd() – add another entry to the address pool

SYNOPSIS STATUS dhcpsLeaseEntryAdd

(

char * pName, /* name of lease entry */

char * pStartIp, /* first IP address to assign */

char * pEndIp, /* last IP address in assignment range */

char * pParams /* formatted string of lease parameters */

)

DESCRIPTION This routine allows the user to add new entries to the address pool without rebuilding the
VxWorks image. The routine requires a unique entry name of up to eight characters,
starting and ending IP addresses, and a colon-separated list of parameters. Possible values
for the parameters are listed in the reference entry for dhcpsLib. The parameters also
determine the type of lease, which the server uses to determine priority when assigning
lease addresses. For examples of possible lease types, see the reference entry for dhcpsLib.

2: Routines
dhcpsLeaseHookAdd()

541

D

RETURNS OK if entry read successfully, or ERROR otherwise.

ERRNO N/A

SEE ALSO dhcpsLib

dhcpsLeaseHookAdd()

NAME dhcpsLeaseHookAdd() – assign a permanent lease storage hook for the server

SYNOPSIS STATUS dhcpsLeaseHookAdd

(

FUNCPTR pCacheHookRtn /* routine to store/retrieve lease records */

)

DESCRIPTION This routine allows the server to access some form of permanent storage that it can use to
store current lease information across restarts. The only argument to
dhcpsLeaseHookAdd() is a pointer to a storage routine with the following interface:

STATUS dhcpsStorageHook (int op, char *buffer, int datalen);

The first parameter of the storage routine specifies one of the following operations:

DHCPS_STORAGE_START
DHCPS_STORAGE_READ
DHCPS_STORAGE_WRITE
DHCPS_STORAGE_STOP
DHCPS_STORAGE_CLEAR

In response to START, the storage routine should prepare to return data or overwrite data
provided by earlier WRITEs. For a WRITE, the storage routine must save the contents of
the buffer to permanent storage. For a READ, it should copy data previously stored into
the provided buffer as a NULL-terminated string in FIFO order. For a CLEAR, the storage
routine should discard currently stored data. After a CLEAR, the READ operation must
return ERROR until additional data is stored. For a STOP, the storage routine must handle
cleanup. After a STOP, READ and WRITE operations must return error until a START is
received. Each of these operations must return OK if successful, or ERROR otherwise.

Before the server is initialized, VxWorks automatically calls dhcpsLeaseHookAdd(),
passing in the routine name defined by DHCPS_LEASE_HOOK.

RETURNS OK, or ERROR if routine is NULL.

ERRNO N/A

SEE ALSO dhcpsLib

VxWorks OS Libraries API Reference, 5.5
difftime()

542

difftime()

NAME difftime() – compute the difference between two calendar times (ANSI)

SYNOPSIS double difftime

(

time_t time1, /* later time, in seconds */

time_t time0 /* earlier time, in seconds */

)

DESCRIPTION This routine computes the difference between two calendar times: time1 - time0.

INCLUDE FILES time.h

RETURNS The time difference in seconds, expressed as a double.

SEE ALSO ansiTime

dirList()

NAME dirList() – list contents of a directory (multi-purpose)

SYNOPSIS STATUS dirList

(

int fd, /* file descriptor to write on */

char * dirName, /* name of the directory to be listed */

BOOL doLong, /* if TRUE, do long listing */

BOOL doTree /* if TRUE, recurse into subdirs */

)

DESCRIPTION This command is similar to UNIX ls. It lists the contents of a directory in one of two
formats. If doLong is FALSE, only the names of the files (or subdirectories) in the specified
directory are displayed. If doLongis TRUE, then the file name, size, date, and time are
displayed. If doTree flag is TRUE, then each subdirectory encountered will be listed as well
(i.e., the listing will be recursive).

The dirName parameter specifies the directory to be listed. If dirName is omitted or NULL,
the current working directory will be listed. dirName may contain wildcard characters to
list some of the directory’s contents.

2: Routines
diskFormat()

543

D

LIMITATIONS

RETURNS OK or ERROR.

SEE ALSO usrFsLib, dirLib, dosFsLib, ls(), ll(), lsr(), llr()

diskFormat()

NAME diskFormat() – format a disk

SYNOPSIS STATUS diskFormat

(

const char * pDevName /* name of the device to initialize */

)

DESCRIPTION This command formats a disk and creates a file system on it. The device must already
have been created by the device driver and initialized for use with a particular file system,
via dosFsDevInit().

This command calls ioctl() to perform the FIODISKFORMAT function.

EXAMPLE -> diskFormat "/fd0/"

RETURNS OK, or ERROR if the device cannot be opened or formatted.

SEE ALSO usrFsLib, dosFsLib, VxWorks Programmer’s Guide: Target Shell

- With dosFsLib file systems, MS-DOS volume label entries are not reported.
- Although an output format very similar to UNIX “ls” is employed, some information

items have no particular meaning on some file systems.
- Some file systems which do not support the POSIX compliant dirLib() interface, can not

support the doLong and doTree options.

VxWorks OS Libraries API Reference, 5.5
diskInit()

544

diskInit()

NAME diskInit() – initialize a file system on a block device

SYNOPSIS STATUS diskInit

(

const char * pDevName /* name of the device to initialize */

)

DESCRIPTION This function is now obsolete, use of dosFsVolFormat() is recommended.

This command creates a new, blank file system on a block device. The device must
already have been created by the device driver and initialized for use with a particular file
system, via dosFsDevCreate().

EXAMPLE -> diskInit "/fd0/"

Note that if the disk is unformatted, it can not be mounted, thus open() will return error,
in which case use the dosFsVolFormat() routine manually.

This routine performs the FIODISKINIT ioctl operation.

RETURNS OK, or ERROR if the device cannot be opened or initialized.

SEE ALSO usrFsLib, dosFsLib, VxWorks Programmer’s Guide: Target Shell

distCtl()

NAME distCtl() – perform a distributed objects control function (VxFusion Opt.)

SYNOPSIS int distCtl

(

int function, /* function code */

int argument /* arbitrary argument */

)

DESCRIPTION This routine sets various parameters and hooks that control the system. It uses a syntax
similar to that of the ioctl() routine. It accepts the following functions:

DIST_CTL_LOG_HOOK
This function sets a routine to be called each time a log message is produced. By
default, the log hook writes the message to standard output. The prototype of the

2: Routines
distCtl()

545

D

log() routine should look like this:

void log (char *logMsg);

DIST_CTL_PANIC_HOOK
This function sets a routine to be called when the system panics. By default, the panic
hook writes the panic message to standard output. The panic() routine must not
return. The prototype of the panic() routine should look like this:

void panic (char *panicMsg);

DIST_CTL_RETRY_TIMEOUT
This function sets the initial send retry timeout in clock ticks. If no ACK is received
within a timeout period, the packet is resent. The default value and granularity of
DIST_CTL_RETRY_TIMEOUT is system dependent.

DIST_CTL_RETRY_TIMEOUT is designated in ticks, but rounded down to a multiple of the
system’s granularity. The timeout period for the nth send is:

n * DIST_CTL_RETRY_TIMEOUT

DIST_CTL_MAX_RETRIES
This function sets a limit for the number of retries when sending fails. The default
value is system dependent, but is set to 5 for all current versions of vxWorks.

DIST_CTL_NACK_SUPPORT
This function enables or disables the sending of negative acknowledgments (NACKs).
NACKs are used to request a resend of a single missing fragment from a packet. They
are sent immediately after a fragment is found to be missing. If arg is FALSE (0), the
sending of negative acknowledgments is disabled. If arg is TRUE (1), the sending of
NACKs is enabled. By default, NACKs are enabled.

DIST_CTL_PGGYBAK_UNICST_SUPPORT
This function enables or disables unicast piggy-backing. When unicast piggy-backing
is enabled, the system waits some time until it sends an acknowledgment for a
previously received packet. In the meantime, if a data packet is sent to a host already
awaiting an acknowledgment, the acknowledgment is delivered (that is,
piggy-backed) with the data packet. Enabling piggy-backing is useful for reducing
the number of packets sent; however, it increases latency if no data packets are sent
while the system waits. When unicast piggy-backing is disabled, an acknowledgment
is delivered immediately in its own packet. This function turns piggy-backing on and
off for unicast communication only. If arg is FALSE (0), unicast piggy-backing is
disabled. If arg is TRUE (1), unicast piggy-backing is enabled. By default,
piggy-backing is disabled for unicast communication.

vxWorks Version Default Value Granularity

5.4 and below 1000ms 500ms
5.5 and AE 200ms 100ms

VxWorks OS Libraries API Reference, 5.5
distCtl()

546

DIST_CTL_PGGYBAK_BRDCST_SUPPORT
This function enables or disables broadcast piggy-backing. When broadcast
piggy-backing is enabled, the system waits some time until it sends an
acknowledgment for a previously received packet. In the meantime, if a data packet
is sent to a host already awaiting an acknowledgment, the acknowledgment is
delivered (that is, piggy-backed) with the data packet. Enabling piggy-backing is
useful for reducing the number of packets sent; however, it increases latency if no
broadcast data packets are sent while the system waits. When broadcast
piggy-backing is disabled, an acknowledgment is delivered immediately in its own
packet. This function turns piggy-backing on and off for broadcast communication
only. If arg is FALSE (0), broadcast piggy-backing is disabled. If arg is TRUE (1),
broadcast piggy-backing is enabled. By default, piggy-backing is disabled for
broadcast communication.

DIST_CTL_OPERATIONAL_HOOK
This function adds a routine to a list of routines to be called each time a node shifts to
the operational state. A maximum of 8 routines can be added to the list. The
prototype of each operational() routine should look as follows:

void operational (DIST_NODE_ID nodeStateChanged);

DIST_CTL_CRASHED_HOOK
This function adds a routine to a list of routines to be called each time a node shifts to
the crashed state. A node shifts to the crashed state when it does not acknowledge a
message within the maximum number of retries. The list can contain a maximum of
8 routines; however VxFusion supplies one routine, leaving room for only 7
user-supplied routines. The prototype of each crashed() routine should look as
follows:

void crashed (DIST_NODE_ID nodeStateChanged);

DIST_CTL_GET_LOCAL_ID
This function returns the local node ID.

DIST_CTL_GET_LOCAL_STATE
This function returns the state of the local node.

DIST_CTL_SERVICE_HOOK
This function sets a routine to be called each time a service fails, for a service invoked
by a remote node. The argument parameter is a pointer to a servError() routine. The
prototype of the servError() routine should look as follows:

void servError (int servId, int status);

The system is aware of the following services:

DIST_ID_MSG_Q_SERV (0) /* message queue service */

DIST_ID_MSG_Q_GRP_SERV (1) /* message queue group service */

DIST_ID_DNDB_SERV (2) /* distributed name database */

DIST_ID_DGDB_SERV (3) /* distributed group database */

DIST_ID_INCO_SERV (4) /* incorporation protocol */

DIST_ID_GAP_SERV (5) /* group agreement protocol */

2: Routines
distCtl()

547

D

DIST_CTL_SERVICE_CONF
This function configures a specified service. The argument parameter is a pointer to a
DIST_SERV_CONF structure which holds the service ID and its configuration to be
set. DIST_SERV_CONF is defined as follows:

typedef struct

{

int servId; /* ID of service to configure */

int taskPrio; /* priority of service task */

int netPrio; /* network priority of service */

} DIST_SERV_CONF;

The system is aware of the following services:

DIST_ID_MSG_Q_SERV (0) /* message queue service */

DIST_ID_MSG_Q_GRP_SERV (1) /* message queue group service */

DIST_ID_DNDB_SERV (2) /* distributed name database */

DIST_ID_DGDB_SERV (3) /* distributed group database */

DIST_ID_INCO_SERV (4) /* incorporation protocol */

DIST_ID_GAP_SERV (5) /* group agreement protocol */

If one of the configuration parameters is -1, it remains unchanged. The parameter
taskPrio can range from 0 to 255; netPrio can range from 0 to 7.

A service’s configuration can be changed at any time.

AVAILABILITY This routine is distributed as a component of the unbundled distributed message queues
option, VxFusion.

RETURNS OK or the value requested if function is known; ERROR if function is unknown or the
argument is invalid.

ERRNO S_distLib_UNKNOWN_REQUEST
The control function is unknown.

SEE ALSO distLib

VxWorks OS Libraries API Reference, 5.5
distIfShow()

548

distIfShow()

NAME distIfShow() – display information about the installed interface adapter (VxFusion Opt.)

SYNOPSIS STATUS distIfShow (void)

DESCRIPTION This routine displays information about the installed interface adapter. It displays the
configuration parameters, as well as some statistical data.

EXAMPLE -> distIfShow

Interface Name : "UDP adapter"

MTU : 1500

Network Header Size : 14

SWP Buffer : 32

Maximum Number of Fragments : 10

Maximum Length of Packet : 14860

Broadcast Address : 0x930b26ff

Telegrams received : 23

Telegrams received for sending : 62

Incoming Telegrams discarded : 0

Outgoing Telegrams discarded : 0

In this example, the installed interface adapter has the name “UDP adapter.” The largest
telegram that can be transmitted without fragmentation is 1500 bytes long. The network
header requires fourteen (14) of those bytes; therefore the largest amount of user data that
can be transmitted without fragmentation is 1486 bytes. The sliding window protocol’s
buffer has 32 entries, which results in a window of size 16. The number of fragments that
the packet can be broken into is limited by the size of the sequence field in the network
header. The example interface adapter can handle up to 10 fragments, which results in a
maximum packet length of 14860 ((1500 - 14) * 128) bytes. The broadcast address of this
driver is 0x930b26ff (147.11.38.255). The last four lines of output show statistical data.

AVAILABILITY This routine is distributed as a component of the unbundled distributed message queues
option, VxFusion.

RETURNS OK, or ERROR if there is no interface installed.

SEE ALSO distIfShow

2: Routines
distInit()

549

D

distInit()

NAME distInit() – initialize and bootstrap the current node (VxFusion Opt.)

SYNOPSIS STATUS distInit

(

DIST_NODE_ID myNodeId, /* node ID of this node */

FUNCPTR ifInitRtn, /* interface adapter init routine */

void * pIfInitConf, /* ptr to interface configuration */

int maxTBufsLog2, /* max number of telegram buffers */

int maxNodesLog2, /* max number of nodes in node db */

int maxQueuesLog2, /* max number of queues on this node */

int maxGroupsLog2, /* max number of groups in db */

int maxNamesLog2, /* max bindings in name db */

int waitNTicks /* wait n ticks when bootstrapping */

)

DESCRIPTION This routine initializes VxFusion on the current node. The routine begins by initializing
the local databases and other internal services. As part of this process, the current node is
given the address specified by the myNodeId argument.

Secondly, this routine links a network driver to the stack by calling the interface adapter
initialization routine specified by the ifInitRtn argument. If the interface adapter
initialization is successful, this routine then initializes the telegram buffer library which is
needed for manipulating telegram buffers--the buffers that hold the packets sent between
nodes.

Thirdly, this routine attempts to determine what other VxFusion nodes are active on the
network. This is done by continually sending a BOOTSTRAP telegram, which indicates
to other nodes that VxFusion is starting up on this node. Nodes that receive a
BOOTSTRAP telegram answer by sending an XACK telegram. The XACK telegram
contains information about the remote node. The sender of the first XACK received is the
godfather for the current node. The purpose of the godfather is to update local databases.
If no XACK is received within the amount of time specified by the waitNTicks argument, it
is assumed that this node is the first node to come up on the network.

As soon as a godfather is located or it is assumed that a node sending an XACK is the first
to do so on the network, the state of the node shifts from the booting state to the network
state. In the network state, all packets are sent using reliable communication channels;
therefore all packets must be now acknowledged by the receiver(s).

If a godfather has been located, the current node asks it to update the local databases by
sending an INCO_REQ packet. The godfather then begins updating the local databases.
When the godfather finishes the update, it sends an INCO_DONE packet to the node being
updated.

VxWorks OS Libraries API Reference, 5.5
distInit()

550

Once the database updates have completed, the node moves into the operational state and
broadcasts an INCO_UPNOW packet.

The number of telegram buffers pre-allocated is equal to 2^maxTBufsLog2.

Up to 2^maxNodesLog2 nodes can be handled by the node database.

The number of distributed message queues is limited to 2^maxQueuesLog2.

Distributed message queue groups may not exceed 2^maxGroupsLog2 groups.

The distributed name database can work with up to 2^maxNamesLog2 entries.

EXAMPLE -> distInit (0x930b2610, distIfUdpInit, "ln0", 9, 5, 7, 6, 8,

(4*sysClkRateGet())

This command sets the ID of the local node to 0x930b2610 (147.11.38.16). The
distIfUdpInit() routine is called to initialize the interface adapter (in this case, a UDP
adapter). The UDP adapter requires a pointer to the hardware interface name as
configuration data (in this case, “ln0”). When starting up, 512 (2^9) telegram buffers are
pre-allocated. The node database is configured to hold as many as 32 (2^5) nodes,
including the current node. 128 (2^7) distributed message queues can be created on the
local node. The local group database can hold up to 64 (2^6) groups, while the name
database is limited to 256 (2^8) entries.

When the node bootstraps, it waits for 4 seconds (4*sysClkRateGet()) to allow other
nodes to respond.

NOTE: This routine is called automatically with default parameters when a target boots
using a VxWorks image with VxFusion installed.

AVAILABILITY This routine is distributed as a component of the unbundled distributed message queues
option, VxFusion.

RETURNS OK, or ERROR if the initialization fails.

SEE ALSO distLib, distLib

2: Routines
distNameAdd()

551

D

distNameAdd()

NAME distNameAdd() – add an entry to the distributed name database (VxFusion Opt.)

SYNOPSIS STATUS distNameAdd

(

char * name, /* name to enter in database */

void * value, /* ptr to value to associate with name */

int valueLen, /* size of value in bytes */

DIST_NAME_TYPE type /* type associated with name */

)

DESCRIPTION This routine adds the name of a specified object, along with its type and value, to the
distributed objects distributed name database. All copies of the distributed name database
within the system are updated.

The name parameter is an arbitrary, null-terminated string with a maximum of 20
characters, including the null terminator.

The value associated with name is located at value and is of length valueLen, currently
limited to 8 bytes.

By convention, type values of less than 0x1000 are reserved by VxWorks; all other values
are user definable. The following types are pre-defined in distNameLib.h:

The byte-order of pre-defined types is preserved in a byte-order-heterogeneous network.

The value (and type!) bound to a symbolic name can be changed by calling
distNameAdd() with a new value (and type).

This routine returns OK, even if some nodes on the system do not respond to the add
request broadcast. A node that does not acknowledge a transmission is assumed to have
crashed. You can use the distCtl() routine in distLib to set a routine to be called in the
event that a node crashes.

Type Name Value Datum

_DIST_MSG_Q =0 distributed message queue
_DIST_NODE = 16 node ID
_DIST_UINT8 = 64 8-bit unsigned integer
_DIST_UINT16 = 65 16-bit unsigned integer
_DIST_UINT32 = 66 32-bit unsigned integer
T_DIST_UINT64 = 67 64-bit unsigned integer
T_DIST_FLOAT = 68 float (32-bit)
T_DIST_DOUBLE = 69 double (64-bit)

VxWorks OS Libraries API Reference, 5.5
distNameFilterShow()

552

NOTE: If you add a distributed object ID (T_DIST_MSG_Q) to the database, another
reference to the object is built. This reference is stored in the database. After the return of
distNameAdd(), value holds the reference (a new object ID). Use the ID returned by
distNameAdd() each time you want to address the global object bound to name.
Subsequent updates of the binding in the database are transparent. The original object ID
specifies exactly the locally created object.

AVAILABILITY This routine is distributed as a component of the unbundled distributed message queues
option, VxFusion.

RETURNS OK, or ERROR if the operation fails.

ERRNO S_distNameLib_NAME_TOO_LONG
The name being added to the database is too long.

S_distNameLib_ILLEGAL_LENGTH
The argument valueLen is not in the range 1 to 8.

S_distNameLib_DATABASE_FULL
The database is full.

S_distNameLib_INCORRECT_LENGTH
The argument valueLen is incorrect for the pre-defined type.

SEE ALSO distNameLib, distLib

distNameFilterShow()

NAME distNameFilterShow() – display the distributed name database filtered by type (VxFusion
Opt.)

SYNOPSIS void distNameFilterShow

(

DIST_NAME_TYPE type /* type to filter the database by */

)

DESCRIPTION This routine displays the contents of the distributed name database filtered by type. The
data displayed includes the symbolic ASCII name, the type, and the value. If the type is
not pre-defined, it is printed in decimal and the value shown in a hex dump.

NOTE: Option VX_FP_TASK should be set when spawning any task in which
distNameFilterShow() is called unless it is certain that no floating point values will be
displayed. The target shell has this option set.

2: Routines
distNameFind()

553

D

EXAMPLE -> distNameFilterShow(0)

NAME TYPE VALUE

--------------------- -------------- -------------------------
dmq-01 T_DIST_MSG_Q 0x3ff9fb

dmq-02 T_DIST_MSG_Q 0x3ff98b

dmq-03 T_DIST_MSG_Q 0x3ff94b

dmq-04 T_DIST_MSG_Q 0x3ff8db

dmq-05 T_DIST_MSG_Q 0x3ff89b

grp1 T_DIST_MSG_Q 0x3ff9bb

grp2 T_DIST_MSG_Q 0x3ff90b

value = 0 = 0x0

AVAILABILITY This routine is distributed as a component of the unbundled distributed message queues
option, VxFusion.

RETURNS N/A

SEE ALSO distNameShow

distNameFind()

NAME distNameFind() – find an object by name in the local database (VxFusion Opt.)

SYNOPSIS STATUS distNameFind

(

char * name, /* name to search for */

void * * pValue, /* where to return ptr to value */

DIST_NAME_TYPE * pType, /* where to return type */

int waitType /* NO_WAIT or WAIT_FOREVER */

)

DESCRIPTION This routine searches the distributed name database for an object matching a specified
name. If the object is found, a pointer to the value and its type are copied to the address
pointed to by pValue and pType. If the type is T_DIST_MSG_Q, the identifier returned can
be used with generic message queue handling routines in msgQLib, such as
msgQSend(), msgQReceive(), and msgQNumMsgs().

AVAILABILITY This routine is distributed as a component of the unbundled distributed message queues
option, VxFusion.

RETURNS OK, or ERROR if the search fails.

VxWorks OS Libraries API Reference, 5.5
distNameFindByValueAndType()

554

ERRNO S_distNameLib_NAME_TOO_LONG
The name to be found in the database is too long.

S_distNameLib_INVALID_WAIT_TYPE
The wait type should be either NO_WAIT or WAIT_FOREVER.

SEE ALSO distNameLib

distNameFindByValueAndType()

NAME distNameFindByValueAndType() – look up the name of an object by value and type
(VxFusion Opt.)

SYNOPSIS STATUS distNameFindByValueAndType

(

void * value, /* value to search for */

DIST_NAME_TYPE type, /* type of object for which to search */

char * name, /* where to return name */

int waitType /* NO_WAIT or WAIT_FOREVER */

)

DESCRIPTION This routine searches the distributed name database for an object matching a specified
value and type. If the object is found, its name is copied to the address pointed to by name.

NOTE: Unlike the smNameFindByValue() routine, used with the shared-memory objects
name database, this routine must know the type of the object being searched for.
Searching on the value only might not return a unique object.

AVAILABILITY This routine is distributed as a component of the unbundled distributed message queues
option, VxFusion.

RETURNS OK, or ERROR if the search fails.

ERRNO S_distNameLib_INVALID_WAIT_TYPE
The wait type should be either NO_WAIT or WAIT_FOREVER.

SEE ALSO distNameLib

2: Routines
distNameShow()

555

D

distNameRemove()

NAME distNameRemove() – remove an entry from the distributed name database (VxFusion
Opt.)

SYNOPSIS STATUS distNameRemove

(

char * name /* name of object to remove */

)

DESCRIPTION This routine removes an object, that is bound to name, from the distributed name database.
All copies of the distributed name database get updated.

This routine returns OK, even if some nodes on the system do not respond to the remove
request broadcast. A node that does not acknowledge a transmission is assumed to have
crashed. You can use the distCtl() routine in distLib to set a routine to be called in the
event that a node crashes.

Removing the name of a distributed object ID (T_DIST_MSG_Q) does not invalidate the
object ID.

AVAILABILITY This routine is distributed as a component of the unbundled distributed message queues
option, VxFusion.

TURNS OK, or ERROR if the operation fails.

ERRNO S_distNameLib_NAME_TOO_LONG
The name to be removed from the database is too long.

SEE ALSO distNameLib, distLib

distNameShow()

NAME distNameShow() – display the entire distributed name database (VxFusion Opt.)

SYNOPSIS void distNameShow (void)

DESCRIPTION This routine displays the entire contents of the distributed name database. The data
displayed includes the symbolic ASCII name, the type, and the value. If the type is not
pre-defined, it is printed in decimal and the value shown in a hex dump.

VxWorks OS Libraries API Reference, 5.5
distTBufAlloc()

556

NOTE: Option VX_FP_TASK should be set when spawning any task in which
distNameShow() is called unless it is certain that no floating point values will be in the
database. The target shell has this option set.

EXAMPLE -> distNameShow()

NAME TYPE VALUE

-------------------- -------------- -------------------------

nile T_DIST_NODE 0x930b2617 (2466981399)

columbia T_DIST_NODE 0x930b2616 (2466981398)

dmq-01 T_DIST_MSG_Q 0x3ff9fb

dmq-02 T_DIST_MSG_Q 0x3ff98b

dmq-03 T_DIST_MSG_Q 0x3ff94b

dmq-04 T_DIST_MSG_Q 0x3ff8db

dmq-05 T_DIST_MSG_Q 0x3ff89b

gData 4096 0x48 0x65 0x6c 0x6c 0x6f 0x00

gCount T_DIST_UINT32 0x2d (45)

grp1 T_DIST_MSG_Q 0x3ff9bb

grp2 T_DIST_MSG_Q 0x3ff90b

value = 0 = 0x0

AVAILABILITY This routine is distributed as a component of the unbundled distributed message queues
option, VxFusion.

RETURNS N/A

SEE ALSO distNameShow

distTBufAlloc()

NAME distTBufAlloc() – allocate a telegram buffer from the pool of buffers (VxFusion Opt.)

SYNOPSIS DIST_TBUF * distTBufAlloc (void)

DESCRIPTION This routine allocates a telegram buffer from a pre-allocated pool of telegram buffers.

It is the responsibility of the caller to use the distTBufFree() routine to free the buffer
when the caller is finished with it.

AVAILABILITY This routine is distributed as a component of the unbundled distributed message queues
option, VxFusion.

RETURNS A pointer to a DIST_TBUF, or NULL if the allocation fails.

SEE ALSO distTBufLib, distTBufFree()

2: Routines
div()

557

D

distTBufFree()

NAME distTBufFree() – return a telegram buffer to the pool of buffers (VxFusion Opt.)

SYNOPSIS void distTBufFree

(

DIST_TBUF * pTBuf /* ptr to buffer to be returned to pool */

)

DESCRIPTION This routine returns a buffer previously allocated to a caller back to the pool of free
telegram buffers.

AVAILABILITY This routine is distributed as a component of the unbundled distributed message queues
option, VxFusion.

RETURNS N/A

SEE ALSO distTBufLib, distTBufAlloc()

div()

NAME div() – compute a quotient and remainder (ANSI)

SYNOPSIS div_t div

(

int numer, /* numerator */

int denom /* denominator */

)

DESCRIPTION This routine computes the quotient and remainder of numer/denom. If the division is
inexact, the resulting quotient is the integer of lesser magnitude that is the nearest to the
algebraic quotient. If the result cannot be represented, the behavior is undefined;
otherwise, quot * denom + rem equals numer.

This routine is not reentrant. For a reentrant version, see div_r().

INCLUDE FILES stdlib.h

RETURNS A structure of type div_t, containing both the quotient and the remainder.

SEE ALSO ansiStdlib

VxWorks OS Libraries API Reference, 5.5
div_r()

558

div_r()

NAME div_r() – compute a quotient and remainder (reentrant)

SYNOPSIS void div_r

(

int numer, /* numerator */

int denom, /* denominator */

div_t * divStructPtr /* div_t structure */

)

DESCRIPTION This routine computes the quotient and remainder of numer/denom. The quotient and
remainder are stored in the div_t structure pointed to by divStructPtr.

This routine is the reentrant version of div().

INCLUDE FILES stdlib.h

RETURNS N/A

SEE ALSO ansiStdlib

dosFsChkDsk()

NAME dosFsChkDsk() – make volume integrity checking.

SYNOPSIS STATUS dosFsChkDsk

(

DOS_FILE_DESC_ID pFd, /* file descriptor of root dir */

u_int params /* check level and verbosity */

)

DESCRIPTION This library does not makes integrity check process itself, but instead uses routine
provided by dosChkLib. This routine prepares parameters and invokes checking routine
via a pre-initialized function pointer. If dosChkLib does not configured into vxWorks,
this routine returns ERROR.

Ownership on device should be taken by an upper level routine.

RETURNS STATUS as returned by volume checking routine or ERROR, if such routine does not
installed.

ERRNO S_dosFsLib_UNSUPPORTED.

SEE ALSO dosFsLib

2: Routines
dosFsDevCreate()

559

D

dosFsDevCreate()

NAME dosFsDevCreate() – create file system device.

SYNOPSIS STATUS dosFsDevCreate

(

char * pDevName, /* device name */

CBIO_DEV_ID cbio, /* CBIO or cast blkIo device */

u_int maxFiles, /* max no. of simultaneously open files */

u_int autoChkLevel /* automate volume integrity check level */

/* via mounting 0 - default: DOS_CHK_REPAIR

DOS_CHK_VERB_1 */

)

DESCRIPTION This routine associates a CBIO device with a logical I/O device name and prepare it to
perform file system functions. It takes a CBIO_DEV_ID device handle, typically created by
dcacheDevCreate(), and defines it as a dosFs volume. As a result, when high-level I/O
operations (e.g., open(), write()) are performed on the device, the calls will be routed
through dosFsLib. The pCbio parameter is the handle of the underlying cache or block
device.

The argument maxFiles specifies the number of files that can be opened at once on the
device.

The volume structure integrity can be automatically checked during volume mounting.
Parameter autoChkLevel defines checking level (DOS_CHK_ONLY or DOS_CHK_REPAIR),
that can be bitwise or-ed with check verbosity level value (DOS_CHK_VERB_SILENT,
DOS_CHK_VERB_1 or DOS_CHK_VERB_2). If value of autoChkLevel is 0, this means default
level, that is DOS_CHK_REPAIR | DOS_CHK_VERB_1. To prevent check disk autocall, set
autoChkLevel to NONE.

Note that actual disk accesses are deferred to the time when open() or creat() are first
called. That is also when the automatic disk checking will take place. Therefore this
function will succeed in cases where a removable disk is not present in the drive.

RETURNS OK, or ERROR if the device name is already in use or insufficient memory.

SEE ALSO dosFsLib

VxWorks OS Libraries API Reference, 5.5
dosFsLastAccessDateEnable()

560

dosFsLastAccessDateEnable()

NAME dosFsLastAccessDateEnable() – enable last access date updating for this volume

SYNOPSIS STATUS dosFsLastAccessDateEnable

(

DOS_VOLUME_DESC_ID dosVolDescId, /* dosfs volume ID to alter */

BOOL enable /* TRUE = enable update, FALSE = */

/* disable update */

)

DESCRIPTION This function enables or disables updating of the last access date directory entry field on
open-read-close operations for the given dosFs volume. The last access date file indicates
the last date that a file has been read or written. When the optional last access date field
update is enabled, read operations on a file will cause a write to the media.

RETURNS OK or ERROR if the volume is invalid or enable is not TRUE or FALSE.

SEE ALSO dosFsLib

dosFsLibInit()

NAME dosFsLibInit() – prepare to use the dosFs library

SYNOPSIS STATUS dosFsLibInit

(

int ignored

)

DESCRIPTION This routine initializes the dosFs library. This routine installs dosFsLib as a driver in the
I/O system driver table, and allocates and sets up the necessary structures. The driver
number assigned to dosFsLib is placed in the global variable dosFsDrvNum.

RETURNS OK or ERROR, if driver can not be installed.

SEE ALSO dosFsLib

2: Routines
dosFsVolDescGet()

561

D

dosFsShow()

NAME dosFsShow() – display dosFs volume configuration data.

SYNOPSIS STATUS dosFsShow

(

void * pDevName, /* name of device */

u_int level /* detail level */

)

DESCRIPTION This routine obtains the dosFs volume configuration for the named device, formats the
data, and displays it on the standard output.

If no device name is specified, the current default device is described.

RETURNS OK or ERROR, if no valid device specified.

SEE ALSO dosFsLib

dosFsVolDescGet()

NAME dosFsVolDescGet() – convert a device name into a DOS volume descriptor pointer.

SYNOPSIS DOS_VOLUME_DESC_ID dosFsVolDescGet

(

void * pDevNameOrPVolDesc, /* device name or pointer to dos vol desc */

u_char * * ppTail /* return ptr for name, used in iosDevFind */

)

DESCRIPTION This routine validates pDevNameOrPVolDesc to be a DOS volume descriptor pointer else a
path to a DOS device. This routine uses the standard iosLib function iosDevFind() to
obtain a pointer to the device descriptor. If device is eligible, ppTail is filled with the
pointer to the first character following the device name. Note that ppTail is passed to
iosDevFind(). ppTail may be passed as NULL, in which case it is ignored.

RETURNS A DOS_VOLUME_DESC_ID or NULL if not a DOSFS device.

ERRNO S_dosFsLib_INVALID_PARAMETER

SEE ALSO dosFsLib

VxWorks OS Libraries API Reference, 5.5
dosFsVolFormat()

562

dosFsVolFormat()

NAME dosFsVolFormat() – format an MS-DOS compatible volume

SYNOPSIS STATUS dosFsVolFormat

(

void * device, /* device name or volume or CBIO pointer */

int opt, /* bit-wise or’ed options */

FUNCPTR pPromptFunc /* interactive parameter change callback */

)

DESCRIPTION This utility routine performs the initialization of file system data structures on a disk. It
supports FAT12 for small disks, FAT16 for medium size and FAT32 for large volumes.
The device argument may be either a device name known to the I/O system, or a dosFsLib
Volume descriptor or a CBIO device handle.

The opt argument is a bit-wise or’ed combination of options controlling the operation of
this routine as follows:

DOS_OPT_DEFAULT
If the current volume boot block is reasonably intact, use existing parameters, else
calculate parameters based only on disk size, possibly reusing only the volume label
and serial number.

DOS_OPT_PRESERVE
Attempt to preserve the current volume parameters even if they seem to be
somewhat unreliable.

DOS_OPT_BLANK
Disregard the current volume parameters, and calculate new parameters based only
on disk size.

DOS_OPT_QUIET
Do not produce any diagnostic output during formatting.

DOS_OPT_FAT16
Format the volume with FAT16 format even if the disk is larger then 2 Gbytes, which
would normally be formatted with FAT32.

DOS_OPT_FAT32
Format the volume with FAT32, even if the disk is smaller then 2 Gbytes, but is larger
then 512 Mbytes.

DOS_OPT_VXLONGNAMES
Format the volume to use Wind River proprietary case-sensitive Long File Names.
Note that this format is incompatible with any other implementation of the MS-DOS
file system.

2: Routines
dosSetVolCaseSens()

563

D

The third argument, pPromptFunc is an optional pointer to a function that may
interactively prompt the user to change any of the modifiable volume parameters before
formatting:

void formatPromptFunc(DOS_VOL_CONFIG *pConfig);

The <*pConfig< structure upon entry to formatPromptFunc() will contain the initial
volume parameters, some of which can be changed before it returns. pPromptFunc should
be NULL if no interactive prompting is required.

COMPATIBILITY Although this routine tries to format the disk to be compatible with Microsoft
implementations of the FAT and FAT32 file systems, there may be differences which are
not under WRS control. For this reason, it is highly recommended that any disks which
are expected to be interchanged between vxWorks and Windows should be formatted
under Windows to provide the best interchangeability. The WRS implementation is more
flexible, and should be able to handle the differences when formatting is done on
Windows, but Windows implementations may not be able to handle minor differences
between their implementation and ours.

AVAILABILITY This function is an optional part of the MS-DOS file system, and may be included in a
target system if it is required to be able to format new volumes.

RETURNS OK or ERROR if was unable to format the disk.

SEE ALSO dosFsFmtLib

dosSetVolCaseSens()

NAME dosSetVolCaseSens() – set case sensitivity of volume

SYNOPSIS STATUS dosSetVolCaseSens

(

DOS_VOLUME_DESC_ID pVolDesc,

BOOL sensitivity

)

DESCRIPTION Pass TRUE to setup a case sensitive volume. Pass FALSE to setup a case insensitive
volume. Note this affects rename lookups only.

RETURNS TRUE if pVolDesc pointed to a DOS volume.

SEE ALSO dosFsLib

VxWorks OS Libraries API Reference, 5.5
dpartDevCreate()

564

dpartDevCreate()

NAME dpartDevCreate() – initialize a partitioned disk

SYNOPSIS CBIO_DEV_ID dpartDevCreate

(

CBIO_DEV_ID subDev, /* lower level CBIO device */

int nPart, /* # of partitions */

FUNCPTR pPartDecodeFunc /* function to decode partition table */

)

DESCRIPTION To handle a partitioned disk, this function should be called, with subDev as the handle
returned from dcacheDevCreate(), It is recommended that for efficient operation a single
disk cache be allocated for the entire disk and shared by its partitions.

nPart is the maximum number of partitions which are expected for the particular disk
drive. Up to 24 (C-Z) partitions per disk are supported.

PARTITION DECODE FUNCTION

An external partition table decode function is provided via the pPartDecodeFunc argument,
which implements a particular style and format of partition tables, and fill in the results
into a table defined as Pn array of PART_TABLE_ENTRY types. See dpartCbio.hfor
definition of PART_TABLE_ENTRY. The prototype for this function is as follows:

STATUS parDecodeFunc

(

CBIO_DEV_ID dev, /* device from which to read blocks */

PART_TABLE_ENTRY *pPartTab, /* table where to fill results */

int nPart /* # of entries in <pPartTable> */

)

RETURNS CBIO_DEV_ID or NULL if error creating CBIO device.

SEE ALSO dpartCbio, dosFsDevCreate().

2: Routines
dspInit()

565

D

dpartPartGet()

NAME dpartPartGet() – retrieve handle for a partition

SYNOPSIS CBIO_DEV_ID dpartPartGet

(

CBIO_DEV_ID masterHandle, /* CBIO handle of the master partition */

int partNum /* partition number from 0 to nPart */

)

DESCRIPTION This function retrieves a CBIO handle into a particular partition of a partitioned device.
This handle is intended to be used with dosFsDevCreate().

RETURNS CBIO_DEV_ID or NULL if partition is out of range, or masterHandle is invalid.

SEE ALSO dpartCbio, dosFsDevCreate()

dspInit()

NAME dspInit() – initialize DSP support

SYNOPSIS void dspInit (void)

DESCRIPTION This routine initializes DSP support and must be called before using the DSP. This is done
automatically by the root task, usrRoot(), in usrConfig.c when INCLUDE_DSPis defined
in configAll.h.

RETURNS N/A

SEE ALSO dspLib

VxWorks OS Libraries API Reference, 5.5
dspShowInit()

566

dspShowInit()

NAME dspShowInit() – initialize the DSP show facility

SYNOPSIS void dspShowInit (void)

DESCRIPTION This routine links the DSP show facility into the VxWorks system. The facility is included
automatically when INCLUDE_SHOW_ROUTINES and INCLUDE_DSP are defined in
configAll.h.

RETURNS N/A

SEE ALSO dspShow

dspTaskRegsShow()

NAME dspTaskRegsShow() – print the contents of a task’s DSP registers

SYNOPSIS void dspTaskRegsShow

(

int task /* task to display dsp registers for */

)

DESCRIPTION This routine prints to standard output the contents of a task’s DSP registers.

RETURNS N/A

SEE ALSO dspShow

2: Routines
e()

567

E

e()

NAME e() – set or display eventpoints (WindView)

SYNOPSIS STATUS e

(

INSTR * addr, /* where to set eventpoint, or 0 means */

/* display all eventpoints */

event_t eventId, /* event ID */

int taskNameOrId, /* task affected; 0 means all tasks */

FUNCPTR evtRtn, /* function to be invoked; NULL means no */

/* function is invoked */

int arg /* argument to be passed to evtRtn */

)

DESCRIPTION This routine sets “eventpoints”--that is, breakpoint-like instrumentation markers that can
be inserted in code to generate and log an event for use with WindView. Event logging
must be enabled with wvEvtLogEnable() for the eventpoint to be logged.

eventId selects the eventpoint number that will be logged: it is in the user event ID range
(0-25536).

If addr is NULL, then all eventpoints and breakpoints are displayed. If taskNameOrId is 0,
then this event is logged in all tasks. The evtRtn routine is called when this eventpoint is
hit. If evtRtn returns OK, then the eventpoint is logged; otherwise, it is ignored. If evtRtn is
a NULL pointer, then the eventpoint is always logged.

Eventpoints are exactly like breakpoints (which are set with the b() command) except in
how the system responds when the eventpoint is hit. An eventpoint typically records an
event and continues immediately (if evtRtn is supplied, this behavior may be different).
Eventpoints cannot be used at interrupt level.

To delete an eventpoint, use bd().

RETURNS OK, or ERROR if addr is odd or nonexistent in memory, or if the breakpoint table is full.

SEE ALSO dbgLib, wvEvent()

VxWorks OS Libraries API Reference, 5.5
edi()

568

edi()

NAME edi() – return the contents of register edi (also esi - eax) (x86/SimNT)

SYNOPSIS int edi

(

int taskId /* task ID, 0 means default task */

)

DESCRIPTION This command extracts the contents of register edi from the TCB of a specified task. If
taskId is omitted or zero, the last task referenced is assumed.

Similar routines are provided for all address registers (edi - eax): edi() - eax().

The stack pointer is accessed via eax().

RETURNS The contents of register edi (or the requested register).

SEE ALSO dbgArchLib, VxWorks Programmer’s Guide: Debugging

eflags()

NAME eflags() – return the contents of the status register (x86/SimNT)

SYNOPSIS int eflags

(

int taskId /* task ID, 0 means default task */

)

DESCRIPTION This command extracts the contents of the status register from the TCB of a specified task.
If taskId is omitted or zero, the last task referenced is assumed.

RETURNS The contents of the status register.

SEE ALSO dbgArchLib, VxWorks Programmer’s Guide: Debugging

2: Routines
envLibInit()

569

E

endFindByName()

NAME endFindByName() – find a device using its string name

SYNOPSIS END_OBJ * endFindByName

(

char * pName, /* device name to search for */

int unit

)

DESCRIPTION This routine takes a string name and a unit number and finds the device that has that
name/unit combination.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call endFindByName() from within the kernel protection
domain only, and the data referenced in the pName parameter must reside in the kernel
protection domain. In addition, the returned END_OBJ is valid in the kernel protection
domain only. This restriction does not apply under non-AE versions of VxWorks.

RETURNS A pointer to an END_OBJ; or NULL, if the device is not found.

SEE ALSO muxLib

envLibInit()

NAME envLibInit() – initialize environment variable facility

SYNOPSIS STATUS envLibInit

(

BOOL installHooks

)

DESCRIPTION If installHooks is TRUE, task create and delete hooks are installed that will optionally create
and destroy private environments for the task being created or destroyed, depending on
the state of VX_PRIVATE_ENV in the task options word. If installHooks is FALSE and a task
requires a private environment, it is the application’s responsibility to create and destroy
the private environment, using envPrivateCreate() and envPrivateDestroy().

RETURNS OK, or ERROR if an environment cannot be allocated or the hooks cannot be installed.

SEE ALSO envLib

VxWorks OS Libraries API Reference, 5.5
envPrivateCreate()

570

envPrivateCreate()

NAME envPrivateCreate() – create a private environment

SYNOPSIS STATUS envPrivateCreate

(

int taskId, /* task to have private environment */

int envSource /* -1 = make an empty private environment 0 */

/* = copy global env to new private env taskId */

/* = copy the specified task’s env */

)

DESCRIPTION This routine creates a private set of environment variables for a specified task, if the
environment variable task create hook is not installed.

RETURNS OK, or ERROR if memory is insufficient.

SEE ALSO envLib, envLibInit(), envPrivateDestroy()

envPrivateDestroy()

NAME envPrivateDestroy() – destroy a private environment

SYNOPSIS STATUS envPrivateDestroy

(

int taskId /* task with private env to destroy */

)

DESCRIPTION This routine destroys a private set of environment variables that were created with
envPrivateCreate(). Calling this routine is unnecessary if the environment variable task
create hook is installed and the task was spawned with VX_PRIVATE_ENV.

RETURNS OK, or ERROR if the task does not exist.

SEE ALSO envLib, envPrivateCreate()

2: Routines
errnoGet()

571

E

envShow()

NAME envShow() – display the environment for a task

SYNOPSIS void envShow

(

int taskId /* task for which environment is printed */

)

DESCRIPTION This routine prints to standard output all the environment variables for a specified task. If
taskId is NULL, then the calling task’s environment is displayed.

RETURNS N/A

SEE ALSO envLib

errnoGet()

NAME errnoGet() – get the error status value of the calling task

SYNOPSIS int errnoGet (void)

DESCRIPTION This routine gets the error status stored in errno. It is provided for compatibility with
previous versions of VxWorks and simply accesses errno directly.

RETURNS The error status value contained in errno.

SEE ALSO errnoLib, errnoSet(), errnoOfTaskGet()

VxWorks OS Libraries API Reference, 5.5
errnoOfTaskGet()

572

errnoOfTaskGet()

NAME errnoOfTaskGet() – get the error status value of a specified task

SYNOPSIS int errnoOfTaskGet

(

int taskId /* task ID, 0 means current task */

)

DESCRIPTION This routine gets the error status most recently set for a specified task. If taskId is zero, the
calling task is assumed, and the value currently in errno is returned.

This routine is provided primarily for debugging purposes. Normally, tasks access errno
directly to set and get their own error status values.

RETURNS The error status of the specified task, or ERROR if the task does not exist.

SEE ALSO errnoLib, errnoSet(), errnoGet()

errnoOfTaskSet()

NAME errnoOfTaskSet() – set the error status value of a specified task

SYNOPSIS STATUS errnoOfTaskSet

(

int taskId, /* task ID, 0 means current task */

int errorValue /* error status value */

)

DESCRIPTION This routine sets the error status for a specified task. If taskId is zero, the calling task is
assumed, and errno is set with the specified error status.

This routine is provided primarily for debugging purposes. Normally, tasks access errno
directly to set and get their own error status values.

RETURNS OK, or ERROR if the task does not exist.

SEE ALSO errnoLib, errnoSet(), errnoOfTaskGet()

2: Routines
etherMultiAdd()

573

E

errnoSet()

NAME errnoSet() – set the error status value of the calling task

SYNOPSIS STATUS errnoSet

(

int errorValue /* error status value to set */

)

DESCRIPTION This routine sets the errno variable with a specified error status. It is provided for
compatibility with previous versions of VxWorks and simply accesses errno directly.

RETURNS OK, or ERROR if the interrupt nest level is too deep.

SEE ALSO errnoLib, errnoGet(), errnoOfTaskSet()

etherMultiAdd()

NAME etherMultiAdd() – add multicast address to a multicast address list

SYNOPSIS int etherMultiAdd

(

LIST * pList, /* pointer to list of multicast addresses */

char* pAddress /* address you want to add to list */

)

DESCRIPTION This routine adds an Ethernet multicast address list for a given END. The address is a
six-byte value pointed to by pAddress.

RETURNS OK or ENETRESET.

SEE ALSO etherMultiLib

VxWorks OS Libraries API Reference, 5.5
etherMultiDel()

574

etherMultiDel()

NAME etherMultiDel() – delete an Ethernet multicast address record

SYNOPSIS int etherMultiDel

(

LIST * pList, /* pointer to list of multicast addresses */

char* pAddress /* address you want to add to list */

)

DESCRIPTION This routine deletes an Ethernet multicast address from the list. The address is a six-byte
value pointed to by pAddress.

RETURNS OK or ENETRESET.

SEE ALSO etherMultiLib

etherMultiGet()

NAME etherMultiGet() – retrieve a table of multicast addresses from a driver

SYNOPSIS int etherMultiGet

(

LIST* pList, /* pointer to list of multicast addresses */

MULTI_TABLE* pTable /* table into which to copy addresses */

)

DESCRIPTION This routine runs down the multicast address list stored in a driver and places all the
entries it finds into the multicast table structure passed to it.

RETURNS OK or ERROR.

SEE ALSO etherMultiLib

2: Routines
eventReceive()

575

E

eventClear()

NAME eventClear() – clear all events for current task.

SYNOPSIS STATUS eventClear (void)

DESCRIPTION This function clears all received events for the calling task.

RETURNS OK on success or ERROR.

ERRNO S_intLib_NOT_ISR_CALLABLE
Routine has been called from interrupt level.

SEE ALSO eventLib

eventReceive()

NAME eventReceive() – wait for event(s)

SYNOPSIS STATUS eventReceive

(

UINT32 events, /* events task is waiting to occur */

UINT8 options, /* user options */

int timeout, /* ticks to wait */

UINT32 * pEventsReceived /* events occured are returned through this */

)

DESCRIPTION Pends task until one or all specified events have occurred. When they have,
pEventsReceived will be filled with those that did occur.

The options parameter is used for three user options. Firstly, it is used to specify if the task
is going to wait for all events to occur or only one of them. One of the following has to be
selected:

EVENTS_WAIT_ANY (0x1)
only one event has to occur

EVENTS_WAIT_ALL (0x0)
will wait until all events occur.

Secondly, it is used to specify if the events returned in pEventsReceived will be only those
received and wanted, or all events received (even the ones received before eventReceive()

VxWorks OS Libraries API Reference, 5.5
eventReceive()

576

was called). By default it returns only the events wanted. Performing a bitwise-OR of the
following:

EVENTS_RETURN_ALL (0x2)
causes the function to return received events, both wanted and unwanted.

Thirdly, it can be used to retrieve what events have been received by the current task. If
the option

EVENTS_FETCH (0x80)
is chosen by the user, then pEventsReceived will be filled with the events that have
already been received and will return immediately. In this case, the parameters events
and timeout, as well as all the other options, are ignored. Also, events are not cleared,
allowing to get a peek at the events that have already been received.

The timeout parameter specifies the number of ticks to wait for wanted events to be sent to
the waiting task. It can also have the following special values:

NO_WAIT (0)
return immediately, even if no events have arrived.

WAIT_FOREVER (-1)
never time out.

It must also be noted that events sent to the receiving task are cleared prior to returning,
as if a call to eventClear() was done.

The parameter pEventsReceived is always filled with the events received even when the
function returns an error, except if a value of NULL was passed.

WARNING: This routine may not be used from interrupt level.

RETURNS OK on success or ERROR.

ERRNO S_eventLib_TIMEOUT
Wanted events not received before specified time expired.

S_eventLib_NOT_ALL_EVENTS
Specified NO_WAIT as the timeout parameter and wanted events were not already
received when the routine was called.

S_objLib_OBJ_DELETED
Task is waiting for some events from a resource that is subsequently deleted.

S_intLib_NOT_ISR_CALLABLE
Function has been called from ISR.

S_eventLib_ZERO_EVENTS
The events parameter has been passed a value of 0.

SEE ALSO eventLib, semEvLib, msgQEvLib, eventSend()

2: Routines
excConnect()

577

E

eventSend()

NAME eventSend() – send event(s)

SYNOPSIS STATUS eventSend

(

int taskId, /* task events will be sent to */

UINT32 events /* events to send */

)

DESCRIPTION Sends specified event(s) to specified task. Passing a taskId of NULL sends events to the
calling task.

RETURNS OK on success or ERROR.

ERRNO S_objLib_OBJ_ID_ERROR
Task ID is invalid.

S_eventLib_NULL_TASKID_AT_INT_LEVEL
Routine was called from ISR with a taskId of NULL.

SEE ALSO eventLib, eventReceive()

excConnect()

NAME excConnect() – connect a C routine to an exception vector (PowerPC)

SYNOPSIS STATUS excConnect

(

VOIDFUNCPTR * vector, /* exception vector to attach to */

VOIDFUNCPTR routine /* routine to be called */

)

DESCRIPTION This routine connects a specified C routine to a specified exception vector. An exception
stub is created and in placed at vector in the exception table. The address of routine is
stored in the exception stub code. When an exception occurs, the processor jumps to the
exception stub code, saves the registers, and calls the C routines.

The routine can be any normal C code, except that it must not invoke certain operating
system functions that may block or perform I/O operations.

VxWorks OS Libraries API Reference, 5.5
excCrtConnect()

578

The registers are saved to an Exception Stack Frame (ESF) placed on the stack of the task
that has produced the exception. The structure of the ESF used to save the registers is
defined in h/arch/ppc/esfPpc.h.

The only argument passed by the exception stub to the C routine is a pointer to the ESF
containing the registers values. The prototype of this C routine is described below:

void excHandler (ESFPPC *);

When the C routine returns, the exception stub restores the registers saved in the ESF and
continues execution of the current task.

RETURNS OK, always.

SEE ALSO excArchLib, excIntConnect(), excVecSet()

excCrtConnect()

NAME excCrtConnect() – connect a C routine to a critical exception vector (PowerPC 403)

SYNOPSIS STATUS excCrtConnect

(

VOIDFUNCPTR * vector, /* exception vector to attach to */

VOIDFUNCPTR routine /* routine to be called */

)

DESCRIPTION This routine connects a specified C routine to a specified critical exception vector. An
exception stub is created and in placed at vector in the exception table. The address of
routine is stored in the exception stub code. When an exception occurs, the processor
jumps to the exception stub code, saves the registers, and call the C routines.

The routine can be any normal C code, except that it must not invoke certain operating
system functions that may block or perform I/O operations.

The registers are saved to an Exception Stack Frame (ESF) which is placed on the stack of
the task that has produced the exception. The ESF structure is defined in
h/arch/ppc/esfPpc.h.

The only argument passed by the exception stub to the C routine is a pointer to the ESF
containing the register values. The prototype of this C routine is as follows:

void excHandler (ESFPPC *);

When the C routine returns, the exception stub restores the registers saved in the ESF and
continues execution of the current task.

2: Routines
excHookAdd()

579

E

RETURNS OK, always.

SEE ALSO excArchLib, excIntConnect(), excIntCrtConnect(), excVecSet()

excHookAdd()

NAME excHookAdd() – specify a routine to be called with exceptions

SYNOPSIS void excHookAdd

(

FUNCPTR excepHook /* routine to call when exceptions occur */

)

DESCRIPTION This routine specifies a routine that will be called when hardware exceptions occur. The
specified routine is called after normal exception handling, which includes displaying
information about the error. Upon return from the specified routine, the task that incurred
the error is suspended.

The exception handling routine should be declared as:

void myHandler

(

int task, /* ID of offending task */

int vecNum, /* exception vector number */

ESFxx * pEsf /* pointer to exception stack frame */

)

where task is the ID of the task that was running when the exception occurred. ESFxx is
architecture-specific and can be found by examining /target/h/arch/arch/esfarch.h; for
example, the PowerPC uses ESFPPC.

This facility is normally used by dbgLib() to activate its exception handling mechanism.
If an application provides its own exception handler, it will supersede the dbgLib
mechanism.

RETURNS N/A

SEE ALSO excLib, excTask()

VxWorks OS Libraries API Reference, 5.5
excInit()

580

excInit()

NAME excInit() – initialize the exception handling package

SYNOPSIS STATUS excInit (void)

DESCRIPTION This routine installs the exception handling facilities and spawns excTask(), which
performs special exception handling functions that need to be done at task level. It also
creates the message queue used to communicate with excTask().

NOTE: The exception handling facilities should be installed as early as possible during
system initialization in the root task, usrRoot(), in usrConfig.c.

RETURNS OK, or ERROR if a message queue cannot be created or excTask() cannot be spawned.

SEE ALSO excLib, excTask()

excIntConnect()

NAME excIntConnect() – connect a C routine to an asynchronous exception vector (PowerPC,
ARM)

SYNOPSIS STATUS excIntConnect

(

VOIDFUNCPTR * vector, /* exception vector to attach to */

VOIDFUNCPTR routine /* routine to be called */

)

DESCRIPTION This routine connects a specified C routine to a specified asynchronous exception vector.

When the C routine is invoked, interrupts are still locked. It is the responsibility of the C
routine to re-enable the interrupt.

The routine can be any normal C code, except that it must not invoke certain operating
system functions that may block or perform I/O operations.

NOTE: On PowerPC, the vector is typically the external interrupt vector 0x500 and the
decrementer vector 0x900. An interrupt stub is created and placed at vector in the
exception table. The address of routine is stored in the interrupt stub code. When the
asynchronous exception occurs the processor jumps to the interrupt stub code, saves only
the requested registers, and calls the C routines. Before saving the requested registers, the

2: Routines
excIntCrtConnect()

581

E

interrupt stub switches from the current task stack to the interrupt stack. For nested
interrupts, no stack-switching is performed, because the interrupt is already set.

NOTE: On the ARM, the address of routine is stored in a function pointer to be called by
the stub installed on the IRQ exception vector following an asynchronous exception. This
routine is responsible for determining the interrupt source and despatching the correct
handler for that source. Before calling the routine, the interrupt stub switches to SVC
mode, changes to a separate interrupt stack and saves necessary registers. In the case of a
nested interrupt, no SVC stack switch occurs.

RETURNS OK, always.

SEE ALSO excArchLib, excConnect(), excVecSet()

excIntCrtConnect()

NAME excIntCrtConnect() – connect a C routine to a critical interrupt vector (PowerPC 403)

SYNOPSIS STATUS excIntCrtConnect

(

VOIDFUNCPTR * vector, /* exception vector to attach to */

VOIDFUNCPTR routine /* routine to be called */

)

DESCRIPTION This routine connects a specified C routine to a specified asynchronous critical exception
vector such as the critical external interrupt vector (0x100), or the watchdog timer vector
(0x1020). An interrupt stub is created and placed at vector in the exception table. The
address of routine is stored in the interrupt stub code. When the asynchronous exception
occurs, the processor jumps to the interrupt stub code, saves only the requested registers,
and calls the C routines.

When the C routine is invoked, interrupts are still locked. It is the C routine’s
responsibility to re-enable interrupts.

The routine can be any normal C routine, except that it must not invoke certain operating
system functions that may block or perform I/O operations.

Before the requested registers are saved, the interrupt stub switches from the current task
stack to the interrupt stack. In the case of nested interrupts, no stack switching is
performed, because the interrupt stack is already set.

RETURNS OK, always.

SEE ALSO excArchLib, excConnect(), excCrtConnect(), excVecSet()

VxWorks OS Libraries API Reference, 5.5
excTask()

582

excTask()

NAME excTask() – handle task-level exceptions

SYNOPSIS void excTask ()

DESCRIPTION This routine is spawned as a task by excInit() to perform functions that cannot be
performed at interrupt or trap level. It has a priority of 0. Do not suspend, delete, or
change the priority of this task.

RETURNS N/A

SEE ALSO excLib, excInit()

excVecGet()

NAME excVecGet() – get a CPU exception vector (PowerPC, ARM)

SYNOPSIS FUNCPTR excVecGet

(

FUNCPTR * vector /* vector offset */

)

DESCRIPTION This routine returns the address of the C routine currently connected to vector.

RETURNS The address of the C routine.

SEE ALSO excArchLib, excVecSet()

excVecInit()

NAME excVecInit() – initialize the exception/interrupt vectors

SYNOPSIS STATUS excVecInit (void)

2: Routines
excVecInit()

583

E

DESCRIPTION This routine sets all exception vectors to point to the appropriate default exception
handlers. These handlers will safely trap and report exceptions caused by program errors
or unexpected hardware interrupts.

MC680x0:
All vectors from vector 2 (address 0x0008) to 255 (address 0x03fc) are initialized.
Vectors 0 and 1 contain the reset stack pointer and program counter.

x86:
All vectors from vector 0 (address (0x0000) to 255 (address 0x07f8) are initialized to
default handlers.

MIPS:
All MIPS exception, trap, and interrupt vectors are set to default handlers.

x86:
All vectors from vector 0 (address (0x0000) to 255 (address 0x07f8) are initialized to
default handlers.

PowerPC:
There are 48 vectors and only vectors that are used are initialized.

SH:
There are 256 vectors, initialized with the default exception handler (for exceptions)
or the uninitialized interrupt handler (for interrupts). On SH-2, vectors 0 and 1
contain the power-on reset program counter and stack pointer. Vectors 2 and 3
contain the manual reset program counter and stack pointer. On SH-3 and SH-4
processors the vector table is located at (vbr + 0x800), and the (exception code / 8)
value is used as vector offset. The first two vectors are reserved for special use: “trapa
#0” (offset 0x0) to implement software breakpoint, and “trapa #1” (offset 0x4) to
detect integer zero divide exception.

ARM:
All exception vectors are initialized to default handlers except 0x14 (Address) which
is now reserved on the ARM and 0x1C (FIQ), which is not used by VxWorks.

SimSolaris/SimNT:
This routine does nothing on both simulators and always returns OK.

NOTE: This routine is usually called from the system start-up routine, usrInit(), in
usrConfig.c. It must be called before interrupts are enabled.

RETURNS OK, always.

SEE ALSO excArchLib, excLib

VxWorks OS Libraries API Reference, 5.5
excVecSet()

584

excVecSet()

NAME excVecSet() – set a CPU exception vector (PowerPC, ARM)

SYNOPSIS void excVecSet

(

FUNCPTR * vector, /* vector offset */

FUNCPTR function /* address to place in vector */

)

DESCRIPTION This routine specifies the C routine that will be called when the exception corresponding
to vector occurs. This routine does not create the exception stub; it simply replaces the C
routine to be called in the exception stub.

NOTE: On the ARM, there is no excConnect() routine, unlike the PowerPC. The C routine
is attached to a default stub using excVecSet().

RETURNS N/A

SEE ALSO excArchLib, excVecGet(), excConnect(), excIntConnect()

exit()

NAME exit() – exit a task (ANSI)

SYNOPSIS void exit

(

int code /* code stored in TCB for delete hooks */

)

DESCRIPTION This routine is called by a task to cease to exist as a task. It is called implicitly when the
“main” routine of a spawned task is exited. The code parameter will be stored in the
WIND_TCB for possible use by the delete hooks, or post-mortem debugging.

ERRNO N/A

SEE ALSO taskLib, taskDelete(), American National Standard for Information Systems -Programming
Language - C, ANSI X3.159-1989: Input/Output (stdlib.h), VxWorks Programmer’s Guide:
Basic OS

2: Routines
expf()

585

E

exp()

NAME exp() – compute an exponential value (ANSI)

SYNOPSIS double exp

(

double x /* exponent */

)

DESCRIPTION This routine returns the exponential value of x in double precision (IEEE double, 53 bits).

A range error occurs if x is too large.

INCLUDE FILES math.h

RETURNS The double-precision exponential value of x.

Special cases:
 If x is +INF or NaN, exp() returns x.
 If x is -INF, it returns 0.

SEE ALSO ansiMath, mathALib

expf()

NAME expf() – compute an exponential value (ANSI)

SYNOPSIS float expf

(

float x /* exponent */

)

DESCRIPTION This routine returns the exponential of x in single precision.

INCLUDE FILES math.h

RETURNS The single-precision exponential value of x.

SEE ALSO mathALib

VxWorks OS Libraries API Reference, 5.5
fabs()

586

fabs()

NAME fabs() – compute an absolute value (ANSI)

SYNOPSIS double fabs

(

double v /* number to return the absolute value of */

)

DESCRIPTION This routine returns the absolute value of v in double precision.

INCLUDE FILES math.h

RETURNS The double-precision absolute value of v.

ERRNO EDOM, ERANGE

SEE ALSO ansiMath, mathALib

fabsf()

NAME fabsf() – compute an absolute value (ANSI)

SYNOPSIS float fabsf

(

float v /* number to return the absolute value of */

)

DESCRIPTION This routine returns the absolute value of v in single precision.

INCLUDE FILES math.h

RETURNS The single-precision absolute value of v.

SEE ALSO mathALib

2: Routines
fdopen()

587

F

fclose()

NAME fclose() – close a stream (ANSI)

SYNOPSIS int fclose

(

FILE * fp /* stream to close */

)

DESCRIPTION This routine flushes a specified stream and closes the associated file. Any unwritten
buffered data is delivered to the host environment to be written to the file; any unread
buffered data is discarded. The stream is disassociated from the file. If the associated
buffer was allocated automatically, it is deallocated.

INCLUDE FILES stdio.h

RETURNS Zero if the stream is closed successfully, or EOF if errors occur.

ERRNO EBADF

SEE ALSO ansiStdio, fflush()

fdopen()

NAME fdopen() – open a file specified by a file descriptor (POSIX)

SYNOPSIS FILE * fdopen

(

int fd, /* file descriptor */

const char * mode /* mode to open with */

)

DESCRIPTION This routine opens the file specified by the file descriptor fd and associates a stream with
it. The mode argument is used just as in the fopen() function.

INCLUDE FILES stdio.h

RETURNS A pointer to a stream, or a null pointer if an error occurs, with errno set to indicate the
error.

ERRNO EINVAL

SEE ALSO ansiStdio, fopen(), freopen(), Information Technology - POSIX - Part 1: System API [C
Language], IEEE Std 1003.1

VxWorks OS Libraries API Reference, 5.5
fdprintf()

588

fdprintf()

NAME fdprintf() – write a formatted string to a file descriptor

SYNOPSIS int fdprintf

(

int fd, /* file descriptor to write to */

const char * fmt, /* format string to write */

... /* optional arguments to format */

)

DESCRIPTION This routine writes a formatted string to a specified file descriptor. Its function and syntax
are otherwise identical to printf().

RETURNS The number of characters output, or ERROR if there is an error during output.

SEE ALSO fioLib, printf()

feof()

NAME feof() – test the end-of-file indicator for a stream (ANSI)

SYNOPSIS int feof

(

FILE * fp /* stream to test */

)

DESCRIPTION This routine tests the end-of-file indicator for a specified stream.

INCLUDE FILES stdio.h

RETURNS Non-zero if the end-of-file indicator is set for fp.

SEE ALSO ansiStdio, clearerr()

2: Routines
fflush()

589

F

ferror()

NAME ferror() – test the error indicator for a file pointer (ANSI)

SYNOPSIS int ferror

(

FILE * fp /* stream to test */

)

DESCRIPTION This routine tests the error indicator for the stream pointed to by fp.

INCLUDE FILES stdio.h

RETURNS Non-zero if the error indicator is set for fp.

SEE ALSO ansiStdio, clearerr()

fflush()

NAME fflush() – flush a stream (ANSI)

SYNOPSIS int fflush

(

FILE * fp /* stream to flush */

)

DESCRIPTION This routine writes to the file any unwritten data for a specified output or update stream
for which the most recent operation was not input; for an input stream the behavior is
undefined.

WARNING: ANSI specifies that if fp is a null pointer, fflush() performs the flushing action
on all streams for which the behavior is defined; however, this is not implemented in
VxWorks.

INCLUDE FILES stdio.h

RETURNS Zero, or EOF if a write error occurs.

ERRNO EBADF

SEE ALSO ansiStdio, fclose()

VxWorks OS Libraries API Reference, 5.5
fgetc()

590

fgetc()

NAME fgetc() – return the next character from a stream (ANSI)

SYNOPSIS int fgetc

(

FILE * fp /* stream to read from */

)

DESCRIPTION This routine returns the next character (converted to an int) from the specified stream, and
advances the file position indicator for the stream.

If the stream is at end-of-file, the end-of-file indicator for the stream is set; if a read error
occurs, the error indicator is set.

INCLUDE FILES stdio.h

RETURNS The next character from the stream, or EOF if the stream is at end-of-file or a read error
occurs.

SEE ALSO ansiStdio, fgets(), getc()

fgetpos()

NAME fgetpos() – store the current value of the file position indicator for a stream (ANSI)

SYNOPSIS int fgetpos

(

FILE * fp, /* stream */

fpos_t * pos /* where to store position */

)

DESCRIPTION This routine stores the current value of the file position indicator for a specified stream fp
in the object pointed to by pos. The value stored contains unspecified information usable
by fsetpos() for repositioning the stream to its position at the time fgetpos() was called.

INCLUDE FILES stdio.h

RETURNS Zero, or non-zero if unsuccessful, with errno set to indicate the error.

SEE ALSO ansiStdio, fsetpos()

2: Routines
fileno()

591

F

fgets()

NAME fgets() – read a specified number of characters from a stream (ANSI)

SYNOPSIS char * fgets

(

char * buf, /* where to store characters */

size_t n, /* no. of bytes to read + 1 */

FILE * fp /* stream to read from */

)

DESCRIPTION This routine stores in the array buf up to n-1 characters from a specified stream. No
additional characters are read after a new-line or end-of-line. A null character is written
immediately after the last character read into the array.

If end-of-file is encountered and no characters have been read, the contents of the array
remain unchanged. If a read error occurs, the array contents are indeterminate.

INCLUDE FILES stdio.h

RETURNS A pointer to buf, or a null pointer if an error occurs or end-of-file is encountered and no
characters have been read.

SEE ALSO ansiStdio, fread(), fgetc()

fileno()

NAME fileno() – return the file descriptor for a stream (POSIX)

SYNOPSIS int fileno

(

FILE * fp /* stream */

)

DESCRIPTION This routine returns the file descriptor associated with a specified stream.

INCLUDE FILES stdio.h

RETURNS The file descriptor, or -1 if an error occurs, with errno set to indicate the error.

SEE ALSO ansiStdio, Information Technology - POSIX - Part 1: System API [C Language], IEEE Std
1003.1

VxWorks OS Libraries API Reference, 5.5
fileUploadPathClose()

592

fileUploadPathClose()

NAME fileUploadPathClose() – close the event-destination file (WindView)

SYNOPSIS void fileUploadPathClose

(

UPLOAD_ID pathId /* generic upload-path descriptor */

)

DESCRIPTION This routine closes the file associated with pathId that is serving as a destination for event
data.

RETURNS N/A

SEE ALSO wvFileUploadPathLib, fileUploadPathCreate()

fileUploadPathCreate()

NAME fileUploadPathCreate() – create a file for depositing event data (Windview)

SYNOPSIS UPLOAD_ID fileUploadPathCreate

(

char * fname, /* name of file to create */

int openFlags /* O_CREAT, O_TRUNC */

)

DESCRIPTION This routine opens and initializes a file to receive uploaded events. The openFlags
argument is passed on as the flags argument to the actual open call so that the caller can
specify things like O_TRUNC and O_CREAT. The file is always opened as O_WRONLY,
regardless of the value of openFlags.

RETURNS The UPLOAD_ID, or NULL if the file can not be opened or memory for the ID is not
available.

SEE ALSO wvFileUploadPathLib, fileUploadPathClose()

2: Routines
fileUploadPathWrite()

593

F

fileUploadPathLibInit()

NAME fileUploadPathLibInit() – initialize the wvFileUploadPathLib library (Windview)

SYNOPSIS STATUS fileUploadPathLibInit (void)

DESCRIPTION This routine initializes the library by pulling in the routines in this file for use with
WindView. It is called during system configuration from usrWindview.c.

RETURNS OK.

SEE ALSO wvFileUploadPathLib

fileUploadPathWrite()

NAME fileUploadPathWrite() – write to the event-destination file (WindView)

SYNOPSIS int fileUploadPathWrite

(

UPLOAD_ID pathId, /* generic upload-path descriptor */

char * pStart, /* address of data to write */

size_t size /* number of bytes of data at pStart */

)

DESCRIPTION This routine writes size bytes of data beginning at pStart to the file indicated by pathId.

RETURNS The number of bytes written, or ERROR.

SEE ALSO wvFileUploadPathLib

VxWorks OS Libraries API Reference, 5.5
fioFormatV()

594

fioFormatV()

NAME fioFormatV() – convert a format string

SYNOPSIS int fioFormatV

(

const char * fmt, /* format string */

va_list vaList, /* pointer to varargs list */

FUNCPTR outRoutine, /* handler for args as they’re formatted */

int outarg /* argument to routine */

)

DESCRIPTION This routine is used by the printf() family of routines to handle the actual conversion of a
format string. The first argument is a format string, as described in the entry for printf().
The second argument is a variable argument list vaList that was previously established.

As the format string is processed, the result will be passed to the output routine whose
address is passed as the third parameter, outRoutine. This output routine may output the
result to a device, or put it in a buffer. In addition to the buffer and length to output, the
fourth argument, outarg, will be passed through as the third parameter to the output
routine. This parameter could be a file descriptor, a buffer address, or any other value that
can be passed in an “int”.

The output routine should be declared as follows:

STATUS outRoutine

(

char *buffer, /* buffer passed to routine */

int nchars, /* length of buffer */

int outarg /* arbitrary arg passed to fmt routine */

)

The output routine should return OK if successful, or ERROR if unsuccessful.

RETURNS The number of characters output, or ERROR if the output routine returned ERROR.

SEE ALSO fioLib

2: Routines
fioRdString()

595

F

fioLibInit()

NAME fioLibInit() – initialize the formatted I/O support library

SYNOPSIS void fioLibInit (void)

DESCRIPTION This routine initializes the formatted I/O support library. It should be called once in
usrRoot() when formatted I/O functions such as printf() and scanf() are used.

RETURNS N/A

SEE ALSO fioLib

fioRdString()

NAME fioRdString() – read a string from a file

SYNOPSIS int fioRdString

(

int fd, /* fd of device to read */

char string[], /* buffer to receive input */

int maxbytes /* max no. of chars to read */

)

DESCRIPTION This routine puts a line of input into string. The specified input file descriptor is read until
maxbytes, an EOF, an EOS, or a newline character is reached. A newline character or EOF
is replaced with EOS, unless maxbytes characters have been read.

RETURNS The length of the string read, including the terminating EOS; or EOF if a read error
occurred or end-of-file occurred without reading any other character.

SEE ALSO fioLib

VxWorks OS Libraries API Reference, 5.5
fioRead()

596

fioRead()

NAME fioRead() – read a buffer

SYNOPSIS int fioRead

(

int fd, /* file descriptor of file to read */

char * buffer, /* buffer to receive input */

int maxbytes /* maximum number of bytes to read */

)

DESCRIPTION This routine repeatedly calls the routine read() until maxbytes have been read into buffer. If
EOF is reached, the number of bytes read will be less than maxbytes.

RETURNS The number of bytes read, or ERROR if there is an error during the read operation.

SEE ALSO fioLib, read()

floatInit()

NAME floatInit() – initialize floating-point I/O support

SYNOPSIS void floatInit (void)

DESCRIPTION This routine must be called if floating-point format specifications are to be supported by
the printf()/scanf() family of routines. If the configuration macro
INCLUDE_FLOATING_POINT is defined, it is called by the root task, usrRoot(), in
usrConfig.c.

RETURNS N/A

SEE ALSO floatLib

2: Routines
floorf()

597

F

floor()

NAME floor() – compute the largest integer less than or equal to a specified value (ANSI)

SYNOPSIS double floor

(

double v /* value to find the floor of */

)

DESCRIPTION This routine returns the largest integer less than or equal to v, in double precision.

INCLUDE FILES math.h

RETURNS The largest integral value less than or equal to v, in double precision.

SEE ALSO ansiMath, mathALib

floorf()

NAME floorf() – compute the largest integer less than or equal to a specified value (ANSI)

SYNOPSIS float floorf

(

float v /* value to find the floor of */

)

DESCRIPTION This routine returns the largest integer less than or equal to v, in single precision.

INCLUDE FILES math.h

RETURNS The largest integral value less than or equal to v, in single precision.

SEE ALSO mathALib

VxWorks OS Libraries API Reference, 5.5
fmod()

598

fmod()

NAME fmod() – compute the remainder of x/y (ANSI)

SYNOPSIS double fmod

(

double x, /* numerator */

double y /* denominator */

)

DESCRIPTION This routine returns the remainder of x/y with the sign of x, in double precision.

INCLUDE FILES math.h

RETURNS The value x - i * y, for some integer i. If y is non-zero, the result has the same sign as x and
magnitude less than the magnitude of y. If y is zero, fmod() returns zero.

ERRNO EDOM

SEE ALSO ansiMath, mathALib

fmodf()

NAME fmodf() – compute the remainder of x/y (ANSI)

SYNOPSIS float fmodf

(

float x, /* numerator */

float y /* denominator */

)

DESCRIPTION This routine returns the remainder of x/y with the sign of x, in single precision.

INCLUDE FILES math.h

RETURNS The single-precision modulus of x/y.

SEE ALSO mathALib

2: Routines
fopen()

599

F

fopen()

NAME fopen() – open a file specified by name (ANSI)

SYNOPSIS FILE * fopen

(

const char * file, /* name of file */

const char * mode /* mode */

)

DESCRIPTION This routine opens a file whose name is the string pointed to by fileand associates a stream
with it. The argument mode points to a string beginning with one of the following
sequences:

r
open text file for reading

w
truncate to zero length or create text file for writing

a
append; open or create text file for writing at end-of-file

rb
open binary file for reading

wb
truncate to zero length or create binary file for writing

ab
append; open or create binary file for writing at end-of-file

r+
open text file for update (reading and writing)

w+
truncate to zero length or create text file for update.

a+
append; open or create text file for update, writing at end-of-file

r+b / rb+
open binary file for update (reading and writing)

w+b / wb+
truncate to zero length or create binary file for update

a+b / ab+
append; open or create binary file for update, writing at end-of-file

VxWorks OS Libraries API Reference, 5.5
fppInit()

600

Opening a file with read mode (r as the first character in the mode argument) fails if the file
does not exist or cannot be read.

Opening a file with append mode (a as the first character in the mode argument) causes all
subsequent writes to the file to be forced to the then current end-of-file, regardless of
intervening calls to fseek(). In some implementations, opening a binary file with append
mode (b as the second or third character in the mode argument) may initially position the
file position indicator for the stream beyond the last data written, because of null
character padding. In VxWorks, whether append mode is supported is device-specific.

When a file is opened with update mode (+ as the second or third character in the mode
argument), both input and output may be performed on the associated stream. However,
output may not be directly followed by input without an intervening call to fflush() or to
a file positioning function (fseek(), fsetpos(), or rewind()), and input may not be directly
followed by output without an intervening call to a file positioning function, unless the
input operation encounters end-of-file. Opening (or creating) a text file with update mode
may instead open (or create) a binary stream in some implementations.

When opened, a stream is fully buffered if and only if it can be determined not to refer to
an interactive device. The error and end-of-file indicators for the stream are cleared.

INCLUDE FILES stdio.h

RETURNS A pointer to the object controlling the stream, or a null pointer if the operation fails.

SEE ALSO ansiStdio, fdopen(), freopen()

fppInit()

NAME fppInit() – initialize floating-point coprocessor support

SYNOPSIS void fppInit (void)

DESCRIPTION This routine initializes floating-point coprocessor support and must be called before using
the floating-point coprocessor. This is done automatically by the root task, usrRoot(), in
usrConfig.c when the configuration macro INCLUDE_HW_FP is defined.

RETURNS N/A

SEE ALSO fppLib

2: Routines
fppRestore()

601

F

fppProbe()

NAME fppProbe() – probe for the presence of a floating-point coprocessor

SYNOPSIS STATUS fppProbe (void)

DESCRIPTION This routine determines whether there is a floating-point coprocessor in the system.

The implementation of this routine is architecture-dependent:

MC680x0, x86, SH-4:
This routine sets the illegal coprocessor opcode trap vector and executes a
coprocessor instruction. If the instruction causes an exception, fppProbe() returns
ERROR. Note that this routine saves and restores the illegal coprocessor opcode trap
vector that was there prior to this call.

The probe is only performed the first time this routine is called. The result is stored in a
static and returned on subsequent calls without actually probing.

MIPS:
This routine simply reads the R-Series status register and reports the bit that indicates
whether coprocessor 1 is usable. This bit must be correctly initialized in the BSP.

ARM:
This routine currently returns ERROR to indicate no floating-point coprocessor
support.

SimNT, SimSolaris:
This routine currently returns OK.

RETURNS OK, or ERROR if there is no floating-point coprocessor.

SEE ALSO fppArchLib

fppRestore()

NAME fppRestore() – restore the floating-point coprocessor context

SYNOPSIS void fppRestore

(

FP_CONTEXT * pFpContext /* where to restore context from */

)

VxWorks OS Libraries API Reference, 5.5
fppRestore()

602

DESCRIPTION This routine restores the floating-point coprocessor context. The context restored is:

MC680x0:
- registers fpcr, fpsr, and fpiar
- registers f0 - f7
- internal state frame (if NULL, the other registers are not saved.)

MIPS:
- register fpcsr
- registers fp0 - fp31

SH-4:
- registers fpcsr and fpul
- registers fr0 - fr15
- registers xf0 - xf15

x86:
108 byte old context with fsave and frstor instruction

- control word, status word, tag word,
- instruction pointer,
- instruction pointer selector,
- last FP instruction op code,
- data pointer,
- data pointer selector,
- registers st/mm0 - st/mm7 (10 bytes * 8)

512 byte new context with fxsave and fxrstor instruction

- control word, status word, tag word,
- last FP instruction op code,
- instruction pointer,
- instruction pointer selector,
- data pointer,
- data pointer selector,
- registers st/mm0 - st/mm7 (10 bytes * 8)
- registers xmm0 - xmm7 (16 bytes * 8)

ARM:
- currently, on this architecture, this routine does nothing.

SimSolaris:
- register fsr
- registers f0 - f31

SimNT:
- this routine does nothing on Windows simulator.

RETURNS N/A

SEE ALSO fppArchLib, fppSave()

2: Routines
fppSave()

603

F

fppSave()

NAME fppSave() – save the floating-point coprocessor context

SYNOPSIS void fppSave

(

FP_CONTEXT * pFpContext /* where to save context */

)

DESCRIPTION This routine saves the floating-point coprocessor context. The context saved is:

MC680x0:
- registers fpcr, fpsr, and fpiar
- registers f0 - f7
- internal state frame (if NULL, the other registers are not saved.)

MIPS:
- register fpcsr
- registers fp0 - fp31

SH-4:
- registers fpcsr and fpul
- registers fr0 - fr15
- registers xf0 - xf15

x86:
108 byte old context with fsave and frstor instruction

- control word, status word, tag word,
- instruction pointer,
- instruction pointer selector,
- last FP instruction op code,
- data pointer,
- data pointer selector,
- registers st/mm0 - st/mm7 (10 bytes * 8)

512 byte new context with fxsave and fxrstor instruction

- control word, status word, tag word,
- last FP instruction op code,
- instruction pointer,
- instruction pointer selector,
- data pointer,
- data pointer selector,
- registers st/mm0 - st/mm7 (10 bytes * 8)
- registers xmm0 - xmm7 (16 bytes * 8)

VxWorks OS Libraries API Reference, 5.5
fppShowInit()

604

ARM:
- currently, on this architecture, this routine does nothing.

SimSolaris:
- register fsr
- registers f0 - f31

SimNT:
- this routine does nothing on Windows simulator. Floating point registers are saved
by Windows.

RETURNS N/A

SEE ALSO fppArchLib, fppRestore()

fppShowInit()

NAME fppShowInit() – initialize the floating-point show facility

SYNOPSIS void fppShowInit (void)

DESCRIPTION This routine links the floating-point show facility into the VxWorks system. It is called
automatically when the floating-point show facility is configured into VxWorks using
either of the following methods:

– If you use the configuration header files, define

INCLUDE_SHOW_ROUTINES in config.h.

– If you use the Tornado project facility, select INCLUDE_HW_FP_SHOW.

RETURNS N/A

SEE ALSO fppShow

2: Routines
fppTaskRegsSet()

605

F

fppTaskRegsGet()

NAME fppTaskRegsGet() – get the floating-point registers from a task TCB

SYNOPSIS STATUS fppTaskRegsGet

(

int task, /* task to get info about */

FPREG_SET * pFpRegSet /* ptr to floating-point register set */

)

DESCRIPTION This routine copies a task’s floating-point registers and/or status registers to the locations
whose pointers are passed as parameters. The floating-point registers are copied into an
array containing all the registers.

NOTE: This routine only works well if task is not the calling task. If a task tries to discover
its own registers, the values will be stale (that is, left over from the last task switch).

RETURNS OK, or ERROR if there is no floating-point support or there is an invalid state.

SEE ALSO fppArchLib, fppTaskRegsSet()

fppTaskRegsSet()

NAME fppTaskRegsSet() – set the floating-point registers of a task

SYNOPSIS STATUS fppTaskRegsSet

(

int task, /* task to set registers for */

FPREG_SET * pFpRegSet /* ptr to floating-point register set */

)

DESCRIPTION This routine loads the specified values into the TCB of a specified task. The register values
are copied from the array at pFpRegSet.

RETURNS OK, or ERROR if there is no floating-point support or there is an invalid state.

SEE ALSO fppArchLib, fppTaskRegsGet()

VxWorks OS Libraries API Reference, 5.5
fppTaskRegsShow()

606

fppTaskRegsShow()

NAME fppTaskRegsShow() – print the contents of a task’s floating-point registers

SYNOPSIS void fppTaskRegsShow

(

int task /* task to display floating point registers for */

)

DESCRIPTION This routine prints to standard output the contents of a task’s floating-point registers.

RETURNS N/A

SEE ALSO fppShow

fprintf()

NAME fprintf() – write a formatted string to a stream (ANSI)

SYNOPSIS int fprintf

(

FILE * fp, /* stream to write to */

const char * fmt, /* format string */

... /* optional arguments to format string */

)

DESCRIPTION This routine writes output to a specified stream under control of the string fmt. The string
fmt contains ordinary characters, which are written unchanged, plus conversion
specifications, which cause the arguments that follow fmt to be converted and printed as
part of the formatted string.

The number of arguments for the format is arbitrary, but they must correspond to the
conversion specifications in fmt. If there are insufficient arguments, the behavior is
undefined. If the format is exhausted while arguments remain, the excess arguments are
evaluated but otherwise ignored. The routine returns when the end of the format string is
encountered.

The format is a multibyte character sequence, beginning and ending in its initial shift
state. The format is composed of zero or more directives: ordinary multibyte characters
(not %) that are copied unchanged to the output stream; and conversion specification,
each of which results in fetching zero or more subsequent arguments. Each conversion

2: Routines
fprintf()

607

F

specification is introduced by the % character. After the %, the following appear in
sequence:

– Zero or more flags (in any order) that modify the meaning of the conversion
specification.

– An optional minimum field width. If the converted value has fewer characters than
the field width, it will be padded with spaces (by default) on the left (or right, if the
left adjustment flag, described later, has been given) to the field width. The field
width takes the form of an asterisk (*) (described later) or a decimal integer.

– An optional precision that gives the minimum number of digits to appear for the d, i,
o, u, x, and X conversions, the number of digits to appear after the decimal-point
character for e, E, and f conversions, the maximum number of significant digits for
the g and G conversions, or the maximum number of characters to be written from a
string in the s conversion. The precision takes the form of a period (.) followed either
by an asterisk (*) (described later) or by an optional decimal integer; if only the period
is specified, the precision is taken as zero. If a precision appears with any other
conversion specifier, the behavior is undefined.

– An optional h specifying that a following d, i, o, u, x, and X conversion specifier
applies to a short int or unsigned short int argument (the argument will have been
promoted according to the integral promotions, and its value converted to short int
or unsigned short int before printing); an optional h specifying that a following n
conversion specifier applies to a pointer to a short int argument; an optional l (el)
specifying that a following d, i, o, u, x, and X conversion specifier applies to a long
int or unsigned long int argument; or an optional l specifying that a following n
conversion specifier applies to a pointer to a long int argument. If an h or l appears
with any other conversion specifier, the behavior is undefined.

WARNING: ANSI C also specifies an optional L in some of the same contexts as l above,
corresponding to a long double argument. However, the current release of the VxWorks
libraries does not support long double data; using the optional L gives unpredictable
results.

– A character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, can be indicated by an asterisk (*). In
this case, an int argument supplies the field width or precision. The arguments specifying
field width, or precision, or both, should appear (in that order) before the argument (if
any) to be converted. A negative field width argument is taken as a - flag followed by a
positive field width. A negative precision argument is taken as if the precision were
omitted.

The flag characters and their meanings are:

-
The result of the conversion will be left-justified within the field. (it will be
right-justified if this flag is not specified.)

VxWorks OS Libraries API Reference, 5.5
fprintf()

608

+
The result of a signed conversion will always begin with a plus or minus sign. (It will
begin with a sign only when a negative value is converted if this flag is not specified.)

space
If the first character of a signed conversion is not a sign, or if a signed conversion
results in no characters, a space will be prefixed to the result. If the space and + flags
both appear, the space flag will be ignored.

#
The result is to be converted to an “alternate form.” For o conversion it increases the
precision to force the first digit of the result to be a zero. For x (or X) conversion, a
non-zero result will have “0x” (or “0X”) prefixed to it. For e, E, f, g, and G
conversions, the result will always contain a decimal-point character, even if no digits
follow it. (Normally, a decimal-point character appears in the result of these
conversions only if no digit follows it). For g and G conversions, trailing zeros will
not be removed from the result. For other conversions, the behavior is undefined.

0
For d, i, o, u, x, X, e, E, f, g, and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the field width; no space padding is
performed. If the 0 and -flags both appear, the 0 flag will be ignored. For d, i, o, u, x,
and X conversions, if a precision is specified, the 0 flag will be ignored. For other
conversions, the behavior is undefined.

The conversion specifiers and their meanings are:

d, i
The int argument is converted to signed decimal in the style [-]dddd. The precision
specifies the minimum number of digits to appear; if the value being converted can
be represented in fewer digits, it will be expanded with leading zeros. The default
precision is 1. The result of converting a zero value with a precision of zero is no
characters.

o, u, x, X
The unsigned int argument is converted to unsigned octal (o), unsigned decimal (u),
or unsigned hexadecimal notation (x or X) in the style dddd; the letters abcdef are
used for x conversion and the letters ABCDEF for X conversion. The precision
specifies the minimum number of digits to appear; if the value being converted can
be represented in fewer digits, it will be expanded with leading zeros. The default
precision is 1. The result of converting a zero value with a precision of zero is no
characters.

f
The double argument is converted to decimal notation in the style [-]ddd.ddd, where
the number of digits after the decimal point character is equal to the precision
specification. If the precision is missing, it is taken as 6; if the precision is zero and the
flag is not specified, no decimal-point character appears. If a decimal-point
character appears, at least one digit appears before it. The value is rounded to the

2: Routines
fprintf()

609

F

appropriate number of digits.

e, E
The double argument is converted in the style [-]d.ddde+/-dd, where there is one
digit before the decimal-point character (which is non-zero if the argument is
non-zero) and the number of digits after it is equal to the precision; if the precision is
missing, it is taken as 6; if the precision is zero and the # flag is not specified, no
decimal-point character appears. The value is rounded to the appropriate number of
digits. The E conversion specifier will produce a number with E instead of e
introducing the exponent. The exponent always contains at least two digits. If the
value is zero, the exponent is zero.

g, G
The double argument is converted in style f or e (or in style E in the case of a G
conversion specifier), with the precision specifying the number of significant digits. If
the precision is zero, it is taken as 1. The style used depends on the value converted;
style e (or E) will be used only if the exponent resulting from such a conversion is less
than -4 or greater than or equal to the precision. Trailing zeros are removed from the
fractional portion of the result; a decimal-point character appears only if it is followed
by a digit.

c
The int argument is converted to an unsigned char, and the resulting character is
written.

s
The argument should be a pointer to an array of character type. Characters from the
array are written up to (but not including) a terminating null character; if the
precision is specified, no more than that many characters are written. If the precision
is not specified or is greater than the size of the array, the array will contain a null
character.

p
The argument should be a pointer to void. The value of the pointer is converted to a
sequence of printable characters, in hexadecimal representation (prefixed with “0x”).

n
The argument should be a pointer to an integer into which the number of characters
written to the output stream so far by this call to fprintf() is written. No argument is
converted.

%
A % is written. No argument is converted. The complete conversion specification is
%%.

If a conversion specification is invalid, the behavior is undefined.

If any argument is, or points to, a union or an aggregate (except for an array of character
type using s conversion, or a pointer using p conversion), the behavior is undefined.

VxWorks OS Libraries API Reference, 5.5
fputc()

610

In no case does a non-existent or small field width cause truncation of a field if the result
of a conversion is wider than the field width, the field is expanded to contain the
conversion result.

INCLUDE FILES stdio.h

RETURNS The number of characters written, or a negative value if an output error occurs.

SEE ALSO ansiStdio, printf()

fputc()

NAME fputc() – write a character to a stream (ANSI)

SYNOPSIS int fputc

(

int c, /* character to write */

FILE * fp /* stream to write to */

)

DESCRIPTION This routine writes a character c to a specified stream, at the position indicated by the
stream’s file position indicator (if defined), and advances the indicator appropriately.

If the file cannot support positioning requests, or if the stream was opened in append
mode, the character is appended to the output stream.

INCLUDE FILES stdio.h

RETURNS The character written, or EOF if a write error occurs, with the error indicator set for the
stream.

SEE ALSO ansiStdio, fputs(), putc()

2: Routines
fread()

611

F

fputs()

NAME fputs() – write a string to a stream (ANSI)

SYNOPSIS int fputs

(

const char * s, /* string */

FILE * fp /* stream to write to */

)

DESCRIPTION This routine writes the string s, minus the terminating NULL character, to a specified
stream.

INCLUDE FILES stdio.h

RETURNS A non-negative value, or EOF if a write error occurs.

SEE ALSO ansiStdio, fputc()

fread()

NAME fread() – read data into an array (ANSI)

SYNOPSIS int fread

(

void * buf, /* where to copy data */

size_t size, /* element size */

size_t count, /* no. of elements */

FILE * fp /* stream to read from */

)

DESCRIPTION This routine reads, into the array buf, up to count elements of size size, from a specified
stream fp. The file position indicator for the stream (if defined) is advanced by the number
of characters successfully read. If an error occurs, the resulting value of the file position
indicator for the stream is indeterminate. If a partial element is read, its value is
indeterminate.

INCLUDE FILES stdio.h

VxWorks OS Libraries API Reference, 5.5
free()

612

RETURNS The number of elements successfully read, which may be less than count if a read error or
end-of-file is encountered; or zero if size or count is zero, with the contents of the array and
the state of the stream remaining unchanged.

SEE ALSO ansiStdio

free()

NAME free() – free a block of memory (ANSI)

SYNOPSIS void free

(

void * ptr /* pointer to block of memory to free */

)

DESCRIPTION This routine returns to the free memory pool a block of memory previously allocated with
malloc() or calloc().

RETURNS N/A

SEE ALSO memPartLib, malloc(), calloc(), American National Standard for Information Systems
-Programming Language - C, ANSI X3.159-1989: General Utilities (stdlib.h)

freopen()

NAME freopen() – open a file specified by name (ANSI)

SYNOPSIS FILE * freopen

(

const char * file, /* name of file */

const char * mode, /* mode */

FILE * fp /* stream */

)

DESCRIPTION This routine opens a file whose name is the string pointed to by file and associates it with a
specified stream fp. The mode argument is used just as in the fopen() function.

This routine first attempts to close any file that is associated with the specified stream.
Failure to close the file successfully is ignored. The error and end-of-file indicators for the
stream are cleared.

2: Routines
frexp()

613

F

Typically, freopen() is used to attach the already-open streams stdin, stdout, and stderr
to other files.

INCLUDE FILES stdio.h

RETURNS The value of fp, or a null pointer if the open operation fails.

SEE ALSO ansiStdio, fopen()

frexp()

NAME frexp() – break a floating-point number into a normalized fraction and power of 2 (ANSI)

SYNOPSIS double frexp

(

double value, /* number to be normalized */

int * pexp /* pointer to the exponent */

)

DESCRIPTION This routine breaks a double-precision number value into a normalized fraction and
integral power of 2. It stores the integer exponent in pexp.

INCLUDE FILES math.h

RETURNS The double-precision value x, such that the magnitude of x is in the interval [1/2,1) or
zero, and value equals x times 2 to the power of pexp. If value is zero, both parts of the
result are zero.

ERRNO EDOM

SEE ALSO ansiMath

VxWorks OS Libraries API Reference, 5.5
fscanf()

614

fscanf()

NAME fscanf() – read and convert characters from a stream (ANSI)

SYNOPSIS int fscanf

(

FILE * fp, /* stream to read from */

char const * fmt, /* format string */

... /* arguments to format string */

)

DESCRIPTION This routine reads characters from a specified stream, and interprets them according to
format specifications in the string fmt, which specifies the admissible input sequences and
how they are to be converted for assignment, using subsequent arguments as pointers to
the objects to receive the converted input.

If there are insufficient arguments for the format, the behavior is undefined. If the format
is exhausted while arguments remain, the excess arguments are evaluated but are
otherwise ignored.

The format is a multibyte character sequence, beginning and ending in its initial shift
state. The format is composed of zero or more directives: one or more white-space
characters; an ordinary multibyte character (neither % nor a white-space character); or a
conversion specification. Each conversion specification is introduced by the % character.
After the %, the following appear in sequence:

– An optional assignment-suppressing character *.

– An optional non-zero decimal integer that specifies the maximum field width.

– An optional h or l (el) indicating the size of the receiving object. The conversion
specifiers d, i, and n should be preceded by h if the corresponding argument is a
pointer to short int rather than a pointer to int, or by l if it is a pointer to long int.
Similarly, the conversion specifiers o, u, and x shall be preceded by h if the
corresponding argument is a pointer to unsigned short int rather than a pointer to
unsigned int, or by l if it is a pointer to unsigned long int. Finally, the conversion
specifiers e, f, and g shall be preceded by l if the corresponding argument is a pointer
to double rather than a pointer to float. If an h or l appears with any other conversion
specifier, the behavior is undefined.

WARNING: ANSI C also specifies an optional L in some of the same contexts as l above,
corresponding to a long double * argument. However, the current release of the VxWorks
libraries does not support long double data; using the optional L gives unpredictable
results.

– A character that specifies the type of conversion to be applied. The valid conversion

2: Routines
fscanf()

615

F

specifiers are described below.

The fscanf() routine executes each directive of the format in turn. If a directive fails, as
detailed below, fscanf() returns. Failures are described as input failures (due to the
unavailability of input characters), or matching failures (due to inappropriate input).

A directive composed of white-space character(s) is executed by reading input up to the
first non-white-space character (which remains unread), or until no more characters can
be read.

A directive that is an ordinary multibyte character is executed by reading the next
characters of the stream. If one of the characters differs from one comprising the directive,
the directive fails, and the differing and subsequent characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each specifier. A conversion specification is executed in the following
steps:

Input white-space characters (as specified by the isspace() function) are skipped, unless
the specification includes a [, c, or n specifier.

An input item is read from the stream, unless the specification includes an n specifier. An
input item is defined as the longest matching sequence of input characters, unless that
exceeds a specified field width, in which case it is the initial subsequence of that length in
the sequence. The first character, if any, after the input item remains unread. If the length
of the input item is zero, the execution of the directive fails: this condition is a matching
failure, unless an error prevented input from the stream, in which case it is an input
failure.

Except in the case of a % specifier, the input item is converted to a type appropriate to the
conversion specifier. If the input item is not a matching sequence, the execution of the
directive fails: this condition is a matching failure. Unless assignment suppression was
indicated by a *, the result of the conversion is placed in the object pointed to by the first
argument following the fmt argument that has not already received a conversion result. If
this object does not have an appropriate type, or if the result of the conversion cannot be
represented in the space provided, the behavior is undefined.

The following conversion specifiers are valid:

d
Matches an optionally signed decimal integer whose format is the same as expected
for the subject sequence of the strtol() function with the value 10 for the base
argument. The corresponding argument should be a pointer to int.

i
Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of the strtol() function with the value 0 for the base argument. The
corresponding argument should be a pointer to int.

o
Matches an optionally signed octal integer, whose format is the same as expected for

VxWorks OS Libraries API Reference, 5.5
fscanf()

616

the subject sequence of the strtoul() function with the value 8 for the base argument.
The corresponding argument should be a pointer to unsigned int.

u
Matches an optionally signed decimal integer, whose format is the same as expected
for the subject sequence of the strtoul() function with the value 10 for the base
argument. The corresponding argument should be a pointer to unsigned int.

x
Matches an optionally signed hexadecimal integer, whose format is the same as
expected for the subject sequence of the strtoul() function with the value 16 for the
base argument. The corresponding argument should be a pointer to unsigned int.

e, f, g
Match an optionally signed floating-point number, whose format is the same as
expected for the subject string of the strtod() function. The corresponding argument
should be a pointer to float.

s
Matches a sequence of non-white-space characters. The corresponding argument
should be a pointer to the initial character of an array large enough to accept the
sequence and a terminating null character, which will be added automatically.

[
Matches a non-empty sequence of characters from a set of expected characters (the
scanset). The corresponding argument should be a pointer to the initial character of
an array large enough to accept the sequence and a terminating null character, which
is added automatically. The conversion specifier includes all subsequent character in
the format string, up to and including the matching right bracket (]). The characters
between the brackets (the scanlist) comprise the scanset, unless the character after the
left bracket is a circumflex (^) in which case the scanset contains all characters that do
not appear in the scanlist between the circumflex and the right bracket. If the
conversion specifier begins with “[]” or “[^]”, the right bracket character is in the
scanlist and the next right bracket character is the matching right bracket that ends
the specification; otherwise the first right bracket character is the one that ends the
specification.

c
Matches a sequence of characters of the number specified by the field width (1 if no
field width is present in the directive). The corresponding argument should be a
pointer to the initial character of an array large enough to accept the sequence. No
null character is added.

p
Matches an implementation-defined set of sequences, which should be the same as
the set of sequences that may be produced by the %p conversion of the fprintf()
function. The corresponding argument should be a pointer to a pointer to void.
VxWorks defines its pointer input field to be consistent with pointers written by the
fprintf() function (“0x” hexadecimal notation). If the input item is a value converted

2: Routines
fscanf()

617

F

earlier during the same program execution, the pointer that results should compare
equal to that value; otherwise the behavior of the %p conversion is undefined.

n
No input is consumed. The corresponding argument should be a pointer to int into
which the number of characters read from the input stream so far by this call to
fscanf() is written. Execution of a %n directive does not increment the assignment
count returned when fscanf() completes execution.

%
Matches a single %; no conversion or assignment occurs. The complete conversion
specification is %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion specifiers E, G, and X are also valid and behave the same as e, g, and x,
respectively.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any characters matching the current directive have been read (other than leading
white space, where permitted), execution of the current directive terminates with an input
failure; otherwise, unless execution of the current directive is terminated with a matching
failure, execution of the following directive (if any) is terminated with an input failure.

If conversion terminates on a conflicting input character, the offending input character is
left unread in the input stream. Trailing white space (including new-line characters) is left
unread unless matched by a directive. The success of literal matches and suppressed
assignments is not directly determinable other than via the %n directive.

INCLUDE FILES stdio.h

RETURNS The number of input items assigned, which can be fewer than provided for, or even zero,
in the event of an early matching failure; or EOF if an input failure occurs before any
conversion.

SEE ALSO ansiStdio, scanf(), sscanf()

VxWorks OS Libraries API Reference, 5.5
fseek()

618

fseek()

NAME fseek() – set the file position indicator for a stream (ANSI)

SYNOPSIS int fseek

(

FILE * fp, /* stream */

long offset, /* offset from whence */

int whence /* position to offset from: SEEK_SET = */

/* beginning SEEK_CUR = current position */

/* SEEK_END = end-of-file */

)

DESCRIPTION This routine sets the file position indicator for a specified stream. For a binary stream, the
new position, measured in characters from the beginning of the file, is obtained by adding
offset to the position specified by whence, whose possible values are:

SEEK_SET
the beginning of the file.

SEEK_CUR
the current value of the file position indicator.

SEEK_END
the end of the file.

A binary stream does not meaningfully support fseek() calls with a whence value of
SEEK_END.

For a text stream, either offset is zero, or offset is a value returned by an earlier call to ftell()
on the stream, in which case whence should be SEEK_SET.

A successful call to fseek() clears the end-of-file indicator for the stream and undoes any
effects of ungetc() on the same stream. After an fseek() call, the next operation on an
update stream can be either input or output.

INCLUDE FILES stdio.h

RETURNS Non-zero only for a request that cannot be satisfied.

ERRNO EINVAL

SEE ALSO ansiStdio, ftell()

2: Routines
fstat()

619

F

fsetpos()

NAME fsetpos() – set the file position indicator for a stream (ANSI)

SYNOPSIS int fsetpos

(

FILE * iop, /* stream */

const fpos_t * pos /* position, obtained by fgetpos() */

)

DESCRIPTION This routine sets the file position indicator for a specified stream iop according to the value
of the object pointed to by pos, which is a value obtained from an earlier call to fgetpos()
on the same stream.

A successful call to fsetpos() clears the end-of-file indicator for the stream and undoes
any effects of ungetc() on the same stream. After an fsetpos() call, the next operation on
an update stream may be either input or output.

INCLUDE FILES stdio.h

RETURNS Zero, or non-zero if the call fails, with errno set to indicate the error.

SEE ALSO ansiStdio, fgetpos()

fstat()

NAME fstat() – get file status information (POSIX)

SYNOPSIS STATUS fstat

(

int fd, /* file descriptor for file to check */

struct stat * pStat /* pointer to stat structure */

)

DESCRIPTION This routine obtains various characteristics of a file (or directory). The file must already
have been opened using open() or creat(). The fd parameter is the file descriptor returned
by open() or creat().

The pStat parameter is a pointer to a stat structure (defined in stat.h). This structure must
be allocated before fstat() is called.

On return, fields in the stat structure are updated to reflect the characteristics of the file.

VxWorks OS Libraries API Reference, 5.5
fstatfs()

620

RETURNS OK or ERROR.

SEE ALSO dirLib, stat(), ls()

fstatfs()

NAME fstatfs() – get file status information (POSIX)

SYNOPSIS STATUS fstatfs

(

int fd, /* file descriptor for file to check */

struct statfs * pStat /* pointer to statfs structure */

)

DESCRIPTION This routine obtains various characteristics of a file system. A file in the file system must
already have been opened using open() or creat(). The fd parameter is the file descriptor
returned by open() or creat().

The pStat parameter is a pointer to a statfs structure (defined in stat.h). This structure
must be allocated before fstat() is called.

Upon return, the fields in the statfs structure are updated to reflect the characteristics of
the file.

RETURNS OK or ERROR.

SEE ALSO dirLib, statfs(), ls()

ftell()

NAME ftell() – return the current value of the file position indicator for a stream (ANSI)

SYNOPSIS long ftell

(

FILE * fp /* stream */

)

DESCRIPTION This routine returns the current value of the file position indicator for a specified stream.
For a binary stream, the value is the number of characters from the beginning of the file.
For a text stream, the file position indicator contains unspecified information, usable by

2: Routines
ftpCommand()

621

F

fseek() for returning the file position indicator to its position at the time of the ftell() call;
the difference between two such return values is not necessary a meaningful measure of
the number of characters written or read.

INCLUDE FILES stdio.h

RETURNS The current value of the file position indicator, or -1L if unsuccessful, with errno set to
indicate the error.

SEE ALSO ansiStdio, fseek()

ftpCommand()

NAME ftpCommand() – send an FTP command and get the reply

SYNOPSIS int ftpCommand

(

int ctrlSock, /* fd of control connection socket */

char * fmt, /* format string of command to send */

int arg1, /* first of six args to format string */

int arg2,

int arg3,

int arg4,

int arg5,

int arg6

)

DESCRIPTION This command has been superseded by ftpCommandEnhanced()

This routine sends the specified command on the specified socket, which should be a
control connection to a remote FTP server. The command is specified as a string in
printf() format with up to six arguments.

After the command is sent, ftpCommand() waits for the reply from the remote server.
The FTP reply code is returned in the same way as in ftpReplyGet().

EXAMPLE ftpCommand (ctrlSock, "TYPE I", 0, 0, 0, 0, 0, 0); /* image-type xfer */

ftpCommand (ctrlSock, "STOR %s", file, 0, 0, 0, 0, 0); /* init file write */

RETURNS 1 = FTP_PRELIM (positive preliminary)
2 = FTP_COMPLETE (positive completion)
3 = FTP_CONTINUE (positive intermediate)

VxWorks OS Libraries API Reference, 5.5
ftpCommandEnhanced()

622

4 = FTP_TRANSIENT (transient negative completion)
5 = FTP_ERROR (permanent negative completion)

ERROR if there is a read/write error or an unexpected EOF.

SEE ALSO ftpLib, ftpReplyGet()

ftpCommandEnhanced()

NAME ftpCommandEnhanced() – send an FTP command and get the complete RFC reply code

SYNOPSIS int ftpCommandEnhanced

(

int ctrlSock, /* fd of control connection socket */

char * fmt, /* format string of command to send */

int arg1, /* first of six args to format string */

int arg2,

int arg3,

int arg4,

int arg5,

int arg6,

char * replyString, /* storage for the last line of the server */

/* response or NULL */

int replyStringLength /* Maximum character length of the replyString */

)

DESCRIPTION This command supersedes ftpCommand()

This routine sends the specified command on the specified socket, which should be a
control connection to a remote FTP server. The command is specified as a string in
printf() format with up to six arguments.

After the command is sent, ftpCommand() waits for the reply from the remote server.
The FTP reply code is returned in the same way as in ftpReplyGetEnhanced().

EXAMPLE ftpCommandEnhanced (ctrlSock, "TYPE I", 0, 0, 0, 0, 0, 0, 0, 0);

/* image-type xfer */

ftpCommandEnhanced (ctrlSock, "STOR %s", file, 0, 0, 0, 0, 0, 0, 0);

/* init file write */

ftpCommandEnhanced (ctrlSock, "PASV", file, 0, 0, 0, 0, 0, reply, rplyLen);

/* Get port */

RETURNS The complete FTP response code (see RFC #959)

2: Routines
ftpDataConnInit()

623

F

ERROR if there is a read/write error or an unexpected EOF.

SEE ALSO ftpLib, ftpReplyGetEnhanced(), ftpReplyGet()

ftpDataConnGet()

NAME ftpDataConnGet() – get a completed FTP data connection

SYNOPSIS int ftpDataConnGet

(

int dataSock /* fd of data socket on which to await */

/* connection */

)

DESCRIPTION This routine completes a data connection initiated by a call to ftpDataConnInit(). It waits
for a connection on the specified socket from the remote FTP server. The specified socket
should be the one returned by ftpDataConnInit(). The connection is established on a new
socket, whose file descriptor is returned as the result of this function. The original socket,
specified in the argument to this routine, is closed.

Usually this routine is called after ftpDataConnInit() and ftpCommand() to initiate a
data transfer from/to the remote FTP server.

RETURNS The file descriptor of the new data socket, or ERROR if the connection failed.

SEE ALSO ftpLib, ftpDataConnInit(), ftpCommand()

ftpDataConnInit()

NAME ftpDataConnInit() – initialize an FTP data connection using PORT mode

SYNOPSIS int ftpDataConnInit

(

int ctrlSock /* fd of associated control socket */

)

DESCRIPTION This routine sets up the client side of a data connection for the specified control
connection using the PORT command. It creates the data port, informs the remote FTP
server of the data port address, and listens on that data port. The server will then connect

VxWorks OS Libraries API Reference, 5.5
ftpDataConnInitPassiveMode()

624

to this data port in response to a subsequent data-transfer command sent on the control
connection (see the manual entry for ftpCommand()).

This routine must be called before the data-transfer command is sent; otherwise, the
server’s connect may fail.

This routine is called after ftpHookup() and ftpLogin() to establish a connection with a
remote FTP server at the lowest level. (For a higher-level interaction with a remote FTP
server, see ftpXfer().)

Please note that ftpDataConnInitPassiveMode() is recommended instead of
ftpDataConnInit().

RETURNS The file descriptor of the data socket created, or ERROR.

SEE ALSO ftpLib, ftpDataConnInitPassiveMode(), ftpHookup(), ftpLogin(), ftpCommand(),
ftpXfer()

ftpDataConnInitPassiveMode()

NAME ftpDataConnInitPassiveMode() – initialize an FTP data connection using PASV mode

SYNOPSIS int ftpDataConnInitPassiveMode

(

int ctrlSock /* fd of associated control socket */

)

DESCRIPTION This routine sets up the client side of a data connection for the specified control
connection. It issues a PASV command and attempts to connect to the host-specified port.
If the host responds that it can not process the PASV command (command not supported)
or fails to recognize the command, it will return ERROR.

This routine must be called before the data-transfer command is sent; otherwise, the
server’s connect may fail.

This routine is called after ftpHookup() and ftpLogin() to establish a connection with a
remote FTP server at the lowest level. (For a higher-level interaction with a remote FTP
server, see ftpXfer().)

This function is preferred over ftpDataConnInit() because the remote system must
preserve old port connection pairs even if the target system suffers from a reboot (2MSL).
Using PASV we encourage the host’s selection of a fresh port.

RETURNS The file descriptor of the data socket created, or ERROR.

SEE ALSO ftpLib, ftpHookup(), ftpLogin(), ftpCommandEnhanced(), ftpXfer(), ftpConnInit()

2: Routines
ftpdInit()

625

F

ftpdDelete()

NAME ftpdDelete() – terminate the FTP server task

SYNOPSIS STATUS ftpdDelete (void)

DESCRIPTION This routine halts the FTP server and closes the control connection. All client sessions are
removed after completing any commands in progress. When this routine executes, no
further client connections will be accepted until the server is restarted. This routine is not
reentrant and must not be called from interrupt level.

NOTE: If any file transfer operations are in progress when this routine is executed, the
transfers will be aborted, possibly leaving incomplete files on the destination host.

RETURNS OK if shutdown completed, or ERROR otherwise.

ERRNO N/A

SEE ALSO ftpdLib

ftpdInit()

NAME ftpdInit() – initialize the FTP server task

SYNOPSIS STATUS ftpdInit

(

FUNCPTR pLoginRtn, /* user verification routine, or NULL */

int stackSize /* task stack size, or 0 for default */

)

DESCRIPTION This routine installs the password verification routine indicated by pLoginRtn and
establishes a control connection for the primary FTP server task, which it then creates. It is
called automatically during system startup if INCLUDE_FTP_SERVER is defined. The
primary server task supports simultaneous client sessions, up to the limit specified by the
global variable ftpsMaxClients. The default value allows a maximum of four
simultaneous connections. The stackSize argument specifies the stack size for the primary
server task. It is set to the value specified in the ftpdWorkTaskStackSize global variable
by default.

RETURNS OK if server started, or ERROR otherwise.

VxWorks OS Libraries API Reference, 5.5
ftpHookup()

626

ERRNO N/A

SEE ALSO ftpdLib

ftpHookup()

NAME ftpHookup() – get a control connection to the FTP server on a specified host

SYNOPSIS int ftpHookup

(

char * host /* server host name or inet address */

)

DESCRIPTION This routine establishes a control connection to the FTP server on the specified host. This
is the first step in interacting with a remote FTP server at the lowest level. (For a
higher-level interaction with a remote FTP server, see the manual entry for ftpXfer().)

RETURNS The file descriptor of the control socket, or ERROR if the Internet address or the host name
is invalid, if a socket could not be created, or if a connection could not be made.

SEE ALSO ftpLib, ftpLogin(), ftpXfer()

ftpLibDebugOptionSet()

NAME ftpLibDebugOptionSet() – set the debug level of the ftp library routines

SYNOPSIS void ftpLibDebugOptionSet

(

UINT32 debugLevel

)

DESCRIPTION This routine enables the debugging of ftp transactions using the ftp library.

Debugging Level Meaning

FTPL_DEBUG_OFF No debugging messages.
FTPL_DEBUG_INCOMING Display all incoming responses.
FTPL_DEBUG_OUTGOING Display all outgoing commands.
FTPL_DEBUG_ERRORS Display warnings and errors

2: Routines
ftpLs()

627

F

EXAMPLE ftpLibDebugOptionsSet (FTPL_DEBUG_ERRORS); /* Display any runtime errors */

ftpLibDebugOptionsSet (FTPL_DEBUG_OUTGOING); /* Display outgoing commands */

ftpLibDebugOptionsSet (FTPL_DEBUG_INCOMING); /* Display incoming replies */

ftpLibDebugOptionsSet (FTPL_DEBUG_INCOMING | /* Display both commands and */

FTPL_DEBUG_OUTGOING); /* replies */

RETURNS N/A

SEE ALSO ftpLib

ftpLogin()

NAME ftpLogin() – log in to a remote FTP server

SYNOPSIS STATUS ftpLogin

(

int ctrlSock, /* fd of login control socket */

char * user, /* user name for host login */

char * passwd, /* password for host login */

char * account /* account for host login */

)

DESCRIPTION This routine logs in to a remote server with the specified user name, password, and
account name, as required by the specific remote host. This is typically the next step after
calling ftpHookup() in interacting with a remote FTP server at the lowest level. (For a
higher-level interaction with a remote FTP server, see the manual entry for ftpXfer()).

RETURNS OK, or ERROR if the routine is unable to log in.

SEE ALSO ftpLib, ftpHookup(), ftpXfer()

ftpLs()

NAME ftpLs() – list directory contents via FTP

SYNOPSIS STATUS ftpLs

(

char * dirName /* name of directory to list */

)

VxWorks OS Libraries API Reference, 5.5
ftpReplyGet()

628

DESCRIPTION This routine lists the contents of a directory. The content list is obtained via an NLST FTP
transaction.

The local device name must be the same as the remote host name with a colon “:” as a
suffix. (For example “wrs:” is the device name for the “wrs” host.)

RETURNS OK, or ERROR if could not open directory.

SEE ALSO ftpLib

ftpReplyGet()

NAME ftpReplyGet() – get an FTP command reply

SYNOPSIS int ftpReplyGet

(

int ctrlSock, /* control socket fd of FTP connection */

BOOL expecteof /* TRUE = EOF expected, FALSE = EOF is error */

)

DESCRIPTION This routine has been superseded by ftpReplyGetEnhanced()

This routine gets a command reply on the specified control socket.

The three-digit reply code from the first line is saved and interpreted. The left-most digit
of the reply code identifies the type of code (see RETURNS below).

The caller’s error status is always set to the complete three-digit reply code regardless of
the actual reply value (see the manual entry for errnoGet()). If the reply code indicates an
error, the entire reply is printed if the ftp error printing is enabled (see the manual entry
for ftpLibDebugOptionsSet()).

If an EOF is encountered on the specified control socket, but no EOF was expected
(expecteof == FALSE), then ERROR is returned.

RETURNS 1 = FTP_PRELIM (positive preliminary)
2 = FTP_COMPLETE (positive completion)
3 = FTP_CONTINUE (positive intermediate)
4 = FTP_TRANSIENT (transient negative completion)
5 = FTP_ERROR (permanent negative completion)

ERROR if there is a read/write error or an unexpected EOF.

SEE ALSO ftpLib

2: Routines
ftpReplyGetEnhanced()

629

F

ftpReplyGetEnhanced()

NAME ftpReplyGetEnhanced() – get an FTP command reply

SYNOPSIS int ftpReplyGetEnhanced

(

int ctrlSock, /* control socket fd of FTP connection */

BOOL expecteof /* TRUE = EOF expected, FALSE = EOF is error */

char * replyString, /* Location to store text of reply, or NULL */

int stringLengthMax /* Maximum length of reply (not including NULL) */

)

DESCRIPTION This routine supersedes ftpReplyGet()

This routine gets a command reply on the specified control socket.

The three-digit reply code from the first line is saved and interpreted. The left-most digit
of the reply code identifies the type of code (see RETURNS below).

The caller’s error status is always set to the complete three-digit reply code (see the
manual entry for errnoGet()). If the reply code indicates an error, the entire reply is
printed if the ftp error printing is enabled (see the manual entry for
ftpLibDebugOptionsSet()).

The last line of text retrieved from the servers response is stored in the location specified
by replyString. If replyString is NULL the parameter is ignored.

If an EOF is encountered on the specified control socket, but no EOF was expected
(expecteof == FALSE), then ERROR is returned.

RETURNS The complete FTP response code (see RFC #959)

ERROR if there is a read/write error or an unexpected EOF.

SEE ALSO ftpLib

VxWorks OS Libraries API Reference, 5.5
ftpTransientConfigGet()

630

ftpTransientConfigGet()

NAME ftpTransientConfigGet() – get parameters for host FTP_TRANSIENT responses

SYNOPSIS STATUS ftpTransientConfigGet

(

UINT32 * maxRetryCount, /* The maximum number of attempts to retry */

UINT32 * retryInterval /* time (in system clock ticks) between retries */

)

DESCRIPTION This routine retrieves the delay between retries in response to receiving FTP_TRANSIENT
and the maximum retry count permitted before failing.

RETURNS OK

SEE ALSO ftpLib, ftpTransientConfigSet(), tickLib

ftpTransientConfigSet()

NAME ftpTransientConfigSet() – set parameters for host FTP_TRANSIENT responses

SYNOPSIS STATUS ftpTransientConfigSet

(

UINT32 maxRetryCount, /* The maximum number of attempts to retry */

UINT32 retryInterval /* time (in system clock ticks) between retries */

)

DESCRIPTION This routine adjusts the delay between retries in response to receiving FTP_PRELIM and
the maximum retry count permitted before failing.

RETURNS OK

SEE ALSO ftpLib

2: Routines
ftpXfer()

631

F

ftpTransientFatalInstall()

NAME ftpTransientFatalInstall() – set applette to stop FTP transient host responses

SYNOPSIS STATUS ftpTransientFatalInstall

(

FUNCPTR pApplette /* function that returns TRUE or FALSE */

)

DESCRIPTION The routine installs a function which will determine if a transient resonse should be fatal.
Some FTP servers incorrectly use transient responses instead of error to describe
conditions such as disk full.

RETURNS OK if the installation is successful, or ERROR if the installation fails.

SEE ALSO ftpLib, ftpTransientConfigSet(), ftpTransientFatal() in
target/config/comps/src/net/usrFtp.c.

ftpXfer()

NAME ftpXfer() – initiate a transfer via FTP

SYNOPSIS STATUS ftpXfer

(

char * host, /* name of server host */

char * user, /* user name for host login */

char * passwd, /* password for host login */

char * acct, /* account for host login */

char * cmd, /* command to send to host */

char * dirname, /* directory to cd to before sending command */

char * filename, /* filename to send with command */

int * pCtrlSock, /* where to return control socket fd */

int * pDataSock /* where to return data socket fd, (NULL == */

/* don’t open data connection) */

)

DESCRIPTION This routine initiates a transfer via a remote FTP server in the following order:

(1) Establishes a connection to the FTP server on the specified host.
(2) Logs in with the specified user name, password, and account, as necessary for the

particular host.

VxWorks OS Libraries API Reference, 5.5
ftpXfer()

632

The resulting control and data connection file descriptors are returned via pCtrlSock and
pDataSock, respectively.

After calling this routine, the data can be read or written to the remote server by reading
or writing on the file descriptor returned in pDataSock. When all incoming data has been
read (as indicated by an EOF when reading the data socket) and/or all outgoing data has
been written, the data socket fd should be closed. The routine ftpReplyGet() should then
be called to receive the final reply on the control socket, after which the control socket
should be closed.

If the FTP command does not involve data transfer, pDataSock should be NULL, in which
case no data connection will be established. The only FTP commands supported for this
case are DELE, RMD, and MKD.

EXAMPLE The following code fragment reads the file /usr/fred/myfile from the host “server”, logged
in as user “fred”, with password “magic” and no account name.

#include "vxWorks.h"

#include "ftpLib.h"

int ctrlSock;

int dataSock;

char buf [512];

int nBytes;

STATUS status;

if (ftpXfer ("server", "fred", "magic", "",

"RETR %s", "/usr/fred", "myfile",

&ctrlSock, &dataSock) == ERROR)

return (ERROR);

while ((nBytes = read (dataSock, buf, sizeof (buf))) > 0)

{

...

}

close (dataSock);

if (nBytes < 0) /* read error? */

status = ERROR;

if (ftpReplyGet (ctrlSock, TRUE) != FTP_COMPLETE)

status = ERROR;

if (ftpCommand (ctrlSock, "QUIT", 0, 0, 0, 0, 0, 0) != FTP_COMPLETE)

status = ERROR;

close (ctrlSock);

(3) Sets the transfer type to image by sending the command “TYPE I”.
(4) Changes to the specified directory by sending the command “CWD dirname”.
(5) Sends the specified transfer command with the specified filename as an argument, and

establishes a data connection. Typical transfer commands are “STOR %s”, to write to
a remote file, or “RETR %s”, to read a remote file.

2: Routines
fwrite()

633

F

RETURNS OK, or ERROR if any socket cannot be created or if a connection cannot be made.

SEE ALSO ftpLib, ftpReplyGet()

ftruncate()

NAME ftruncate() – truncate a file (POSIX)

SYNOPSIS int ftruncate

(

int fildes, /* fd of file to truncate */

off_t length /* length to truncate file */

)

DESCRIPTION This routine truncates a file to a specified size.

RETURNS 0 (OK) or -1 (ERROR) if unable to truncate file.

ERRNO EROFS - File resides on a read-only file system.
EBADF - File is open for reading only.
EINVAL - File descriptor refers to a file on which this operation is impossible.

SEE ALSO ftruncate

fwrite()

NAME fwrite() – write from a specified array (ANSI)

SYNOPSIS int fwrite

(

const void * buf, /* where to copy from */

size_t size, /* element size */

size_t count, /* no. of elements */

FILE * fp /* stream to write to */

)

DESCRIPTION This routine writes, from the array buf, up to count elements whose size is size, to a
specified stream. The file position indicator for the stream (if defined) is advanced by the

VxWorks OS Libraries API Reference, 5.5
fwrite()

634

number of characters successfully written. If an error occurs, the resulting value of the file
position indicator for the stream is indeterminate.

INCLUDE FILES stdio.h

RETURNS The number of elements successfully written, which will be less than count only if a write
error is encountered.

SEE ALSO ansiStdio

2: Routines
getchar()

635

G

getc()

NAME getc() – return the next character from a stream (ANSI)

SYNOPSIS int getc

(

FILE * fp /* input stream */

)

DESCRIPTION This routine is equivalent to fgetc(), except that if it is implemented as a macro, it may
evaluate fp more than once; thus the argument should never be an expression with side
effects.

If the stream is at end-of-file, the end-of-file indicator for the stream is set; if a read error
occurs, the error indicator is set.

INCLUDE FILES stdio.h

RETURNS The next character from the stream, or EOF if the stream is at end-of-file or a read error
occurs.

SEE ALSO ansiStdio, fgetc()

getchar()

NAME getchar() – return the next character from the standard input stream (ANSI)

SYNOPSIS int getchar (void)

DESCRIPTION This routine returns the next character from the standard input stream and advances the
file position indicator.

It is equivalent to getc() with the stream argument stdin.

If the stream is at end-of-file, the end-of-file indicator is set; if a read error occurs, the error
indicator is set.

INCLUDE FILES stdio.h

RETURNS The next character from the standard input stream, or EOF if the stream is at end-of-file or
a read error occurs.

SEE ALSO ansiStdio, getc(), fgetc()

VxWorks OS Libraries API Reference, 5.5
getcwd()

636

getcwd()

NAME getcwd() – get the current default path (POSIX)

SYNOPSIS char *getcwd

(

char * buffer, /* where to return the pathname */

int size /* size in bytes of buffer */

)

DESCRIPTION This routine copies the name of the current default path to buffer. It provides the same
functionality as ioDefPathGet() and is provided for POSIX compatibility.

RETURNS A pointer to the supplied buffer, or NULL if size is too small to hold the current default
path.

SEE ALSO ioLib, ioDefPathSet(), ioDefPathGet(), chdir()

getenv()

NAME getenv() – get an environment variable (ANSI)

SYNOPSIS char *getenv

(

const char * name /* env variable to get value for */

)

DESCRIPTION This routine searches the environment list (see the UNIX BSD 4.3 manual entry for
environ(5V)) for a string of the form “name=value” and returns the value portion of the
string, if the string is present; otherwise it returns a NULL pointer.

RETURNS A pointer to the string value, or a NULL pointer.

SEE ALSO envLib, envLibInit(), putenv(), UNIX BSD 4.3 manual entry for environ(5V), American
National Standard for Information Systems -Programming Language - C, ANSI X3.159-1989:
General Utilities (stdlib.h)

2: Routines
getpeername()

637

G

gethostname()

NAME gethostname() – get the symbolic name of this machine

SYNOPSIS int gethostname

(

char * name, /* machine name */

int nameLen /* length of name */

)

DESCRIPTION This routine gets the target machine’s symbolic name, which can be used for
identification.

RETURNS OK or ERROR.

SEE ALSO hostLib

getpeername()

NAME getpeername() – get the name of a connected peer

SYNOPSIS STATUS getpeername

(

int s, /* socket descriptor */

struct sockaddr * name, /* where to put name */

int * namelen /* space available in name, later filled in */

/* with actual name size */

)

DESCRIPTION This routine gets the name of the peer connected to socket s. The namelen parameter
should be initialized to indicate the amount of space referenced by name. On return, the
name of the socket is copied to name and the actual size of the socket name is copied to
namelen.

RETURNS OK, or ERROR if the socket is invalid or not connected.

SEE ALSO sockLib

VxWorks OS Libraries API Reference, 5.5
gets()

638

gets()

NAME gets() – read characters from the standard input stream (ANSI)

SYNOPSIS char * gets

(

char * buf /* output array */

)

DESCRIPTION This routine reads characters from the standard input stream into the array buf until
end-of-file is encountered or a new-line is read. Any new-line character is discarded, and a
null character is written immediately after the last character read into the array.

If end-of-file is encountered and no characters have been read, the contents of the array
remain unchanged. If a read error occurs, the array contents are indeterminate.

INCLUDE FILES stdio.h

RETURNS A pointer to buf, or a null pointer if (1) end-of-file is encountered and no characters have
been read, or (2) there is a read error.

SEE ALSO ansiStdio

getsockname()

NAME getsockname() – get a socket name

SYNOPSIS STATUS getsockname

(

int s, /* socket descriptor */

struct sockaddr * name, /* where to return name */

int * namelen /* space available in name, later filled in */

/* with actual name size */

)

DESCRIPTION This routine gets the current name for the specified socket s. The namelen parameter
should be initialized to indicate the amount of space referenced by name. On return, the
name of the socket is copied to name and the actual size of the socket name is copied to
namelen.

RETURNS OK, or ERROR if the socket is invalid.

2: Routines
getsockopt()

639

G

SEE ALSO sockLib

getsockopt()

NAME getsockopt() – get socket options

SYNOPSIS STATUS getsockopt

(

int s, /* socket */

int level, /* protocol level for options */

int optname, /* name of option */

char * optval, /* where to put option */

int * optlen /* where to put option length */

)

DESCRIPTION This routine returns relevant option values associated with a socket. To manipulate
options at the “socket” level, level should be SOL_SOCKET. Any other levels should use
the appropriate protocol number. The optlen parameter should be initialized to indicate
the amount of space referenced by optval. On return, the value of the option is copied to
optval and the actual size of the option is copied to optlen.

Although optval is passed as a char *, the actual variable whose address gets passed in
should be an integer or a structure, depending on which optname is being passed. Refer to
setsockopt() to determine the correct type of the actual variable (whose address should
then be cast to a char *).

RETURNS OK, or ERROR if there is an invalid socket, an unknown option, or the call is unable to get
the specified option.

EXAMPLE Because SO_REUSEADDR has an integer parameter, the variable to be passed to
getsockopt() should be declared as

int reuseVal;

and passed in as

(char *)&reuseVal.

Otherwise the user might mistakenly declare reuseVal as a character, in which case
getsockopt() will only return the first byte of the integer representing the state of this
option. Then whether the return value is correct or always 0 depends on the endianness of
the machine.

SEE ALSO sockLib, setsockopt()

VxWorks OS Libraries API Reference, 5.5
getw()

640

getw()

NAME getw() – read the next word (32-bit integer) from a stream

SYNOPSIS int getw

(

FILE * fp /* stream to read from */

)

DESCRIPTION This routine reads the next 32-bit quantity from a specified stream. It returns EOF on
end-of-file or an error; however, this is also a valid integer, thus feof() and ferror() must
be used to check for a true end-of-file.

This routine is provided for compatibility with earlier VxWorks releases.

INCLUDE FILES stdio.h

RETURN A 32-bit number from the stream, or EOF on either end-of-file or an error.

SEE ALSO ansiStdio, putw()

getwd()

NAME getwd() – get the current default path

SYNOPSIS char *getwd

(

char * pathname /* where to return the pathname */

)

DESCRIPTION This routine copies the name of the current default path to pathname. It provides the same
functionality as ioDefPathGet() and getcwd(). It is provided for compatibility with some
older UNIX systems.

The parameter pathname should be MAX_FILENAME_LENGTH characters long.

RETURNS A pointer to the resulting path name.

SEE ALSO ioLib

2: Routines
gmtime_r()

641

G

gmtime()

NAME gmtime() – convert calendar time into UTC broken-down time (ANSI)

SYNOPSIS struct tm *gmtime

(

const time_t * timer /* calendar time in seconds */

)

DESCRIPTION This routine converts the calendar time pointed to by timer into broken-down time,
expressed as Coordinated Universal Time (UTC).

This routine is not reentrant. For a reentrant version, see gmtime_r().

INCLUDE FILES time.h

RETURNS A pointer to a broken-down time structure (tm), or a null pointer if UTC is not available.

SEE ALSO ansiTime

gmtime_r()

NAME gmtime_r() – convert calendar time into broken-down time (POSIX)

SYNOPSIS int gmtime_r

(

const time_t * timer, /* calendar time in seconds */

struct tm * timeBuffer /* buffer for broken down time */

)

DESCRIPTION This routine converts the calendar time pointed to by timer into broken-down time,
expressed as Coordinated Universal Time (UTC). The broken-down time is stored in
timeBuffer.

This routine is the POSIX re-entrant version of gmtime().

INCLUDE FILES time.h

RETURNS OK.

SEE ALSO ansiTime

VxWorks OS Libraries API Reference, 5.5
gmtime_r()

642

2: Routines
hashFuncIterScale()

643

H

h()

NAME h() – display or set the size of shell history

SYNOPSIS void h

(

int size /* 0 = display, >0 = set history to new size */

)

DESCRIPTION This command displays or sets the size of VxWorks shell history. If no argument is
specified, shell history is displayed. If size is specified, that number of the most recent
commands is saved for display. The value of size is initially 20.

RETURNS N/A

SEE ALSO usrLib, shellHistory(), ledLib, VxWorks Programmer’s Guide: Target Shell, windsh,
Tornado User’s Guide: Shell

hashFuncIterScale()

NAME hashFuncIterScale() – iterative scaling hashing function for strings

SYNOPSIS int hashFuncIterScale

(

int elements, /* number of elements in hash table */

H_NODE_STRING * pHNode, /* pointer to string keyed hash node */

int seed /* seed to be used as scalar */

)

DESCRIPTION This hashing function interprets the key as a pointer to a null terminated string. A seed of
13 or 27 appears to work well. It calculates the hash as follows:

for (tkey = pHNode->string; *tkey != ‘\0’; tkey++)

hash = hash * seed + (unsigned int) *tkey;

hash &= (elements - 1);

RETURNS integer between 0 and (elements - 1)

SEE ALSO hashLib

VxWorks OS Libraries API Reference, 5.5
hashFuncModulo()

644

hashFuncModulo()

NAME hashFuncModulo() – hashing function using remainder technique

SYNOPSIS int hashFuncModulo

(

int elements, /* number of elements in hash table */

H_NODE_INT * pHNode, /* pointer to integer keyed hash node */

int divisor /* divisor */

)

DESCRIPTION This hashing function interprets the key as a 32 bit quantity and applies the standard
hashing function: h (k) = K mod D. Where D is the passed divisor. The result of the hash
function is masked to the appropriate number of bits to ensure the hash is not greater than
(elements - 1).

RETURNS integer between 0 and (elements - 1)

SEE ALSO hashLib

hashFuncMultiply()

NAME hashFuncMultiply() – multiplicative hashing function

SYNOPSIS int hashFuncMultiply

(

int elements, /* number of elements in hash table */

H_NODE_INT * pHNode, /* pointer to integer keyed hash node */

int multiplier /* multiplier */

)

DESCRIPTION This hashing function interprets the key as a unsigned integer quantity and applies the
standard hashing function: h (k) = leading N bits of (B * K). Where N is the appropriate
number of bits such that the hash is not greater than (elements - 1). The overflow of B * K
is discarded. The value of B is passed as an argument. The choice of B is similar to that of
the seed to a linear congruential random number generator. Namely, B’s value should
take on a large number (roughly 9 digits base 10) and end in ...x21 where x is an even
number. (Don’t ask... it involves statistics mumbo jumbo)

RETURNS integer between 0 and (elements - 1)

SEE ALSO hashLib

2: Routines
hashKeyStrCmp()

645

H

hashKeyCmp()

NAME hashKeyCmp() – compare keys as 32 bit identifiers

SYNOPSIS BOOL hashKeyCmp

(

H_NODE_INT * pMatchHNode, /* hash node to match */

H_NODE_INT * pHNode, /* hash node in table to compare to */

int keyCmpArg /* argument ingnored */

)

DESCRIPTION This routine compares hash node keys as 32 bit identifiers. The argument keyCmpArg is
unneeded by this comparator.

RETURNS TRUE if keys match or, FALSE if keys do not match.

SEE ALSO hashLib

hashKeyStrCmp()

NAME hashKeyStrCmp() – compare keys based on strings they point to

SYNOPSIS BOOL hashKeyStrCmp

(

H_NODE_STRING * pMatchHNode, /* hash node to match */

H_NODE_STRING * pHNode, /* hash node in table to compare to */

int keyCmpArg /* argument ingnored */

)

DESCRIPTION This routine compares keys based on the strings they point to. The strings must be null
terminated. The routine strcmp() is used to compare keys. The argument keyCmpArg is
unneeded by this comparator.

RETURNS TRUE if keys match or, FALSE if keys do not match.

SEE ALSO hashLib

VxWorks OS Libraries API Reference, 5.5
hashLibInit()

646

hashLibInit()

NAME hashLibInit() – initialize hash table library

SYNOPSIS STATUS hashLibInit (void)

DESCRIPTION This routine initializes the hash table package.

SEE ALSO hashLib

hashTblCreate()

NAME hashTblCreate() – create a hash table

SYNOPSIS HASH_ID hashTblCreate

(

int sizeLog2, /* number of elements in hash table log 2 */

FUNCPTR keyCmpRtn, /* function to test keys for equivalence */

FUNCPTR keyRtn, /* hashing function to generate hash from key */

int keyArg /* argument to hashing function */

)

DESCRIPTION This routine creates a hash table 2^sizeLog2 number of elements. The hash table is carved
from the system memory pool via malloc (2). To accommodate the list structures
associated with the table, the actual amount of memory allocated will be roughly eight
times the number of elements requested. Additionally, two routines must be specified to
dictate the behavior of the hashing table. The first routine is the hashing function.

The hashing function’s role is to disperse the hash nodes added to the table as evenly
throughout the table as possible. The hashing function receives as its parameters; the
number of elements in the table, a pointer to the HASH_NODE structure, and finally the
keyArg parameter passed to this routine. The keyArg may be used to seed the hashing
function. The hash function returns an index between 0 and (elements - 1). Standard
hashing functions are available in this library.

The keyCmpRtn parameter specifies the other function required by the hash table. This
routine tests for equivalence of two HASH_NODES. It returns a boolean, TRUE if the keys
match, and FALSE if they differ. As an example, a hash node may contain a HASH_NODE
followed by a key which is an unsigned integer identifiers, or a pointer to a string,
depending on the application. Standard hash node comparators are available in this
library.

2: Routines
hashTblDestroy()

647

H

RETURNS HASH_ID, or NULL if hash table could not be created.

SEE ALSO hashLib, hashFuncIterScale(), hashFuncModulo(), hashFuncMultiply(),
hashKeyCmp(), hashKeyStrCmp()

hashTblDelete()

NAME hashTblDelete() – delete a hash table

SYNOPSIS STATUS hashTblDelete

(

HASH_ID hashId /* id of hash table to delete */

)

DESCRIPTION This routine deletes the specified hash table and frees the associated memory. The hash
table is marked as invalid.

RETURNS OK, or ERROR if hashId is invalid.

SEE ALSO hashLib

hashTblDestroy()

NAME hashTblDestroy() – destroy a hash table

SYNOPSIS STATUS hashTblDestroy

(

HASH_ID hashId, /* id of hash table to destroy */

BOOL dealloc /* deallocate associated memory */

)

DESCRIPTION This routine destroys the specified hash table and optionally frees the associated memory.
The hash table is marked as invalid.

RETURNS OK, or ERROR if hashId is invalid.

SEE ALSO hashLib

VxWorks OS Libraries API Reference, 5.5
hashTblEach()

648

hashTblEach()

NAME hashTblEach() – call a routine for each node in a hash table

SYNOPSIS HASH_NODE *hashTblEach

(

HASH_ID hashId, /* hash table to call routine for */

FUNCPTR routine, /* the routine to call for each hash node */

int routineArg /* arbitrary user-supplied argument */

)

DESCRIPTION This routine calls a user-supplied routine once for each node in the hash table. The routine
should be declared as follows:

BOOL routine (pNode, arg)

HASH_NODE *pNode; /* pointer to a hash table node */

int arg; /* arbitrary user-supplied argument */

The user-supplied routine should return TRUE if hashTblEach() is to continue calling it
with the remaining nodes, or FALSE if it is done and hashTblEach() can exit.

RETURNS NULL if traversed whole hash table, or pointer to HASH_NODE that
hashTblEach() ended with.

SEE ALSO hashLib

hashTblFind()

NAME hashTblFind() – find a hash node that matches the specified key

SYNOPSIS HASH_NODE *hashTblFind

(

HASH_ID hashId, /* id of hash table from which to find node */

HASH_NODE * pMatchNode, /* pointer to hash node to match */

int keyCmpArg /* parameter to be passed to key comparator */

)

DESCRIPTION This routine finds the hash node that matches the specified key.

RETURNS pointer to HASH_NODE, or NULL if no matching hash node is found.

SEE ALSO hashLib

2: Routines
hashTblPut()

649

H

hashTblInit()

NAME hashTblInit() – initialize a hash table

SYNOPSIS STATUS hashTblInit

(

HASH_TBL * pHashTbl, /* pointer to hash table to initialize */

SL_LIST * pTblMem, /* pointer to memory of sizeLog2 SL_LISTs */

int sizeLog2, /* number of elements in hash table log 2 */

FUNCPTR keyCmpRtn, /* function to test keys for equivalence */

FUNCPTR keyRtn, /* hashing function to generate hash from key */

int keyArg /* argument to hashing function */

)

DESCRIPTION This routine initializes a hash table.

RETURNS OK

SEE ALSO hashLib

hashTblPut()

NAME hashTblPut() – put a hash node into the specified hash table

SYNOPSIS STATUS hashTblPut

(

HASH_ID hashId, /* id of hash table in which to put node */

HASH_NODE * pHashNode /* pointer to hash node to put in hash table */

)

DESCRIPTION This routine puts the specified hash node in the specified hash table. Identical nodes will
be kept in FIFO order in the hash table.

RETURNS OK, or ERROR if hashId is invalid.

SEE ALSO hashLib, hashTblRemove()

VxWorks OS Libraries API Reference, 5.5
hashTblRemove()

650

hashTblRemove()

NAME hashTblRemove() – remove a hash node from a hash table

SYNOPSIS STATUS hashTblRemove

(

HASH_ID hashId, /* id of hash table to remove node from */

HASH_NODE * pHashNode /* pointer to hash node to remove */

)

DESCRIPTION This routine removes the hash node that matches the specified key.

RETURNS OK, or ERROR if hashId is invalid or no matching hash node is found.

SEE ALSO hashLib

hashTblTerminate()

NAME hashTblTerminate() – terminate a hash table

SYNOPSIS STATUS hashTblTerminate

(

HASH_ID hashId /* id of hash table to terminate */

)

DESCRIPTION This routine terminates the specified hash table. The hash table is marked as invalid.

RETURNS OK, or ERROR if hashId is invalid.

SEE ALSO hashLib

2: Routines
help()

651

H

help()

NAME help() – print a synopsis of selected routines

SYNOPSIS void help (void)

DESCRIPTION This command prints the following list of the calling sequences for commonly used
routines, mostly contained in usrLib.

help Print this list
ioHelp Print I/O utilities help info
dbgHelp Print debug help info
nfsHelp Print nfs help info
netHelp Print network help info
spyHelp Print task histogrammer help info
timexHelp Print execution timer help info
h [n] Print (or set) shell history
i [task] Summary of tasks’ TCBs
ti task Complete info on TCB for task
sp adr,args... Spawn a task, pri=100, opt=0x19, stk=20000
taskSpawn name,pri,opt,stk,adr,args... Spawn a task
td task Delete a task
ts task Suspend a task
tr task Resume a task
d [adr[,nunits[,width]]] Display memory
m adr[,width] Modify memory
mRegs [reg[,task]] Modify a task’s registers interactively
pc [task] Return task’s program counter
version Print VxWorks version info, and boot line
iam "user"[,"passwd"] Set user name and passwd
whoami Print user name
devs List devices
ld [syms[,noAbort][,"name"]] Load std in into memory

(syms = add symbols to table:
-1 = none, 0 = globals, 1 = all)

lkup ["substr"] List symbols in system symbol table
lkAddr address List symbol table entries near address
checkStack [task] List task stack sizes and usage
printErrno value Print the name of a status value
period secs,adr,args... Spawn task to call function periodically
repeat n,adr,args... Spawn task to call function n times

(0=forever)
NOTE: Arguments specifying <task> can be either task ID or name.

RETURNS N/A

SEE ALSO usrLib, VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s Guide: Shell

VxWorks OS Libraries API Reference, 5.5
hostAdd()

652

hostAdd()

NAME hostAdd() – add a host to the host table

SYNOPSIS STATUS hostAdd

(

char * hostName, /* host name */

char * hostAddr /* host addr in standard Internet format */

)

DESCRIPTION This routine adds a host name to the local host table. This must be called before sockets on
the remote host are opened, or before files on the remote host are accessed via netDrv or
nfsDrv.

The host table has one entry per Internet address. More than one name may be used for an
address. Additional host names are added as aliases.

EXAMPLE -> hostAdd "wrs", "90.2"

-> hostShow

hostname inet address aliases

-------- ------------ -------

localhost 127.0.0.1

yuba 90.0.0.3

wrs 90.0.0.2

value = 12288 = 0x3000 = _bzero + 0x18

RETURNS OK, or ERROR if the host table is full, the host name/inet address pair is already entered,
the Internet address is invalid, or memory is insufficient.

SEE ALSO hostLib, netDrv, nfsDrv

hostDelete()

NAME hostDelete() – delete a host from the host table

SYNOPSIS STATUS hostDelete

(

char * name, /* host name or alias */

char * addr /* host addr in standard Internet format */

)

2: Routines
hostGetByAddr()

653

H

DESCRIPTION This routine deletes a host name from the local host table. If name is a host name, the host
entry is deleted. If name is a host name alias, the alias is deleted.

RETURNS OK, or ERROR if the parameters are invalid or the host is unknown.

ERRNO S_hostLib_INVALID_PARAMETER, S_hostLib_UNKNOWN_HOST

SEE ALSO hostLib

hostGetByAddr()

NAME hostGetByAddr() – look up a host in the host table by its Internet address

SYNOPSIS STATUS hostGetByAddr

(

int addr, /* inet address of host */

char * name /* buffer to hold name */

)

DESCRIPTION This routine finds the host name by its Internet address and copies it to name. The buffer
name should be pre-allocated with (MAXHOSTNAMELEN + 1) bytes of memory and is
NULL-terminated unless insufficient space is provided. If the DNS resolver library
resolvLib has been configured in the vxWorks image, a query for the host name is sent to
the DNS server, if the name was not found in the local host table.

WARNING: This routine does not look for aliases. Host names are limited to
MAXHOSTNAMELEN (from hostLib.h) characters.

RETURNS OK, or ERROR if buffer is invalid or the host is unknown.

SEE ALSO hostLib, hostGetByName()

VxWorks OS Libraries API Reference, 5.5
hostGetByName()

654

hostGetByName()

NAME hostGetByName() – look up a host in the host table by its name

SYNOPSIS int hostGetByName

(

char * name /* name of host */

)

DESCRIPTION This routine returns the Internet address of a host that has been added to the host table by
hostAdd(). If the DNS resolver library resolvLib has been configured in the vxWorks
image, a query for the host IP address is sent to the DNS server, if the name was not found
in the local host table.

RETURNS The Internet address (as an integer), or ERROR if the host is
 unknown.

ERRNO S_hostLib_INVALID_PARAMETER, S_hostLib_UNKNOWN_HOST

SEE ALSO hostLib

hostShow()

NAME hostShow() – display the host table

SYNOPSIS void hostShow (void)

DESCRIPTION This routine prints a list of remote hosts, along with their Internet addresses and aliases.

RETURNS N/A

SEE ALSO netShow, hostAdd()

2: Routines
hostTblInit()

655

H

hostTblInit()

NAME hostTblInit() – initialize the network host table

SYNOPSIS void hostTblInit (void)

DESCRIPTION This routine initializes the host list data structure used by routines throughout this
module. It should be called before any other routines in this module. This is done
automatically if INCLUDE_HOST_TBL is defined.

RETURNS N/A

SEE ALSO hostLib, usrConfig

VxWorks OS Libraries API Reference, 5.5
i()

656

i()

NAME i() – print a summary of each task’s TCB

SYNOPSIS void i

(

int taskNameOrId /* task name or task ID, 0 = summarize all */

)

DESCRIPTION This command displays a synopsis of all the tasks in the system. The ti() routine provides
more complete information on a specific task.

Both i() and ti() use taskShow(); see the documentation for taskShow() for a description
of the output format.

EXAMPLE -> i

NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY

---------- ---------- -------- --- --------- ------- -------- ----- -----

tExcTask _excTask 20fcb00 0 PEND 200c5fc 20fca6c 0 0

tLogTask _logTask 20fb5b8 0 PEND 200c5fc 20fb520 0 0

tShell _shell 20efcac 1 READY 201dc90 20ef980 0 0

tRlogind _rlogind 20f3f90 2 PEND 2038614 20f3db0 0 0

tTelnetd _telnetd 20f2124 2 PEND 2038614 20f2070 0 0

tNetTask _netTask 20f7398 50 PEND 2038614 20f7340 0 0

value = 57 = 0x39 = ‘9’

WARNING: This command should be used only as a debugging aid, since the information
is obsolete by the time it is displayed.

RETURNS N/A

SEE ALSO usrLib, ti(), taskShow(), VxWorks Programmer’s Guide: Target Shell, windsh, Tornado
User’s Guide: Shell

2: Routines
icmpShowInit()

657

I

iam()

NAME iam() – set the remote user name and password

SYNOPSIS STATUS iam

(

char * newUser, /* user name to use on remote */

char * newPasswd /* password to use on remote (NULL = none) */

)

DESCRIPTION This routine specifies the user name that will have access privileges on the remote
machine. The user name must exist in the remote machine’s /etc/passwd, and if it has been
assigned a password, the password must be specified in newPasswd.

Either parameter can be NULL, and the corresponding item will not be set.

The maximum length of the user name and the password is MAX_IDENTITY_LEN(defined
in remLib.h).

NOTE: This routine is a more convenient version of remCurIdSet() and is intended to be
used from the shell.

RETURNS OK, or ERROR if the call fails.

SEE ALSO remLib, whoami(), remCurIdGet(), remCurIdSet()

icmpShowInit()

NAME icmpShowInit() – initialize ICMP show routines

SYNOPSIS void icmpShowInit (void)

DESCRIPTION This routine links the ICMP show facility into the VxWorks system. These routines are
included automatically if INCLUDE_NET_SHOW and INCLUDE_ICMP are defined.

RETURNS N/A

SEE ALSO icmpShow

VxWorks OS Libraries API Reference, 5.5
icmpstatShow()

658

icmpstatShow()

NAME icmpstatShow() – display statistics for ICMP

SYNOPSIS void icmpstatShow (void)

DESCRIPTION This routine displays statistics for the ICMP (Internet Control Message Protocol) protocol.

RETURNS N/A

SEE ALSO icmpShow

ifAddrAdd()

NAME ifAddrAdd() – add an interface address for a network interface

SYNOPSIS STATUS ifAddrAdd

(

char * interfaceName, /* name of interface to configure */

char * interfaceAddress, /* Internet address to assign to interface */

char * broadcastAddress, /* broadcast address to assign to interface */

int subnetMask /* subnetMask */

)

DESCRIPTION This routine assigns an Internet address to a specified network interface. The Internet
address can be a host name or a standard Internet address format (e.g., 90.0.0.4). If a host
name is specified, it should already have been added to the host table with hostAdd().

You must specify both an interfaceName and an interfaceAddress. A broadcastAddress is
optional. If broadcastAddress is NULL, in_ifinit() generates a broadcastAddress value based
on the interfaceAddress value and the netmask. A subnetMask value is optional. If
subnetMask is 0, in_ifinit() uses a subnetMask the same as the netmask that is generated by
the interfaceAddress. The broadcastAddress is also destAddress in case of IFF_POINTOPOINT.

RETURNS OK, or ERROR if the interface cannot be set.

SEE ALSO ifLib, ifAddrGet(), ifDstAddrSet(), ifDstAddrGet()

2: Routines
ifAddrGet()

659

I

ifAddrDelete()

NAME ifAddrDelete() – delete an interface address for a network interface

SYNOPSIS STATUS ifAddrDelete

(

char * interfaceName, /* name of interface to delete addr from */

char * interfaceAddress /* Internet address to delete from interface */

)

DESCRIPTION This routine deletes an Internet address from a specified network interface. The Internet
address can be a host name or a standard Internet address format (e.g., 90.0.0.4). If a host
name is specified, it should already have been added to the host table with hostAdd().

RETURNS OK, or ERROR if the interface cannot be deleted.

SEE ALSO ifLib, ifAddrGet(), ifDstAddrSet(), ifDstAddrGet()

ifAddrGet()

NAME ifAddrGet() – get the Internet address of a network interface

SYNOPSIS STATUS ifAddrGet

(

char * interfaceName, /* name of interface, i.e. ei0 */

char * interfaceAddress /* buffer for Internet address */

)

DESCRIPTION This routine gets the Internet address of a specified network interface and copies it to
interfaceAddress. This pointer should point to a buffer large enough to contain
INET_ADDR_LEN bytes.

RETURNS OK or ERROR.

SEE ALSO ifLib, ifAddrSet(), ifDstAddrSet(), ifDstAddrGet()

VxWorks OS Libraries API Reference, 5.5
ifAddrSet()

660

ifAddrSet()

NAME ifAddrSet() – set an interface address for a network interface

SYNOPSIS STATUS ifAddrSet

(

char * interfaceName, /* name of interface to configure, i.e. ei0 */

char * interfaceAddress /* Internet address to assign to interface */

)

DESCRIPTION This routine assigns an Internet address to a specified network interface. The Internet
address can be a host name or a standard Internet address format (e.g., 90.0.0.4). If a host
name is specified, it should already have been added to the host table with hostAdd().

A successful call to ifAddrSet() results in the addition of a new route.

The subnet mask used in determining the network portion of the address will be that set
by ifMaskSet(), or the default class mask if ifMaskSet() has not been called. It is
standard practice to call ifMaskSet() prior to calling ifAddrSet().

RETURNS OK, or ERROR if the interface cannot be set.

SEE ALSO ifLib, ifAddrGet(), ifDstAddrSet(), ifDstAddrGet()

ifAllRoutesDelete()

NAME ifAllRoutesDelete() – delete all routes associated with a network interface

SYNOPSIS int ifAllRoutesDelete

(

char * ifName, /* name of the interface */

int unit /* unit number for this interface */

)

DESCRIPTION This routine deletes all routes that have been associated with the specified interface. The
routes deleted are:

- the network route added when the interface address is initialized
- the static routes added by the administrator
- ARP routes passing through the interface

2: Routines
ifBroadcastSet()

661

I

Routes added by routing protocols are not deleted.

RETURNS The number of routes deleted, or ERROR if an interface is not specified.

SEE ALSO ifLib

ifBroadcastGet()

NAME ifBroadcastGet() – get the broadcast address for a network interface

SYNOPSIS STATUS ifBroadcastGet

(

char * interfaceName, /* name of interface, i.e. ei0 */

char * broadcastAddress /* buffer for broadcast address */

)

DESCRIPTION This routine gets the broadcast address for a specified network interface. The broadcast
address is copied to the buffer broadcastAddress.

RETURNS OK or ERROR.

SEE ALSO ifLib, ifBroadcastSet()

ifBroadcastSet()

NAME ifBroadcastSet() – set the broadcast address for a network interface

SYNOPSIS STATUS ifBroadcastSet

(

char * interfaceName, /* name of interface to assign, i.e. ei0 */

char * broadcastAddress /* broadcast address to assign to interface */

)

DESCRIPTION This routine assigns a broadcast address for the specified network interface. The broadcast
address must be a string in standard Internet address format (e.g., 90.0.0.0).

VxWorks OS Libraries API Reference, 5.5
ifDstAddrGet()

662

An interface’s default broadcast address is its Internet address with a host part of all ones
(e.g., 90.255.255.255). This conforms to current ARPA specifications. However, some older
systems use an Internet address with a host part of all zeros as the broadcast address.

NOTE: VxWorks automatically accepts a host part of all zeros as a broadcast address, in
addition to the default or specified broadcast address. But if VxWorks is to broadcast to
older systems using a host part of all zeros as the broadcast address, this routine should
be used to change the broadcast address of the interface.

RETURNS OK or ERROR.

SEE ALSO ifLib

ifDstAddrGet()

NAME ifDstAddrGet() – get the Internet address of a point-to-point peer

SYNOPSIS STATUS ifDstAddrGet

(

char * interfaceName, /* name of interface, i.e. ei0 */

char * dstAddress /* buffer for destination address */

)

DESCRIPTION This routine gets the Internet address of a machine connected to the opposite end of a
point-to-point network connection. The Internet address is copied to the buffer dstAddress.

RETURNS OK or ERROR.

SEE ALSO ifLib, ifDstAddrSet(), ifAddrGet()

2: Routines
ifFlagChange()

663

I

ifDstAddrSet()

NAME ifDstAddrSet() – define an address for the other end of a point-to-point link

SYNOPSIS STATUS ifDstAddrSet

(

char * interfaceName, /* name of interface to configure, i.e. ei0 */

char * dstAddress /* Internet address to assign to destination */

)

DESCRIPTION This routine assigns the Internet address of a machine connected to the opposite end of a
point-to-point network connection, such as a SLIP connection. Inherently, point-to-point
connection-oriented protocols such as SLIP require that addresses for both ends of a
connection be specified.

RETURNS OK or ERROR.

SEE ALSO ifLib, ifAddrSet(), ifDstAddrGet()

ifFlagChange()

NAME ifFlagChange() – change the network interface flags

SYNOPSIS STATUS ifFlagChange

(

char * interfaceName, /* name of the network interface, i.e. ei0 */

int flags, /* the flag to be changed */

BOOL on /* TRUE=turn on, FALSE=turn off */

)

DESCRIPTION This routine changes the flags for the specified network interfaces. If the parameter on is
TRUE, the specified flags are turned on; otherwise, they are turned off. The routines
ifFlagGet() and ifFlagSet() are called to do the actual work.

RETURNS OK or ERROR.

SEE ALSO ifLib, ifAddrSet(), ifMaskSet(), ifFlagSet(), ifFlagGet()

VxWorks OS Libraries API Reference, 5.5
ifFlagGet()

664

ifFlagGet()

NAME ifFlagGet() – get the network interface flags

SYNOPSIS STATUS ifFlagGet

(

char * interfaceName, /* name of the network interface, i.e. ei0 */

int * flags /* network flags returned here */

)

DESCRIPTION This routine gets the flags for a specified network interface. The flags are copied to the
buffer flags.

RETURNS OK or ERROR.

SEE ALSO ifLib, ifFlagSet()

ifFlagSet()

NAME ifFlagSet() – specify the flags for a network interface

SYNOPSIS STATUS ifFlagSet

(

char * interfaceName, /* name of the network interface, i.e. ei0 */

int flags /* network flags */

)

DESCRIPTION This routine changes the flags for a specified network interface. Any combination of the
following flags can be specified:

IFF_UP (0x1)
Brings the network up or down.

IFF_DEBUG (0x4)
Turns on debugging for the driver interface if supported.

IFF_LOOPBACK (0x8)
Set for a loopback network.

IFF_NOTRAILERS (0x20)
Always set (VxWorks does not use the trailer protocol).

2: Routines
ifIndexAlloc()

665

I

IFF_PROMISC (0x100)
Tells the driver to accept all packets, not just broadcast packets and packets
addressed to itself.

IFF_ALLMULTI (0x200)
Tells the driver to accept all multicast packets.

IFF_NOARP (0x80)
Disables ARP for the interface.

NOTE: The following flags can only be set at interface initialization time. Specifying these
flags does not change any settings in the interface data structure.

IFF_POINTOPOINT (0x10)
Identifies a point-to-point interface such as PPP or SLIP.

IFF_RUNNING (0x40)
Set when the device turns on.

IFF_BROADCAST (0x2)
Identifies a broadcast interface.

RETURNS OK or ERROR.

SEE ALSO ifLib, ifFlagChange(), ifFlagGet()

ifIndexAlloc()

NAME ifIndexAlloc() – return a unique interface index

SYNOPSIS int ifIndexAlloc (void)

DESCRIPTION ifIndexAlloc() returns a unique integer to be used as an interface index. The first index
returned is 1. ERROR is returned if the library has not been initialized by a call to
ifIndexLibInit().

RETURNS interface index or ERROR

SEE ALSO ifIndexLib

VxWorks OS Libraries API Reference, 5.5
ifIndexLibInit()

666

ifIndexLibInit()

NAME ifIndexLibInit() – initializes library variables

SYNOPSIS void ifIndexLibInit (void)

DESCRIPTION ifIndexLibInit() resets library internal state. This function must be called before any other
functions in this library.

RETURNS N/A

SEE ALSO ifIndexLib

ifIndexLibShutdown()

NAME ifIndexLibShutdown() – frees library variables

SYNOPSIS void ifIndexLibShutdown (void)

DESCRIPTION ifIndexLibShutdown() frees library internal structures. ifIndexLibInit() must be called
before the library can be used again.

RETURNS N/A

SEE ALSO ifIndexLib

2: Routines
ifIndexToIfName()

667

I

ifIndexTest()

NAME ifIndexTest() – returns true if an index has been allocated.

SYNOPSIS BOOL ifIndexTest

(

int ifIndex /* the index to test */

)

DESCRIPTION ifIndexTest() returns TRUE if index has already been allocated by ifIndexLibAlloc().
Otherwise returns FALSE. If the library has not been initialized returns FALSE. This
function does not check if the index actually belongs to a currently valid interface.

RETURNS TRUE or FALSE

SEE ALSO ifIndexLib

ifIndexToIfName()

NAME ifIndexToIfName() – returns the interface name given the interface index

SYNOPSIS STATUS ifIndexToIfName

(

unsigned short ifIndex, /* Interface index */

char * ifName /* Where the name is to be stored */

)

DESCRIPTION This routine returns the interface name for the interface referenced by the ifIndex
parameter.

ifIndex
The index for the interface.

ifName
The location where the interface name is copied

RETURNS OK on success, ERROR otherwise.

SEE ALSO ifLib

VxWorks OS Libraries API Reference, 5.5
ifMaskGet()

668

ifMaskGet()

NAME ifMaskGet() – get the subnet mask for a network interface

SYNOPSIS STATUS ifMaskGet

(

char * interfaceName, /* name of interface, i.e. ei0 */

int * netMask /* buffer for subnet mask */

)

DESCRIPTION This routine gets the subnet mask for a specified network interface. The subnet mask is
copied to the buffer netMask. The subnet mask is returned in host byte order.

RETURNS OK or ERROR.

SEE ALSO ifLib, ifAddrGet(), ifFlagGet()

ifMaskSet()

NAME ifMaskSet() – define a subnet for a network interface

SYNOPSIS STATUS ifMaskSet

(

char * interfaceName, /* name of interface to set mask for, i.e. ei0 */

int netMask /* subnet mask (e.g. 0xff000000) */

)

DESCRIPTION This routine allocates additional bits to the network portion of an Internet address. The
network portion is specified with a mask that must contain ones in all positions that are to
be interpreted as the network portion. This includes all the bits that are normally
interpreted as the network portion for the given class of address, plus the bits to be added.
Note that all bits must be contiguous. The mask is specified in host byte order.

In order to correctly interpret the address, a subnet mask should be set for an interface
prior to setting the Internet address of the interface with the routine ifAddrSet().

RETURNS OK or ERROR.

SEE ALSO ifLib, ifAddrSet()

2: Routines
ifMetricSet()

669

I

ifMetricGet()

NAME ifMetricGet() – get the metric for a network interface

SYNOPSIS STATUS ifMetricGet

(

char * interfaceName, /* name of the network interface, i.e. ei0 */

int * pMetric /* returned interface’s metric */

)

DESCRIPTION This routine retrieves the metric for a specified network interface. The metric is copied to
the buffer pMetric.

RETURNS OK or ERROR.

SEE ALSO ifLib, ifMetricSet()

ifMetricSet()

NAME ifMetricSet() – specify a network interface hop count

SYNOPSIS STATUS ifMetricSet

(

char * interfaceName, /* name of the network interface, i.e. ei0 */

int metric /* metric for this interface */

)

DESCRIPTION This routine configures metric for a network interface from the host machine to the
destination network. This information is used primarily by the IP routing algorithm to
compute the relative distance for a collection of hosts connected to each interface. For
example, a higher metric for SLIP interfaces can be specified to discourage routing a packet
to slower serial line connections. Note that when metric is zero, the IP routing algorithm
allows for the direct sending of a packet having an IP network address that is not
necessarily the same as the local network address.

RETURNS OK or ERROR.

SEE ALSO ifLib, ifMetricGet()

VxWorks OS Libraries API Reference, 5.5
ifNameToIfIndex()

670

ifNameToIfIndex()

NAME ifNameToIfIndex() – returns the interface index given the interface name

SYNOPSIS unsigned short ifNameToIfIndex

(

char * ifName /* a string describing the full interface */

/* name. e.g., "fei0" */

)

DESCRIPTION This routine returns the interface index for the interface named by the ifName parameter,
which provides a string describing the full interface name. For example, “fei0”.

RETURNS The interface index, if the interface could be located, 0, otherwise. 0 is not a valid value
for interface index.

SEE ALSO ifLib

ifRouteDelete()

NAME ifRouteDelete() – delete routes associated with a network interface

SYNOPSIS int ifRouteDelete

(

char * ifName, /* name of the interface */

int unit /* unit number for this interface */

)

DESCRIPTION This routine deletes all routes that have been associated with the specified interface. A
route is associated with an interface if its destination equals to the assigned address, or
network number. This routine does not remove routes to arbitrary destinations that
through the given interface.

RETURNS The number of routes deleted, or ERROR if an interface is not specified.

SEE ALSO ifLib

2: Routines
ifunit()

671

I

ifShow()

NAME ifShow() – display the attached network interfaces

SYNOPSIS void ifShow

(

char * ifName /* name of the interface to show */

)

DESCRIPTION This routine displays the attached network interfaces for debugging and diagnostic
purposes. If ifName is given, only the interfaces belonging to that group are displayed. If
ifName is omitted, all attached interfaces are displayed.

For each interface selected, the following are shown: Internet address, point-to-point peer
address (if using SLIP), broadcast address, netmask, subnet mask, Ethernet address, route
metric, maximum transfer unit, number of packets sent and received on this interface,
number of input and output errors, and flags (such as loopback, point-to-point, broadcast,
promiscuous, ARP, running, and debug).

EXAMPLE The following call displays all interfaces whose names begin with “ln”, (such as “ln0”,
“ln1”, and “ln2”):

-> ifShow "ln"

The following call displays just the interface “ln0”:

-> ifShow "ln0"

RETURNS N/A

SEE ALSO netShow, routeShow(), ifLib

ifunit()

NAME ifunit() – map an interface name to an interface structure pointer

SYNOPSIS struct ifnet *ifunit

(

char * ifname /* name of the interface */

)

VxWorks OS Libraries API Reference, 5.5
ifUnnumberedSet()

672

DESCRIPTION This routine returns a pointer to a network interface structure for name or NULL if no such
interface exists. For example:

struct ifnet *pIf;

...

pIf = ifunit ("ln0");

pIf points to the data structure that describes the first network interface device if ln0 is
mapped successfully.

RETURNS A pointer to the interface structure, or NULL if an interface is not found.

SEE ALSO ifLib

ifUnnumberedSet()

NAME ifUnnumberedSet() – configure an interface to be unnumbered

SYNOPSIS STATUS ifUnnumberedSet

(

char * pIfName, /* Name of interface to configure */

char * pDstIp, /* Destination address of the point to */

/* point link */

char * pBorrowedIp, /* The borrowed IP address/router ID */

char * pDstMac /* Destination MAC address */

)

DESCRIPTION This API sets an interface unnumbered. It sets the IFF_POINTOPOINT flags and creates a
routing entry through the interface using a user-specified destination IP address. The
unnumbered link can then be uniquely referred to by the destination IP address, pDstIp,
when adding routes. The interface is assigned a “borrowed” IP address--borrowed from
another interface on the machine. In RFC 1812 it is also called the router ID. This address
will be used to generate any needed ICMP messages or the like. Note that ARP is not able
to run on an unnumbered link.

The initialization of the unnumbered device is similar to other network devices, but it
does have a few additional steps and concerns. ifUnnumberedSet() must come next after
ipAttach(). Please note that the interface using the IP address that the unnumbered
interface will borrow must be brought up first and configured with ifAddrSet or
equivalent. This is required to ensure normal network operation for that IP
address/interface. After ifUnnumberedSet(), one must create additional routing entries
(using mRouteAdd(), routeNetAdd(), etc.) in order to reach other networks, including
the network to which the destination IP address belongs.

2: Routines
igmpShowInit()

673

I

The pDstMac field in ifUnnumberedSet() is used to specify the destination’s MAC
address. It should be left NULL if the destination is not an Ethernet device. If the MAC
address is not known, then supply an artificial address. We recommend using
“00:00:00:00:00:01” The destination interface can then be set promiscuous to accept this
artificial address. This is accomplished using the ifpromisc command.

Example:

ipAttach (1, "fei")

ifUnnumberedSet ("fei1", "120.12.12.12", "140.34.78.94", "00:a0:d0:d8:c8:14")

routeNetAdd ("120.12.0.0","120.12.12.12") <One possible network>

routeNetAdd ("178.45.0.0","120.12.12.12") <Another possible network>

RETURNS OK, or ERROR if the interface cannot be set.

SEE ALSO ifLib

igmpShowInit()

NAME igmpShowInit() – initialize IGMP show routines

SYNOPSIS void igmpShowInit (void)

DESCRIPTION This routine links the IGMP show facility into the VxWorks system. These routines are
included automatically if INCLUDE_NET_SHOW and INCLUDE_IGMP are defined.

RETURNS N/A

SEE ALSO igmpShow

VxWorks OS Libraries API Reference, 5.5
igmpstatShow()

674

igmpstatShow()

NAME igmpstatShow() – display statistics for IGMP

SYNOPSIS void igmpstatShow (void)

DESCRIPTION This routine displays statistics for the IGMP (Internet Group Management Protocol)
protocol.

RETURNS N/A

SEE ALSO igmpShow

index()

NAME index() – find the first occurrence of a character in a string

SYNOPSIS char *index

(

const char * s, /* string in which to find character */

int c /* character to find in string */

)

DESCRIPTION This routine finds the first occurrence of character c in string s.

RETURNS A pointer to the located character, or NULL if c is not found.

SEE ALSO bLib, strchr()

2: Routines
inet_aton()

675

I

inet_addr()

NAME inet_addr() – convert a dot notation Internet address to a long integer

SYNOPSIS u_long inet_addr

(

char * inetString /* string inet address */

)

DESCRIPTION This routine interprets an Internet address. All the network library routines call this
routine to interpret entries in the data bases which are expected to be an address. The
value returned is in network order. Numbers will be interpreted as octal if preceded by a
zero (e.g., “017.0.0.3”), as hexadecimal if preceded by 0x (e.g., “0x17.0.0.4”), and as decimal
in all other cases.

EXAMPLE The following example returns 0x5a000002:

inet_addr ("90.0.0.2");

RETURNS The Internet address, or ERROR.

SEE ALSO inetLib

inet_aton()

NAME inet_aton() – convert a network address from dot notation, store in a structure

SYNOPSIS STATUS inet_aton

(

char * pString, /* string containing address, dot notation */

struct in_addr * inetAddress /* struct in which to store address */

)

DESCRIPTION This routine interprets an Internet address. All the network library routines call this
routine to interpret entries in the data bases that are expected to be an address. The value
returned is stored in network byte order in the structure provided.

EXAMPLE The following example returns 0x5a000002 in the s_addr member of the structure pointed
to by pinetAddr:

VxWorks OS Libraries API Reference, 5.5
inet_lnaof()

676

inet_aton ("90.0.0.2", pinetAddr);

RETURNS OK, or ERROR if address is invalid.

SEE ALSO inetLib

inet_lnaof()

NAME inet_lnaof() – get the local address (host number) from the Internet address

SYNOPSIS int inet_lnaof

(

int inetAddress /* inet addr from which to extract local */

/* portion */

)

DESCRIPTION This routine returns the local network address portion of an Internet address. The routine
handles class A, B, and C network number formats.

EXAMPLE The following example returns 2:

inet_lnaof (0x5a000002);

RETURNS The local address portion of inetAddress.

SEE ALSO inetLib

inet_makeaddr()

NAME inet_makeaddr() – form an Internet address from network and host numbers

SYNOPSIS struct in_addr inet_makeaddr

(

int netAddr, /* network part of the address */

int hostAddr /* host part of the address */

)

2: Routines
inet_makeaddr_b()

677

I

DESCRIPTION This routine constructs the Internet address from the network number and local host
address.

WARNING: This routine is supplied for UNIX compatibility only. Each time this routine is
called, four bytes are allocated from memory. Use inet_makeaddr_b() instead.

EXAMPLE The following example returns the address 0x5a000002 to the structure in_addr:

inet_makeaddr (0x5a, 2);

RETURNS The network address in an in_addr structure.

SEE ALSO inetLib, inet_makeaddr_b()

inet_makeaddr_b()

NAME inet_makeaddr_b() – form an Internet address from network and host numbers

SYNOPSIS void inet_makeaddr_b

(

int netAddr, /* network part of the inet address */

int hostAddr, /* host part of the inet address */

struct in_addr * pInetAddr /* where to return the inet address */

)

DESCRIPTION This routine constructs the Internet address from the network number and local host
address. This routine is identical to the UNIX inet_makeaddr() routine except that you
must provide a buffer for the resulting value.

EXAMPLE The following copies the address 0x5a000002 to the location pointed to by pInetAddr:

inet_makeaddr_b (0x5a, 2, pInetAddr);

RETURNS N/A

SEE ALSO inetLib

VxWorks OS Libraries API Reference, 5.5
inet_netof()

678

inet_netof()

NAME inet_netof() – return the network number from an Internet address

SYNOPSIS int inet_netof

(

struct in_addr inetAddress /* inet address */

)

DESCRIPTION This routine extracts the network portion of an Internet address.

EXAMPLE The following example returns 0x5a:

inet_netof (0x5a000002);

RETURNS The network portion of inetAddress.

SEE ALSO inetLib

inet_netof_string()

NAME inet_netof_string() – extract the network address in dot notation

SYNOPSIS void inet_netof_string

(

char * inetString, /* inet addr to extract local portion from */

char * netString /* net inet address to return */

)

DESCRIPTION This routine extracts the network Internet address from a host Internet address (specified
in dotted decimal notation). The routine handles class A, B, and C network addresses. The
buffer netString should be INET_ADDR_LEN bytes long.

NOTE: This is the only routine in inetLib that handles subnet masks correctly.

EXAMPLE The following example copies “90.0.0.0” to netString:

inet_netof_string ("90.0.0.2", netString);

RETURNS N/A

SEE ALSO inetLib

2: Routines
inet_ntoa()

679

I

inet_network()

NAME inet_network() – convert an Internet network number from string to address

SYNOPSIS u_long inet_network

(

char * inetString /* string version of inet addr */

)

DESCRIPTION This routine forms a network address from an ASCII string containing an Internet
network number.

EXAMPLE The following example returns 0x5a:

inet_network ("90");

RETURNS The Internet address for an ASCII string, or ERROR if invalid.

SEE ALSO inetLib

inet_ntoa()

NAME inet_ntoa() – convert a network address to dotted decimal notation

SYNOPSIS char *inet_ntoa

(

struct in_addr inetAddress /* inet address */

)

DESCRIPTION This routine converts an Internet address in network format to dotted decimal notation.

WARNING: This routine is supplied for UNIX compatibility only. Each time this routine is
called, 18 bytes are allocated from memory. Use inet_ntoa_b() instead.

EXAMPLE The following example returns a pointer to the string “90.0.0.2”:

struct in_addr iaddr;

...

iaddr.s_addr = 0x5a000002;

...

inet_ntoa (iaddr);

VxWorks OS Libraries API Reference, 5.5
inet_ntoa_b()

680

RETURNS A pointer to the string version of an Internet address.

SEE ALSO inetLib, inet_ntoa_b()

inet_ntoa_b()

NAME inet_ntoa_b() – convert an network address to dot notation, store it in a buffer

SYNOPSIS void inet_ntoa_b

(

struct in_addr inetAddress, /* inet address */

char * pString /* where to return ASCII string */

)

DESCRIPTION This routine converts an Internet address in network format to dotted decimal notation.

This routine is identical to the UNIX inet_ntoa() routine except that you must provide a
buffer of size INET_ADDR_LEN.

EXAMPLE The following example copies the string “90.0.0.2” to pString:

struct in_addr iaddr;

...

iaddr.s_addr = 0x5a000002;

...

inet_ntoa_b (iaddr, pString);

RETURNS N/A

SEE ALSO inetLib

2: Routines
infinity()

681

I

inetstatShow()

NAME inetstatShow() – display all active connections for Internet protocol sockets

SYNOPSIS void inetstatShow (void)

DESCRIPTION This routine displays a list of all active Internet protocol sockets in a format similar to the
UNIX netstat command.

If you want inetstatShow() to display TCP socket status, then INCLUDE_TCP_SHOW
needs to be included.

RETURNS N/A

SEE ALSO netShow

infinity()

NAME infinity() – return a very large double

SYNOPSIS double infinity (void)

DESCRIPTION This routine returns a very large double.

INCLUDE FILES math.h

RETURNS The double-precision representation of positive infinity.

SEE ALSO mathALib

VxWorks OS Libraries API Reference, 5.5
infinityf()

682

infinityf()

NAME infinityf() – return a very large float

SYNOPSIS float infinityf (void)

DESCRIPTION This routine returns a very large float.

INCLUDE FILES math.h

RETURNS The single-precision representation of positive infinity.

SEE ALSO mathALib

inflate()

NAME inflate() – inflate compressed code

SYNOPSIS int inflate

(

Byte * src,

Byte * dest,

int nBytes

)

DESCRIPTION This routine inflates nBytes of data starting at address src. The inflated code is copied
starting at address dest. Two sanity checks are performed on the data being
decompressed. First, we look for a magic number at the start of the data to verify that it is
really a compressed stream. Second, the entire data is optionally check-summed to verify
its integrity. By default, the checksum is not verified in order to speed up the booting
process. To turn on checksum verification, set the global variable inflateCksum to TRUE
in the BSP.

RETURNS OK or ERROR.

SEE ALSO inflateLib

2: Routines
intConnect()

683

I

intConnect()

NAME intConnect() – connect a C routine to a hardware interrupt

SYNOPSIS STATUS intConnect

(

VOIDFUNCPTR * vector, /* interrupt vector to attach to */

VOIDFUNCPTR routine, /* routine to be called */

int parameter /* parameter to be passed to routine */

)

DESCRIPTION This routine connects a specified C routine to a specified interrupt vector. The address of
routine is generally stored at vector so that routine is called with parameter when the
interrupt occurs. The routine is invoked in supervisor mode at interrupt level. A proper C
environment is established, the necessary registers saved, and the stack set up.

The routine can be any normal C code, except that it must not invoke certain operating
system functions that may block or perform I/O operations.

This routine generally simply calls intHandlerCreate() and intVecSet(). The address of
the handler returned by intHandlerCreate() is what actually goes in the interrupt vector.

This routine takes an interrupt vector as a parameter, which is the byte offset into the
vector table. Macros are provided to convert between interrupt vectors and interrupt
numbers, see intArchLib.

NOTE ARM ARM processors generally do not have on-chip interrupt controllers. Control of interrupts
is a BSP-specific matter. This routine calls a BSP-specific routine to install the handler such
that, when the interrupt occurs, routine is called with parameter.

NOTE X86 Refer to the special x86 routine intHandlerCreateI86().

NOTE SH The on-chip interrupt controller (INTC) design of SH architecture depends on the
processor type, but there are some similarities. The number of external interrupt inputs
are limited, so it may necessary to multiplex some interrupt requests. However most of
them are auto-vectored, thus have only one vector to an external interrupt input. As a
framework to handle this type of multiplexed interrupt, you can use your original
intConnect() code by hooking it to _func_intConnectHook pointer. If
_func_intConnectHook is set, the SH version of intConnect() simply calls the hooked
routine with same arguments, then returns the status of hooked routine. A sysLib sample
is shown below:

#include "intLib.h"

#include "iv.h" /* INUM_INTR_HIGH for SH7750/SH7700 */

#define SYS_INT_TBL_SIZE (255 - INUM_INTR_HIGH)

typedef struct

VxWorks OS Libraries API Reference, 5.5
intConnect()

684

{

VOIDFUNCPTR routine; /* routine to be called */

int parameter; /* parameter to be passed */

} SYS_INT_TBL;

LOCAL SYS_INT_TBL sysIntTbl [SYS_INT_TBL_SIZE]; /* local vector table */

LOCAL int sysInumVirtBase = INUM_INTR_HIGH + 1;

STATUS sysIntConnect

(

VOIDFUNCPTR *vec, /* interrupt vector to attach to */

VOIDFUNCPTR routine, /* routine to be called */

int param /* parameter to be passed to routine */

)

{

FUNCPTR intDrvRtn;

if (vec >= INUM_TO_IVEC (0) && vec < INUM_TO_IVEC (sysInumVirtBase))

{

/* do regular intConnect() process */

intDrvRtn = intHandlerCreate ((FUNCPTR) routine, param);

if (intDrvRtn == NULL)

return ERROR;

/* make vector point to synthesized code */

intVecSet ((FUNCPTR *) vec, (FUNCPTR) intDrvRtn);

}

else

{

int index = IVEC_TO_INUM (vec) - sysInumVirtBase;

if (index < 0 || index >= SYS_INT_TBL_SIZE)

return ERROR;

sysIntTbl [index].routine = routine;

sysIntTbl [index].parameter = param;

}

return OK;

}

void sysHwInit (void)

{

...

_func_intConnectHook = (FUNCPTR) sysIntConnect;

}

LOCAL void sysVmeIntr (void)

2: Routines
intConnect()

685

I

{

volatile UINT32 vec = *VME_VEC_REGISTER; /* get VME interrupt vector */

int i = vec - sysInumVirtBase;

if (i >= 0 && i < SYS_INT_TBL_SIZE && sysIntTbl[i].routine != NULL)

(*sysIntTbl[i].routine)(sysIntTbl[i].parameter);

else

logMsg ("uninitialized VME interrupt: vec = %d\n", vec,0,0,0,0,0);

}

void sysHwInit2 (void)

{

int i;

...

/* initialize VME interrupts dispatch table */

for (i = 0; i < SYS_INT_TBL_SIZE; i++)

{

sysIntTbl[i].routine = (VOIDFUNCPTR) NULL;

sysIntTbl[i].parameter = NULL;

}

/* connect generic VME interrupts handler */

intConnect (INT_VEC_VME, sysVmeIntr, NULL);

...

}

The used vector numbers of SH processors are limited to certain ranges, depending on the
processor type. The sysInumVirtBase should be initialized to a value higher than the last
used vector number, defined as INUM_INTR_HIGH. It is typically safe to set
sysInumVirtBase to (INUM_INTR_HIGH + 1).

The sysIntConnect() routine simply acts as the regular intConnect() if vector is smaller
than INUM_TO_IVEC (sysInumVirtBase), so sysHwInit2() connects a common VME
interrupt dispatcher sysVmeIntr to the multiplexed interrupt vector. If vector is equal to or
greater than INUM_TO_IVEC (sysInumVirtBase), the sysIntConnect() fills a local vector
entry in sysIntTbl[] with an individual VME interrupt handler, in a coordinated manner
with sysVmeIntr.

RETURNS OK, or ERROR if the interrupt handler cannot be built.

SEE ALSO intArchLib, intHandlerCreate(), intVecSet()

VxWorks OS Libraries API Reference, 5.5
intContext()

686

intContext()

NAME intContext() – determine if the current state is in interrupt or task context

SYNOPSIS BOOL intContext (void)

DESCRIPTION This routine returns TRUE only if the current execution state is in interrupt context and
not in a meaningful task context.

RETURNS TRUE or FALSE.

SEE ALSO intLib

intCount()

NAME intCount() – get the current interrupt nesting depth

SYNOPSIS int intCount (void)

DESCRIPTION This routine returns the number of interrupts that are currently nested.

RETURNS The number of nested interrupts.

SEE ALSO intLib

intCRGet()

NAME intCRGet() – read the contents of the cause register (MIPS)

SYNOPSIS int intCRGet (void)

DESCRIPTION This routine reads and returns the contents of the MIPS cause register.

RETURNS The contents of the cause register.

SEE ALSO intArchLib

2: Routines
intDisable()

687

I

intCRSet()

NAME intCRSet() – write the contents of the cause register (MIPS)

SYNOPSIS void intCRSet

(

int value /* value to write to cause register */

)

DESCRIPTION This routine writes the contents of the MIPS cause register.

RETURNS N/A

SEE ALSO intArchLib

intDisable()

NAME intDisable() – disable corresponding interrupt bits (MIPS, PowerPC, ARM)

SYNOPSIS int intDisable

(

int level /* new interrupt bits (0x0 - 0xff00) */

)

DESCRIPTION On MIPS and PowerPC architectures, this routine disables the corresponding interrupt
bits from the present status register.

NOTE: ARM processors generally do not have on-chip interrupt controllers. Control of
interrupts is a BSP-specific matter. This routine calls a BSP-specific routine to disable a
particular interrupt level, regardless of the current interrupt mask level.

NOTE: For MIPS, the macros SR_IBIT1 - SR_IBIT8 define bits that may be set.

RETURNS OK or ERROR. (MIPS: The previous contents of the status register).

SEE ALSO intArchLib

VxWorks OS Libraries API Reference, 5.5
intEnable()

688

intEnable()

NAME intEnable() – enable corresponding interrupt bits (MIPS, PowerPC, ARM)

SYNOPSIS int intEnable

(

int level /* new interrupt bits (0x00 - 0xff00) */

)

DESCRIPTION This routine enables the input interrupt bits on the present status register of the MIPS and
PowerPC processors.

NOTE: ARM processors generally do not have on-chip interrupt controllers. Control of
interrupts is a BSP-specific matter. This routine calls a BSP-specific routine to enable the
interrupt. For each interrupt level to be used, there must be a call to this routine before it
will be allowed to interrupt.

NOTE: For MIPS, it is strongly advised that the level be a combination of SR_IBIT1 -
SR_IBIT8.

RETURNS OK or ERROR. (MIPS: The previous contents of the status register).

SEE ALSO intArchLib

intHandlerCreate()

NAME intHandlerCreate() – construct an interrupt handler for a C routine (68K, x86, MIPS,
SimSolaris)

SYNOPSIS FUNCPTR intHandlerCreate

(

FUNCPTR routine, /* routine to be called */

int parameter /* parameter to be passed to routine */

)

DESCRIPTION This routine builds an interrupt handler around the specified C routine. This interrupt
handler is then suitable for connecting to a specific vector address with intVecSet(). The
interrupt handler is invoked in supervisor mode at interrupt level. A proper C
environment is established, the necessary registers saved, and the stack set up.

2: Routines
intHandlerCreateI86()

689

I

The routine can be any normal C code, except that it must not invoke certain operating
system functions that may block or perform I/O operations.

RETURNS A pointer to the new interrupt handler, or NULL if memory is insufficient.

SEE ALSO intArchLib

intHandlerCreateI86()

NAME intHandlerCreateI86() – construct an interrupt handler for a C routine (x86)

SYNOPSIS FUNCPTR intHandlerCreateI86

(

FUNCPTR routine, /* routine to be called */

int parameter, /* parameter to be passed to routine */

FUNCPTR routineBoi, /* BOI routine to be called */

int parameterBoi, /* parameter to be passed to routineBoi */

FUNCPTR routineEoi, /* EOI routine to be called */

int parameterEoi /* parameter to be passed to routineEoi */

)

DESCRIPTION This routine builds an interrupt handler around a specified C routine. This interrupt
handler is then suitable for connecting to a specific vector address with intVecSet(). The
interrupt handler is invoked in supervisor mode at interrupt level. A proper C
environment is established, the necessary registers saved, and the stack set up.

The routine can be any normal C code, except that it must not invoke certain operating
system functions that may block or perform I/O operations.

IMPLEMENTATION This routine builds an interrupt handler of the following form in allocated memory:

00 e8 kk kk kk kk call _intEnt * tell kernel

05 50 pushl %eax * save regs

06 52 pushl %edx

07 51 pushl %ecx

08 68 pp pp pp pp pushl $_parameterBoi * push BOI param

13 e8 rr rr rr rr call _routineBoi * call BOI routine

18 68 pp pp pp pp pushl $_parameter * push param

23 e8 rr rr rr rr call _routine * call C routine

28 68 pp pp pp pp pushl $_parameterEoi * push EOI param

33 e8 rr rr rr rr call _routineEoi * call EOI routine

38 83 c4 0c addl $12, %esp * pop param

41 59 popl %ecx * restore regs

VxWorks OS Libraries API Reference, 5.5
intLevelSet()

690

42 5a popl %edx

43 58 popl %eax

44 e9 kk kk kk kk jmp _intExit * exit via kernel

Third and fourth parameter of intHandlerCreateI86() are the BOI routine address and its
parameter that are inserted into the code as “routineBoi” and “parameterBoi”. Fifth and
sixth parameter of intHandlerCreateI86() are the EOI routine address and its parameter
that are inserted into the code as “routineEoi” and "parameterEoi". The BOI routine
detects if this interrupt is stray/spurious/phantom by interrogating the interrupt
controller, and returns from the interrupt if it is. The EOI routine issues End Of Interrupt
signal to the interrupt controller, if it is required by the controller. Each interrupt
controller has its own BOI and EOI routine. They are located in the BSP, and their address
and parameter are taken by the intEoiGet function pointer (set to sysIntEoiGet() in the
BSP). The Tornado 2, and later, BSPs should use the BOI and EOI mechanism with
intEoiGet function pointer.

To keep the Tornado 1.0.1 BSP backward compatible, the function pointer intEOI is not
removed. If intEoiGet is NULL, it should be set to the sysIntEoiGet() routine in the BSP,
intHandlerCreate() and the intEOI function pointer (set to sysIntEOI() in the Tornado
101 BSP) is used.

RETURNS A pointer to the new interrupt handler, or NULL if memory is insufficient.

SEE ALSO intArchLib

intLevelSet()

NAME intLevelSet() – set the interrupt level (68K, x86, ARM, SimSolaris, SimNT and SH)

SYNOPSIS int intLevelSet

(

int level /* new interrupt level mask */

)

DESCRIPTION This routine changes the interrupt mask in the status register to take on the value
specified by level. Interrupts are locked out at or below that level. The value of level must
be in the following range:

MC680x0: 0 - 7
SH: 0 - 15
ARM: BSP-specific
SimSolaris: 0 - 1
x86: interrupt controller specific

2: Routines
intLock()

691

I

On x86 systems, there are no interrupt level in the processor and the external interrupt
controller manages the interrupt level. Therefore this routine does nothing and returns OK
always.

NOTE: With the NT simulator, this routine does nothing.

WARNING: Do not call VxWorks system routines with interrupts locked. Violating this
rule may re-enable interrupts unpredictably.

RETURNS The previous interrupt level.

SEE ALSO intArchLib

intLock()

NAME intLock() – lock out interrupts

SYNOPSIS int intLock (void)

DESCRIPTION This routine disables interrupts. The intLock() routine returns an architecture-dependent
lock-out key representing the interrupt level prior to the call; this key can be passed to
intUnlock() to re-enable interrupts.

For MC680x0, x86, and SH architectures, interrupts are disabled at the level set by
intLockLevelSet(). The default lock-out level is the highest interrupt level (MC680x0 = 7,
x86 = 1, SH = 15).

For SimSolaris architecture, interrupts are masked. Lock-out level returned is 1 if
interrupts were already locked, 0 otherwise.

For SimNT, a windows semaphore is used to lock the interrupts. Lock-out level returned
is 1 if interrupts were already locked, 0 otherwise.

For MIPS processors, interrupts are disabled at the master lock-out level; this means no
interrupt can occur even if unmasked in the IntMask bits (15-8) of the status register.

For ARM processors, interrupts (IRQs) are disabled by setting the I bit in the CPSR. This
means no IRQs can occur.

For PowerPC processors, there is only one interrupt vector. The external interrupt (vector
offset 0x500) is disabled when intLock() is called; this means that the processor cannot be
interrupted by any external event.

IMPLEMENTATION The lock-out key is implemented differently for different architectures:

VxWorks OS Libraries API Reference, 5.5
intLock()

692

WARNING: Do not call VxWorks system routines with interrupts locked. Violating this
rule may re-enable interrupts unpredictably.

The routine intLock() can be called from either interrupt or task level. When called from a
task context, the interrupt lock level is part of the task context. Locking out interrupts does
not prevent rescheduling. Thus, if a task locks out interrupts and invokes kernel services
that cause the task to block (e.g., taskSuspend() or taskDelay()) or that cause a higher
priority task to be ready (e.g., semGive() or taskResume()), then rescheduling occurs and
interrupts are unlocked while other tasks run. Rescheduling may be explicitly disabled
with taskLock(). Traps must be enabled when calling this routine.

EXAMPLES lockKey = intLock ();

... (work with interrupts locked out)

intUnlock (lockKey);

To lock out interrupts and task scheduling as well (see WARNING above):

if (taskLock() == OK)

{

lockKey = intLock ();

... (critical section)

intUnlock (lockKey);

taskUnlock();

}

else

{

... (error message or recovery attempt)

}

RETURNS An architecture-dependent lock-out key for the interrupt level prior to the call.

SEE ALSO intArchLib, intUnlock(), taskLock(), intLockLevelSet()

MC680x0: interrupt field mask
MIPS: status register
x86: interrupt enable flag (IF) bit from EFLAGS register
PowerPC: MSR register value
RM I bit from the CPSR
H: status register
SimSolaris: 1 or 0
IMNT: 1 or 0

2: Routines
intLockLevelSet()

693

I

intLockLevelGet()

NAME intLockLevelGet() – get the current interrupt lock-out level (68K, x86, ARM, SH,
SimSolaris, SimNT)

SYNOPSIS int intLockLevelGet (void)

DESCRIPTION This routine returns the current interrupt lock-out level, which is set by
intLockLevelSet() and stored in the globally accessible variable intLockMask. This is the
interrupt level currently masked when interrupts are locked out by intLock(). The default
lock-out level (MC680x0 = 7, x86 = 1, SH = 15) is initially set by kernelInit() when
VxWorks is initialized.

NOTE: With the NT simulator, this routine does nothing.

RETURNS The interrupt level currently stored in the interrupt lock-out mask. (ARM = ERROR
always)

SEE ALSO intArchLib, intLockLevelSet()

intLockLevelSet()

NAME intLockLevelSet() – set the current interrupt lock-out level (68K, x86, ARM, SH, SimSolaris,
SimNT)

SYNOPSIS void intLockLevelSet

(

int newLevel /* new interrupt level */

)

DESCRIPTION This routine sets the current interrupt lock-out level and stores it in the globally accessible
variable intLockMask. The specified interrupt level is masked when interrupts are locked
by intLock(). The default lock-out level (MC680x0 = 7, x86 = 1, SH = 15) is initially set by
kernelInit() when VxWorks is initialized.

NOTE: With SimSolaris and SimNT, this routine does nothing.

NOTE: On the ARM, this call establishes the interrupt level to be set when intLock() is
called.

VxWorks OS Libraries API Reference, 5.5
intSRGet()

694

RETURNS N/A

SEE ALSO intArchLib, intLockLevelGet(), intLock(), taskLock()

intSRGet()

NAME intSRGet() – read the contents of the status register (MIPS)

SYNOPSIS int intSRGet (void)

DESCRIPTION This routine reads and returns the contents of the MIPS status register.

RETURNS The previous contents of the status register.

SEE ALSO intArchLib

intSRSet()

NAME intSRSet() – update the contents of the status register (MIPS)

SYNOPSIS int intSRSet

(

int value /* value to write to status register */

)

DESCRIPTION This routine updates and returns the previous contents of the MIPS status register.

RETURNS The previous contents of the status register.

SEE ALSO intArchLib

2: Routines
intUninitVecSet()

695

I

intStackEnable()

NAME intStackEnable() – enable or disable the interrupt stack usage (x86)

SYNOPSIS STATUS intStackEnable

(

BOOL enable /* TRUE to enable, FALSE to disable */

)

DESCRIPTION This routine enables or disables the interrupt stack usage and is only callable from the task
level. An Error is returned for any other calling context. The interrupt stack usage is
disabled in the default configuration for the backward compatibility. Routines that
manipulate the interrupt stack, are located in the file i86/windALib.s. These routines
include intStackEnable(), intEnt() and intExit().

RETURNS OK, or ERROR if it is not in the task level.

SEE ALSO intArchLib

intUninitVecSet()

NAME intUninitVecSet() – set the uninitialized vector handler (ARM)

SYNOPSIS void intUninitVecSet

(

VOIDFUNCPTR routine /* ptr to user routine */

)

DESCRIPTION This routine installs a handler for the uninitialized vectors to be called when any
uninitialized vector is entered.

RETURNS N/A.

SEE ALSO intArchLib

VxWorks OS Libraries API Reference, 5.5
intUnlock()

696

intUnlock()

NAME intUnlock() – cancel interrupt locks

SYNOPSIS void intUnlock

(

int lockKey /* lock-out key returned by preceding intLock() */

)

DESCRIPTION This routine re-enables interrupts that have been disabled by intLock(). The parameter
lockKey is an architecture-dependent lock-out key returned by a preceding intLock() call.

RETURNS N/A

SEE ALSO intArchLib, intLock()

intVecBaseGet()

NAME intVecBaseGet() – get the vector (trap) base address (68K, x86, MIPS, ARM, SimSolaris,
SimNT)

SYNOPSIS FUNCPTR *intVecBaseGet (void)

DESCRIPTION This routine returns the current vector base address, which is set with intVecBaseSet().

RETURNS The current vector base address (MIPS = 0 always, ARM = 0 always, SimSolaris = 0 always
and SimNT = 0 always).

SEE ALSO intArchLib, intVecBaseSet()

2: Routines
intVecBaseSet()

697

I

intVecBaseSet()

NAME intVecBaseSet() – set the vector (trap) base address (68K, x86, MIPS, ARM, SimSolaris,
SimNT)

SYNOPSIS void intVecBaseSet

(

FUNCPTR * baseAddr /* new vector (trap) base address */

)

DESCRIPTION This routine sets the vector (trap) base address. The CPU’s vector base register is set to the
specified value, and subsequent calls to intVecGet() or intVecSet() will use this base
address. The vector base address is initially 0, until modified by calls to this routine.

NOTE 68000 The 68000 has no vector base register; thus, this routine is a no-op for 68000 systems.

NOTE MIPS The MIPS processors have no vector base register; thus this routine is a no-op for this
architecture.

NOTE SH77XX This routine sets baseAddr to vbr, then loads an interrupt dispatch code to (vbr + 0x600).
When SH77XX processor accepts an interrupt request, it sets an exception code to INTEVT
register and jumps to (vbr + 0x600). Thus this dispatch code is commonly used for all
interrupts’ handling.

The exception codes are 12bits width, and interleaved by 0x20. VxWorks for SH77XX
locates a vector table at (vbr + 0x800), and defines the vector offsets as (exception codes /
8). This vector table is commonly used by all interrupts, exceptions, and software traps.

All SH77XX processors have INTEVT register at address 0xffffffd8. The SH7707 processor
has yet another INTEVT2 register at address 0x04000000, to identify its enhanced
interrupt sources. The dispatch code obtains the address of INTEVT register from a global
constant intEvtAdrs. The constant is defined in sysLib, thus the selection of
INTEVT/INTEVT2 is configurable at BSP level. The intEvtAdrs is loaded to (vbr + 4) by
intVecBaseSet().

After fetching the exception code, the interrupt dispatch code applies a new interrupt
mask to the status register, and jumps to an individual interrupt handler. The new
interrupt mask is taken from intPrioTable[], which is defined in sysALib. The
intPrioTable[] is loaded to (vbr + 0xc00) by intVecBaseSet().

NOTE ARM The ARM processors have no vector base register; thus this routine is a no-op for this
architecture.

NOTE SIMSOLARIS, SIMNT

This routine does nothing.

VxWorks OS Libraries API Reference, 5.5
intVecGet()

698

RETURNS N/A

SEE ALSO intArchLib, intVecBaseGet(), intVecGet(), intVecSet()

intVecGet()

NAME intVecGet() – get an interrupt vector (68K, x86, MIPS, SH, SimSolaris, SimNT)

SYNOPSIS FUNCPTR intVecGet

(

FUNCPTR * vector /* vector offset */

)

DESCRIPTION This routine returns a pointer to the exception/interrupt handler attached to a specified
vector. The vector is specified as an offset into the CPU’s vector table. This vector table
starts, by default, at:

However, the vector table may be set to start at any address with intVecBaseSet() (on
CPUs for which it is available).

This routine takes an interrupt vector as a parameter, which is the byte offset into the
vector table. Macros are provided to convert between interrupt vectors and interrupt
numbers, see intArchLib.

NOTE SIMNT This routine does nothing and always returns 0.

RETURNS A pointer to the exception/interrupt handler attached to the specified vector.

SEE ALSO intArchLib, intVecSet(), intVecBaseSet()

C680x0: 0
MIPS: excBsrTbl in excArchLib
86: 0
SH702x/SH703x/SH704x/SH76xx: excBsrTbl in excArchLib
SH77xx: vbr + 0x800
SimSolaris: 0

2: Routines
intVecSet()

699

I

intVecGet2()

NAME intVecGet2() – get a CPU vector, gate type(int/trap), and gate selector (x86)

SYNOPSIS void intVecGet2

(

FUNCPTR * vector, /* vector offset */

FUNCPTR * pFunction, /* address to place in vector */

int * pIdtGate, /* IDT_TRAP_GATE or IDT_INT_GATE */

int * pIdtSelector /* sysCsExc or sysCsInt */

)

DESCRIPTION This routine gets a pointer to the exception/interrupt handler attached to a specified
vector, the type of the gate, the selector of the gate. The vector is specified as an offset
into the CPU’s vector table. This vector table starts, by default, at address 0. However,
the vector table may be set to start at any address with intVecBaseSet().

RETURNS N/A

SEE ALSO intArchLib, intVecBaseSet(), intVecGet(), intVecSet(), intVecSet2()

intVecSet()

NAME intVecSet() – set a CPU vector (trap) (68K, x86, MIPS, SH, SimSolaris, SimNT)

SYNOPSIS void intVecSet

(

FUNCPTR * vector, /* vector offset */

FUNCPTR function /* address to place in vector */

)

DESCRIPTION This routine attaches an exception/interrupt/trap handler to a vector. The vector is
specified as an offset into the CPU’s vector table. By default the vector table starts at:

MC680x0: 0
MIPS: excBsrTbl in excArchLib
x86: 0
SH702x/SH703x/SH704x/SH76xx: excBsrTbl in excArchLib
SH77xx: vbr + 0x800
SimSolaris: 0

VxWorks OS Libraries API Reference, 5.5
intVecSet()

700

However, the vector table may be set to start at any address with intVecBaseSet() (on
CPUs for which it is available). The vector table is set up in usrInit().

This routine takes an interrupt vector as a parameter, which is the byte offset into the
vector table. Macros are provided to convert between interrupt vectors and interrupt
numbers, see intArchLib.

NOTE MIPS On MIPS CPUs the vector table is set up statically in software.

NOTE SH77XX The specified interrupt handler function has to coordinate with an interrupt stack frame
which is specially designed for the SH77XX version of VxWorks:

This interrupt stack frame is formed by a common interrupt dispatch code which is
loaded at (vbr + 0x600). You usually do not have to pay any attention to this stack frame,
since intConnect() automatically appends an appropriate stack manipulation code to
your interrupt service routine. The intConnect() assumes that your interrupt service
routine (ISR) is written in C, thus it also wraps your ISR in minimal register save/restore
codes. However if you need a very fast response time to a particular interrupt request,
you might want to skip this register save/restore sequence by directly attaching your ISR
to the corresponding vector table entry using intVecSet(). Note that this technique is only
applicable to an interrupt service with NO VxWorks system call. For example it is not
allowed to use semGive() or logMsg() in the interrupt service routine which is directly
attached to vector table by intVecSet(). To facilitate the direct usage of intVecSet() by
user, a special entry point to exit an interrupt context is provided within the SH77XX
version of VxWorks kernel. This entry point is located at address (vbr + intRte1W), here
the intRte1W is a global symbol for the vbr offset of the entry point in 16 bit length. This
entry point intRte1 assumes that the current register bank is 0 (SR.RB == 0), and r1 and r0
are still saved on the interrupt stack, and it also requires 0x70000000 in r0. Then intRte1
properly cleans up the interrupt stack and executes rte instruction to return to the
previous interrupt or task context. The following code is an example of intRte1usage.

Task Stack Interupt Stack

Address

High

Low

. . .

0

-4

-8

Task’s sp

INTEVT

ssr

spc

INTEVT

ssr

spc

ISR sp (first interrupt)

ISR sp (nested interrupt)

0

-4

-8

-12

2: Routines
intVecSet()

701

I

Here the corresponding intPrioTable[] entry is assumed to be 0x400000X0, namely MD=1,
RB=0, BL=0 at the beginning of usrIsr1.

.text

.align 2

.global _usrIsr1

.type _usrIsr1,@function

.extern _usrRtn

.extern intRte1W

/* intPrioTable[] sets SR to 0x400000X0 */

_usrIsr1:

mov.l r0,@-sp /* must save r0 first (BANK0) */

mov.l r1,@-sp /* must save r1 second (BANK0) */

mov.l r2,@-sp /* save rest of volatile registers (BANK0) */

mov.l r3,@-sp

mov.l r4,@-sp

mov.l r5,@-sp

mov.l r6,@-sp

mov.l r7,@-sp

sts.l pr,@-sp

sts.l mach,@-sp

sts.l macl,@-sp

mov.l UsrRtn,r0

jsr @r0 /* call user’s C routine */

nop /* (delay slot) */

lds.l @sp+,macl /* restore volatile registers (BANK0) */

lds.l @sp+,mach

lds.l @sp+,pr

mov.l @sp+,r7

mov.l @sp+,r6

mov.l @sp+,r5

mov.l @sp+,r4

mov.l @sp+,r3

mov.l @sp+,r2

/* intRte1 restores r1 and r0 */

mov.l IntRte1W,r1

mov.w @r1,r0

stc vbr,r1

add r0,r1

mov.l IntRteSR,r0 /* r0: 0x70000000 */

jmp @r1 /* let intRte1 clean up stack, then rte */

nop /* (delay slot) */

.align 2

UsrRtn: .long _usrRtn /* user’s C routine */

IntRteSR: .long 0x70000000 /* MD=1, RB=1, BL=1 */

IntRte1W: .long intRte1W

VxWorks OS Libraries API Reference, 5.5
intVecSet()

702

The intRte1 sets r0 to status register (SR: 0x70000000), to safely restore SPC/SSR and to
clean up the interrupt stack. Note that TLB mis-hit exception immediately reboots CPU
while SR.BL=1. To avoid this fatal condition, VxWorks loads the intRte1 code and the
interrupt stack to a physical address space (P1) where no TLB mis-hit happens.

Furthermore, there is another special entry point called intRte2 at an address (vbr +
intRte2W). The intRte2 assumes that SR is already set to 0x70000000 (MD: 1, RB: 1, BL: 1),
then it does not restore r1 and r0. While SR value is 0x70000000, you may use r0,r1,r2,r3 in
BANK1 as volatile registers. The rest of BANK1 registers (r4,r5,r6,r7) are non-volatile, so if
you need to use them then you have to preserve their original values by saving/restoring
them on the interrupt stack. So, if you need the ultimate interrupt response time, you may
set the corresponding intPrioTable[] entry to NULL and manage your interrupt service
only with r0,r1,r2,r3 in BANK1 as shown in the next sample code:

.text

.global _usrIsr2

.type _usrIsr2,@function

.extern _usrIntCnt /* interrupt counter */

.extern intRte2W

.align 2

/* MD=1, RB=1, BL=1, since SR is not */

/* substituted from intPrioTable[]. */

_usrIsr2:

mov.l UsrIntAck,r1

mov #0x1,r0

mov.b r0,@r1 /* acknowledge interrupt */

mov.l UsrIntCnt,r1

mov.l X1FFFFFFF,r2

mov.l X80000000,r3

and r2,r1

or r3,r1 /* r1: _usrIntCnt address in P1 */

mov.l @r1,r0

add #1,r0

mov.l r0,@r1 /* increment counter */

mov.l IntRte2W,r1

and r2,r1

or r3,r1 /* r1: intRte2W address in P1 */

mov.w @r1,r0

stc vbr,r1

add r1,r0

jmp @r0 /* let intRte2 clean up stack, then rte */

nop /* (delay slot) */

.align 2

UsrIntAck: .long 0xa0001234 /* interrupt acknowledge register */

UsrIntCnt: .long _usrIntCnt

IntRte2W: .long intRte2W

X1FFFFFFF: .long 0x1fffffff

2: Routines
intVecSet2()

703

I

X80000000: .long 0x80000000

Note that the entire interrupt service is executed under SR.BL=1 in this sample code. It
means that any access to virtual address space may reboot CPU, since TLB mis-hit
exception is blocked. Therefore usrIsr2 has to access usrIntCnt and intRte2W from P1
region. Also usrIsr2 itself has to be executed on P1 region, and it can be done by relocating
the address of usrIsr2 to P1 as shown below:

IMPORT void usrIsr2 (void);

intVecSet (vector, (FUNCPTR)(((UINT32) usrIsr2 & 0x1fffffff) | 0x80000000));

In conclusion, you have to guarantee that the entire ISR does not access to any virtual
address space if you set the corresponding intPrioTable[] entry to NULL.

NOTE SIMNT This routine does nothing.

RETURNS N/A

SEE ALSO intArchLib, intVecBaseSet(), intVecGet()

intVecSet2()

NAME intVecSet2() – set a CPU vector, gate type(int/trap), and selector (x86)

SYNOPSIS void intVecSet2

(

FUNCPTR * vector, /* vector offset */

FUNCPTR function, /* address to place in vector */

int idtGate, /* IDT_TRAP_GATE or IDT_INT_GATE */

int idtSelector /* sysCsExc or sysCsInt */

)

DESCRIPTION This routine attaches an exception handler to a specified vector, with the type of the gate
and the selector of the gate. The vector is specified as an offset into the CPU’s vector
table. This vector table starts, by default, at address 0. However, the vector table may be
set to start at any address with intVecBaseSet(). The vector table is set up in usrInit().

RETURNS N/A

SEE ALSO intArchLib, intVecBaseSet(), intVecGet(), intVecSet(), intVecGet2()

VxWorks OS Libraries API Reference, 5.5
intVecTableWriteProtect()

704

intVecTableWriteProtect()

NAME intVecTableWriteProtect() – write-protect exception vector table (68K, x86, ARM,
SimSolaris, SimNT)

SYNOPSIS STATUS intVecTableWriteProtect (void)

DESCRIPTION If the unbundled Memory Management Unit (MMU) support package (VxVMI) is present,
this routine write-protects the exception vector table to protect it from being accidentally
corrupted.

Note that other data structures contained in the page will also be write-protected. In the
default VxWorks configuration, the exception vector table is located at location 0 in
memory. Write-protecting this affects the backplane anchor, boot configuration
information, and potentially the text segment (assuming the default text location of
0x1000.) All code that manipulates these structures has been modified to write-enable
memory for the duration of the operation. If you select a different address for the
exception vector table, be sure it resides in a page separate from other writable data
structures.

NOTE: This routine always returns ERROR on simulators.

RETURNS OK, or ERROR if memory cannot be write-protected.

ERRNO S_intLib_VEC_TABLE_WP_UNAVAILABLE

SEE ALSO intArchLib

ioctl()

NAME ioctl() – perform an I/O control function

SYNOPSIS int ioctl

(

int fd, /* file descriptor */

int function, /* function code */

int arg /* arbitrary argument */

)

2: Routines
ioDefPathGet()

705

I

DESCRIPTION This routine performs an I/O control function on a device. The control functions used by
VxWorks device drivers are defined in the header file ioLib.h. Most requests are passed
on to the driver for handling. Since the availability of ioctl() functions is driver-specific,
these functions are discussed separately in tyLib, pipeDrv, nfsDrv, dosFsLib, rt11FsLib,
and rawFsLib.

The following example renames the file or directory to the string “newname”:

ioctl (fd, FIORENAME, "newname");

Note that the function FIOGETNAME is handled by the I/O interface level and is not
passed on to the device driver itself. Thus this function code value should not be used by
customer-written drivers.

RETURNS The return value of the driver, or ERROR if the file descriptor does not exist.

SEE ALSO ioLib, tyLib, pipeDrv, nfsDrv, dosFsLib, rt11FsLib, rawFsLib, VxWorks Programmer’s
Guide: I/O System, Local File Systems

ioDefPathGet()

NAME ioDefPathGet() – get the current default path

SYNOPSIS void ioDefPathGet

(

char * pathname /* where to return the name */

)

DESCRIPTION This routine copies the name of the current default path to pathname. The parameter
pathname should be MAX_FILENAME_LENGTH characters long.

RETURNS N/A

SEE ALSO ioLib, ioDefPathSet(), chdir(), getcwd()

VxWorks OS Libraries API Reference, 5.5
ioDefPathSet()

706

ioDefPathSet()

NAME ioDefPathSet() – set the current default path

SYNOPSIS STATUS ioDefPathSet

(

char * name /* name of the new default device and path */

)

DESCRIPTION This routine sets the default I/O path. All relative pathnames specified to the I/O system
will be prepended with this pathname. This pathname must be an absolute pathname, i.e.,
name must begin with an existing device name.

RETURNS OK, or ERROR if the first component of the pathname is not an existing device.

SEE ALSO ioLib, ioDefPathGet(), chdir(), getcwd()

ioGlobalStdGet()

NAME ioGlobalStdGet() – get the file descriptor for global standard input/output/error

SYNOPSIS int ioGlobalStdGet

(

int stdFd /* std input (0), output (1), or error (2) */

)

DESCRIPTION This routine returns the current underlying file descriptor for global standard input,
output, and error.

RETURNS The underlying global file descriptor, or ERROR if stdFd is not 0, 1, or 2.

SEE ALSO ioLib, ioGlobalStdSet(), ioTaskStdGet()

2: Routines
ioHelp()

707

I

ioGlobalStdSet()

NAME ioGlobalStdSet() – set the file descriptor for global standard input/output/error

SYNOPSIS void ioGlobalStdSet

(

int stdFd, /* std input (0), output (1), or error (2) */

int newFd /* new underlying file descriptor */

)

DESCRIPTION This routine changes the assignment of a specified global standard file descriptor stdFd (0,
1, or, 2) to the specified underlying file descriptor newFd. newFd should be a file descriptor
open to the desired device or file. All tasks will use this new assignment when doing I/O
to stdFd, unless they have specified a task-specific standard file descriptor (see
ioTaskStdSet()). If stdFd is not 0, 1, or 2, this routine has no effect.

RETURNS N/A

SEE ALSO ioLib, ioGlobalStdGet(), ioTaskStdSet()

ioHelp()

NAME ioHelp() – print a synopsis of I/O utility functions

SYNOPSIS void ioHelp (void)

DESCRIPTION This function prints out synopsis for the I/O and File System utility functions.

RETURNS N/A

SEE ALSO usrFsLib, VxWorks Programmer’s Guide: Target Shell

VxWorks OS Libraries API Reference, 5.5
iosDevAdd()

708

iosDevAdd()

NAME iosDevAdd() – add a device to the I/O system

SYNOPSIS STATUS iosDevAdd

(

DEV_HDR * pDevHdr, /* pointer to device’s structure */

char * name, /* name of device */

int drvnum /* # of servicing driver, ret’d by iosDrvInstall() */

)

DESCRIPTION This routine adds a device to the I/O system device list, making the device available for
subsequent open() and creat() calls.

The parameter pDevHdr is a pointer to a device header, DEV_HDR (defined in iosLib.h),
which is used as the node in the device list. Usually this is the first item in a larger device
structure for the specific device type. The parameters name and drvnum are entered in
pDevHdr.

RETURNS OK, or ERROR if there is already a device with the specified name.

SEE ALSO iosLib

iosDevDelete()

NAME iosDevDelete() – delete a device from the I/O system

SYNOPSIS void iosDevDelete

(

DEV_HDR * pDevHdr /* pointer to device’s structure */

)

DESCRIPTION This routine deletes a device from the I/O system device list, making it unavailable to
subsequent open() or creat() calls. No interaction with the driver occurs, and any file
descriptors open on the device or pending operations are unaffected.

If the device was never added to the device list, unpredictable results may occur.

RETURNS N/A

SEE ALSO iosLib

2: Routines
iosDevShow()

709

I

iosDevFind()

NAME iosDevFind() – find an I/O device in the device list

SYNOPSIS DEV_HDR *iosDevFind

(

char * name, /* name of the device */

char * *pNameTail /* where to put ptr to tail of name */

)

DESCRIPTION This routine searches the device list for a device whose name matches the first portion of
name. If a device is found, iosDevFind() sets the character pointer pointed to by
pNameTail to point to the first character in name, following the portion which matched the
device name. It then returns a pointer to the device. If the routine fails, it returns a pointer
to the default device (that is, the device where the current working directory is mounted)
and sets pNameTail to point to the beginning of name. If there is no default device,
iosDevFind() returns NULL.

RETURNS A pointer to the device header, or NULL if the device is not found.

SEE ALSO iosLib

iosDevShow()

NAME iosDevShow() – display the list of devices in the system

SYNOPSIS void iosDevShow (void)

DESCRIPTION This routine displays a list of all devices in the device list.

RETURNS N/A

SEE ALSO iosShow, devs(), VxWorks Programmer’s Guide: I/O System, windsh, Tornado User’s Guide:
Shell

VxWorks OS Libraries API Reference, 5.5
iosDrvInstall()

710

iosDrvInstall()

NAME iosDrvInstall() – install an I/O driver

SYNOPSIS int iosDrvInstall

(

FUNCPTR pCreate, /* pointer to driver create function */

FUNCPTR pDelete, /* pointer to driver delete function */

FUNCPTR pOpen, /* pointer to driver open function */

FUNCPTR pClose, /* pointer to driver close function */

FUNCPTR pRead, /* pointer to driver read function */

FUNCPTR pWrite, /* pointer to driver write function */

FUNCPTR pIoctl /* pointer to driver ioctl function */

)

DESCRIPTION This routine should be called once by each I/O driver. It hooks up the various I/O service
calls to the driver service routines, assigns the driver a number, and adds the driver to the
driver table.

RETURNS The driver number of the new driver, or ERROR if there is no room for the driver.

SEE ALSO iosLib

iosDrvRemove()

NAME iosDrvRemove() – remove an I/O driver

SYNOPSIS STATUS iosDrvRemove

(

int drvnum, /* no. of driver to remove, returned by */

/* iosDrvInstall() */

BOOL forceClose /* if TRUE, force closure of open files */

)

DESCRIPTION This routine removes an I/O driver (added by iosDrvInstall()) from the driver table.

RETURNS OK, or ERROR if the driver has open files.

SEE ALSO iosLib, iosDrvInstall()

2: Routines
iosFdValue()

711

I

iosDrvShow()

NAME iosDrvShow() – display a list of system drivers

SYNOPSIS void iosDrvShow (void)

DESCRIPTION This routine displays a list of all drivers in the driver list.

RETURNS N/A

SEE ALSO iosShow, VxWorks Programmer’s Guide: I/O System, windsh, Tornado User’s Guide: Shell

iosFdShow()

NAME iosFdShow() – display a list of file descriptor names in the system

SYNOPSIS void iosFdShow (void)

DESCRIPTION This routine displays a list of all file descriptors in the system.

RETURNS N/A

SEE ALSO iosShow, ioctl(), VxWorks Programmer’s Guide: I/O System, windsh, Tornado User’s Guide:
Shell

iosFdValue()

NAME iosFdValue() – validate an open file descriptor and return the driver-specific value

SYNOPSIS int iosFdValue

(

int fd /* file descriptor to check */

)

DESCRIPTION This routine checks to see if a file descriptor is valid and returns the driver-specific value.

VxWorks OS Libraries API Reference, 5.5
iosInit()

712

RETURNS The driver-specific value, or ERROR if the file descriptor is invalid.

SEE ALSO iosLib

iosInit()

NAME iosInit() – initialize the I/O system

SYNOPSIS STATUS iosInit

(

int max_drivers, /* maximum number of drivers allowed */

int max_files, /* max number of files allowed open at once */

char * nullDevName /* name of the null device (bit bucket) */

)

DESCRIPTION This routine initializes the I/O system. It must be called before any other I/O system
routine.

RETURNS OK, or ERROR if memory is insufficient.

SEE ALSO iosLib

iosShowInit()

NAME iosShowInit() – initialize the I/O system show facility

SYNOPSIS void iosShowInit (void)

DESCRIPTION This routine links the I/O system show facility into the VxWorks system. It is called
automatically when INCLUDE_SHOW_ROUTINES is defined in configAll.h.

RETURNS N/A

SEE ALSO iosShow

2: Routines
ioTaskStdSet()

713

I

ioTaskStdGet()

NAME ioTaskStdGet() – get the file descriptor for task standard input/output/error

SYNOPSIS int ioTaskStdGet

(

int taskId, /* ID of desired task (0 = self) */

int stdFd /* std input (0), output (1), or error (2) */

)

DESCRIPTION This routine returns the current underlying file descriptor for task-specific standard input,
output, and error.

RETURNS The underlying file descriptor, or ERROR if stdFd is not 0, 1, or 2, or the routine is called at
interrupt level.

SEE ALSO ioLib, ioGlobalStdGet(), ioTaskStdSet()

ioTaskStdSet()

NAME ioTaskStdSet() – set the file descriptor for task standard input/output/error

SYNOPSIS void ioTaskStdSet

(

int taskId, /* task whose std fd is to be set (0 = self) */

int stdFd, /* std input (0), output (1), or error (2) */

int newFd /* new underlying file descriptor */

)

DESCRIPTION This routine changes the assignment of a specified task-specific standard file descriptor
stdFd (0, 1, or, 2) to the specified underlying file descriptor newFd. newFd should be a file
descriptor open to the desired device or file. The calling task will use this new assignment
when doing I/O to stdFd, instead of the system-wide global assignment which is used by
default. If stdFd is not 0, 1, or 2, this routine has no effect.

NOTE: This routine has no effect if it is called at interrupt level.

RETURNS N/A

SEE ALSO ioLib, ioGlobalStdGet(), ioTaskStdGet()

VxWorks OS Libraries API Reference, 5.5
ipAttach()

714

ipAttach()

NAME ipAttach() – a generic attach routine for the TCP/IP network stack

SYNOPSIS int ipAttach

(

int unit, /* Unit number */

char * pDevice /* Device name (i.e. ln, ei etc.). */

)

DESCRIPTION This routine takes the unit number and device name of an END or NPT driver (e.g., “ln0”,
“ei0”, etc.) and attaches the IP protocol to the corresponding device. Following a
successful attachment IP will begin receiving packets from the devices.

RETURNS OK or ERROR

SEE ALSO ipProto

ipDetach()

NAME ipDetach() – a generic detach routine for the TCP/IP network stack

SYNOPSIS STATUS ipDetach

(

int unit, /* Unit number */

char * pDevice /* Device name (i.e. ln, ei etc.). */

)

DESCRIPTION This routine removes the TCP/IP stack from the MUX. If completed successfully, the IP
protocol will no longer receive packets from the named END driver.

RETURNS OK or ERROR

SEE ALSO ipProto

2: Routines
ipFilterHookAdd()

715

I

ipFilterHookAdd()

NAME ipFilterHookAdd() – add a routine to receive all internet protocol packets

SYNOPSIS STATUS ipFilterHookAdd

(

FUNCPTR ipFilterHook /* routine to receive raw IP packets */

)

DESCRIPTION This routine adds a hook routine that will be called for every IP packet that is received.

The filter hook routine should be of the form:

BOOL ipFilterHook

(

struct ifnet *pIf, /* interface that received the packet */

struct mbuf **pPtrMbuf, /* pointer to pointer to an mbuf chain */

struct ip **pPtrIpHdr, /* pointer to pointer to IP header */

int ipHdrLen, /* IP packet header length */

)

The hook routine should return TRUE if it has handled the input packet. A returned value
of TRUE effectively consumes the packet from the viewpoint of IP, which will never see
the packet. As a result, when the filter hook returns TRUE, it must handle the freeing of
any resources associated with the packet. For example, the filter hook routine would be
responsible for freeing the packet’s mbuf chain by calling m_freem(*pPtrMbuf).

The filter hook routine should return FALSE if it has not handled the packet. In response
to a FALSE, the network stack submits the packet for normal IP processing.

Within the packet’s IP header (the filter hook can obtain a pointer to the IP header by
de-referencing pPtrIpHdr), you will find that the values in the ip_len field, the ip_id field,
and ip_offset field have been converted to the host byte order before the packet was
handed to the filter hook.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call ipFilterHookAdd() from within the kernel protection
domain only, and the function referenced in the ipFilterHook parameter must reside in the
kernel protection domain. This restriction does not apply to non-AE versions of VxWorks.

RETURNS OK, always.

SEE ALSO ipFilterLib

VxWorks OS Libraries API Reference, 5.5
ipFilterHookDelete()

716

ipFilterHookDelete()

NAME ipFilterHookDelete() – delete a IP filter hook routine

SYNOPSIS void ipFilterHookDelete (void)

DESCRIPTION This routine deletes an IP filter hook.

RETURNS N/A

SEE ALSO ipFilterLib

ipFilterLibInit()

NAME ipFilterLibInit() – initialize IP filter facility

SYNOPSIS void ipFilterLibInit (void)

DESCRIPTION This routine links the IP filter facility into the VxWorks system. These routines are
included automatically if INCLUDE_IP_FILTER is defined.

RETURNS N/A

SEE ALSO ipFilterLib

2: Routines
irint()

717

I

ipstatShow()

NAME ipstatShow() – display IP statistics

SYNOPSIS void ipstatShow

(

BOOL zero /* TRUE = reset statistics to 0 */

)

DESCRIPTION This routine displays detailed statistics for the IP protocol.

RETURNS N/A

SEE ALSO netShow

irint()

NAME irint() – convert a double-precision value to an integer

SYNOPSIS int irint

(

double x /* argument */

)

DESCRIPTION This routine converts a double-precision value x to an integer using the selected IEEE
rounding direction.

WARNING: The rounding direction is not pre-selectable and is fixed for
round-to-the-nearest.

INCLUDE FILES math.h

RETURNS The integer representation of x.

SEE ALSO mathALib

VxWorks OS Libraries API Reference, 5.5
irintf()

718

irintf()

NAME irintf() – convert a single-precision value to an integer

SYNOPSIS int irintf

(

float x /* argument */

)

DESCRIPTION This routine converts a single-precision value x to an integer using the selected IEEE
rounding direction.

WARNING: The rounding direction is not pre-selectable and is fixed as
round-to-the-nearest.

INCLUDE FILES math.h

RETURNS The integer representation of x.

SEE ALSO mathALib

iround()

NAME iround() – round a number to the nearest integer

SYNOPSIS int iround

(

double x /* argument */

)

DESCRIPTION This routine rounds a double-precision value x to the nearest integer value.

NOTE: If x is spaced evenly between two integers, it returns the even integer.

INCLUDE FILES math.h

RETURNS The integer nearest to x.

SEE ALSO mathALib

2: Routines
isalnum()

719

I

iroundf()

NAME iroundf() – round a number to the nearest integer

SYNOPSIS int iroundf

(

float x /* argument */

)

DESCRIPTION This routine rounds a single-precision value x to the nearest integer value.

NOTE: If x is spaced evenly between two integers, the even integer is returned.

INCLUDE FILES math.h

RETURNS The integer nearest to x.

SEE ALSO mathALib

isalnum()

NAME isalnum() – test whether a character is alphanumeric (ANSI)

SYNOPSIS int isalnum

(

int c /* character to test */

)

DESCRIPTION This routine tests whether c is a character for which isalpha() or isdigit() returns true.

INCLUDE FILES ctype.h

RETURNS Non-zero if and only if c is alphanumeric.

SEE ALSO ansiCtype

VxWorks OS Libraries API Reference, 5.5
isalpha()

720

isalpha()

NAME isalpha() – test whether a character is a letter (ANSI)

SYNOPSIS int isalpha

(

int c /* character to test */

)

DESCRIPTION This routine tests whether c is a character for which isupper() or islower() returns true.

INCLUDE FILES ctype.h

RETURNS Non-zero if and only if c is a letter.

SEE ALSO ansiCtype

isatty()

NAME isatty() – return whether the underlying driver is a tty device

SYNOPSIS BOOL isatty

(

int fd /* file descriptor to check */

)

DESCRIPTION This routine simply invokes the ioctl() function FIOISATTY on the specified file
descriptor.

RETURNS TRUE, or FALSE if the driver does not indicate a tty device.

SEE ALSO ioLib

2: Routines
isdigit()

721

I

iscntrl()

NAME iscntrl() – test whether a character is a control character (ANSI)

SYNOPSIS int iscntrl

(

int c /* character to test */

)

DESCRIPTION This routine tests whether c is a control character.

INCLUDE FILES ctype.h

RETURNS Non-zero if and only if c is a control character.

SEE ALSO ansiCtype

isdigit()

NAME isdigit() – test whether a character is a decimal digit (ANSI)

SYNOPSIS int isdigit

(

int c /* character to test */

)

DESCRIPTION This routine tests whether c is a decimal-digit character.

INCLUDE FILES ctype.h

RETURNS Non-zero if and only if c is a decimal digit.

SEE ALSO ansiCtype

VxWorks OS Libraries API Reference, 5.5
isgraph()

722

isgraph()

NAME isgraph() – test whether a character is a printing, non-white-space character (ANSI)

SYNOPSIS int isgraph

(

int c /* character to test */

)

DESCRIPTION This routine returns true if c is a printing character, and not a character for which
isspace() returns true.

INCLUDE FILES ctype.h

RETURNS Non-zero if and only if c is a printable, non-white-space character.

SEE ALSO ansiCtype, isspace()

islower()

NAME islower() – test whether a character is a lower-case letter (ANSI)

SYNOPSIS int islower

(

int c /* character to test */

)

DESCRIPTION This routine tests whether c is a lower-case letter.

INCLUDE FILES ctype.h

RETURNS Non-zero if and only if c is a lower-case letter.

SEE ALSO ansiCtype

2: Routines
ispunct()

723

I

isprint()

NAME isprint() – test whether a character is printable, including the space character (ANSI)

SYNOPSIS int isprint

(

int c /* character to test */

)

DESCRIPTION This routine returns true if c is a printing character or the space character.

INCLUDE FILES ctype.h

RETURNS Non-zero if and only if c is printable, including the space character.

SEE ALSO ansiCtype

ispunct()

NAME ispunct() – test whether a character is punctuation (ANSI)

SYNOPSIS int ispunct

(

int c /* character to test */

)

DESCRIPTION This routine tests whether a character is punctuation, i.e., a printing character for which
neither isspace() nor isalnum() is true.

INCLUDE FILES ctype.h

RETURNS Non-zero if and only if c is a punctuation character.

SEE ALSO ansiCtype

VxWorks OS Libraries API Reference, 5.5
isspace()

724

isspace()

NAME isspace() – test whether a character is a white-space character (ANSI)

SYNOPSIS int isspace

(

int c /* character to test */

)

DESCRIPTION This routine tests whether a character is a standard white-space characters, as follows:

INCLUDE FILES ctype.h

RETURNS Non-zero if and only if c is a space, tab, carriage return, new-line, or form-feed character.

SEE ALSO ansiCtype

isupper()

NAME isupper() – test whether a character is an upper-case letter (ANSI)

SYNOPSIS int isupper

(

int c /* character to test */

)

DESCRIPTION This routine tests whether c is an upper-case letter.

INCLUDE FILES ctype.h

RETURNS Non-zero if and only if c is an upper-case letter.

SEE ALSO ansiCtype

space ‘ ‘
horizontal tab \t
vertical tab \v
carriage return \r
new-line \n
form-feed \f

2: Routines
isxdigit()

725

I

isxdigit()

NAME isxdigit() – test whether a character is a hexadecimal digit (ANSI)

SYNOPSIS int isxdigit

(

int c /* character to test */

)

DESCRIPTION This routine tests whether c is a hexadecimal-digit character.

INCLUDE FILES ctype.h

RETURNS Non-zero if and only if c is a hexadecimal digit.

SEE ALSO ansiCtype

VxWorks OS Libraries API Reference, 5.5
kernelInit()

726

kernelInit()

NAME kernelInit() – initialize the kernel

SYNOPSIS void kernelInit

(

FUNCPTR rootRtn, /* user start-up routine */

unsigned rootMemSize, /* memory for TCB and root stack */

char * pMemPoolStart, /* beginning of memory pool */

char * pMemPoolEnd, /* end of memory pool */

unsigned intStackSize, /* interrupt stack size */

int lockOutLevel /* interrupt lock-out level (1-7) */

)

DESCRIPTION This routine initializes and starts the kernel. It should be called only once. The parameter
rootRtn specifies the entry point of the user’s start-up code that subsequently initializes
system facilities (i.e., the I/O system, network). Typically, rootRtn is set to usrRoot().

Interrupts are enabled for the first time after kernelInit() exits. VxWorks will not exceed
the specified interrupt lock-out level during any of its brief uses of interrupt locking as a
means of mutual exclusion.

The system memory partition is initialized by kernelInit() with the size set by
pMemPoolStart and pMemPoolEnd. Architectures that support a separate interrupt stack
allocate a portion of memory for this purpose, of intStackSize bytes starting at
pMemPoolStart.

NOTE: On SH77xx architectures, the interrupt stack is emulated by software, and it has to
be located in a fixed physical address space (P1 or P2) if the on-chip MMU is enabled. If
pMemPoolStart is in a logical address space (P0 or P3), the interrupt stack area is reserved
on the same logical address space. The actual interrupt stack is relocated to a fixed
physical space pointed by VBR.

RETURNS N/A

SEE ALSO kernelLib, intLockLevelSet()

2: Routines
kernelVersion()

727

K

kernelTimeSlice()

NAME kernelTimeSlice() – enable round-robin selection

SYNOPSIS STATUS kernelTimeSlice

(

int ticks /* time-slice in ticks or 0 to disable */

/* round-robin */

)

DESCRIPTION This routine enables round-robin selection among tasks of same priority and sets the
system time-slice to ticks. Round-robin scheduling is disabled by default. A time-slice of
zero ticks disables round-robin scheduling.

For more information about round-robin scheduling, see the manual entry for kernelLib.

RETURNS OK, always.

SEE ALSO kernelLib

kernelVersion()

NAME kernelVersion() – return the kernel revision string

SYNOPSIS char *kernelVersion (void)

DESCRIPTION This routine returns a string which contains the current revision of the kernel. The string
is of the form “WIND version x.y”, where “x” corresponds to the kernel major revision,
and “y” corresponds to the kernel minor revision.

RETURNS A pointer to a string of format “WIND version x.y”.

SEE ALSO kernelLib

VxWorks OS Libraries API Reference, 5.5
kill()

728

kill()

NAME kill() – send a signal to a task (POSIX)

SYNOPSIS int kill

(

int tid, /* task to send signal to */

int signo /* signal to send to task */

)

DESCRIPTION This routine sends a signal signo to the task specified by tid.

RETURNS OK (0), or ERROR (-1) if the task ID or signal number is invalid.

ERRNO EINVAL

SEE ALSO sigLib

2: Routines
labs()

729

L

l()

NAME l() – disassemble and display a specified number of instructions

SYNOPSIS void l

(

INSTR * addr, /* address of first instruction to */

/* disassemble if 0, continue from the last */

/* instruction disassembled on the last call */

/* to l */

int count /* number of instruction to disassemble if */

/* 0, use the same as the last call to l */

)

DESCRIPTION This routine disassembles a specified number of instructions and displays them on
standard output. If the address of an instruction is entered in the system symbol table, the
symbol will be displayed as a label for that instruction. Also, addresses in the opcode field
of instructions will be displayed symbolically.

To execute, enter:

-> l [address [,count]]

If address is omitted or zero, disassembly continues from the previous address. If count is
omitted or zero, the last specified count is used (initially 10). As with all values entered
via the shell, the address may be typed symbolically.

RETURNS N/A

SEE ALSO dbgLib, VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s Guide: Shell

labs()

NAME labs() – compute the absolute value of a long (ANSI)

SYNOPSIS long labs

(

long i /* long for which to return absolute value */

)

VxWorks OS Libraries API Reference, 5.5
ld()

730

DESCRIPTION This routine computes the absolute value of a specified long. If the result cannot be
represented, the behavior is undefined. This routine is equivalent to abs(), except that the
argument and return value are all of type long.

INCLUDE FILES stdlib.h

RETURNS The absolute value of i.

SEE ALSO ansiStdlib

ld()

NAME ld() – load an object module into memory

SYNOPSIS MODULE_ID ld

(

int syms, /* -1, 0, or 1 */

BOOL noAbort, /* TRUE = don’t abort script on error */

char * name /* name of object module, NULL = standard input */

)

DESCRIPTION This command loads an object module from a file or from standard input. The object
module must be in UNIX a.out format. External references in the module are resolved
during loading. The syms parameter determines how symbols are loaded; possible values
are:

 0 - Add global symbols to the system symbol table.
 1 - Add global and local symbols to the system symbol table.
 -1 - Add no symbols to the system symbol table.

If there is an error during loading (e.g., externals undefined, too many symbols, etc.), then
shellScriptAbort() is called to stop any script that this routine was called from. If noAbort
is TRUE, errors are noted but ignored.

The normal way of using ld() is to load all symbols (syms = 1) during debugging and to
load only global symbols later.

The routine ld() is a shell command. That is, it is designed to be used only in the shell,
and not in code running on the target. In future releases, calling ld() directly from code
may not be supported.

2: Routines
ldexp()

731

L

COMMON SYMBOLS

On the target shell, for the ld command only, common symbol behavior is determined by
the value of the global variable, ldCommonMatchAll. The reasoning for
ldCommonMatchAll matches the purpose of the windsh environment variable,
LD_COMMON_MATCH_ALL as explained below.

If ldCommonMatchAll is set to TRUE (equivalent to windsh
“LD_COMMON_MATCH_ALL=on”), the loader tries to match a common symbol with an
existing one. If a symbol with the same name is already defined, the loader takes its
address. Otherwise, the loader creates a new entry. If set to FALSE (equivalent to windsh
“LD_COMMON_MATCH_ALL=off”), the loader does not try to find an existing symbol. It
creates an entry for each common symbol.

EXAMPLE The following example loads the a.out file module from the default file device into
memory, and adds any global symbols to the symbol table:

-> ld <module

This example loads test.o with all symbols:

-> ld 1,0,"test.o"

RETURNS MODULE_ID, or NULL if there are too many symbols, the object file format is invalid, or
there is an error reading the file.

SEE ALSO usrLib, loadLib, VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s Guide:
Shell

ldexp()

NAME ldexp() – multiply a number by an integral power of 2 (ANSI)

SYNOPSIS double ldexp

(

double v, /* a floating point number */

int xexp /* exponent */

)

DESCRIPTION This routine multiplies a floating-point number by an integral power of 2. A range error
may occur.

INCLUDE FILES math.h

VxWorks OS Libraries API Reference, 5.5
ldiv()

732

RETURNS The double-precision value of v times 2 to the power of xexp.

SEE ALSO ansiMath

ldiv()

NAME ldiv() – compute the quotient and remainder of the division (ANSI)

SYNOPSIS ldiv_t ldiv

(

long numer, /* numerator */

long denom /* denominator */

)

DESCRIPTION This routine computes the quotient and remainder of numer/denom. This routine is similar
to div(), except that the arguments and the elements of the returned structure are all of
type long.

This routine is not reentrant. For a reentrant version, see ldiv_r().

INCLUDE FILES stdlib.h

RETURNS A structure of type ldiv_t, containing both the quotient and the remainder.

SEE ALSO ansiStdlib

ldiv_r()

NAME ldiv_r() – compute a quotient and remainder (reentrant)

SYNOPSIS void ldiv_r

(

long numer, /* numerator */

long denom, /* denominator */

ldiv_t * divStructPtr /* ldiv_t structure */

)

2: Routines
ledControl()

733

L

DESCRIPTION This routine computes the quotient and remainder of numer/denom. The quotient and
remainder are stored in the ldiv_t structure divStructPtr.

This routine is the reentrant version of ldiv().

INCLUDE FILES stdlib.h

RETURNS N/A

SEE ALSO ansiStdlib

ledClose()

NAME ledClose() – discard the line-editor ID

SYNOPSIS STATUS ledClose

(

int led_id /* ID returned by ledOpen */

)

DESCRIPTION This routine frees resources allocated by ledOpen(). The low-level input/output file
descriptors are not closed.

RETURNS OK.

SEE ALSO ledLib, ledOpen()

ledControl()

NAME ledControl() – change the line-editor ID parameters

SYNOPSIS void ledControl

(

int led_id, /* ID returned by ledOpen */

int inFd, /* new input fd (NONE = no change) */

int outFd, /* new output fd (NONE = no change) */

int histSize /* new history list size (NONE = no */

/* change), (0 = display) */

)

VxWorks OS Libraries API Reference, 5.5
ledOpen()

734

DESCRIPTION This routine changes the input/output file descriptor and the size of the history list.

RETURNS N/A

SEE ALSO ledLib

ledOpen()

NAME ledOpen() – create a new line-editor ID

SYNOPSIS int ledOpen

(

int inFd, /* low-level device input fd */

int outFd, /* low-level device output fd */

int histSize /* size of history list */

)

DESCRIPTION This routine creates the ID that is used by ledRead(), ledClose(), and ledControl().
Storage is allocated for up to histSize previously read lines.

RETURNS The line-editor ID, or ERROR if the routine runs out of memory.

SEE ALSO ledLib, ledRead(), ledClose(), ledControl()

ledRead()

NAME ledRead() – read a line with line-editing

SYNOPSIS int ledRead

(

int led_id, /* ID returned by ledOpen */

char * string, /* where to return line */

int maxBytes /* maximum number of chars to read */

)

DESCRIPTION This routine handles line-editing and history substitutions. If the low-level input file
descriptor is not in OPT_LINE mode, only an ordinary read() routine will be performed.

2: Routines
lio_listio()

735

L

RETURNS The number of characters read, or EOF.

SEE ALSO ledLib

lio_listio()

NAME lio_listio() – initiate a list of asynchronous I/O requests (POSIX)

SYNOPSIS int lio_listio

(

int mode, /* LIO_WAIT or LIO_NOWAIT */

struct aiocb * list[], /* list of operations */

int nEnt, /* size of list */

struct sigevent * pSig /* signal on completion */

)

DESCRIPTION This routine submits a number of I/O operations (up to AIO_LISTIO_MAX) to be
performed asynchronously. list is a pointer to an array of aiocb structures that specify the
AIO operations to be performed. The array is of size nEnt.

The aio_lio_opcode field of the aiocb structure specifies the AIO operation to be
performed. Valid entries include LIO_READ, LIO_WRITE, and LIO_NOP. LIO_READ
corresponds to a call to aio_read(), LIO_WRITE corresponds to a call to aio_write(), and
LIO_NOP is ignored.

The mode argument can be either LIO_WAIT or LIO_NOWAIT. If mode is LIO_WAIT,
lio_listio() does not return until all the AIO operations complete and the pSig argument is
ignored. If mode is LIO_NOWAIT, the lio_listio() returns as soon as the operations are
queued. In this case, if pSig is not NULL and the signal number indicated by
pSig>sigev_signo is not zero, the signal pSig>sigev_signo is delivered when all requests
have completed.

RETURNS OK if requests queued successfully, otherwise ERROR.

ERRNO EINVAL, EAGAIN, EIO

INCLUDE FILES aio.h

SEE ALSO aioPxLib, aio_read(), aio_write(), aio_error(), aio_return()

VxWorks OS Libraries API Reference, 5.5
listen()

736

listen()

NAME listen() – enable connections to a socket

SYNOPSIS STATUS listen

(

int s, /* socket descriptor */

int backlog /* number of connections to queue */

)

DESCRIPTION This routine enables connections to a socket. It also specifies the maximum number of
unaccepted connections that can be pending at one time (backlog). After enabling
connections with listen(), connections are actually accepted by accept().

RETURNS OK, or ERROR if the socket is invalid or unable to listen.

SEE ALSO sockLib

lkAddr()

NAME lkAddr() – list symbols whose values are near a specified value

SYNOPSIS void lkAddr

(

unsigned int addr /* address around which to look */

)

DESCRIPTION This command lists the symbols in the system symbol table that are near a specified value.
The symbols that are displayed include:

– symbols whose values are immediately less than the specified value
– symbols with the specified value
– succeeding symbols, until at least 12 symbols have been displayed

This command also displays symbols that are local, i.e., symbols found in the system
symbol table only because their module was loaded by ld().

RETURNS N/A

SEE ALSO usrLib, symLib, symEach(), VxWorks Programmer’s Guide: Target Shell, windsh, Tornado
User’s Guide: Shell

2: Routines
ll()

737

L

lkup()

NAME lkup() – list symbols

SYNOPSIS void lkup

(

char * substr /* substring to match */

)

DESCRIPTION This command lists all symbols in the system symbol table whose names contain the
string substr. If substr is omitted or is 0, a short summary of symbol table statistics is
printed. If substr is the empty string (“”), all symbols in the table are listed.

This command also displays symbols that are local, i.e., symbols found in the system
symbol table only because their module was loaded by ld().

By default, lkup() displays 22 symbols at a time. This can be changed by modifying the
global variable symLkupPgSz. If this variable is set to 0, lkup() displays all the symbols
without interruption.

RETURNS N/A

SEE ALSO usrLib, symLib, symEach(), VxWorks Programmer’s Guide: Target Shell, windsh, Tornado
User’s Guide: Shell

ll()

NAME ll() – generate a long listing of directory contents

SYNOPSIS STATUS ll

(

char * dirName /* name of directory to list */

)

DESCRIPTION This command causes a long listing of a directory’s contents to be displayed. It is
equivalent to:

-> dirList 1, dirName, TRUE, FALSE

dirName is a name of a directory or file, and may contain wildcards.

VxWorks OS Libraries API Reference, 5.5
llr()

738

NOTE: This is a target resident function, which manipulates the target I/O system. It must
be preceded with the @ letter if executed from the Tornado Shell (windsh), which has a
built-in command of the same name that operates on the Host’s I/O system.

NOTE: When used with netDrv devices (FTP or RSH), ll() does not give directory
information. It is equivalent to an ls() call with no long-listing option.

RETURNS OK or ERROR.

SEE ALSO usrFsLib, dirList()

llr()

NAME llr() – do a long listing of directory and all its subdirectories contents

SYNOPSIS STATUS llr

(

char * dirName /* name of directory to list */

)

DESCRIPTION This command causes a long listing of a directory’s contents to be displayed. It is
equivalent to:

-> dirList 1, dirName, TRUE, TRUE

dirName is a name of a directory or file, and may contain wildcards.

NOTE: When used with netDrv devices (FTP or RSH), ll() does not give directory
information. It is equivalent to an ls() call with no long-listing option.

RETURNS OK or ERROR.

SEE ALSO usrFsLib, dirList()

2: Routines
loadModuleAt()

739

L

loadModule()

NAME loadModule() – load an object module into memory

SYNOPSIS MODULE_ID loadModule

(

int fd, /* fd of file to load */

int symFlag /* symbols to add to table (LOAD_[NO

ALL]_SYMBOLS) */ GLOBAL

)

DESCRIPTION This routine loads an object module from the specified file, and places the code, data, and
BSS into memory allocated from the system memory pool.

This call is equivalent to loadModuleAt() with NULL for the addresses of text, data, and
BSS segments. For more details, see the manual entry for loadModuleAt().

RETURNS MODULE_ID, or NULL if the routine cannot read the file, there is not enough memory, or
the file format is illegal.

SEE ALSO loadLib, loadModuleAt()

loadModuleAt()

NAME loadModuleAt() – load an object module into memory

SYNOPSIS MODULE_ID loadModuleAt

(

int fd, /* fd from which to read module */

int symFlag, /* symbols to add to table (LOAD_[NO

char * *ppText, /* load text segment at addr. pointed to by */

/* this ptr, return load addr. via this ptr */

char * *ppData, /* load data segment at addr. pointed to by */

/* this pointer, return load addr. via this */

/* ptr */

char * *ppBss /* load BSS segment at addr. pointed to by */

/* this pointer, return load addr. via this */

/* ptr */

)

VxWorks OS Libraries API Reference, 5.5
loadModuleAt()

740

DESCRIPTION This routine reads an object module from fd, and loads the code, data, and BSS segments
at the specified load addresses in memory set aside by the user using malloc(), or in the
system memory partition as described below. The module is properly relocated according
to the relocation commands in the file. Unresolved externals will be linked to symbols
found in the system symbol table. Symbols in the module being loaded can optionally be
added to the system symbol table.

LINKING UNRESOLVED EXTERNALS

As the module is loaded, any unresolved external references are resolved by looking up
the missing symbols in the system symbol table. If found, those references are correctly
linked to the new module. If unresolved external references cannot be found in the system
symbol table, then an error message (“undefined symbol: ...”) is printed for the symbol,
but the loading/linking continues. The partially resolved module is not removed, to
enable the user to examine the module for debugging purposes. Care should be taken
when executing code from the resulting module. Executing code which contains
references to unresolved symbols may have unexpected results and may corrupt the
system’s memory.

Even though a module with unresolved symbols remains loaded after this routine returns,
NULL will be returned to enable the caller to detect the failure programmatically. To
unload the module, the caller may either call the unload routine with the module name, or
look up the module using the module name and then unload the module using the
returned MODULE_ID. See the library entries for moduleLib and unldLib for details. The
name of the module is the name of the file loaded with the path removed.

ADDING SYMBOLS TO THE SYMBOL TABLE

The symbols defined in the module to be loaded may be optionally added to the system
symbol table, depending on the value of symFlag:

LOAD_NO_SYMBOLS
add no symbols to the system symbol table

LOAD_LOCAL_SYMBOLS
add only local symbols to the system symbol table

LOAD_GLOBAL_SYMBOLS
add only external symbols to the system symbol table

LOAD_ALL_SYMBOLS
add both local and external symbols to the system symbol table

HIDDEN_MODULE
do not display the module via moduleShow().

Obsolete symbols:

For backward compatibility with previous releases, the following symbols are also added
to the symbol table to indicate the start of each segment: filename_text, filename_data, and
filename_bss, where filename is the name associated with the fd. Note that these symbols

2: Routines
loadModuleAt()

741

L

are not available when the ELF format is used. Also they will disappear with the next
VxWorks release. The moduleLib API should be used instead to get segment information.

RELOCATION The relocation commands in the object module are used to relocate the text, data, and BSS
segments of the module. The location of each segment can be specified explicitly, or left
unspecified in which case memory will be allocated for the segment from the system
memory partition. This is determined by the parameters ppText, ppData, and ppBss, each of
which can have the following values:

NULL
no load address is specified, none will be returned;

A pointer to LD_NO_ADDRESS
no load address is specified, the return address is referenced by the pointer;

A pointer to an address
the load address is specified.

The ppText, ppData, and ppBss parameters specify where to load the text, data, and bss
sections respectively. Each of these parameters is a pointer to a pointer; for example,
**ppText gives the address where the text segment is to begin.

For any of the three parameters, there are two ways to request that new memory be
allocated, rather than specifying the section’s starting address: you can either specify the
parameter itself as NULL, or you can write the constant LD_NO_ADDRESS in place of an
address. In the second case, loadModuleAt() routine replaces the LD_NO_ADDRESS
value with the address actually used for each section (that is, it records the address at
*ppText, *ppData, or *ppBss).

The double indirection not only permits reporting the addresses actually used, but also
allows you to specify loading a segment at the beginning of memory, since the following
cases can be distinguished:

Note that loadModule() is equivalent to this routine if all three of the segment-address
parameters are set to NULL.

COMMON Some host compiler/linker combinations use another storage class internally called
“common”. In the C language, uninitialized global variables are eventually put in the bss
segment. However, in partially linked object modules they are flagged internally as
“common” and the static linker (host) resolves these and places them in bss as a final step
in creating a fully linked object module. However, the target loader is most often used to
load partially linked object modules. When the target loader encounters a variable labeled
“common”, its behavior depends on the following flags:

LOAD_COMMON_MATCH_NONE
Allocate memory for the variable with malloc() and enter the variable in the target
symbol table (if specified) at that address. This is the default.

(1) Allocate memory for a section (text in this example): ppText == NULL

(2) Begin a section at address zero (the text section, below): *ppText == 0

VxWorks OS Libraries API Reference, 5.5
localeconv()

742

LOAD_COMMON_MATCH_USER
Search for the symbol in the target symbol table, excluding the vxWorks image
symbols. If several symbols exist, then the order of matching is: (1) bss, (2) data. If no
symbol is found, act like the default.

LOAD_COMMON_MATCH_ALL
Search for the symbol in the target symbol table, including the vxWorks image
symbols. If several symbols exist, then the order of matching is: (1) bss, (2) data. If no
symbol is found, act like the default.

Note that most UNIX loaders have an option that forces resolution of the common storage
while leaving the module relocatable (for example, with typical BSD UNIX loaders, use
options “-rd”).

EXAMPLES Load a module into allocated memory, but do not return segment addresses:

module_id = loadModuleAt (fd, LOAD_GLOBAL_SYMBOLS, NULL, NULL, NULL);

Load a module into allocated memory, and return segment addresses:

pText = pData = pBss = LD_NO_ADDRESS;

module_id = loadModuleAt (fd,LOAD_GLOBAL_SYMBOLS,&pText,&pData,&pBss);

Load a module to off-board memory at a specified address:

pText = 0x800000; /* address of text segment */

pData = pBss = LD_NO_ADDRESS /* other segments follow by default */

module_id = loadModuleAt (fd,LOAD_GLOBAL_SYMBOLS,&pText,&pData,&pBss);

RETURNS MODULE_ID, or NULL if the file cannot be read, there is not enough memory, the file
format is illegal, or there were unresolved symbols.

SEE ALSO loadLib, VxWorks Programmer’s Guide: Basic OS

localeconv()

NAME localeconv() – set the components of an object with type lconv (ANSI)

SYNOPSIS struct lconv *localeconv (void)

DESCRIPTION This routine sets the components of an object with type struct lconv with values
appropriate for the formatting of numeric quantities (monetary and otherwise) according
to the rules of the current locale.

2: Routines
localeconv()

743

L

The members of the structure with type char * are pointers to strings any of which (except
decimal_point) can point to “” to indicate that the value is not available in the current
locale or is of zero length. The members with type char are nonnegative numbers, any of
which can be CHAR_MAX to indicate that the value is not available in the current locale.
The members include the following:

char *decimal_point
The decimal-point character used to format non-monetary quantities.

char *thousands_sep
The character used to separate groups of digits before the decimal-point character in
formatted non-monetary quantities.

char *grouping
A string whose elements indicate the size of each group of digits in formatted
non-monetary quantities.

char *int_curr_symbol
The international currency symbol applicable to the current locale. The first three
characters contain the alphabetic international currency symbol in accordance with
those specified in ISO 4217:1987. The fourth character (immediately preceding the
null character) is the character used to separate the international currency symbol
from the monetary quantity.

char *currency_symbol
The local currency symbol applicable to the current locale.

char *mon_decimal_point
The decimal-point used to format monetary quantities.

char *mon_thousands_sep
The separator for groups of digits before the decimal-point in formatted monetary
quantities.

char *mon_grouping
A string whose elements indicate the size of each group of digits in formatted
monetary quantities.

char *positive_sign
The string used to indicate a nonnegative-valued formatted monetary quantity.

char *negative_sign
The string used to indicate a negative-valued formatted monetary quantity.

char int_frac_digits
The number of fractional digits (those after the decimal-point) to be displayed in an
internationally formatted monetary quantity.

char frac_digits
The number of fractional digits (those after the decimal-point) to be displayed in a
formatted monetary quantity.

VxWorks OS Libraries API Reference, 5.5
localeconv()

744

char p_cs_precedes
Set to 1 or 0 if the currency_symbol respectively precedes or succeeds the value for a
nonnegative formatted monetary quantity.

char p_sep_by_space
Set to 1 or 0 if the currency_symbol respectively is or is not separated by a space from
the value for a nonnegative formatted monetary quantity.

char n_cs_precedes
Set to 1 or 0 if the currency_symbol respectively precedes or succeeds the value for a
negative formatted monetary quantity.

char n_sep_by_space
Set to 1 or 0 if the currency_symbol respectively is or is not separated by a space from
the value for a negative formatted monetary quantity.

char p_sign_posn
Set to a value indicating the positioning of the positive_sign for a nonnegative
formatted monetary quantity.

char n_sign_posn
Set to a value indicating the positioning of the negative_sign for a negative formatted
monetary quantity.

The elements of grouping and mon_grouping are interpreted according to the following:

CHAR_MAX
No further grouping is to be performed.

0
The previous element is to be repeatedly used for the remainder of the digits.

other
The integer value is the number of the digits that comprise the current group. The
next element is examined to determined the size of the next group of digits before the
current group.

The values of p_sign_posn and n_sign_posn are interpreted according to the following:

0
Parentheses surround the quantity and currency_symbol.

1
The sign string precedes the quantity and currency_symbol.

2
The sign string succeeds the quantity and currency_symbol.

3
The sign string immediately precedes the currency_symbol.

4
The sign string immediately succeeds the currency_symbol.

2: Routines
localtime()

745

L

The implementation behaves as if no library function calls localeconv().

The localeconv() routine returns a pointer to the filled-in object. The structure pointed to
by the return value is not modified by the program, but may be overwritten by a
subsequent call to localeconv(). In addition, calls to setlocale() with categories LC_ALL,
LC_MONETARY, or LC_NUMERIC may overwrite the contents of the structure.

INCLUDE FILES locale.h, limits.h

RETURNS A pointer to the structure lconv.

SEE ALSO ansiLocale

localtime()

NAME localtime() – convert calendar time into broken-down time (ANSI)

SYNOPSIS struct tm *localtime

(

const time_t * timer /* calendar time in seconds */

)

DESCRIPTION This routine converts the calendar time pointed to by timer into broken-down time,
expressed as local time.

This routine is not reentrant. For a reentrant version, see localtime_r().

INCLUDE FILES time.h

RETURNS A pointer to a tm structure containing the local broken-down time.

SEE ALSO ansiTime

VxWorks OS Libraries API Reference, 5.5
localtime_r()

746

localtime_r()

NAME localtime_r() – convert calendar time into broken-down time (POSIX)

SYNOPSIS int localtime_r

(

const time_t * timer, /* calendar time in seconds */

struct tm * timeBuffer /* buffer for the broken-down time */

)

DESCRIPTION This routine converts the calendar time pointed to by timer into broken-down time,
expressed as local time. The broken-down time is stored in timeBuffer.

This routine is the POSIX re-entrant version of localtime().

INCLUDE FILES time.h

RETURNS OK.

SEE ALSO ansiTime

log()

NAME log() – compute a natural logarithm (ANSI)

SYNOPSIS double log

(

double x /* value to compute the natural logarithm of */

)

DESCRIPTION This routine returns the natural logarithm of x in double precision (IEEE double, 53 bits).

A domain error occurs if the argument is negative. A range error may occur if the
argument is zero.

INCLUDE FILES math.h

RETURNS The double-precision natural logarithm of x.

Special cases:
 If x < 0 (including -INF), it returns NaN with signal.
 If x is +INF, it returns x with no signal.

2: Routines
log2f()

747

L

 If x is 0, it returns -INF with signal.
 If x is NaN it returns x with no signal.

SEE ALSO ansiMath, mathALib

log2()

NAME log2() – compute a base-2 logarithm

SYNOPSIS double log2

(

double x /* value to compute the base-two logarithm of */

)

DESCRIPTION This routine returns the base-2 logarithm of x in double precision.

INCLUDE FILES math.h

RETURNS The double-precision base-2 logarithm of x.

SEE ALSO mathALib

log2f()

NAME log2f() – compute a base-2 logarithm

SYNOPSIS float log2f

(

float x /* value to compute the base-2 logarithm of */

)

DESCRIPTION This routine returns the base-2 logarithm of x in single precision.

INCLUDE FILES math.h

RETURNS The single-precision base-2 logarithm of x.

SEE ALSO mathALib

VxWorks OS Libraries API Reference, 5.5
log10()

748

log10()

NAME log10() – compute a base-10 logarithm (ANSI)

SYNOPSIS double log10

(

double x /* value to compute the base-10 logarithm of */

)

DESCRIPTION This routine returns the base 10 logarithm of x in double precision (IEEE double, 53 bits).

A domain error occurs if the argument is negative. A range error may if the argument is
zero.

INCLUDE FILES math.h

RETURNS The double-precision base-10 logarithm of x.

Special cases:
 If x < 0, log10() returns NaN with signal.
 if x is +INF, it returns x with no signal.
 if x is 0, it returns -INF with signal.
 if x is NaN it returns x with no signal.

SEE ALSO ansiMath, mathALib

log10f()

NAME log10f() – compute a base-10 logarithm (ANSI)

SYNOPSIS float log10f

(

float x /* value to compute the base-10 logarithm of */

)

DESCRIPTION This routine returns the base-10 logarithm of x in single precision.

INCLUDE FILES math.h

RETURNS The single-precision base-10 logarithm of x.

SEE ALSO mathALib

2: Routines
logFdAdd()

749

L

logf()

NAME logf() – compute a natural logarithm (ANSI)

SYNOPSIS float logf

(

float x /* value to compute the natural logarithm of */

)

DESCRIPTION This routine returns the logarithm of x in single precision.

INCLUDE FILES math.h

RETURNS The single-precision natural logarithm of x.

SEE ALSO mathALib

logFdAdd()

NAME logFdAdd() – add a logging file descriptor

SYNOPSIS STATUS logFdAdd

(

int fd /* file descriptor for additional logging */

/* device */

)

DESCRIPTION This routine adds to the log file descriptor list another file descriptor fd to which messages
will be logged. The file descriptor must be a valid open file descriptor.

RETURNS OK, or ERROR if the allowable number of additional logging file descriptors (5) is
exceeded.

SEE ALSO logLib, logFdDelete()

VxWorks OS Libraries API Reference, 5.5
logFdDelete()

750

logFdDelete()

NAME logFdDelete() – delete a logging file descriptor

SYNOPSIS STATUS logFdDelete

(

int fd /* file descriptor to stop using as logging */

/* device */

)

DESCRIPTION This routine removes from the log file descriptor list a logging file descriptor added by
logFdAdd(). The file descriptor is not closed; but is no longer used by the logging
facilities.

RETURNS OK, or ERROR if the file descriptor was not added with logFdAdd().

SEE ALSO logLib, logFdAdd()

logFdSet()

NAME logFdSet() – set the primary logging file descriptor

SYNOPSIS void logFdSet

(

int fd /* file descriptor to use as logging device */

)

DESCRIPTION This routine changes the file descriptor where messages from logMsg() are written,
allowing the log device to be changed from the default specified by logInit(). It first
removes the old file descriptor (if one had been previously set) from the log file descriptor
list, then adds the new fd.

The old logging file descriptor is not closed or affected by this call; it is simply no longer
used by the logging facilities.

RETURNS N/A

SEE ALSO logLib, logFdAdd(), logFdDelete()

2: Routines
loginEncryptInstall()

751

L

loginDefaultEncrypt()

NAME loginDefaultEncrypt() – default password encryption routine

SYNOPSIS STATUS loginDefaultEncrypt

(

char * in, /* input string */

char * out /* encrypted string */

)

DESCRIPTION This routine provides default encryption for login passwords. It employs a simple
encryption algorithm. It takes as arguments a string in and a pointer to a buffer out. The
encrypted string is then stored in the buffer.

The input strings must be at least 8 characters and no more than 40 characters.

If a more sophisticated encryption algorithm is needed, this routine can be replaced, as
long as the new encryption routine retains the same declarations as the default routine.
The utility vxencrypt in host/hostOs/bin should also be replaced by a host version of
encryptionRoutine. For more information, see the manual entry for loginEncryptInstall().

RETURNS OK, or ERROR if the password is invalid.

SEE ALSO loginLib, loginEncryptInstall(), vxencrypt

loginEncryptInstall()

NAME loginEncryptInstall() – install an encryption routine

SYNOPSIS void loginEncryptInstall

(

FUNCPTR rtn, /* function pointer to encryption routine */

int var /* argument to the encryption routine (unused) */

)

DESCRIPTION This routine allows the user to install a custom encryption routine. The custom routine rtn
must be of the following form:

STATUS encryptRoutine

(

char *password, /* string to encrypt */

VxWorks OS Libraries API Reference, 5.5
loginInit()

752

char *encryptedPassword /* resulting encryption */

)

When a custom encryption routine is installed, a host version of this routine must be
written to replace the tool vxencrypt() in host/hostOs/bin.

EXAMPLE The custom example above could be installed as follows:

#ifdef INCLUDE_SECURITY

loginInit (); /* initialize login table */

shellLoginInstall (loginPrompt, NULL); /* install shell security */

loginEncryptInstall (encryptRoutine, NULL); /* install encrypt routine */

#endif

RETURNS N/A

SEE ALSO loginLib, loginDefaultEncrypt(), vxencrypt

loginInit()

NAME loginInit() – initialize the login table

SYNOPSIS void loginInit (void)

DESCRIPTION This routine must be called to initialize the login data structure used by routines
throughout this module. If the configuration macro INCLUDE_SECURITY is defined, it is
called by usrRoot() in usrConfig.c, before any other routines in this module.

RETURNS N/A

SEE ALSO loginLib

2: Routines
loginPrompt()

753

L

logInit()

NAME logInit() – initialize message logging library

SYNOPSIS STATUS logInit

(

int fd, /* file descriptor to use as logging device */

int maxMsgs /* max. number of messages allowed in log queue */

)

DESCRIPTION This routine specifies the file descriptor to be used as the logging device and the number
of messages that can be in the logging queue. If more than maxMsgs are in the queue, they
will be discarded. A message is printed to indicate lost messages.

This routine spawns logTask(), the task-level portion of error logging.

This routine must be called before any other routine in logLib. This is done by the root
task, usrRoot(), in usrConfig.c.

RETURNS OK, or ERROR if a message queue could not be created or logTask() could not be
spawned.

SEE ALSO logLib

loginPrompt()

NAME loginPrompt() – display a login prompt and validate a user entry

SYNOPSIS STATUS loginPrompt

(

char * userName /* user name, ask if NULL or not provided */

)

DESCRIPTION This routine displays a login prompt and validates a user entry. If both user name and
password match with an entry in the login table, the user is then given access to the
VxWorks system. Otherwise, it prompts the user again.

All control characters are disabled during authentication except CTRL-D, which will
terminate the remote login session.

VxWorks OS Libraries API Reference, 5.5
loginStringSet()

754

RETURNS OK if the name and password are valid, or ERROR if there is an EOF or the routine times
out.

SEE ALSO loginLib

loginStringSet()

NAME loginStringSet() – change the login string

SYNOPSIS void loginStringSet

(

char * newString /* string to become new login prompt */

)

DESCRIPTION This routine changes the login prompt string to newString. The maximum string length is
80 characters.

RETURNS N/A

SEE ALSO loginLib

loginUserAdd()

NAME loginUserAdd() – add a user to the login table

SYNOPSIS STATUS loginUserAdd

(

char name[MAX_LOGIN_NAME_LEN+1], /* user name */

char passwd[80] /* user password */

)

DESCRIPTION This routine adds a user name and password entry to the login table. Note that what is
saved in the login table is the user name and the address of passwd, not the actual
password.

The length of user names should not exceed MAX_LOGIN_NAME_LEN, while the length of
passwords depends on the encryption routine used. For the default encryption routine,
passwords should be at least 8 characters long and no more than 40 characters.

2: Routines
loginUserDelete()

755

L

The procedure for adding a new user to login table is as follows:

The password of a user can be changed by first deleting the user entry, then adding the
user entry again with the new encrypted password.

EXAMPLE -> loginUserAdd "peter", "RRdRd9Qbyz"

value = 0 = 0x0

-> loginUserAdd "robin", "bSzyydqbSb"

value = 0 = 0x0

-> loginUserShow

User Name

=========

peter

robin

value = 0 = 0x0

->

RETURNS OK, or ERROR if the user name has already been entered.

SEE ALSO loginLib, vxencrypt

loginUserDelete()

NAME loginUserDelete() – delete a user entry from the login table

SYNOPSIS STATUS loginUserDelete

(

char * name, /* user name */

char * passwd /* user password */

)

DESCRIPTION This routine deletes an entry in the login table. Both the user name and password must be
specified to remove an entry from the login table.

RETURNS OK, or ERROR if the specified user or password is incorrect.

SEE ALSO loginLib

(1) Generate the encrypted password by invoking vxencrypt in host/hostOs/bin.
(2) Add a user by invoking loginUserAdd() in the VxWorks shell with the user name and

the encrypted password.

VxWorks OS Libraries API Reference, 5.5
loginUserShow()

756

loginUserShow()

NAME loginUserShow() – display the user login table

SYNOPSIS void loginUserShow (void)

DESCRIPTION This routine displays valid user names.

EXAMPLE -> loginUserShow ()

User Name

=========

peter

robin

value = 0 = 0x0

RETURNS N/A

SEE ALSO loginLib

loginUserVerify()

NAME loginUserVerify() – verify a user name and password in the login table

SYNOPSIS STATUS loginUserVerify

(

char * name, /* name of user */

char * passwd /* password of user */

)

DESCRIPTION This routine verifies a user entry in the login table.

RETURNS OK, or ERROR if the user name or password is not found.

SEE ALSO loginLib

2: Routines
logMsg()

757

L

logMsg()

NAME logMsg() – log a formatted error message

SYNOPSIS int logMsg

(

char * fmt, /* format string for print */

int arg1, /* first of six required args for fmt */

int arg2,

int arg3,

int arg4,

int arg5,

int arg6

)

DESCRIPTION This routine logs a specified message via the logging task. This routine’s syntax is similar
to printf() -- a format string is followed by arguments to format. However, logMsg()
takes a char * rather than a const char * and requires a fixed number of arguments (6).

The task ID of the caller is prepended to the specified message.

SPECIAL CONSIDERATIONS

Because logMsg() does not actually perform the output directly to the logging streams,
but instead queues the message to the logging task, logMsg() can be called from interrupt
service routines.

However, since the arguments are interpreted by the logTask() at the time of actual
logging, instead of at the moment when logMsg() is called, arguments to logMsg()
should not be pointers to volatile entities (e.g., dynamic strings on the caller stack).

logMsg() checks to see whether or not it is running in interrupt context. If it is, it will not
block. However, if invoked from a task, it can cause the task to block.

For more detailed information about the use of logMsg(), see the manual entry for
logLib.

EXAMPLE If the following code were executed by task 20:

{

name = "GRONK";

num = 123;

logMsg ("ERROR - name = %s, num = %d.\n", name, num, 0, 0, 0, 0);

}

the following error message would appear on the system log:

0x180400 (t20): ERROR - name = GRONK, num = 123.

VxWorks OS Libraries API Reference, 5.5
logout()

758

RETURNS The number of bytes written to the log queue, or EOF if the routine is unable to write a
message.

SEE ALSO logLib, printf(), logTask()

logout()

NAME logout() – log out of the VxWorks system

SYNOPSIS void logout (void)

DESCRIPTION This command logs out of the VxWorks shell. If a remote login is active (via rlogin or
telnet), it is stopped, and standard I/O is restored to the console.

SEE ALSO usrLib, rlogin(), telnet(), shellLogout(), VxWorks Programmer’s Guide: Target Shell

logTask()

NAME logTask() – message-logging support task

SYNOPSIS void logTask (void)

DESCRIPTION This routine prints the messages logged with logMsg(). It waits on a message queue and
prints the messages as they arrive on the file descriptor specified by logInit() (or a
subsequent call to logFdSet() or logFdAdd()).

This task is spawned by logInit().

RETURNS N/A

SEE ALSO logLib, logMsg()

2: Routines
ls()

759

L

longjmp()

NAME longjmp() – perform non-local goto by restoring saved environment (ANSI)

SYNOPSIS void longjmp

(

jmp_buf env,

int val

)

DESCRIPTION This routine restores the environment saved by the most recent invocation of setjmp()
that used the same jmp_buf specified in the argument env. The restored environment
includes the program counter, thus transferring control to the setjmp() caller.

If there was no corresponding setjmp() call, or if the call containing the corresponding
setjmp() has already returned, the behavior of longjmp() is unpredictable.

All accessible objects in memory retain their values as of the time longjmp() was called,
with one exception: local objects on the C stack that are not declared volatile, and have
been changed between the setjmp() invocation and the longjmp() call, have
unpredictable values.

The longjmp() function executes correctly in contexts of signal handlers and any of their
associated functions (but not from interrupt handlers).

WARNING: Do not use longjmp() or setjmp() from an ISR.

RETURNS This routine does not return to its caller. Instead, it causes setjmp() to return val, unless
val is 0; in that case setjmp() returns 1.

SEE ALSO ansiSetjmp, setjmp()

ls()

NAME ls() – generate a brief listing of a directory

SYNOPSIS STATUS ls

(

char * dirName, /* name of dir to list */

BOOL doLong /* switch on details */

)

VxWorks OS Libraries API Reference, 5.5
lseek()

760

DESCRIPTION This function is simply a front-end for dirList(), intended for brevity and backward
compatibility. It produces a list of files and directories, without details such as file size
and date, and without recursion into subdirectories.

dirName is a name of a directory or file, and may contain wildcards. doLong is provided for
backward compatibility.

NOTE: This is a target resident function, which manipulates the target I/O system. It must
be preceded with the @ letter if executed from the Tornado Shell (windsh), which has a
built-in command of the same name that operates on the Host’s I/O system.

RETURNS OK or ERROR.

SEE ALSO usrFsLib, dirList()

lseek()

NAME lseek() – set a file read/write pointer

SYNOPSIS int lseek

(

int fd, /* file descriptor */

long offset, /* new byte offset to seek to */

int whence /* relative file position */

)

DESCRIPTION This routine sets the file read/write pointer of file fd to offset. The argument whence, which
affects the file position pointer, has three values:

This routine calls ioctl() with functions FIOWHERE, FIONREAD, and FIOSEEK.

RETURNS The new offset from the beginning of the file, or ERROR.

SEE ALSO ioLib

SEEK_SET (0) - set to offset
SEEK_CUR (1) - set to current position plus offset
SEEK_END (2) - set to the size of the file plus offset

2: Routines
lstAdd()

761

L

lsr()

NAME lsr() – list the contents of a directory and any of its subdirectories

SYNOPSIS STATUS lsr

(

char * dirName /* name of dir to list */

)

DESCRIPTION This function is simply a front-end for dirList(), intended for brevity and backward
compatibility. It produces a list of files and directories, without details such as file size
and date, with recursion into subdirectories.

dirName is a name of a directory or file, and may contain wildcards.

RETURNS OK or ERROR.

SEE ALSO usrFsLib, dirList()

lstAdd()

NAME lstAdd() – add a node to the end of a list

SYNOPSIS void lstAdd

(

LIST * pList, /* pointer to list descriptor */

NODE * pNode /* pointer to node to be added */

)

DESCRIPTION This routine adds a specified node to the end of a specified list.

RETURNS N/A

SEE ALSO lstLib

VxWorks OS Libraries API Reference, 5.5
lstConcat()

762

lstConcat()

NAME lstConcat() – concatenate two lists

SYNOPSIS void lstConcat

(

LIST * pDstList, /* destination list */

LIST * pAddList /* list to be added to dstList */

)

DESCRIPTION This routine concatenates the second list to the end of the first list. The second list is left
empty. Either list (or both) can be empty at the beginning of the operation.

RETURNS N/A

SEE ALSO lstLib

lstCount()

NAME lstCount() – report the number of nodes in a list

SYNOPSIS int lstCount

(

LIST * pList /* pointer to list descriptor */

)

DESCRIPTION This routine returns the number of nodes in a specified list.

RETURNS The number of nodes in the list.

SEE ALSO lstLib

2: Routines
lstExtract()

763

L

lstDelete()

NAME lstDelete() – delete a specified node from a list

SYNOPSIS void lstDelete

(

LIST * pList, /* pointer to list descriptor */

NODE * pNode /* pointer to node to be deleted */

)

DESCRIPTION This routine deletes a specified node from a specified list.

RETURNS N/A

SEE ALSO lstLib

lstExtract()

NAME lstExtract() – extract a sublist from a list

SYNOPSIS void lstExtract

(

LIST * pSrcList, /* pointer to source list */

NODE * pStartNode, /* first node in sublist to be extracted */

NODE * pEndNode, /* last node in sublist to be extracted */

LIST * pDstList /* ptr to list where to put extracted list */

)

DESCRIPTION This routine extracts the sublist that starts with pStartNode and ends with pEndNode from a
source list. It places the extracted list in pDstList.

RETURNS N/A

SEE ALSO lstLib

VxWorks OS Libraries API Reference, 5.5
lstFind()

764

lstFind()

NAME lstFind() – find a node in a list

SYNOPSIS int lstFind

(

LIST * pList, /* list in which to search */

NODE * pNode /* pointer to node to search for */

)

DESCRIPTION This routine returns the node number of a specified node (the first node is 1).

RETURNS The node number, or ERROR if the node is not found.

SEE ALSO lstLib

lstFirst()

NAME lstFirst() – find first node in list

SYNOPSIS NODE *lstFirst

(

LIST * pList /* pointer to list descriptor */

)

DESCRIPTION This routine finds the first node in a linked list.

RETURNS A pointer to the first node in a list, or NULL if the list is empty.

SEE ALSO lstLib

2: Routines
lstGet()

765

L

lstFree()

NAME lstFree() – free up a list

SYNOPSIS void lstFree

(

LIST * pList /* list for which to free all nodes */

)

DESCRIPTION This routine turns any list into an empty list. It also frees up memory used for nodes.

RETURNS N/A

SEE ALSO lstLib, free()

lstGet()

NAME lstGet() – delete and return the first node from a list

SYNOPSIS NODE *lstGet

(

LIST * pList /* ptr to list from which to get node */

)

DESCRIPTION This routine gets the first node from a specified list, deletes the node from the list, and
returns a pointer to the node gotten.

RETURNS A pointer to the node gotten, or NULL if the list is empty.

SEE ALSO lstLib

VxWorks OS Libraries API Reference, 5.5
lstInit()

766

lstInit()

NAME lstInit() – initialize a list descriptor

SYNOPSIS void lstInit

(

LIST * pList /* ptr to list descriptor to be initialized */

)

DESCRIPTION This routine initializes a specified list to an empty list.

RETURNS N/A

SEE ALSO lstLib

lstInsert()

NAME lstInsert() – insert a node in a list after a specified node

SYNOPSIS void lstInsert

(

LIST * pList, /* pointer to list descriptor */

NODE * pPrev, /* pointer to node after which to insert */

NODE * pNode /* pointer to node to be inserted */

)

DESCRIPTION This routine inserts a specified node in a specified list. The new node is placed following
the list node pPrev. If pPrev is NULL, the node is inserted at the head of the list.

RETURNS N/A

SEE ALSO lstLib

2: Routines
lstLibInit()

767

L

lstLast()

NAME lstLast() – find the last node in a list

SYNOPSIS NODE *lstLast

(

LIST * pList /* pointer to list descriptor */

)

DESCRIPTION This routine finds the last node in a list.

RETURNS A pointer to the last node in the list, or NULL if the list is empty.

SEE ALSO lstLib

lstLibInit()

NAME lstLibInit() – initializes lstLib module

SYNOPSIS void lstLibInit (void)

DESCRIPTION This routine pulls lstLib into the vxWorks image.

RETURNS N/A

SEE ALSO lstLib

VxWorks OS Libraries API Reference, 5.5
lstNext()

768

lstNext()

NAME lstNext() – find the next node in a list

SYNOPSIS NODE *lstNext

(

NODE * pNode /* ptr to node whose successor is to be found

*/

)

DESCRIPTION This routine locates the node immediately following a specified node.

RETURNS A pointer to the next node in the list, or NULL if there is no next node.

SEE ALSO lstLib

lstNStep()

NAME lstNStep() – find a list node nStep steps away from a specified node

SYNOPSIS NODE *lstNStep

(

NODE * pNode, /* the known node */

int nStep /* number of steps away to find */

)

DESCRIPTION This routine locates the node nStep steps away in either direction from a specified node. If
nStep is positive, it steps toward the tail. If nStep is negative, it steps toward the head. If
the number of steps is out of range, NULL is returned.

RETURNS A pointer to the node nStep steps away, or NULL if the node is out of range.

SEE ALSO lstLib

2: Routines
lstPrevious()

769

L

lstNth()

NAME lstNth() – find the Nth node in a list

SYNOPSIS NODE *lstNth

(

LIST * pList, /* pointer to list descriptor */

int nodenum /* number of node to be found */

)

DESCRIPTION This routine returns a pointer to the node specified by a number nodenum where the first
node in the list is numbered 1. Note that the search is optimized by searching forward
from the beginning if the node is closer to the head, and searching back from the end if it
is closer to the tail.

RETURNS A pointer to the Nth node, or NULL if there is no Nth node.

SEE ALSO lstLib

lstPrevious()

NAME lstPrevious() – find the previous node in a list

SYNOPSIS NODE *lstPrevious

(

NODE * pNode /* ptr to node whose predecessor is to be found */

)

DESCRIPTION This routine locates the node immediately preceding the node pointed to by pNode.

RETURNS A pointer to the previous node in the list, or NULL if there is no previous node.

SEE ALSO lstLib

VxWorks OS Libraries API Reference, 5.5
m()

770

m()

NAME m() – modify memory

SYNOPSIS void m

(

void * adrs, /* address to change */

int width /* width of unit to be modified (1, 2, 4, 8) */

)

DESCRIPTION This command prompts the user for modifications to memory in byte, short word, or long
word specified by width, starting at the specified address. It prints each address and the
current contents of that address, in turn. If adrs or width is zero or absent, it defaults to the
previous value. The user can respond in one of several ways:

RETURN
Do not change this address, but continue, prompting at the next address.

number
Set the content of this address to number.

. (dot)
Do not change this address, and quit.

EOF
Do not change this address, and quit.

All numbers entered and displayed are in hexadecimal.

RETURNS N/A

SEE ALSO usrLib, mRegs(), VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s
Guide: Shell

m2Delete()

NAME m2Delete() – delete all the MIB-II library groups

SYNOPSIS STATUS m2Delete (void)

DESCRIPTION This routine cleans up the state associated with the MIB-II library.

RETURNS OK (always).

SEE ALSO m2Lib, m2SysDelete(), m2TcpDelete(), m2UdpDelete(), m2IcmpDelete(),
m2IfDelete(), m2IpDelete()

2: Routines
m2IcmpGroupInfoGet()

771

M

m2IcmpDelete()

NAME m2IcmpDelete() – delete all resources used to access the ICMP group

SYNOPSIS STATUS m2IcmpDelete (void)

DESCRIPTION This routine frees all the resources allocated at the time the ICMP group was initialized.
The ICMP group should not be accessed after this routine has been called.

RETURNS OK, always.

SEE ALSO m2IcmpLib, m2IcmpInit(), m2IcmpGroupInfoGet()

m2IcmpGroupInfoGet()

NAME m2IcmpGroupInfoGet() – get the MIB-II ICMP-group global variables

SYNOPSIS STATUS m2IcmpGroupInfoGet

(

M2_ICMP * pIcmpInfo /* pointer to the ICMP group structure */

)

DESCRIPTION This routine fills in the ICMP structure at pIcmpInfo with the MIB-II ICMP scalar variables.

RETURNS OK, or ERROR if the input parameter pIcmpInfo is invalid.

ERRNO S_m2Lib_INVALID_PARAMETER

SEE ALSO m2IcmpLib, m2IcmpInit(), m2IcmpDelete()

VxWorks OS Libraries API Reference, 5.5
m2IcmpInit()

772

m2IcmpInit()

NAME m2IcmpInit() – initialize MIB-II ICMP-group access

SYNOPSIS STATUS m2IcmpInit (void)

DESCRIPTION This routine allocates the resources needed to allow access to the MIB-II ICMP-group
variables. This routine must be called before any ICMP variables can be accessed.

RETURNS OK, always.

SEE ALSO m2IcmpLib, m2IcmpGroupInfoGet(), m2IcmpDelete()

m2If8023PacketCount()

NAME m2If8023PacketCount() – increment the packet counters for an 802.3 device

SYNOPSIS STATUS m2If8023PacketCount

(

M2_ID * pId, /* The pointer to the device M2_ID object */

UINT ctrl, /* Update In or Out counters */

UCHAR * pPkt, /* The incoming/outgoing packet */

ULONG pktLen /* Length of the packet */

)

DESCRIPTION This function is used to update basic interface counters for a packet. The ctrl argument
specifies whether the packet is being sent or just received (M2_PACKET_IN or
M2_PACKET_OUT). This function only works for 802.3 devices as it understand the
Ethernet packet format. The following counters are updated:

- ifInOctets
- ifInUcastPkts
- ifInNUcastPkts
- ifOutOctets
- ifOutUcastPkts
- ifOutNUcastPkts
- ifInMulticastPkts
- ifInBroadcastPkts

2: Routines
m2IfAlloc()

773

M

This function should be called right after the netMblkToBufCopy() function has been
completed. The first 6 bytes in the resulting buffer must contain the destination MAC
address and the second 6 bytes of the buffer must contain the source MAC address.

The type of MAC address (i.e., broadcast, multicast, or unicast) is determined by the
following:

RETURNS ERROR, if the M2_ID is NULL, or the ctrl is invalid; OK, if the counters were updated.

SEE ALSO m2IfLib

m2IfAlloc()

NAME m2IfAlloc() – allocate the structure for the interface table

SYNOPSIS M2_ID * m2IfAlloc

(

ULONG ifType, /* If type of the interface */

UCHAR * pEnetAddr, /* Physical address of interface */

ULONG addrLen, /* Address length */

ULONG mtuSize, /* MTU of interface */

ULONG speed, /* Speed of the interface */

char * pName, /* Name of the device */

int unit /* Unit number of the device */

)

- ifOutMulticastPkts
- ifOutBroadcastPkts
- ifHCInOctets
- ifHCInUcastPkts
- ifHCOutOctets
- ifHCOutUcastPkts
- ifHCInMulticastPkts
- ifHCInBroadcastPkts
- ifHCOutMulticastPkts
- ifHCOutBroadcastPkts
- ifCounterDiscontinuityTime

broadcast address: ff:ff:ff:ff:ff:ff
multicast address: first bit is set
unicast address: any other address not matching the above

VxWorks OS Libraries API Reference, 5.5
m2IfCommonValsGet()

774

DESCRIPTION This routine is called by the driver during initialization of the interface. The memory for
the interface table is allocated here. We also set the default update routines in the M2_ID
struct. These fields can later be overloaded using the installed routines in the M2_ID. Once
this function returns, it is the driver’s responsibility to set the pMib2Tbl pointer in the
END object to the new M2_ID.

When this call returns, the calling routine must set the END_MIB_2233 bit of the flags field
in the END object.

RETURNS Pointer to the M2_ID structure that was allocated.

SEE ALSO m2IfLib

m2IfCommonValsGet()

NAME m2IfCommonValsGet() – get the common values

SYNOPSIS void m2IfCommonValsGet

(

M2_DATA * pM2Data, /* The requested struct */

M2_IFINDEX * pIfIndexEntry /* The ifindex node */

)

DESCRIPTION This function updates the requested struct with all the data that is independent of the
driver ioctl. This information can be obtained from the ifnet structures.

RETURNS n/a

SEE ALSO m2IfLib

2: Routines
m2IfCtrUpdateRtnInstall()

775

M

m2IfCounterUpdate()

NAME m2IfCounterUpdate() – increment interface counters

SYNOPSIS STATUS m2IfCounterUpdate

(

M2_ID * pId, /* The pointer to the device M2_ID object */

UINT ctrId, /* Counter to update */

ULONG value /* Amount to update the counter by */

)

DESCRIPTION This function is used to directly update an interface counter. The counter is specified by
ctrId and the amount to increment it is specified by value. If the counter would roll over
then the ifCounterDiscontinuityTime is updated with the current system uptime.

RETURNS ERROR if the M2_ID is NULL, OK if the counter was updated.

SEE ALSO m2IfLib

m2IfCtrUpdateRtnInstall()

NAME m2IfCtrUpdateRtnInstall() – install an interface counter update routine

SYNOPSIS STATUS m2IfCtrUpdateRtnInstall

(

M2_ID * pId,

M2_CTR_UPDATE_RTN pRtn

)

DESCRIPTION This function installs a routine in the M2_ID. This routine is able to update a single
specified interface counter.

RETURNS ERROR if the M2_ID is NULL, OK if the routine was installed.

SEE ALSO m2IfLib

VxWorks OS Libraries API Reference, 5.5
m2IfDefaultValsGet()

776

m2IfDefaultValsGet()

NAME m2IfDefaultValsGet() – get the default values for the counters

SYNOPSIS void m2IfDefaultValsGet

(

M2_DATA * pM2Data, /* The requested entry */

M2_IFINDEX * pIfIndexEntry /* The ifindex node */

)

DESCRIPTION This function fills the given struct with the default values as specified in the RFC. We will
enter this routine only if the ioctl to the driver fails.

RETURNS n/a

SEE ALSO m2IfLib

m2IfDelete()

NAME m2IfDelete() – delete all resources used to access the interface group

SYNOPSIS STATUS m2IfDelete (void)

DESCRIPTION This routine frees all the resources allocated at the time the group was initialized. The
interface group should not be accessed after this routine has been called.

RETURNS OK, always.

SEE ALSO m2IfLib, m2IfInit(), m2IfGroupInfoGet(), m2IfTblEntryGet(), m2IfTblEntrySet()

2: Routines
m2IfGenericPacketCount()

777

M

m2IfFree()

NAME m2IfFree() – free an interface data structure

SYNOPSIS STATUS m2IfFree

(

M2_ID * pId /* pointer to the driver’s M2_ID object */

)

DESCRIPTION This routine frees the given M2_ID. Note if the driver is not an RFC 2233 driver then the
M2_ID is NULL and this function simply returns.

RETURNS OK if successful, ERROR otherwise

SEE ALSO m2IfLib

m2IfGenericPacketCount()

NAME m2IfGenericPacketCount() – increment the interface packet counters

SYNOPSIS STATUS m2IfGenericPacketCount

(

M2_ID * pId, /* The pointer to the device M2_ID object */

UINT ctrl, /* Update In or Out counters */

UCHAR * pPkt, /* The incoming/outgoing packet */

ULONG pktLen /* Length of the packet */

)

DESCRIPTION This function updates the basic interface counters for a packet. It knows nothing of the
underlying media. Thus, so only the ifInOctets, ifHCInOctets, ifOutOctets,
ifHCOutOctets, and ifCounterDiscontinuityTime variables are incremented. The ctrl
argument specifies whether the packet is being sent or just received (M2_PACKET_IN or
M2_PACKET_OUT).

RETURNS ERROR if the M2_ID is NULL, OK if the counters were updated.

SEE ALSO m2IfLib

VxWorks OS Libraries API Reference, 5.5
m2IfGroupInfoGet()

778

m2IfGroupInfoGet()

NAME m2IfGroupInfoGet() – get the MIB-II interface-group scalar variables

SYNOPSIS STATUS m2IfGroupInfoGet

(

M2_INTERFACE * pIfInfo /* pointer to interface group structure */

)

DESCRIPTION This routine fills the interface-group structure at pIfInfo with the values of MIB-II
interface-group global variables.

RETURNS OK, or ERROR if pIfInfo is not a valid pointer.

ERRNO S_m2Lib_INVALID_PARAMETER

SEE ALSO m2IfLib, m2IfInit(), m2IfTblEntryGet(), m2IfTblEntrySet(), m2IfDelete()

m2IfInit()

NAME m2IfInit() – initialize MIB-II interface-group routines

SYNOPSIS STATUS m2IfInit

(

FUNCPTR pTrapRtn, /* pointer to user trap generator */

void * pTrapArg /* pointer to user trap generator argument */

)

DESCRIPTION This routine allocates the resources needed to allow access to the MIB-II interface-group
variables. This routine must be called before any interface variables can be accessed. The
input parameter pTrapRtn is an optional pointer to a user-supplied SNMP trap generator.
The input parameter pTrapArg is an optional argument to the trap generator. Only one
trap generator is supported.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call m2IfInit() from within the kernel protection domain
only, and the data referenced in the pTrapRtn and pTrapArg parameters must reside in
the kernel protection domain. This restriction does not apply to non-AE versions of
VxWorks.

2: Routines
m2IfRcvAddrEntryGet()

779

M

RETURNS OK, if successful; ERROR, if an error occurred.

ERRNO S_m2Lib_CANT_CREATE_IF_SEM

SEE ALSO m2IfLib, m2IfGroupInfoGet(), m2IfTblEntryGet(), m2IfTblEntrySet(), m2IfDelete()

m2IfPktCountRtnInstall()

NAME m2IfPktCountRtnInstall() – install an interface packet counter routine

SYNOPSIS STATUS m2IfPktCountRtnInstall

(

M2_ID * pId,

M2_PKT_COUNT_RTN pRtn

)

DESCRIPTION This function installs a routine in the M2_ID. This routine is a packet counter which is able
to update all the interface counters.

RETURNS ERROR if the M2_ID is NULL, OK if the routine was installed.

SEE ALSO m2IfLib

m2IfRcvAddrEntryGet()

NAME m2IfRcvAddrEntryGet() – get the rcvAddress table entries for a given address

SYNOPSIS STATUS m2IfRcvAddrEntryGet

(

int search, /* exact search or next search */

int * pIndex, /* pointer to the ifIndex */

M2_IFRCVADDRTBL * pIfReqEntry /* struct for the values */

)

DESCRIPTION This function returns the exact or the next value in the ifRcvAddressTable based on the
value of the search parameter. In order to identify the appropriate entry, this function
needs two identifiers - the ifIndex of the interface and the physical address for which the
status or the type is being requested. For a M2_EXACT_VALUE search, this function returns
the status and the type of the physical address in the instance. For a M2_NEXT_VALUE

VxWorks OS Libraries API Reference, 5.5
m2IfRcvAddrEntrySet()

780

search, it returns the type and status of the lexicographic successor of the physical address
seen in the instance.

RETURNS OK, or ERROR if the input parameter is not specified, an interface is no longer valid, or the
interface index is incorrect.

ERRNO S_m2Lib_INVALID_PARAMETER
S_m2Lib_ENTRY_NOT_FOUND
S_m2Lib_IF_CNFG_CHANGED

SEE ALSO m2IfLib

m2IfRcvAddrEntrySet()

NAME m2IfRcvAddrEntrySet() – modify the entries of the rcvAddressTable

SYNOPSIS STATUS m2IfRcvAddrEntrySet

(

int varToSet, /* entries that need to be modified */

int index, /* search type */

M2_IFRCVADDRTBL * pIfReqEntry /* struct containing the new values */

)

DESCRIPTION This function modifies the status and type fields of a given receive address associated
with a given interface. varToSet identifies the fields for which the change is being
requested. We can also add multicast addresses by creating a new row in the table. The
physical address is stripped from the instance value of the SNMP request. This routine
does not allow the deletion of a unicast address. Neither does it allow the unicast address
to be modified or created.

RETURNS OK, or ERROR if the input parameter is not specified, an interface is no longer valid, the
interface index is incorrect, or the ioctl() command to the interface fails.

ERRNO S_m2Lib_INVALID_PARAMETER
S_m2Lib_ENTRY_NOT_FOUND
S_m2Lib_IF_CNFG_CHANGED

SEE ALSO m2IfLib, m2IfInit(), m2IfGroupInfoGet(), m2IfTblEntryGet(), m2IfDelete()

2: Routines
m2IfStackEntrySet()

781

M

m2IfStackEntryGet()

NAME m2IfStackEntryGet() – get a MIB-II interface-group table entry

SYNOPSIS STATUS m2IfStackEntryGet

(

int search, /* M2_EXACT_VALUE or M2_NEXT_VALUE */

int * pHighIndex, /* the higher layer’s ifIndex */

M2_IFSTACKTBL * pIfReqEntry /* pointer to the requested entry */

)

DESCRIPTION This routine maps the given high and low indexes to the interfaces in the AVL tree. Using
the high and low indexes, we retrieve the nodes in question and walk through their linked
lists to get to the right relation. Once we get to the correct node, we can return the values
based on the M2_EXACT_VALUE and the M2_NEXT_VALUE searches.

RETURNS OK, or ERROR if the input parameter is not specified, or a match is not found.

ERRNO S_m2Lib_INVALID_PARAMETER
S_m2Lib_ENTRY_NOT_FOUND

SEE ALSO m2IfLib

m2IfStackEntrySet()

NAME m2IfStackEntrySet() – modify the status of a relationship

SYNOPSIS STATUS m2IfStackEntrySet

(

int highIndex, /* The higher layer’s ifIndex */

M2_IFSTACKTBL * pIfReqEntry /* The requested entry */

)

DESCRIPTION This routine selects the interfaces specified in the input parameters pIfReqEntry and
highIndex and sets the interface’s status to the requested state.

RETURNS OK, or ERROR if the input parameter is not specified, an interface is no longer valid, or the
interface index is incorrect.

VxWorks OS Libraries API Reference, 5.5
m2IfStackTblUpdate()

782

ERRNO S_m2Lib_INVALID_PARAMETER
S_m2Lib_ENTRY_NOT_FOUND
S_m2Lib_IF_CNFG_CHANGED

SEE ALSO m2IfLib

m2IfStackTblUpdate()

NAME m2IfStackTblUpdate() – update the relationship between the sub-layers

SYNOPSIS STATUS m2IfStackTblUpdate

(

UINT lowerIndex, /* The ifIndex of the lower sub-layer */

UINT higherIndex, /* The ifIndex of the higher sub-layer */

int action /* insert or remove */

)

DESCRIPTION This function must be called to setup the relationship between the ifIndex values for each
sub-layer. This information is required to support the ifStackTable for RFC 2233. Using
this data, we can easily determine which sub-layer runs on top of which other.

action is either M2_STACK_TABLE_INSERT or M2_STACK_TABLE_REMOVE.

Each AVL node keeps a linked list of all the layers that are directly beneath it. Thus by
walking through the AVL nodes in an orderly way, we can understand the relationships
between all the interfaces.

RETURNS OK upon successful addition
ERROR otherwise.

SEE ALSO m2IfLib

2: Routines
m2IfTblEntryGet()

783

M

m2IfTableUpdate()

NAME m2IfTableUpdate() – insert or remove an entry in the ifTable

SYNOPSIS STATUS m2IfTableUpdate

(

struct ifNet * pIfNet,

UINT status, /* attaching or detaching */

int (* if_ioctl) (struct socket*,u_long,caddr_t),

/* protocol-specific ioctl or null for default (ethernet) */

STATUS (* addr_get) (struct ifnet* , M2_IFINDEX*)

/* func to grab the interface’s addrs, null */

/* for default (ethernet) */

)

DESCRIPTION This routine is called by if_attach and if_detach to insert/remove an entry from the local
m2IfLib ifTable. The status can be either M2_IF_TABLE_INSERT or
M2_IF_TABLE_REMOVE. The ifIndex that is searched for in the AVL tree is specified in
given the ifnet struct. if_ioctl is a function pointer to change the flags on the interface.
addr_get is a function pointer to add the interface’s addresses to ifRcvAddressTable.
Ethernet interfaces can use NULL for both function pointers, other interfaces will need to
pass an appropriate function.

RETURNS ERROR if entry does not exist, OK if the entry was deleted

SEE ALSO m2IfLib

m2IfTblEntryGet()

NAME m2IfTblEntryGet() – get a MIB-II interface-group table entry

SYNOPSIS STATUS m2IfTblEntryGet

(

int search, /* M2_EXACT_VALUE or M2_NEXT_VALUE */

void * pIfReqEntry /* pointer to requested interface entry */

)

DESCRIPTION This routine maps the MIB-II interface index to the system’s internal interface index. The
internal representation is in the form of a balanced AVL tree indexed by ifIndex of the
interface. The search parameter is set to either M2_EXACT_VALUE or M2_NEXT_VALUE; for

VxWorks OS Libraries API Reference, 5.5
m2IfTblEntrySet()

784

a discussion of its use, see the manual entry for m2Lib. The interface table values are
returned in a structure of type M2_DATA, which is passed as the second argument to this
routine.

RETURNS OK, or ERROR if the input parameter is not specified, or a match is not found.

ERRNO S_m2Lib_INVALID_PARAMETER
S_m2Lib_ENTRY_NOT_FOUND

SEE ALSO m2IfLib, m2Lib, m2IfInit(), m2IfGroupInfoGet(), m2IfTblEntrySet(), m2IfDelete()

m2IfTblEntrySet()

NAME m2IfTblEntrySet() – set the state of a MIB-II interface entry to UP or DOWN

SYNOPSIS STATUS m2IfTblEntrySet

(

void * pIfReqEntry /* pointer to requested entry to change */

)

DESCRIPTION This routine selects the interface specified in the input parameter pIfReqEntry and sets the
interface parameters to the requested state. It is the responsibility of the calling routine to
set the interface index, and to make sure that the state specified in the ifAdminStatus field
of the structure at pIfTblEntry is a valid MIB-II state, up(1) or down(2).

The fields that can be modified by this routine are the following: ifAdminStatus, ifAlias,
ifLinkUpDownTrapEnable and ifName.

RETURNS OK, or ERROR if the input parameter is not specified, an interface is no longer valid, the
interface index is incorrect, or the ioctl() command to the interface fails.

ERRNO S_m2Lib_INVALID_PARAMETER
S_m2Lib_ENTRY_NOT_FOUND
S_m2Lib_IF_CNFG_CHANGED

SEE ALSO m2IfLib, m2IfInit(), m2IfGroupInfoGet(), m2IfTblEntryGet(), m2IfDelete()

2: Routines
m2IfVariableUpdate()

785

M

m2IfVariableUpdate()

NAME m2IfVariableUpdate() – update the contents of an interface non-counter object

SYNOPSIS STATUS m2IfVariableUpdate

(

M2_ID * pId, /* The pointer to the device M2_ID object */

UINT varId, /* Variable to update */

caddr_t pData /* Data to use */

)

DESCRIPTION This function is used to update an interface variable. The variable is specified by varId
and the data to use is specified by pData. Note that different variable expect different
types of data. Here is a list of the variables and the type of data expected. Therefore, pData
will be cast to the type listed below for each variable.

RETURNS ERROR, if the M2_ID is NULL; OK, if the variable was updated.

SEE ALSO m2IfLib

Variable Cast to Type

ifDescr char *
ifType UINT
ifMtu ULONG
ifSpeed ULONG
ifPhysAddress M2_PHYADDR *
ifAdminStatus ULONG
ifOperStatus ULONG
ifLastChange ULONG
ifOutQLen ULONG
ifSpecific M2_OBJECTID *
ifName char *
ifLinkUpDownTrapEnable UINT
ifHighSpeed ULONG
ifPromiscuousMode UINT
ifConnectorPresent UINT
ifAlias char *

VxWorks OS Libraries API Reference, 5.5
m2IfVarUpdateRtnInstall()

786

m2IfVarUpdateRtnInstall()

NAME m2IfVarUpdateRtnInstall() – install an interface variable update routine

SYNOPSIS STATUS m2IfVarUpdateRtnInstall

(

M2_ID * pId,

M2_VAR_UPDATE_RTN pRtn

)

DESCRIPTION This function installs a routine in the M2_ID. This routine is able to update a single
specified interface variable.

RETURNS ERROR if the M2_ID is NULL, OK if the routine was installed.

SEE ALSO m2IfLib

m2Init()

NAME m2Init() – initialize the SNMP MIB-2 library

SYNOPSIS STATUS m2Init

(

char * pMib2SysDescr, /* sysDescr */

char * pMib2SysContact, /* sysContact */

char * pMib2SysLocation, /* sysLocation */

M2_OBJECTID * pMib2SysObjectId, /* sysObjectID */

FUNCPTR pTrapRtn, /* link up/down -trap routine */

void * pTrapArg, /* trap routine arg */

int maxRouteTableSize /* max size of routing table */

)

DESCRIPTION This routine initializes the MIB-2 library by calling the initialization routines for each
MIB-2 group. The parameters pMib2SysDescrpMib2SysContact, pMib2SysLocation, and
pMib2SysObjectId are passed directly to m2SysInit(); pTrapRtn and pTrapArg are passed
directly to m2IfInit(); and maxRouteTableSize is passed to m2IpInit().

RETURNS OK if successful, otherwise ERROR.

SEE ALSO m2Lib, m2SysInit(), m2TcpInit(), m2UdpInit(), m2IcmpInit(), m2IfInit(), m2IpInit()

2: Routines
m2IpAtransTblEntryGet()

787

M

m2IpAddrTblEntryGet()

NAME m2IpAddrTblEntryGet() – get an IP MIB-II address entry

SYNOPSIS STATUS m2IpAddrTblEntryGet

(

int search, /* M2_EXACT_VALUE or M2_NEXT_VALUE */

M2_IPADDRTBL * pIpAddrTblEntry /* ptr to requested IP address entry */

)

DESCRIPTION This routine traverses the IP address table and does an M2_EXACT_VALUE or a
M2_NEXT_VALUE search based on the search parameter. The calling routine is responsible
for supplying a valid MIB-II entry index in the input structure pIpAddrTblEntry. The index
is the local IP address. The first entry in the table is retrieved by doing a NEXT search
with the index field set to zero.

RETURNS OK, ERROR if the input parameter is not specified, or a match is not found.

ERRNO S_m2Lib_INVALID_PARAMETER
S_m2Lib_ENTRY_NOT_FOUND

SEE ALSO m2IpLib, m2Lib, m2IpInit(), m2IpGroupInfoGet(), m2IpGroupInfoSet(),
m2IpAtransTblEntrySet(), m2IpRouteTblEntryGet(), m2IpRouteTblEntrySet(),
m2IpDelete()

m2IpAtransTblEntryGet()

NAME m2IpAtransTblEntryGet() – get a MIB-II ARP table entry

SYNOPSIS STATUS m2IpAtransTblEntryGet

(

int search, /* M2_EXACT_VALUE or M2_NEXT_VALUE */

M2_IPATRANSTBL * pReqIpAtEntry /* ptr to the requested ARP entry */

)

DESCRIPTION This routine traverses the ARP table and does an M2_EXACT_VALUE or a
M2_NEXT_VALUE search based on the search parameter. The calling routine is responsible
for supplying a valid MIB-II entry index in the input structure pReqIpatEntry. The index is
made up of the network interface index and the IP address corresponding to the physical

VxWorks OS Libraries API Reference, 5.5
m2IpAtransTblEntrySet()

788

address. The first entry in the table is retrieved by doing a NEXT search with the index
fields set to zero.

RETURNS OK, ERROR if the input parameter is not specified, or a match is not found.

ERRNO S_m2Lib_INVALID_PARAMETER
S_m2Lib_ENTRY_NOT_FOUND

SEE ALSO m2IpLib, m2Lib, m2IpInit(), m2IpGroupInfoGet(), m2IpGroupInfoSet(),
m2IpAtransTblEntrySet(), m2IpRouteTblEntryGet(), m2IpRouteTblEntrySet(),
m2IpDelete()

m2IpAtransTblEntrySet()

NAME m2IpAtransTblEntrySet() – add, modify, or delete a MIB-II ARP entry

SYNOPSIS STATUS m2IpAtransTblEntrySet

(

M2_IPATRANSTBL * pReqIpAtEntry /* pointer to MIB-II ARP entry */

)

DESCRIPTION This routine traverses the ARP table for the entry specified in the parameter
pReqIpAtEntry. An ARP entry can be added, modified, or deleted. A MIB-II entry index is
specified by the destination IP address and the physical media address. A new ARP entry
can be added by specifying all the fields in the parameter pReqIpAtEntry. An entry can be
modified by specifying the MIB-II index and the field that is to be modified. An entry is
deleted by specifying the index and setting the type field in the input parameter
pReqIpAtEntry to the MIB-II value “invalid” (2).

RETURNS OK, or ERROR if the input parameter is not specified, the physical address is not specified
for an add/modify request, or the ioctl() request to the ARP module fails.

ERRNO S_m2Lib_INVALID_PARAMETER
S_m2Lib_ARP_PHYSADDR_NOT_SPECIFIED

SEE ALSO m2IpLib, m2IpInit(), m2IpGroupInfoGet(), m2IpGroupInfoSet(),
m2IpAddrTblEntryGet(), m2IpRouteTblEntryGet(), m2IpRouteTblEntrySet(),
m2IpDelete()

2: Routines
m2IpGroupInfoGet()

789

M

m2IpDelete()

NAME m2IpDelete() – delete all resources used to access the IP group

SYNOPSIS STATUS m2IpDelete (void)

DESCRIPTION This routine frees all the resources allocated when the IP group was initialized. The IP
group should not be accessed after this routine has been called.

RETURNS OK, always.

SEE ALSO m2IpLib, m2IpInit(), m2IpGroupInfoGet(), m2IpGroupInfoSet(),
m2IpAddrTblEntryGet(), m2IpAtransTblEntrySet(), m2IpRouteTblEntryGet(),
m2IpRouteTblEntrySet()

m2IpGroupInfoGet()

NAME m2IpGroupInfoGet() – get the MIB-II IP-group scalar variables

SYNOPSIS STATUS m2IpGroupInfoGet

(

M2_IP * pIpInfo /* pointer to IP MIB-II global group variables */

)

DESCRIPTION This routine fills in the IP structure at pIpInfo with the values of MIB-II IP global variables.

RETURNS OK, or ERROR if pIpInfo is not a valid pointer.

ERRNO S_m2Lib_INVALID_PARAMETER

SEE ALSO m2IpLib, m2IpInit(), m2IpGroupInfoSet(), m2IpAddrTblEntryGet(),
m2IpAtransTblEntrySet(), m2IpRouteTblEntryGet(), m2IpRouteTblEntrySet(),
m2IpDelete()

VxWorks OS Libraries API Reference, 5.5
m2IpGroupInfoSet()

790

m2IpGroupInfoSet()

NAME m2IpGroupInfoSet() – set MIB-II IP-group variables to new values

SYNOPSIS STATUS m2IpGroupInfoSet

(

unsigned int varToSet, /* bit field used to set variables */

M2_IP * pIpInfo /* ptr to the MIB-II IP group global variables */

)

DESCRIPTION This routine sets one or more variables in the IP group, as specified in the input structure
pIpInfo and the bit field parameter varToSet.

RETURNS OK, or ERROR if pIpInfo is not a valid pointer, or varToSet has an invalid bit field.

ERRNO S_m2Lib_INVALID_PARAMETER
S_m2Lib_INVALID_VAR_TO_SET

SEE ALSO m2IpLib, m2IpInit(), m2IpGroupInfoGet(), m2IpAddrTblEntryGet(),
m2IpAtransTblEntrySet(), m2IpRouteTblEntryGet(), m2IpRouteTblEntrySet(),
m2IpDelete()

m2IpInit()

NAME m2IpInit() – initialize MIB-II IP-group access

SYNOPSIS STATUS m2IpInit

(

int maxRouteTableSize /* max size of routing table */

)

DESCRIPTION This routine allocates the resources needed to allow access to the MIB-II IP variables. This
routine must be called before any IP variables can be accessed. The parameter
maxRouteTableSize is used to increase the default size of the MIB-II route table cache.

RETURNS OK, or ERROR if the route table or the route semaphore cannot be allocated.

ERRNO S_m2Lib_CANT_CREATE_ROUTE_SEM

2: Routines
m2IpRouteTblEntrySet()

791

M

SEE ALSO m2IpLib, m2IpGroupInfoGet(), m2IpGroupInfoSet(), m2IpAddrTblEntryGet(),
m2IpAtransTblEntrySet(), m2IpRouteTblEntryGet(), m2IpRouteTblEntrySet(),
m2IpDelete()

m2IpRouteTblEntryGet()

NAME m2IpRouteTblEntryGet() – get a MIB-2 routing table entry

SYNOPSIS STATUS m2IpRouteTblEntryGet

(

int search, /* M2_EXACT_VALUE or M2_NEXT_VALUE */

M2_IPROUTETBL * pIpRouteTblEntry /* route table entry */

)

DESCRIPTION This routine retrieves MIB-II information about an entry in the network routing table and
returns it in the caller-supplied structure pIpRouteTblEntry.

The routine compares routing table entries to the address specified by the ipRouteDest
member of the pIpRouteTblEntry structure, and retrieves an entry chosen by the search type
(M2_EXACT_VALUE or M2_NEXT_VALUE, as described in the manual entry for m2Lib).

RETURNS OK if successful, otherwise ERROR.

ERRNO S_m2Lib_INVALID_PARAMETER
S_m2Lib_ENTRY_NOT_FOUND

SEE ALSO m2IpLib, m2Lib, m2IpInit(), m2IpGroupInfoGet(), m2IpGroupInfoSet(),
m2IpAddrTblEntryGet(), m2IpRouteTblEntryGet(), m2IpRouteTblEntrySet(),
m2IpDelete()

m2IpRouteTblEntrySet()

NAME m2IpRouteTblEntrySet() – set a MIB-II routing table entry

SYNOPSIS STATUS m2IpRouteTblEntrySet

(

int varToSet, /* variable to set */

M2_IPROUTETBL * pIpRouteTblEntry /* route table entry */

)

VxWorks OS Libraries API Reference, 5.5
m2RipDelete()

792

DESCRIPTION This routine adds, changes, or deletes a network routing table entry. The table entry to be
modified is specified by the ipRouteDest and ipRouteNextHop members of the
pIpRouteTblEntry structure.

The varToSet parameter is a bit-field mask that specifies which values in the route table
entry are to be set.

If varToSet has the M2_IP_ROUTE_TYPE bit set and ipRouteType has the value of
M2_ROUTE_TYPE_INVALID, then the routing table entry is deleted.

If varToSet has the either the M2_IP_ROUTE_DEST, M2_IP_ROUTE_NEXT_HOP and the
M2_IP_ROUTE_MASK bits set, then a new route entry is added to the table.

RETURNS OK if successful, otherwise ERROR.

SEE ALSO m2IpLib, m2IpInit(), m2IpGroupInfoGet(), m2IpGroupInfoSet(),
m2IpAddrTblEntryGet(), m2IpRouteTblEntryGet(), m2IpRouteTblEntrySet(),
m2IpDelete()

m2RipDelete()

NAME m2RipDelete() – delete the RIP MIB support

SYNOPSIS STATUS m2RipDelete (void)

DESCRIPTION This routine should be called after all m2RipLib calls are completed.

RETURNS OK, always.

SEE ALSO m2RipLib

2: Routines
m2RipIfConfEntryGet()

793

M

m2RipGlobalCountersGet()

NAME m2RipGlobalCountersGet() – get MIB-II RIP-group global counters

SYNOPSIS STATUS m2RipGlobalCountersGet

(

M2_RIP2_GLOBAL_GROUP* pRipGlobal

)

DESCRIPTION This routine fills in an M2_RIP2_GLOBAL_GROUP structure pointed to by pRipGlobal with
the values of the MIB-II RIP-group global counters.

RETURNS OK or ERROR.

ERRNO S_m2Lib_INVALID_PARAMETER

SEE ALSO m2RipLib, m2RipInit()

m2RipIfConfEntryGet()

NAME m2RipIfConfEntryGet() – get MIB-II RIP-group interface entry

SYNOPSIS STATUS m2RipIfConfEntryGet

(

int search,

M2_RIP2_IFCONF_ENTRY* pRipIfConf

)

DESCRIPTION This routine retrieves the interface configuration for the interface serving the subnet of the
IP address contained in the M2_RIP2_IFCONF_ENTRY structure passed to it. pRipIfConf is a
pointer to an M2_RIP2_IFCONF_ENTRY structure which the routine will fill in upon
successful completion.

This routine either returns an exact match if search is M2_EXACT_VALUE, or the next value
greater than or equal to the value supplied if the search is M2_NEXT_VALUE.

RETURNS OK, or ERROR if pRipIfConf was invalid or the interface was not found.

ERRNO S_m2Lib_INVALID_PARAMETER
S_m2Lib_ENTRY_NOT_FOUND

SEE ALSO m2RipLib, m2RipInit()

VxWorks OS Libraries API Reference, 5.5
m2RipIfConfEntrySet()

794

m2RipIfConfEntrySet()

NAME m2RipIfConfEntrySet() – set MIB-II RIP-group interface entry

SYNOPSIS STATUS m2RipIfConfEntrySet

(

unsigned int varToSet,

M2_RIP2_IFCONF_ENTRY* pRipIfConf

)

DESCRIPTION This routine sets the interface configuration for the interface serving the subnet of the IP
address contained in the M2_RIP2_IFCONF_ENTRY structure.

pRipIfConf is a pointer to an M2_RIP2_IFCONF_ENTRY structure which the routine places
into the system based on the varToSet value.

RETURNS OK, or ERROR if pRipIfConf is invalid or the interface cannot be found.

ERRNO S_m2Lib_INVALID_PARAMETER
S_m2Lib_ENTRY_NOT_FOUND

SEE ALSO m2RipLib, m2RipInit()

m2RipIfStatEntryGet()

NAME m2RipIfStatEntryGet() – get MIB-II RIP-group interface entry

SYNOPSIS STATUS m2RipIfStatEntryGet

(

int search,

M2_RIP2_IFSTAT_ENTRY* pRipIfStat

)

DESCRIPTION This routine retrieves the interface statistics for the interface serving the subnet of the IP
address contained in the M2_RIP2_IFSTAT_ENTRY structure. pRipIfStat is a pointer to an
M2_RIP2_IFSTAT_ENTRY structure which the routine will fill in upon successful
completion.

This routine either returns an exact match if search is M2_EXACT_VALUE, or the next value
greater than or equal to the value supplied if the search is M2_NEXT_VALUE.

2: Routines
m2SysDelete()

795

M

RETURNS OK, or ERROR if either pRipIfStat is invalid or an exact match failed.

ERRNO S_m2Lib_INVALID_PARAMETER
S_m2Lib_ENTRY_NOT_FOUND

SEE ALSO m2RipLib, m2RipInit()

m2RipInit()

NAME m2RipInit() – initialize the RIP MIB support

SYNOPSIS STATUS m2RipInit (void)

DESCRIPTION This routine sets up the RIP MIB and should be called before any other m2RipLib routine.

RETURNS OK, always.

SEE ALSO m2RipLib

m2SysDelete()

NAME m2SysDelete() – delete resources used to access the MIB-II system group

SYNOPSIS STATUS m2SysDelete (void)

DESCRIPTION This routine frees all the resources allocated at the time the group was initialized. Do not
access the system group after calling this routine.

RETURNS OK, always.

SEE ALSO m2SysLib, m2SysInit(), m2SysGroupInfoGet(), m2SysGroupInfoSet().

VxWorks OS Libraries API Reference, 5.5
m2SysGroupInfoGet()

796

m2SysGroupInfoGet()

NAME m2SysGroupInfoGet() – get system-group MIB-II variables

SYNOPSIS STATUS m2SysGroupInfoGet

(

M2_SYSTEM * pSysInfo /* pointer to MIB-II system group structure */

)

DESCRIPTION This routine fills in the structure at pSysInfo with the values of MIB-II system-group
variables.

RETURNS OK, or ERROR if pSysInfo is not a valid pointer.

ERRNO S_m2Lib_INVALID_PARAMETER

SEE ALSO m2SysLib, m2SysInit(), m2SysGroupInfoSet(), m2SysDelete()

m2SysGroupInfoSet()

NAME m2SysGroupInfoSet() – set system-group MIB-II variables to new values

SYNOPSIS STATUS m2SysGroupInfoSet

(

unsigned int varToSet, /* bit field of variables to set */

M2_SYSTEM * pSysInfo /* pointer to the system structure */

)

DESCRIPTION This routine sets one or more variables in the system group as specified in the input
structure at pSysInfo and the bit field parameter varToSet.

RETURNS OK, or ERROR if pSysInfo is not a valid pointer, or varToSet has an invalid bit field.

ERRNO S_m2Lib_INVALID_PARAMETER
S_m2Lib_INVALID_VAR_TO_SET

SEE ALSO m2SysLib, m2SysInit(), m2SysGroupInfoGet(), m2SysDelete()

2: Routines
m2TcpConnEntryGet()

797

M

m2SysInit()

NAME m2SysInit() – initialize MIB-II system-group routines

SYNOPSIS STATUS m2SysInit

(

char * pMib2SysDescr, /* pointer to MIB-2 sysDescr */

char * pMib2SysContact, /* pointer to MIB-2 sysContact */

char * pMib2SysLocation, /* pointer to MIB-2 sysLocation */

M2_OBJECTID * pObjectId /* pointer to MIB-2 ObjectId */

)

DESCRIPTION This routine allocates the resources needed to allow access to the system-group MIB-II
variables. This routine must be called before any system-group variables can be accessed.
The input parameters pMib2SysDescr, pMib2SysContact, pMib2SysLocation, and pObjectId
are optional. The parameters pMib2SysDescr, pObjectId are read only, as specified by
MIB-II, and can be set only by this routine.

RETURNS OK, always.

ERRNO S_m2Lib_CANT_CREATE_SYS_SEM

SEE ALSO m2SysLib, m2SysGroupInfoGet(), m2SysGroupInfoSet(), m2SysDelete()

m2TcpConnEntryGet()

NAME m2TcpConnEntryGet() – get a MIB-II TCP connection table entry

SYNOPSIS STATUS m2TcpConnEntryGet

(

int search, /* M2_EXACT_VALUE or M2_NEXT_VALUE */

M2_TCPCONNTBL * pReqTcpConnEntry /* input = Index, Output = Entry */

)

DESCRIPTION This routine traverses the TCP table of users and does an M2_EXACT_VALUE or a
M2_NEXT_VALUE search based on the search parameter (see m2Lib). The calling routine is
responsible for supplying a valid MIB-II entry index in the input structure
pReqTcpConnEntry. The index is made up of the local IP address, the local port number,
the remote IP address, and the remote port. The first entry in the table is retrieved by
doing a M2_NEXT_VALUE search with the index fields set to zero.

VxWorks OS Libraries API Reference, 5.5
m2TcpConnEntrySet()

798

RETURNS OK, or ERROR if the input parameter is not specified or a match is not found.

ERRNO S_m2Lib_INVALID_PARAMETER
S_m2Lib_ENTRY_NOT_FOUND

SEE ALSO m2TcpLib, m2Lib, m2TcpInit(), m2TcpGroupInfoGet(), m2TcpConnEntrySet(),
m2TcpDelete()

m2TcpConnEntrySet()

NAME m2TcpConnEntrySet() – set a TCP connection to the closed state

SYNOPSIS STATUS m2TcpConnEntrySet

(

M2_TCPCONNTBL * pReqTcpConnEntry /* pointer to TCP connection to close */

)

DESCRIPTION This routine traverses the TCP connection table and searches for the connection specified
by the input parameter pReqTcpConnEntry. The calling routine is responsible for providing
a valid index as the input parameter pReqTcpConnEntry. The index is made up of the local
IP address, the local port number, the remote IP address, and the remote port. This call
can only succeed if the connection is in the MIB-II state “deleteTCB” (12). If a match is
found, the socket associated with the TCP connection is closed.

RETURNS OK, or ERROR if the input parameter is invalid, the state of the connection specified at
pReqTcpConnEntry is not "closed," the specified connection is not found, a socket is not
associated with the connection, or the close() call fails.

SEE ALSO m2TcpLib, m2TcpInit(), m2TcpGroupInfoGet(), m2TcpConnEntryGet(),
m2TcpDelete()

m2TcpDelete()

NAME m2TcpDelete() – delete all resources used to access the TCP group

SYNOPSIS STATUS m2TcpDelete (void)

DESCRIPTION This routine frees all the resources allocated at the time the group was initialized. The TCP
group should not be accessed after this routine has been called.

2: Routines
m2TcpInit()

799

M

RETURNS OK, always.

SEE ALSO m2TcpLib, m2TcpInit(), m2TcpGroupInfoGet(), m2TcpConnEntryGet(),
m2TcpConnEntrySet()

m2TcpGroupInfoGet()

NAME m2TcpGroupInfoGet() – get MIB-II TCP-group scalar variables

SYNOPSIS STATUS m2TcpGroupInfoGet

(

M2_TCPINFO * pTcpInfo /* pointer to the TCP group structure */

)

DESCRIPTION This routine fills in the TCP structure pointed to by pTcpInfo with the values of MIB-II
TCP-group scalar variables.

RETURNS OK, or ERROR if pTcpInfo is not a valid pointer.

ERRNO S_m2Lib_INVALID_PARAMETER

SEE ALSO m2TcpLib, m2TcpInit(), m2TcpConnEntryGet(), m2TcpConnEntrySet(), m2TcpDelete()

m2TcpInit()

NAME m2TcpInit() – initialize MIB-II TCP-group access

SYNOPSIS STATUS m2TcpInit (void)

DESCRIPTION This routine allocates the resources needed to allow access to the TCP MIB-II variables.
This routine must be called before any TCP variables can be accessed.

RETURNS OK, always.

SEE ALSO m2TcpLib, m2TcpGroupInfoGet(), m2TcpConnEntryGet(), m2TcpConnEntrySet(),
m2TcpDelete()

VxWorks OS Libraries API Reference, 5.5
m2UdpDelete()

800

m2UdpDelete()

NAME m2UdpDelete() – delete all resources used to access the UDP group

SYNOPSIS STATUS m2UdpDelete (void)

DESCRIPTION This routine frees all the resources allocated at the time the group was initialized. The
UDP group should not be accessed after this routine has been called.

RETURNS OK, always.

SEE ALSO m2UdpLib, m2UdpInit(), m2UdpGroupInfoGet(), m2UdpTblEntryGet()

m2UdpGroupInfoGet()

NAME m2UdpGroupInfoGet() – get MIB-II UDP-group scalar variables

SYNOPSIS STATUS m2UdpGroupInfoGet

(

M2_UDP * pUdpInfo /* pointer to the UDP group structure */

)

DESCRIPTION This routine fills in the UDP structure at pUdpInfo with the MIB-II UDP scalar variables.

RETURNS OK, or ERROR if pUdpInfo is not a valid pointer.

ERRNO S_m2Lib_INVALID_PARAMETER

SEE ALSO m2UdpLib, m2UdpInit(), m2UdpTblEntryGet(), m2UdpDelete()

2: Routines
m2UdpTblEntryGet()

801

M

m2UdpInit()

NAME m2UdpInit() – initialize MIB-II UDP-group access

SYNOPSIS STATUS m2UdpInit (void)

DESCRIPTION This routine allocates the resources needed to allow access to the UDP MIB-II variables.
This routine must be called before any UDP variables can be accessed.

RETURNS OK, always.

SEE ALSO m2UdpLib, m2UdpGroupInfoGet(), m2UdpTblEntryGet(), m2UdpDelete()

m2UdpTblEntryGet()

NAME m2UdpTblEntryGet() – get a UDP MIB-II entry from the UDP list of listeners

SYNOPSIS STATUS m2UdpTblEntryGet

(

int search, /* M2_EXACT_VALUE or M2_NEXT_VALUE */

M2_UDPTBL * pUdpEntry /* ptr to the requested entry with index */

)

DESCRIPTION This routine traverses the UDP table of listeners and does an M2_EXACT_VALUE or a
M2_NEXT_VALUE search based on the search parameter. The calling routine is responsible
for supplying a valid MIB-II entry index in the input structure pUdpEntry. The index is
made up of the IP address and the local port number. The first entry in the table is
retrieved by doing a M2_NEXT_VALUE search with the index fields set to zero.

RETURNS OK, or ERROR if the input parameter is not specified or a match is not found.

ERRNO S_m2Lib_INVALID_PARAMETER
S_m2Lib_ENTRY_NOT_FOUND

SEE ALSO m2UdpLib, m2Lib, m2UdpInit(), m2UdpGroupInfoGet(), m2UdpDelete()

VxWorks OS Libraries API Reference, 5.5
mach()

802

mach()

NAME mach() – return the contents of system register mach (also macl, pr) (SH)

SYNOPSIS int mach

(

int taskId /* task ID, 0 means default task */

)

DESCRIPTION This command extracts the contents of register mach from the TCB of a specified task. If
taskId is omitted or zero, the last task referenced is assumed.

Similar routines are provided for other system registers (macl, pr): macl(), pr(). Note that
pc() is provided by usrLib.c.

RETURNS The contents of register mach (or the requested system register).

SEE ALSO dbgArchLib, VxWorks Programmer’s Guide: Debugging

malloc()

NAME malloc() – allocate a block of memory from the system memory partition (ANSI)

SYNOPSIS void *malloc

(

size_t nBytes /* number of bytes to allocate */

)

DESCRIPTION This routine allocates a block of memory from the free list. The size of the block will be
equal to or greater than nBytes.

RETURNS A pointer to the allocated block of memory, or a null pointer if there is an error.

SEE ALSO memPartLib, American National Standard for Information Systems -Programming Language -
C, ANSI X3.159-1989: General Utilities (stdlib.h)

2: Routines
mathSoftInit()

803

M

mathHardInit()

NAME mathHardInit() – initialize hardware floating-point math support

SYNOPSIS void mathHardInit ()

DESCRIPTION This routine places the addresses of the hardware high-level math functions
(trigonometric functions, etc.) in a set of global variables. This allows the standard math
functions (e.g., sin(), pow()) to have a single entry point but to be dispatched to the
hardware or software support routines, as specified.

This routine is called from usrConfig.c if INCLUDE_HW_FP is defined. This definition
causes the linker to include the floating-point hardware support library.

Certain routines in the floating-point software emulation library do not have equivalent
hardware support routines. (These are primarily routines that handle single-precision
floating-point numbers.) If no emulation routine address has already been put in the
global variable for this function, the address of a dummy routine that logs an error
message is placed in the variable; if an emulation routine address is present (the
emulation initialization, via mathSoftInit(), must be done prior to hardware
floating-point initialization), the emulation routine address is left alone. In this way,
hardware routines will be used for all available functions, while emulation will be used
for the missing functions.

RETURNS N/A

SEE ALSO mathHardLib, mathSoftInit()

mathSoftInit()

NAME mathSoftInit() – initialize software floating-point math support

SYNOPSIS void mathSoftInit (void)

DESCRIPTION This routine places the addresses of the emulated high-level math functions
(trigonometric functions, etc.) in a set of global variables. This allows the standard math
functions (e.g., sin(), pow()) to have a single entry point but be dispatched to the
hardware or software support routines, as specified.

This routine is called from usrConfig.c if INCLUDE_SW_FP is defined. This definition
causes the linker to include the floating-point emulation library.

VxWorks OS Libraries API Reference, 5.5
mblen()

804

If the system is to use some combination of emulated as well as hardware coprocessor
floating points, then this routine should be called before calling mathHardInit().

RETURNS N/A

SEE ALSO mathSoftLib, mathHardInit()

mblen()

NAME mblen() – calculate the length of a multibyte character (Unimplemented) (ANSI)

SYNOPSIS int mblen

(

const char * s,

size_t n

)

DESCRIPTION This multibyte character function is unimplemented in VxWorks.

INCLUDE FILES stdlib.h

RETURNS OK, or ERROR if the parameters are invalid.

SEE ALSO ansiStdlib

mbstowcs()

NAME mbstowcs() – convert a series of multibyte char’s to wide char’s (Unimplemented) (ANSI)

SYNOPSIS size_t mbstowcs

(

wchar_t * pwcs,

const char * s,

size_t n

)

DESCRIPTION This multibyte character function is unimplemented in VxWorks.

INCLUDE FILES stdlib.h

RETURNS OK, or ERROR if the parameters are invalid.

SEE ALSO ansiStdlib

2: Routines
mbufShow()

805

M

mbtowc()

NAME mbtowc() – convert a multibyte character to a wide character (Unimplemented) (ANSI)

SYNOPSIS int mbtowc

(

wchar_t * pwc,

const char * s,

size_t n

)

DESCRIPTION This multibyte character function is unimplemented in VxWorks.

INCLUDE FILES stdlib.h

RETURNS OK, or ERROR if the parameters are invalid.

SEE ALSO ansiStdlib

mbufShow()

NAME mbufShow() – report mbuf statistics

SYNOPSIS void mbufShow (void)

DESCRIPTION This routine displays the distribution of mbufs in the network.

RETURNS N/A

SEE ALSO netShow

VxWorks OS Libraries API Reference, 5.5
memAddToPool()

806

memAddToPool()

NAME memAddToPool() – add memory to the system memory partition

SYNOPSIS void memAddToPool

(

char * pPool, /* pointer to memory block */

unsigned poolSize /* block size in bytes */

)

DESCRIPTION This routine adds memory to the system memory partition, after the initial allocation of
memory to the system memory partition.

RETURNS N/A

SEE ALSO memPartLib, memPartAddToPool()

memalign()

NAME memalign() – allocate aligned memory

SYNOPSIS void *memalign

(

unsigned alignment, /* boundary to align to (power of 2) */

unsigned size /* number of bytes to allocate */

)

DESCRIPTION This routine allocates a buffer of size size from the system memory partition. Additionally,
it insures that the allocated buffer begins on a memory address evenly divisible by the
specified alignment parameter. The alignment parameter must be a power of 2.

RETURNS A pointer to the newly allocated block, or NULL if the buffer could not be allocated.

SEE ALSO memLib

2: Routines
memcmp()

807

M

memchr()

NAME memchr() – search a block of memory for a character (ANSI)

SYNOPSIS void * memchr

(

const void * m, /* block of memory */

int c, /* character to search for */

size_t n /* size of memory to search */

)

DESCRIPTION This routine searches for the first element of an array of unsigned char, beginning at the
address m with size n, that equals c converted to an unsigned char.

INCLUDE FILES string.h

RETURNS If successful, it returns the address of the matching element; otherwise, it returns a null
pointer.

SEE ALSO ansiString

memcmp()

NAME memcmp() – compare two blocks of memory (ANSI)

SYNOPSIS int memcmp

(

const void * s1, /* array 1 */

const void * s2, /* array 2 */

size_t n /* size of memory to compare */

)

DESCRIPTION This routine compares successive elements from two arrays of unsigned char, beginning
at the addresses s1 and s2 (both of size n), until it finds elements that are not equal.

INCLUDE FILES string.h

RETURNS If all elements are equal, zero. If elements differ and the differing element from s1 is
greater than the element from s2, the routine returns a positive number; otherwise, it
returns a negative number.

SEE ALSO ansiString

VxWorks OS Libraries API Reference, 5.5
memcpy()

808

memcpy()

NAME memcpy() – copy memory from one location to another (ANSI)

SYNOPSIS void * memcpy

(

void * destination, /* destination of copy */

const void * source, /* source of copy */

size_t size /* size of memory to copy */

)

DESCRIPTION This routine copies size characters from the object pointed to by source into the object
pointed to by destination. If copying takes place between objects that overlap, the behavior
is undefined.

INCLUDE FILES string.h

RETURNS A pointer to destination.

SEE ALSO ansiString

memDevCreate()

NAME memDevCreate() – create a memory device

SYNOPSIS STATUS memDevCreate

(

char * name, /* device name */

char * base, /* where to start in memory */

int length /* number of bytes */

)

DESCRIPTION This routine creates a memory device containing a single file. Memory for the device is
simply an absolute memory location beginning at base. The length parameter indicates the
size of memory.

For example, to create the device /mem/cpu0/, a device for accessing the entire memory of
the local processor, the proper call would be:

memDevCreate ("/mem/cpu0/", 0, sysMemTop())

The device is created with the specified name, start location, and size.

2: Routines
memDevCreate()

809

M

To open a file descriptor to the memory, use open(). Specify a pseudo-file name of the
byte offset desired, or open the “raw” file at the beginning and specify a position to seek
to. For example, the following call to open() allows memory to be read starting at decimal
offset 1000.

-> fd = open ("/mem/cpu0/1000", O_RDONLY, 0)

Pseudo-file name offsets are scanned with “%d”.

WARNING: The FIOSEEK operation overrides the offset given via the pseudo-file name at
open time.

EXAMPLE Consider a system configured with two CPUs in the backplane and a separate dual-ported
memory board, each with 1 megabyte of memory. The first CPU is mapped at VMEbus
address 0x00400000 (4 Meg.), the second at bus address 0x00800000 (8 Meg.), the
dual-ported memory board at 0x00c00000 (12 Meg.). Three devices can be created on each
CPU as follows. On processor 0:

-> memDevCreate ("/mem/local/", 0, sysMemTop())

...

-> memDevCreate ("/mem/cpu1/", 0x00800000, 0x00100000)

...

-> memDevCreate ("/mem/share/", 0x00c00000, 0x00100000)

On processor 1:

-> memDevCreate ("/mem/local/", 0, sysMemTop())

...

-> memDevCreate ("/mem/cpu0/", 0x00400000, 0x00100000)

...

-> memDevCreate ("/mem/share/", 0x00c00000, 0x00100000)

Processor 0 has a local disk. Data or an object module needs to be passed from processor 0
to processor 1. To accomplish this, processor 0 first calls:

-> copy </disk1/module.o >/mem/share/0

Processor 1 can then be given the load command:

-> ld </mem/share/0

RETURNS OK, or ERROR if memory is insufficient or the I/O system cannot add the device.

ERRNO S_ioLib_NO_DRIVER

SEE ALSO memDrv

VxWorks OS Libraries API Reference, 5.5
memDevCreateDir()

810

memDevCreateDir()

NAME memDevCreateDir() – create a memory device for multiple files

SYNOPSIS STATUS memDevCreateDir

(

char * name, /* device name */

MEM_DRV_DIRENTRY * files, /* array of dir. entries - not copied */

int numFiles /* number of entries */

)

DESCRIPTION This routine creates a memory device for a collection of files organized into directories.
The given array of directory entry records describes a number of files, some of which may
be directories, represented by their own directory entry arrays. The structure may be
arbitrarily deep. This effectively allows a file system to be created and installed in
VxWorks, for essentially read-only use. The file system structure can be created on the
host using the memdrvbuild utility.

Note that the array supplied is not copied; a reference to it is kept. This array should not
be modified after being passed to memDevCreateDir().

RETURNS OK, or ERROR if memory is insufficient or the I/O system cannot add the device.

ERRNO S_ioLib_NO_DRIVER

SEE ALSO memDrv

memDevDelete()

NAME memDevDelete() – delete a memory device

SYNOPSIS STATUS memDevDelete

(

char * name /* device name */

)

DESCRIPTION This routine deletes a memory device containing a single file or a collection of files. The
device is deleted with it own name.

2: Routines
memFindMax()

811

M

For example, to delete the device created by memDevCreate (“/mem/cpu0/”, 0,
sysMemTop()), the proper call would be:

memDevDelete ("/mem/cpu0/");

RETURNS OK, or ERROR if the device doesn’t exist.

SEE ALSO memDrv

memDrv()

NAME memDrv() – install a memory driver

SYNOPSIS STATUS memDrv (void)

DESCRIPTION This routine initializes the memory driver. It must be called first, before any other routine
in the driver.

RETURNS OK, or ERROR if the I/O system cannot install the driver.

SEE ALSO memDrv

memFindMax()

NAME memFindMax() – find the largest free block in the system memory partition

SYNOPSIS int memFindMax (void)

DESCRIPTION This routine searches for the largest block in the system memory partition free list and
returns its size.

RETURNS The size, in bytes, of the largest available block.

SEE ALSO memLib, memPartFindMax()

VxWorks OS Libraries API Reference, 5.5
memmove()

812

memmove()

NAME memmove() – copy memory from one location to another (ANSI)

SYNOPSIS void * memmove

(

void * destination, /* destination of copy */

const void * source, /* source of copy */

size_t size /* size of memory to copy */

)

DESCRIPTION This routine copies size characters from the memory location source to the location
destination. It ensures that the memory is not corrupted even if source and destination
overlap.

INCLUDE FILES string.h

RETURNS A pointer to destination.

SEE ALSO ansiString

memOptionsSet()

NAME memOptionsSet() – set the debug options for the system memory partition

SYNOPSIS void memOptionsSet

(

unsigned options /* options for system partition */

)

DESCRIPTION This routine sets the debug options for the system memory partition. Two kinds of errors
are detected: attempts to allocate more memory than is available, and bad blocks found
when memory is freed. In both cases, the following options can be selected for actions to
be taken when the error is detected: (1) return the error status, (2) log an error message
and return the error status, or (3) log an error message and suspend the calling task.

These options are discussed in detail in the library manual entry for memLib.

RETURNS N/A

SEE ALSO memLib, memPartOptionsSet()

2: Routines
memPartAlignedAlloc()

813

M

memPartAddToPool()

NAME memPartAddToPool() – add memory to a memory partition

SYNOPSIS STATUS memPartAddToPool

(

PART_ID partId, /* partition to initialize */

char * pPool, /* pointer to memory block */

unsigned poolSize /* block size in bytes */

)

DESCRIPTION This routine adds memory to a specified memory partition already created with
memPartCreate(). The memory added need not be contiguous with memory previously
assigned to the partition.

RETURNS OK or ERROR.

ERRNO S_smObjLib_NOT_INITIALIZED, S_memLib_INVALID_NBYTES

SEE ALSO memPartLib, smMemLib, memPartCreate()

memPartAlignedAlloc()

NAME memPartAlignedAlloc() – allocate aligned memory from a partition

SYNOPSIS void *memPartAlignedAlloc

(

PART_ID partId, /* memory partition to allocate from */

unsigned nBytes, /* number of bytes to allocate */

unsigned alignment /* boundary to align to */

)

DESCRIPTION This routine allocates a buffer of size nBytes from a specified partition. Additionally, it
insures that the allocated buffer begins on a memory address evenly divisible by
alignment. The alignment parameter must be a power of 2.

RETURNS A pointer to the newly allocated block, or NULL if the buffer could not be allocated.

SEE ALSO memPartLib

VxWorks OS Libraries API Reference, 5.5
memPartAlloc()

814

memPartAlloc()

NAME memPartAlloc() – allocate a block of memory from a partition

SYNOPSIS void *memPartAlloc

(

PART_ID partId, /* memory partition to allocate from */

unsigned nBytes /* number of bytes to allocate */

)

DESCRIPTION This routine allocates a block of memory from a specified partition. The size of the block
will be equal to or greater than nBytes. The partition must already be created with
memPartCreate().

RETURNS A pointer to a block, or NULL if the call fails.

ERRNO S_smObjLib_NOT_INITIALIZED

SEE ALSO memPartLib, smMemLib, memPartCreate()

memPartCreate()

NAME memPartCreate() – create a memory partition

SYNOPSIS PART_ID memPartCreate

(

char * pPool, /* pointer to memory area */

unsigned poolSize /* size in bytes */

)

DESCRIPTION This routine creates a new memory partition containing a specified memory pool. It
returns a partition ID, which can then be passed to other routines to manage the partition
(i.e., to allocate and free memory blocks in the partition). Partitions can be created to
manage any number of separate memory pools.

NOTE: The descriptor for the new partition is allocated out of the system memory
partition (i.e., with malloc()).

RETURNS The partition ID, or NULL if there is insufficient memory in the system memory partition
for a new partition descriptor.

SEE ALSO memPartLib, smMemLib

2: Routines
memPartFree()

815

M

memPartFindMax()

NAME memPartFindMax() – find the size of the largest available free block

SYNOPSIS int memPartFindMax

(

PART_ID partId /* partition ID */

)

DESCRIPTION This routine searches for the largest block in the memory partition free list and returns its
size.

RETURNS The size, in bytes, of the largest available block.

ERRNO S_smObjLib_NOT_INITIALIZED

SEE ALSO memLib, smMemLib

memPartFree()

NAME memPartFree() – free a block of memory in a partition

SYNOPSIS STATUS memPartFree

(

PART_ID partId, /* memory partition to add block to */

char * pBlock /* pointer to block of memory to free */

)

DESCRIPTION This routine returns to a partition’s free memory list a block of memory previously
allocated with memPartAlloc().

RETURNS OK, or ERROR if the block is invalid.

ERRNO S_smObjLib_NOT_INITIALIZED

SEE ALSO memPartLib, smMemLib, memPartAlloc()

VxWorks OS Libraries API Reference, 5.5
memPartInfoGet()

816

memPartInfoGet()

NAME memPartInfoGet() – get partition information

SYNOPSIS STATUS memPartInfoGet

(

PART_ID partId, /* partition ID */

MEM_PART_STATS * ppartStats /* partition stats structure */

)

DESCRIPTION This routine takes a partition ID and a pointer to a MEM_PART_STATS structure. All the
parameters of the structure are filled in with the current partition information.

RETURNS OK if the structure has valid data, otherwise ERROR.

SEE ALSO memShow, memShow()

memPartOptionsSet()

NAME memPartOptionsSet() – set the debug options for a memory partition

SYNOPSIS STATUS memPartOptionsSet

(

PART_ID partId, /* partition to set option for */

unsigned options /* memory management options */

)

DESCRIPTION This routine sets the debug options for a specified memory partition. Two kinds of errors
are detected: attempts to allocate more memory than is available, and bad blocks found
when memory is freed. In both cases, the error status is returned. There are four
error-handling options that can be individually selected:

MEM_ALLOC_ERROR_LOG_FLAG
Log a message when there is an error in allocating memory.

MEM_ALLOC_ERROR_SUSPEND_FLAG
Suspend the task when there is an error in allocating memory (unless the task was
spawned with the VX_UNBREAKABLE option, in which case it cannot be suspended).

MEM_BLOCK_ERROR_LOG_FLAG
Log a message when there is an error in freeing memory.

2: Routines
memPartRealloc()

817

M

MEM_BLOCK_ERROR_SUSPEND_FLAG
Suspend the task when there is an error in freeing memory (unless the task was
spawned with the VX_UNBREAKABLE option, in which case it cannot be suspended).

These options are discussed in detail in the library manual entry for memLib.

RETURNS OK or ERROR.

ERRNO S_smObjLib_NOT_INITIALIZED

SEE ALSO memLib, smMemLib

memPartRealloc()

NAME memPartRealloc() – reallocate a block of memory in a specified partition

SYNOPSIS void *memPartRealloc

(

PART_ID partId, /* partition ID */

char * pBlock, /* block to be reallocated */

unsigned nBytes /* new block size in bytes */

)

DESCRIPTION This routine changes the size of a specified block of memory and returns a pointer to the
new block. The contents that fit inside the new size (or old size if smaller) remain
unchanged. The memory alignment of the new block is not guaranteed to be the same as
the original block.

If pBlock is NULL, this call is equivalent to memPartAlloc().

RETURNS A pointer to the new block of memory, or NULL if the call fails.

ERRNO S_smObjLib_NOT_INITIALIZED

SEE ALSO memLib, smMemLib

VxWorks OS Libraries API Reference, 5.5
memPartShow()

818

memPartShow()

NAME memPartShow() – show partition blocks and statistics

SYNOPSIS STATUS memPartShow

(

PART_ID partId, /* partition ID */

int type /* 0 = statistics, 1 = statistics & list */

)

DESCRIPTION This routine displays statistics about the available and allocated memory in a specified
memory partition. It shows the number of bytes, the number of blocks, and the average
block size in both free and allocated memory, and also the maximum block size of free
memory. It also shows the number of blocks currently allocated and the average allocated
block size.

In addition, if type is 1, the routine displays a list of all the blocks in the free list of the
specified partition.

RETURNS OK or ERROR.

ERRNO S_smObjLib_NOT_INITIALIZED

SEE ALSO memShow, memShow(), VxWorks Programmer’s Guide: Target Shell, windsh, Tornado
User’s Guide: Shell

memPartSmCreate()

NAME memPartSmCreate() – create a shared memory partition (VxMP Opt.)

SYNOPSIS PART_ID memPartSmCreate

(

char * pPool, /* global address of shared memory area */

unsigned poolSize /* size in bytes */

)

DESCRIPTION This routine creates a shared memory partition that can be used by tasks on all CPUs in
the system. It returns a partition ID which can then be passed to generic memPartLib
routines to manage the partition (i.e., to allocate and free memory blocks in the partition).

2: Routines
memset()

819

M

pPool is the global address of shared memory dedicated to the partition. The memory area
pointed to by pPool must be in the same address space as the shared memory anchor and
shared memory pool.

poolSize is the size in bytes of shared memory dedicated to the partition.

Before this routine can be called, the shared memory objects facility must be initialized
(see smMemLib).

NOTE: The descriptor for the new partition is allocated out of an internal dedicated
shared memory partition. The maximum number of partitions that can be created is
SM_OBJ_MAX_MEM_PART.

Memory pool size is rounded down to a 16-byte boundary.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects
support option, VxMP.

RETURNS The partition ID, or NULL if there is insufficient memory in the dedicated partition for a
new partition descriptor.

ERRNO S_memLib_NOT_ENOUGH_MEMORY
S_smObjLib_LOCK_TIMEOUT

SEE ALSO smMemLib, memLib

memset()

NAME memset() – set a block of memory (ANSI)

SYNOPSIS void * memset

(

void * m, /* block of memory */

int c, /* character to store */

size_t size /* size of memory */

)

DESCRIPTION This routine stores c converted to an unsigned char in each of the elements of the array of
unsigned char beginning at m, with size size.

INCLUDE FILES string.h

RETURNS A pointer to m.

SEE ALSO ansiString

VxWorks OS Libraries API Reference, 5.5
memShow()

820

memShow()

NAME memShow() – show system memory partition blocks and statistics

SYNOPSIS void memShow

(

int type /* 1 = list all blocks in the free list */

)

DESCRIPTION This routine displays statistics about the available and allocated memory in the system
memory partition. It shows the number of bytes, the number of blocks, and the average
block size in both free and allocated memory, and also the maximum block size of free
memory. It also shows the number of blocks currently allocated and the average allocated
block size.

In addition, if type is 1, the routine displays a list of all the blocks in the free list of the
system partition.

EXAMPLE -> memShow 1

FREE LIST:

num addr size

--- ---------- ----------

1 0x3fee18 16

2 0x3b1434 20

3 0x4d188 2909400

SUMMARY:

status bytes blocks avg block max block

------ --------- -------- ---------- ----------

current

free 2909436 3 969812 2909400

alloc 969060 16102 60 -

cumulative

alloc 1143340 16365 69 -

RETURNS N/A

SEE ALSO memShow, memPartShow(), VxWorks Programmer’s Guide: Target Shell, windsh, Tornado
User’s Guide: Shell

2: Routines
mkdir()

821

M

memShowInit()

NAME memShowInit() – initialize the memory partition show facility

SYNOPSIS void memShowInit (void)

DESCRIPTION This routine links the memory partition show facility into the VxWorks system. These
routines are included automatically when this show facility is configured into VxWorks
using either of the following methods:

– If you use the configuration header files, define INCLUDE_SHOW_ROUTINES in
config.h.

– If you use the Tornado project facility, select INCLUDE_MEM_SHOW.

RETURNS N/A

SEE ALSO memShow

mkdir()

NAME mkdir() – make a directory

SYNOPSIS STATUS mkdir

(

const char * dirName /* directory name */

)

DESCRIPTION This command creates a new directory in a hierarchical file system. The dirName string
specifies the name to be used for the new directory, and can be either a full or relative
pathname.

This call is supported by the VxWorks NFS and dosFs file systems.

RETURNS OK, or ERROR if the directory cannot be created.

SEE ALSO usrFsLib, rmdir(), VxWorks Programmer’s Guide: Target Shell

VxWorks OS Libraries API Reference, 5.5
mktime()

822

mktime()

NAME mktime() – convert broken-down time into calendar time (ANSI)

SYNOPSIS time_t mktime

(

struct tm * timeptr /* pointer to broken-down structure */

)

DESCRIPTION This routine converts the broken-down time, expressed as local time, in the structure
pointed to by timeptr into a calendar time value with the same encoding as that of the
values returned by the time() function. The original values of the tm_wday and tm_yday
components of the tm structure are ignored, and the original values of the other
components are not restricted to the ranges indicated in time.h. On successful completion,
the values of tm_wday and tm_yday are set appropriately, and the other components are
set to represent the specified calendar time, but with their values forced to the ranges
indicated in time.h; the final value of tm_mday is not set until tm_mon and tm_year are
determined.

INCLUDE FILES time.h

RETURNS The calendar time in seconds, or ERROR (-1) if calendar time cannot be calculated.

SEE ALSO ansiTime

mlock()

NAME mlock() – lock specified pages into memory (POSIX)

SYNOPSIS int mlock

(

const void * addr,

size_t len

)

DESCRIPTION This routine guarantees that the specified pages are memory resident. In VxWorks, the
addr and len arguments are ignored, since all pages are memory resident.

RETURNS 0 (OK) always.

SEE ALSO mmanPxLib

2: Routines
mmuPhysToVirt()

823

M

mlockall()

NAME mlockall() – lock all pages used by a process into memory (POSIX)

SYNOPSIS int mlockall

(

int flags

)

DESCRIPTION This routine guarantees that all pages used by a process are memory resident. In
VxWorks, the flags argument is ignored, since all pages are memory resident.

RETURNS 0 (OK) always.

ERRNO N/A

SEE ALSO mmanPxLib

mmuPhysToVirt()

NAME mmuPhysToVirt() – translate a physical address to a virtual address (ARM)

SYNOPSIS void * mmuPhysToVirt

(

void * physAddr /* physical address to be translated */

)

DESCRIPTION This function converts a physical address to a virtual address using the information
contained within the sysPhysMemDesc structure of the BSP. This routine may be used
both by the BSP MMU initialization and by the vm(Base)Lib code.

If the BSP has a default mapping where physical and virtual addresses are not identical,
then it must provide routines to the cache and MMU architecture code to convert between
physical and virtual addresses. If the mapping described within the sysPhysMemDesc
structure is accurate, then the BSP may use this routine. If it is not accurate, then routines
must be provided within the BSP that are accurate.

NOTE: This routine simply performs a linear search through the sysPhysMemDesc
structure looking for the first entry with an address range that includes the given address.
Typically, the performance of this should not be a problem, as this routine will generally
be called to translate RAM addresses, and by convention, the RAM entries come first in

VxWorks OS Libraries API Reference, 5.5
mmuPhysToVirt()

824

the structure. If this becomes an issue, the routine could be changed so that a separate
structure to sysPhysMemDesc is used, containing the information in a more quickly
accessible form. In any case, if this is not satisfactory, the BSP can provide its own
routines.

SEE ALSO mmuMapLib, mmuVirtToPhys

RETURNS the virtual address

2: Routines
mmuSh7700LibInit()

825

M

mmuPro32LibInit()

NAME mmuPro32LibInit() – initialize module

SYNOPSIS STATUS mmuPro32LibInit

(

int pageSize /* system pageSize (must be 4KB or 4MB) */

)

DESCRIPTION Build a dummy translation table that will hold the page table entries for the global
translation table. The MMU remains disabled upon completion.

RETURNS OK if no error, ERROR otherwise

ERRNO S_mmuLib_INVALID_PAGE_SIZE

SEE ALSO mmuPro32Lib

mmuSh7700LibInit()

NAME mmuSh7700LibInit() – initialize module

SYNOPSIS STATUS mmuSh7700LibInit

(

int pageSize

)

DESCRIPTION Build a dummy translation table that will hold the page table entries for the global
translation table. The MMU remains disabled upon completion. Note that this routine is
global so that it may be referenced in usrConfig.c to pull in the correct mmuLib for the
specific architecture.

RETURNS OK or ERROR

SEE ALSO mmuSh7700Lib

VxWorks OS Libraries API Reference, 5.5
mmuSh7750LibInit()

826

mmuSh7750LibInit()

NAME mmuSh7750LibInit() – initialize module

SYNOPSIS STATUS mmuSh7750LibInit

(

int pageSize

)

DESCRIPTION Build a dummy translation table that will hold the page table entries for the global
translation table. The MMU remains disabled upon completion. Note that this routine is
global so that it may be referenced in usrConfig.c to pull in the correct mmuLib for the
specific architecture.

RETURNS OK or ERROR

SEE ALSO mmuSh7750Lib

mmuVirtToPhys()

NAME mmuVirtToPhys() – translate a virtual address to a physical address (ARM)

SYNOPSIS void * mmuVirtToPhys

(

void * virtAddr /* virtual address to be translated */

)

DESCRIPTION This function converts a virtual address to a physical address using the information
contained within the sysPhysMemDesc structure of the BSP. This routine may be used
both by the BSP MMU initialization and by the vm(Base)Lib code.

If the BSP has a default mapping where physical and virtual addresses are not identical,
then it must provide routines to the cache and MMU architecture code to convert between
physical and virtual addresses. If the mapping described within the sysPhysMemDesc
structure is accurate, then the BSP may use this routine. If it is not accurate, then routines
must be provided within the BSP that are accurate.

NOTE: This routine simply performs a linear search through the sysPhysMemDesc
structure looking for the first entry with an address range that includes the given address.
Typically, the performance of this should not be a problem, as this routine will generally
be called to translate RAM addresses, and by convention, the RAM entries come first in

2: Routines
moduleCheck()

827

M

the structure. If this becomes an issue, the routine could be changed so that a separate
structure to sysPhysMemDesc is used, containing the information in a more quickly
accessible form. In any case, if this is not satisfactory, the BSP can provide its own
routines.

SEE ALSO mmuMapLib, mmuPhysToVirt()

RETURNS the physical address

modf()

NAME modf() – separate a floating-point number into integer and fraction parts (ANSI)

SYNOPSIS double modf

(

double value, /* value to split */

double * pIntPart /* where integer portion is stored */

)

DESCRIPTION This routine stores the integer portion of value in pIntPart and returns the fractional
portion. Both parts are double precision and will have the same sign as value.

INCLUDE FILES math.h

RETURNS The double-precision fractional portion of value.

SEE ALSO ansiMath, frexp(), ldexp()

moduleCheck()

NAME moduleCheck() – verify checksums on all modules

SYNOPSIS STATUS moduleCheck

(

int options /* validation options */

)

VxWorks OS Libraries API Reference, 5.5
moduleCreate()

828

DESCRIPTION This routine verifies the checksums on the segments of all loaded modules. If any of the
checksums are incorrect, a message is printed to the console, and the routine returns
ERROR.

By default, only the text segment checksum is validated.

Bits in the options parameter may be set to control specific checks:

MODCHECK_TEXT
Validate the checksum for the TEXT segment (default).

MODCHECK_DATA
Validate the checksum for the DATA segment.

MODCHECK_BSS
Validate the checksum for the BSS segment.

MODCHECK_NOPRINT
Do not print a message (moduleCheck() still returns ERROR on failure.)

See the definitions in moduleLib.h

RETURNS OK, or ERROR if the checksum is invalid.

SEE ALSO moduleLib

moduleCreate()

NAME moduleCreate() – create and initialize a module

SYNOPSIS MODULE_ID moduleCreate

(

char * name, /* module name */

int format, /* object module format */

int flags /* symFlag as passed to loader (see */

/* loadModuleAt()) */

)

DESCRIPTION This routine creates an object module descriptor.

The arguments specify the name of the object module file, the object module format, and
an argument specifying which symbols to add to the symbol table. See the
loadModuleAt() description of symFlag for possible flags values.

Space for the new module is dynamically allocated.

RETURNS MODULE_ID, or NULL if there is an error.

2: Routines
moduleCreateHookDelete()

829

M

SEE ALSO moduleLib, loadModuleAt()

moduleCreateHookAdd()

NAME moduleCreateHookAdd() – add a routine to be called when a module is added

SYNOPSIS STATUS moduleCreateHookAdd

(

FUNCPTR moduleCreateHookRtn /* routine called when module is added */

)

DESCRIPTION This routine adds a specified routine to a list of routines to be called when a module is
created. The specified routine should be declared as follows:

void moduleCreateHook

(

MODULE_ID moduleId /* the module ID */

)

This routine is called after all fields of the module ID have been filled in.

NOTE: Modules do not have information about their object segments when they are
created. This information is not available until after the entire load process has finished.

RETURNS OK or ERROR.

SEE ALSO moduleLib, moduleCreateHookDelete()

moduleCreateHookDelete()

NAME moduleCreateHookDelete() – delete a previously added module create hook routine

SYNOPSIS STATUS moduleCreateHookDelete

(

FUNCPTR moduleCreateHookRtn /* routine called when module is added */

)

DESCRIPTION This routine removes a specified routine from the list of routines to be called at each
moduleCreate() call.

RETURNS OK, or ERROR if the routine is not in the table of module create hook routines.

VxWorks OS Libraries API Reference, 5.5
moduleDelete()

830

SEE ALSO moduleLib, moduleCreateHookAdd()

moduleDelete()

NAME moduleDelete() – delete module ID information (use unld() to reclaim space)

SYNOPSIS STATUS moduleDelete

(

MODULE_ID moduleId /* module to delete */

)

DESCRIPTION This routine deletes a module descriptor, freeing any space that was allocated for the use
of the module ID.

This routine does not free space allocated for the object module itself -- this is done by
unld().

RETURNS OK or ERROR.

SEE ALSO moduleLib

moduleFindByGroup()

NAME moduleFindByGroup() – find a module by group number

SYNOPSIS MODULE_ID moduleFindByGroup

(

int groupNumber /* group number to find */

)

DESCRIPTION This routine searches for a module with a group number matching groupNumber.

RETURNS MODULE_ID, or NULL if no match is found.

SEE ALSO moduleLib

2: Routines
moduleFindByName()

831

M

moduleFindByName()

NAME moduleFindByName() – find a module by name

SYNOPSIS MODULE_ID moduleFindByName

(

char * moduleName /* name of module to find */

)

DESCRIPTION This routine searches for a module with a name matching moduleName.

RETURNS MODULE_ID, or NULL if no match is found.

SEE ALSO moduleLib

VxWorks OS Libraries API Reference, 5.5
moduleFindByNameAndPath()

832

moduleFindByNameAndPath()

NAME moduleFindByNameAndPath() – find a module by file name and path

SYNOPSIS MODULE_ID moduleFindByNameAndPath

(

char * moduleName, /* file name to find */

char * pathName /* path name to find */

)

DESCRIPTION This routine searches for a module with a name matching moduleName and path matching
pathName.

RETURNS MODULE_ID, or NULL if no match is found.

SEE ALSO moduleLib

moduleFlagsGet()

NAME moduleFlagsGet() – get the flags associated with a module ID

SYNOPSIS int moduleFlagsGet

(

MODULE_ID moduleId

)

DESCRIPTION This routine returns the flags associated with a module ID.

RETURNS The flags associated with the module ID, or NULL if the module ID is invalid.

SEE ALSO moduleLib

2: Routines
moduleInfoGet()

833

M

moduleIdListGet()

NAME moduleIdListGet() – get a list of loaded modules

SYNOPSIS int moduleIdListGet

(

MODULE_ID * idList, /* array of module IDs to be filled in */

int maxModules /* max modules idList can accommodate */

)

DESCRIPTION This routine provides the calling task with a list of all loaded object modules. An unsorted
list of module IDs for no more than maxModules modules is put into idList.

RETURNS The number of modules put into the ID list, or ERROR.

SEE ALSO moduleLib

moduleInfoGet()

NAME moduleInfoGet() – get information about an object module

SYNOPSIS STATUS moduleInfoGet

(

MODULE_ID moduleId, /* module to return information about */

MODULE_INFO * pModuleInfo /* pointer to module info struct */

)

DESCRIPTION This routine fills in a MODULE_INFO structure with information about the specified
module.

RETURNS OK or ERROR.

SEE ALSO moduleLib

VxWorks OS Libraries API Reference, 5.5
moduleNameGet()

834

moduleNameGet()

NAME moduleNameGet() – get the name associated with a module ID

SYNOPSIS char * moduleNameGet

(

MODULE_ID moduleId

)

DESCRIPTION This routine returns a pointer to the name associated with a module ID.

RETURNS A pointer to the module name, or NULL if the module ID is invalid.

SEE ALSO moduleLib

moduleSegFirst()

NAME moduleSegFirst() – find the first segment in a module

SYNOPSIS SEGMENT_ID moduleSegFirst

(

MODULE_ID moduleId /* module to get segment from */

)

DESCRIPTION This routine returns information about the first segment of a module descriptor.

RETURNS A pointer to the segment ID, or NULL if the segment list is empty.

SEE ALSO moduleLib, moduleSegGet()

2: Routines
moduleSegNext()

835

M

moduleSegGet()

NAME moduleSegGet() – get (delete and return) the first segment from a module

SYNOPSIS SEGMENT_ID moduleSegGet

(

MODULE_ID moduleId /* module to get segment from */

)

DESCRIPTION This routine returns information about the first segment of a module descriptor, and then
deletes the segment from the module.

RETURNS A pointer to the segment ID, or NULL if the segment list is empty.

SEE ALSO moduleLib, moduleSegFirst()

moduleSegNext()

NAME moduleSegNext() – find the next segment in a module

SYNOPSIS SEGMENT_ID moduleSegNext

(

SEGMENT_ID segmentId /* segment whose successor is to be found */

)

DESCRIPTION This routine returns the segment in the list immediately following segmentId.

RETURNS A pointer to the segment ID, or NULL if there is no next segment.

SEE ALSO moduleLib

VxWorks OS Libraries API Reference, 5.5
moduleShow()

836

moduleShow()

NAME moduleShow() – show the current status for all the loaded modules

SYNOPSIS STATUS moduleShow

(

char * moduleNameOrId, /* name or ID of the module to show */

int options /* display options */

)

DESCRIPTION This routine displays a list of the currently loaded modules and some information about
where the modules are loaded.

The specific information displayed depends on the format of the object modules. In the
case of a.out and ECOFF object modules, moduleShow() displays the start of the text,
data, and BSS segments.

If moduleShow() is called with no arguments, a summary list of all loaded modules is
displayed. It can also be called with an argument, moduleNameOrId, which can be either
the name of a loaded module or a module ID. If it is called with either of these, more
information about the specified module will be displayed.

RETURNS OK or ERROR.

SEE ALSO moduleLib, VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s Guide: Shell

mountdInit()

NAME mountdInit() – initialize the mount daemon

SYNOPSIS STATUS mountdInit

(

int priority, /* priority of the mount daemon */

int stackSize, /* stack size of the mount daemon */

FUNCPTR authHook, /* hook to run to authorize each request */

int nExports, /* maximum number of exported file systems */

int options /* currently unused - set to 0 */

)

DESCRIPTION This routine spawns a mount daemon if one does not already exist. Defaults for the
priority and stackSize arguments are in the global variables mountdPriorityDefault and

2: Routines
mqPxLibInit()

837

M

mountdStackSizeDefault, and are initially set to MOUNTD_PRIORITY_DEFAULT and
MOUNTD_STACKSIZE_DEFAULT respectively.

Normally, no authorization checking is performed by either mountd or nfsd. To add
authorization checking, set authHook to point to a routine declared as follows:

nfsstat routine

(

int progNum, /* RPC program number */

int versNum, /* RPC program version number */

int procNum, /* RPC procedure number */

struct sockaddr_in clientAddr, /* address of the client */

MOUNTD_ARGUMENT * mountdArg /* argument of the call */

)

The authHook callback must return OK if the request is authorized, and any defined NFS
error code (usually NFSERR_ACCES) if not.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call mountdInit() from within the kernel protection domain
only, and the function referenced in the authHook parameter must reside in the kernel
protection domain. This restriction does not apply under non-AE versions of VxWorks.

RETURNS OK, or ERROR if the mount daemon could not be correctly initialized.

SEE ALSO mountLib

mqPxLibInit()

NAME mqPxLibInit() – initialize the POSIX message queue library

SYNOPSIS int mqPxLibInit

(

int hashSize /* log2 of number of hash buckets */

)

DESCRIPTION This routine initializes the POSIX message queue facility. If hashSize is 0, the default value
is taken from MQ_HASH_SIZE_DEFAULT.

RETURNS OK or ERROR.

SEE ALSO mqPxLib

VxWorks OS Libraries API Reference, 5.5
mqPxShowInit()

838

mqPxShowInit()

NAME mqPxShowInit() – initialize the POSIX message queue show facility

SYNOPSIS STATUS mqPxShowInit (void)

DESCRIPTION This routine links the POSIX message queue show routine into the VxWorks system. It is
called automatically when this show facility is configured into VxWorks using either of
the following methods:

– If you use the configuration header files, define

INCLUDE_SHOW_ROUTINES in config.h.

– If you use the Tornado project facility, select INCLUDE_POSIX_MQ_SHOW.

RETURNS OK, or ERROR if an error occurs installing the file pointer show routine.

SEE ALSO mqPxShow

mq_close()

NAME mq_close() – close a message queue (POSIX)

SYNOPSIS int mq_close

(

mqd_t mqdes /* message queue descriptor */

)

DESCRIPTION This routine is used to indicate that the calling task is finished with the specified message
queue mqdes. The mq_close() call deallocates any system resources allocated by the
system for use by this task for its message queue. The behavior of a task that is blocked on
either a mq_send() or mq_receive() is undefined when mq_close() is called. The mqdes
parameter will no longer be a valid message queue ID.

RETURNS 0 (OK) if the message queue is closed successfully, otherwise -1 (ERROR).

ERRNO EBADF

SEE ALSO mqPxLib, mq_open()

2: Routines
mq_getattr()

839

M

mq_getattr()

NAME mq_getattr() – get message queue attributes (POSIX)

SYNOPSIS int mq_getattr

(

mqd_t mqdes, /* message queue descriptor */

struct mq_attr * pMqStat /* buffer in which to return attributes */

)

DESCRIPTION This routine gets status information and attributes associated with a specified message
queue mqdes. Upon return, the following members of the mq_attr structure referenced by
pMqStat will contain the values set when the message queue was created but with
modifications made by subsequent calls to mq_setattr():

mq_flags
May be modified by mq_setattr().

The following were set at message queue creation:

mq_maxmsg
Maximum number of messages.

mq_msgsize
Maximum message size.

mq_curmsgs
The number of messages currently in the queue.

RETURNS 0 (OK) if message attributes can be determined, otherwise -1 (ERROR).

ERRNO EBADF

SEE ALSO mqPxLib, mq_open(), mq_send(), mq_setattr()

VxWorks OS Libraries API Reference, 5.5
mq_notify()

840

mq_notify()

NAME mq_notify() – notify a task that a message is available on a queue (POSIX)

SYNOPSIS int mq_notify

(

mqd_t mqdes, /* message queue descriptor */

const struct sigevent * pNotification /* real-time signal */

)

DESCRIPTION If pNotification is not NULL, this routine attaches the specified pNotification request by the
calling task to the specified message queue mqdes associated with the calling task. The
real-time signal specified by pNotification will be sent to the task when the message queue
changes from empty to non-empty. If a task has already attached a notification request to
the message queue, all subsequent attempts to attach a notification to the message queue
will fail. A task is able to attach a single notification to each mqdes it has unless another
task has already attached one.

If pNotification is NULL and the task has previously attached a notification request to the
message queue, the attached notification request is detached and the queue is available for
another task to attach a notification request.

If a notification request is attached to a message queue and any task is blocked in
mq_receive() waiting to receive a message when a message arrives at the queue, then the
appropriate mq_receive() will be completed and the notification request remains
pending.

RETURNS 0 (OK) if successful, otherwise -1 (ERROR).

ERRNO EBADF, EBUSY, EINVAL

SEE ALSO mqPxLib, mq_open(), mq_send()

2: Routines
mq_open()

841

M

mq_open()

NAME mq_open() – open a message queue (POSIX)

SYNOPSIS mqd_t mq_open

(

const char * mqName, /* name of queue to open */

int oflags, /* open flags */

... /* extra optional parameters */

)

DESCRIPTION This routine establishes a connection between a named message queue and the calling
task. After a call to mq_open(), the task can reference the message queue using the
address returned by the call. The message queue remains usable until the queue is closed
by a successful call to mq_close().

The oflags argument controls whether the message queue is created or merely accessed by
the mq_open() call. The following flag bits can be set in oflags:

O_RDONLY
Open the message queue for receiving messages. The task can use the returned
message queue descriptor with mq_receive(), but not mq_send().

O_WRONLY
Open the message queue for sending messages. The task can use the returned
message queue descriptor with mq_send(), but not mq_receive().

O_RDWR
Open the queue for both receiving and sending messages. The task can use any of the
functions allowed for O_RDONLY and O_WRONLY.

Any combination of the remaining flags can be specified in oflags:

O_CREAT
This flag is used to create a message queue if it does not already exist. If O_CREAT is
set and the message queue already exists, then O_CREAT has no effect except as noted
below under O_EXCL. Otherwise, mq_open() creates a message queue. The O_CREAT
flag requires a third and fourth argument: mode, which is of type mode_t, and pAttr,
which is of type pointer to an mq_attr structure. The value of mode has no effect in
this implementation. If pAttr is NULL, the message queue is created with
implementation-defined default message queue attributes. If pAttris non-NULL, the
message queue attributes mq_maxmsg and mq_msgsize are set to the values of the
corresponding members in the mq_attr structure referred to by pAttr; if either
attribute is less than or equal to zero, an error is returned and errno is set to EINVAL.

O_EXCL
This flag is used to test whether a message queue already exists. If O_EXCL and
O_CREAT are set, mq_open() fails if the message queue name exists.

VxWorks OS Libraries API Reference, 5.5
mq_receive()

842

O_NONBLOCK
The setting of this flag is associated with the open message queue descriptor and
determines whether a mq_send() or mq_receive() will wait for resources or
messages that are not currently available, or fail with errno set to EAGAIN.

The mq_open() call does not add or remove messages from the queue.

NOTE: Some POSIX functionality is not yet supported:
- A message queue cannot be closed with calls to _exit() or exec().
- A message queue cannot be implemented as a file.
- Message queue names will not appear in the file system.

RETURNS A message queue descriptor, otherwise -1 (ERROR).

ERRNO EEXIST, EINVAL, ENOENT, ENOSPC

SEE ALSO mqPxLib, mq_send(), mq_receive(), mq_close(), mq_setattr(), mq_getattr(),
mq_unlink()

mq_receive()

NAME mq_receive() – receive a message from a message queue (POSIX)

SYNOPSIS ssize_t mq_receive

(

mqd_t mqdes, /* message queue descriptor */

void * pMsg, /* buffer to receive message */

size_t msgLen, /* size of buffer, in bytes */

int * pMsgPrio /* if not NULL, priority of message */

)

DESCRIPTION This routine receives the oldest of the highest priority message from the message queue
specified by mqdes. If the size of the buffer in bytes, specified by the msgLen argument, is
less than the mq_msgsize attribute of the message queue, mq_receive() will fail and
return an error. Otherwise, the selected message is removed from the queue and copied to
pMsg.

If pMsgPrio is not NULL, the priority of the selected message will be stored in pMsgPrio.

If the message queue is empty and O_NONBLOCK is not set in the message queue’s
description, mq_receive() will block until a message is added to the message queue, or
until it is interrupted by a signal. If more than one task is waiting to receive a message
when a message arrives at an empty queue, the task of highest priority that has been

2: Routines
mq_send()

843

M

waiting the longest will be selected to receive the message. If the specified message queue
is empty and O_NONBLOCK is set in the message queue’s description, no message is
removed from the queue, and mq_receive() returns an error.

RETURNS The length of the selected message in bytes, otherwise -1 (ERROR).

ERRNO EAGAIN, EBADF, EMSGSIZE, EINTR

SEE ALSO mqPxLib, mq_send()

mq_send()

NAME mq_send() – send a message to a message queue (POSIX)

SYNOPSIS int mq_send

(

mqd_t mqdes, /* message queue descriptor */

const void * pMsg, /* message to send */

size_t msgLen, /* size of message, in bytes */

int msgPrio /* priority of message */

)

DESCRIPTION This routine adds the message pMsg to the message queue mqdes. The msgLen parameter
specifies the length of the message in bytes pointed to by pMsg. The value of pMsg must
be less than or equal to the mq_msgsize attribute of the message queue, or mq_send()
will fail.

If the message queue is not full, mq_send() will behave as if the message is inserted into
the message queue at the position indicated by the msgPrio argument. A message with a
higher numeric value for msgPrio is inserted before messages with a lower value. The
value of msgPrio must be less than or equal to 31.

If the specified message queue is full and O_NONBLOCK is not set in the message queue’s,
mq_send() will block until space becomes available to queue the message, or until it is
interrupted by a signal. The priority scheduling option is supported in the event that there
is more than one task waiting on space becoming available. If the message queue is full
and O_NONBLOCK is set in the message queue’s description, the message is not queued,
and mq_send() returns an error.

USE BY INTERRUPT SERVICE ROUTINES

This routine can be called by interrupt service routines as well as by tasks. This is one of
the primary means of communication between an interrupt service routine and a task. If
mq_send() is called from an interrupt service routine, it will behave as if the

VxWorks OS Libraries API Reference, 5.5
mq_setattr()

844

O_NONBLOCK flag were set.

RETURNS 0 (OK), otherwise -1 (ERROR).

ERRNO EAGAIN, EBADF, EINTR, EINVAL, EMSGSIZE

SEE ALSO mqPxLib, mq_receive()

mq_setattr()

NAME mq_setattr() – set message queue attributes (POSIX)

SYNOPSIS int mq_setattr

(

mqd_t mqdes, /* message queue descriptor */

const struct mq_attr * pMqStat, /* new attributes */

struct mq_attr * pOldMqStat /* old attributes */

)

DESCRIPTION This routine sets attributes associated with the specified message queue mqdes.

The message queue attributes corresponding to the following members defined in the
mq_attr structure are set to the specified values upon successful completion of the call:

mq_flags
The value the O_NONBLOCK flag.

If pOldMqStat is non-NULL, mq_setattr() will store, in the location referenced by
pOldMqStat, the previous message queue attributes and the current queue status. These
values are the same as would be returned by a call to mq_getattr() at that point.

RETURNS 0 (OK) if attributes are set successfully, otherwise -1 (ERROR).

ERRNO EBADF

SEE ALSO mqPxLib, mq_open(), mq_send(), mq_getattr()

2: Routines
mRegs()

845

M

mq_unlink()

NAME mq_unlink() – remove a message queue (POSIX)

SYNOPSIS int mq_unlink

(

const char * mqName /* name of message queue */

)

DESCRIPTION This routine removes the message queue named by the pathname mqName. After a
successful call to mq_unlink(), a call to mq_open() on the same message queue will fail
if the flag O_CREAT is not set. If one or more tasks have the message queue open when
mq_unlink() is called, removal of the message queue is postponed until all references to
the message queue have been closed.

RETURNS 0 (OK) if the message queue is unlinked successfully, otherwise -1 (ERROR).

ERRNO ENOENT

SEE ALSO mqPxLib, mq_close(), mq_open()

mRegs()

NAME mRegs() – modify registers

SYNOPSIS STATUS mRegs

(

char * regName, /* register name, NULL for all */

int taskNameOrId /* task name or task ID, 0 = default task */

)

DESCRIPTION This command modifies the specified register for the specified task. If taskNameOrId is
omitted or zero, the last task referenced is assumed. If the specified register is not found, it
prints out the valid register list and returns ERROR. If no register is specified, it
sequentially prompts the user for new values for a task’s registers. It displays each register
and the current contents of that register, in turn. The user can respond in one of several
ways:

RETURN
Do not change this register, but continue, prompting at the next register.

VxWorks OS Libraries API Reference, 5.5
mRouteAdd()

846

number
Set this register to number.

. (dot)
Do not change this register, and quit.

EOF
Do not change this register, and quit.

All numbers are entered and displayed in hexadecimal, except floating-point values,
which may be entered in double precision.

RETURNS OK, or ERROR if the task or register does not exist.

SEE ALSO usrLib, m(), VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s Guide:
Shell

mRouteAdd()

NAME mRouteAdd() – add multiple routes to the same destination

SYNOPSIS STATUS mRouteAdd

(

char * pDest, /* destination addr in internet dot notation */

char * pGate, /* gateway address in internet dot notation */

long mask, /* mask for destination */

int tos, /* type of service */

int flags /* route flags */

)

DESCRIPTION This routine is similar to routeAdd(), except that you can use multiple mRouteAdd()
calls to add multiple routes to the same location. Use pDest to specify the destination,
pGate to specify the gateway to that destination, mask to specify destination mask, and tos
to specify the type of service. For tos, netinet/ip.h defines the following constants as valid
values:

IPTOS_LOWDELAY
IPTOS_THROUGHPUT
IPTOS_RELIABILITY
IPTOS_MINCOST

Use flags to specify any flags you want to associate with this entry. The valid non-zero
values are RTF_HOST and RTF_CLONING defined in net/route.h.

2: Routines
mRouteDelete()

847

M

EXAMPLE To add a route to the 90.0.0.0 network through 91.0.0.3:

-> mRouteAdd ("90.0.0.0", "91.0.0.3", 0xffffff00, 0, 0);

Using mRouteAdd(), you could create multiple routes to the same destination. VxWorks
would distinguish among these routes based on factors such as the netmask or the type of
service. Thus, it is perfectly legal to say:

-> mRouteAdd ("90.0.0.0", "91.0.0.3", 0xffffff00, 0, 0);

-> mRouteAdd ("90.0.0.0", "91.0.0.254", 0xffff0000, 0, 0);

This adds two routes to the same network, “90.0.0.0”, that go by two different gateways.
The differentiating factor is the netmask.

This routine adds a route of type M2_ipRouteProto_other, which is a static route. This route
will not be modified or deleted until a call to mRouteDelete() removes it.

RETURNS OK or ERROR.

SEE ALSO routeLib, mRouteEntryAdd(), mRouteDelete(), routeAdd()

mRouteDelete()

NAME mRouteDelete() – delete a route from the routing table

SYNOPSIS STATUS mRouteDelete

(

char * pDest, /* destination address */

long mask, /* mask for destination */

int tos, /* type of service */

int flags /* either 0 or RTF_HOST */

)

DESCRIPTION This routine deletes a routing table entry as specified by the destination, pDest, the
destination mask, mask, and type of service, tos. The tos values are as defined in the
reference entry for mRouteAdd().

EXAMPLE Consider the case of a route added in the following manner:

-> mRouteAdd ("90.0.0.0", "91.0.0.3", 0xffffff00, 0, 0);

To delete a route that was added in the above manner, call mRouteDelete() as follows:

-> mRouteDelete("90.0.0.0", 0xffffff00, 0);

If the netmask and or type of service do not match, the route is not deleted.

VxWorks OS Libraries API Reference, 5.5
mRouteEntryAdd()

848

The value of flags should be RTF_HOST for host routes, RTF_CLONING for routes which
need to be cloned, and 0 in all other cases.

RETURNS OK or ERROR.

SEE ALSO routeLib, mRouteAdd()

mRouteEntryAdd()

NAME mRouteEntryAdd() – add a protocol-specific route to the routing table

SYNOPSIS STATUS mRouteEntryAdd

(

long destIp, /* destination address, network order */

long gateIp, /* gateway address, network order */

long mask, /* mask for destination, network order */

int tos, /* type of service */

int flags, /* route flags */

int proto /* routing protocol */

)

DESCRIPTION For a single destination destIp, this routine can add additional routes gateIp to the routing
table. The different routes are distinguished by the gateway, a destination mask mask, the
type of service tos and associated flag values flags. Valid values for flags are 0, RTF_HOST,
RTF_CLONING (defined in net/route.h). The proto parameter identifies the protocol that
generated this route. Values for proto may be found in m2Lib.h. The tos parameter takes
one of following values (defined in netinet/ip.h):

IPTOS_LOWDELAY
IPTOS_THROUGHPUT
IPTOS_RELIABILITY
IPTOS_MINCOST

RETURNS OK or ERROR.

SEE ALSO routeLib, m2Lib.h, mRouteAdd(), mRouteDelete()

2: Routines
mRouteShow()

849

M

mRouteEntryDelete()

NAME mRouteEntryDelete() – delete route from the routing table

SYNOPSIS STATUS mRouteEntryDelete

(

long destIp, /* destination address, network order */

long gateIp, /* gateway address, network order */

long mask, /* mask for destination, network order */

int tos, /* type of service */

int flags, /* route flags */

int proto /* routing protocol */

)

DESCRIPTION This routine deletes a protocol-specific route from the routing table. Specify the route
using a destination pDest, a gateway pGate, a destination mask mask, the type of service
tos, a flags value, and a proto value that identifies the routing protocol that added the route.
The valid values for flags are 0 and RTF_HOST (defined in net/route.h). Values for proto
may be found in m2Lib.h and tos is one of the following values defined in netinet/ip.h:

IPTOS_LOWDELA
IPTOS_THROUGHPU
IPTOS_RELIABILIT
IPTOS_MINCOST

An existing route is deleted only if it is owned by the protocol specified by proto.

RETURNS OK or ERROR.

SEE ALSO routeLib

mRouteShow()

NAME mRouteShow() – display all IP routes (verbose information)

SYNOPSIS void mRouteShow (void)

DESCRIPTION This routine displays the list of destinations in the routing table along with the next-hop
gateway and associated interface. It also displays the netmask for a route (to handle
classless routes which use arbitrary values for that field) and the value which indicates the
route’s creator, as well as any type-of-service information.

VxWorks OS Libraries API Reference, 5.5
msgQCreate()

850

When multiple routes exist to the same destination with the same netmask, the IP
forwarding process only uses the first route entry with the lowest administrative weight.
The remaining entries (listed as additional routes) use the same address and netmask. One
of those entries will replace the primary route if it is deleted.

Some configuration is required when this routine is to be used remotely over the network,
e.g., through a telnet session or through the host shell using WDB_COMM_NETWORK. If
more than 5 routes are expected in the table the parameter RT_BUFFERED_DISPLAY
should be set to TRUE to prevent a possible deadlock. This requires a buffer whose size
can be set with RT_DISPLAY_MEMORY. It will limit the number of routes that can be
displayed (each route requires approx. 90 bytes).

RETURNS N/A

SEE ALSO netShow

msgQCreate()

NAME msgQCreate() – create and initialize a message queue

SYNOPSIS MSG_Q_ID msgQCreate

(

int maxMsgs, /* max messages that can be queued */

int maxMsgLength, /* max bytes in a message */

int options /* message queue options */

)

DESCRIPTION This routine creates a message queue capable of holding up to maxMsgs messages, each
up to maxMsgLength bytes long. The routine returns a message queue ID used to identify
the created message queue in all subsequent calls to routines in this library. The queue can
be created with the following options:

MSG_Q_FIFO (0x00)
queue pended tasks in FIFO order.

MSG_Q_PRIORITY (0x01)
queue pended tasks in priority order.

MSG_Q_EVENTSEND_ERR_NOTIFY (0x02)
When a message is sent, if a task is registered for events and the actual sending of
events fails, a value of ERROR is returned and the errno is set accordingly. This
option is off by default.

RETURNS MSG_Q_ID, or NULL if error.

ERRNO S_memLib_NOT_ENOUGH_MEMORY, S_intLib_NOT_ISR_CALLABLE

SEE ALSO msgQLib, msgQSmLib

2: Routines
msgQDistCreate()

851

M

msgQDelete()

NAME msgQDelete() – delete a message queue

SYNOPSIS STATUS msgQDelete

(

MSG_Q_ID msgQId /* message queue to delete */

)

DESCRIPTION This routine deletes a message queue. All tasks pending on either msgQSend(),
msgQReceive() or pending for the reception of events meant to be sent from the message
queue will unblock and return ERROR. When this function returns, msgQId is no longer a
valid message queue ID.

RETURNS OK on success or ERROR otherwise.

ERRNO S_objLib_OBJ_ID_ERROR
Message queue ID is invalid

S_intLib_NOT_ISR_CALLABLE
Routine cannot be called from ISR

S_distLib_NO_OBJECT_DESTROY
Deleting a distributed message queue is not permitted

S_smObjLib_NO_OBJECT_DESTROY
Deleting a shared message queue is not permitted

SEE ALSO msgQLib, msgQSmLib

msgQDistCreate()

NAME msgQDistCreate() – create a distributed message queue (VxFusion Opt.)

SYNOPSIS MSG_Q_ID msgQDistCreate

(

int maxMsgs, /* max messages that can be queued */

int maxMsgLength, /* max bytes in a message */

int options /* message queue options */

)

VxWorks OS Libraries API Reference, 5.5
msgQDistCreate()

852

DESCRIPTION This routine creates a distributed message queue capable of holding up to maxMsgs
messages, each up to maxMsgLength bytes long. This routine returns a message queue ID
used to identify the created message queue. The queue can be created with the following
options:

MSG_Q_FIFO (0x00)
The queue pends tasks in FIFO order.

MSG_Q_PRIORITY (0x01)
The queue pends tasks in priority order. Remote tasks share the same priority level.

The global message queue identifier returned can be used directly by generic message
queue handling routines in msgQLib, such as, msgQSend(), msgQReceive(), and
msgQNumMsgs().

AVAILABILITY This routine is distributed as a component of the unbundled distributed message queues
option, VxFusion.

RETURNS MSG_Q_ID, or NULL if there is an error.

ERRNO S_memLib_NOT_ENOUGH_MEMORY
If the routine is unable to allocate memory for message queues and message buffers.

S_intLib_NOT_ISR_CALLABLE
If the routine is called from an interrupt service routine.

S_msgQLib_INVALID_QUEUE_TYPE
If the type of queue is invalid.

S_msgQDistLib_INVALID_MSG_LENGTH
If the message is too long for the VxFusion network layer.

SEE ALSO msgQDistLib, msgQLib

2: Routines
msgQDistGrpAdd()

853

M

msgQDistGrpAdd()

NAME msgQDistGrpAdd() – add a distributed message queue to a group (VxFusion Opt.)

SYNOPSIS MSG_Q_ID msgQDistGrpAdd

(

char * distGrpName, /* new or existing group name */

MSG_Q_ID msgQId, /* message queue to add to the group */

DIST_GRP_OPT options /* group message queue options - UNUSED */

)

DESCRIPTION This routine adds the queue identified by the argument msgQId to a group with the ASCII
name specified by the argument distGrpName.

Multicasting is based on distributed message queue groups. If the group does not exist,
one is created. Any number of message queues from different nodes can be bound to a
single group. In addition, a message queue can be added into any number of groups;
msgQDistGrpAdd() must be called for each group of which the message queue is to be a
member.

The options parameter is presently unused and must be set to 0.

This routine returns a message queue ID, MSG_Q_ID, that can be used directly by
msgQDistSend() or by the generic msgQSend() routine. Do not call the msgQReceive()
or msgQNumMsgs() routines or their distributed counterparts, msgQDistReceive() and
msgQDistNumMsgs(), with a group message queue ID.

As with msgQDistCreate(), use distNameAdd() to add the group message queue ID
returned by this routine to the distributed name database so that the ID can be used by
tasks on other nodes.

AVAILABILITY This routine is distributed as a component of the unbundled distributed message queues
option, VxFusion.

RETURNS MSG_Q_ID, or NULL if there is an error.

ERRNO S_msgQDistGrpLib_NAME_TOO_LONG
The name of the group is too long.

S_msgQDistGrpLib_INVALID_OPTION
The options parameter is invalid.

S_msgQDistGrpLib_DATABASE_FULL
The group database is full.

S_distLib_OBJ_ID_ERROR
The msgQId parameter is not a distributed message queue.

SEE ALSO msgQDistGrpLib, msgQLib, msgQDistLib, distNameLib

VxWorks OS Libraries API Reference, 5.5
msgQDistGrpDelete()

854

msgQDistGrpDelete()

NAME msgQDistGrpDelete() – delete a distributed message queue from a group (VxFusion Opt.)

SYNOPSIS STATUS msgQDistGrpDelete

(

char * distGrpName, /* group containing the queue to be deleted */

MSG_Q_ID msgQId /* ID of the message queue to delete */

)

DESCRIPTION This routine deletes a distributed message queue from a group.

NOTE: For this release, it is not possible to remove a distributed message queue from a
group.

AVAILABILITY This routine is distributed as a component of the unbundled distributed message queues
option, VxFusion.

RETURNS ERROR, always.

ERRNO S_distLib_NO_OBJECT_DESTROY

SEE ALSO msgQDistGrpLib

msgQDistGrpShow()

NAME msgQDistGrpShow() – display all or one group with its members (VxFusion Opt.)

SYNOPSIS STATUS msgQDistGrpShow

(

char * distGrpName /* name of the group to display or NULL for all */

)

DESCRIPTION This routine displays either all distributed message queue groups or a specified group in
the group database. For each group displayed on the node, it lists only members added
(using msgQDistGrpAdd()) from the node executing the msgQDistGrpShow() call.

If distGrpName is NULL, all groups and their locally added members are displayed.
Otherwise, only the group specified by distGrpName and its locally added members are
displayed.

2: Routines
msgQDistNumMsgs()

855

M

NOTE: The concept of “locally added” is an important one. All nodes in the system can
add groups to a message queue group. However, only those message queues (including
remote distributed message queues) that were added to the group from the local node are
displayed by this routine.

EXAMPLE -> msgQDistGrpShow(0)

NAME OF GROUP GROUP ID STATE MEMBER ID TYPE OF MEMBER

------------------- ---------- ------- ---------- ---------------------------

grp1 0x3ff9e3 global 0x3ff98b distributed msg queue

0x3ff9fb distributed msg queue

grp2 0x3ff933 global 0x3ff89b distributed msg queue

0x3ff8db distributed msg queue

0x3ff94b distributed msg queue

AVAILABILITY This routine is distributed as a component of the unbundled distributed message queues
option, VxFusion.

RETURNS OK, unless name not found.

ERRNO S_msgQDistGrpLib_NO_MATCH
The group name was not found in the database.

SEE ALSO msgQDistGrpShow

msgQDistNumMsgs()

NAME msgQDistNumMsgs() – get the number of messages in a distributed message queue
(VxFusion Opt.)

SYNOPSIS int msgQDistNumMsgs

(

MSG_Q_ID msgQId, /* message queue to examine */

int overallTimeout /* ticks to wait overall */

)

DESCRIPTION This routine returns the number of messages currently queued to a specified distributed
message queue.

NOTE: When msgQDistNumMsgs() is called through msgQNumMsgs(), overallTimeout
is set to WAIT_FOREVER. You cannot set overallTimeout to NO_WAIT (0) because the
process of sending a message from the local node to the remote node always takes a finite
amount of time.

VxWorks OS Libraries API Reference, 5.5
msgQDistReceive()

856

AVAILABILITY This routine is distributed as a component of the unbundled distributed message queues
option, VxFusion.

RETURNS The number of messages queued, or ERROR if the operation fails.

ERRNO S_distLib_OBJ_ID_ERROR
The argument msgQId is invalid.

S_distLib_UNREACHABLE
Could not establish communications with the remote node.

S_msgQDistLib_INVALID_TIMEOUT
The argument overallTimeout is NO_WAIT.

SEE ALSO msgQDistLib, msgQLib

msgQDistReceive()

NAME msgQDistReceive() – receive a message from a distributed message queue (VxFusion Opt.)

SYNOPSIS int msgQDistReceive

(

MSG_Q_ID msgQId, /* message queue from which to receive */

char * buffer, /* buffer to receive message */

UINT maxNBytes, /* length of buffer */

int msgQTimeout, /* ticks to wait at the message queue */

int overallTimeout /* ticks to wait overall */

)

DESCRIPTION This routine receives a message from the distributed message queue specified by msgQId.
The received message is copied into the specified buffer, buffer, which is maxNBytes in
length. If the message is longer than maxNBytes, the remainder of the message is discarded
(no error indication is returned).

The argument msgQTimeout specifies the time in ticks to wait for the queuing of the
message. The argument overallTimeout specifies the time in ticks to wait for both the
sending and queuing of the message. While it is an error to set overallTimeout to NO_WAIT
(0), WAIT_FOREVER (-1) is allowed for both msgQTimeout and overallTimeout.

Calling msgQDistReceive() on a distributed message group returns an error.

NOTE: When msgQDistReceive() is called through msgQReceive(), msgQTimeout is set
to timeout and overallTimeout to WAIT_FOREVER.

2: Routines
msgQDistSend()

857

M

AVAILABILITY This routine is distributed as a component of the unbundled distributed message queues
option, VxFusion.

RETURNS The number of bytes copied to buffer, or ERROR.

ERRNO S_distLib_OBJ_ID_ERROR
The argument msgQId is invalid.

S_distLib_UNREACHABLE
Could not establish communications with the remote node.

S_msgQLib_INVALID_MSG_LENGTH
The argument maxNBytes is less than 0.

S_msgQDistLib_INVALID_TIMEOUT
The argument overallTimeout is NO_WAIT.

S_msgQDistLib_RMT_MEMORY_SHORTAGE
There is not enough memory on the remote node.

S_objLib_OBJ_UNAVAILABLE
The argument msgQTimeout is set to NO_WAIT, and no messages are available.

S_objLib_OBJ_TIMEOUT
No messages were received in msgQTimeout ticks.

S_msgQDistLib_OVERALL_TIMEOUT
There was no response from the remote side in overallTimeout ticks.

SEE ALSO msgQDistLib, msgQLib

msgQDistSend()

NAME msgQDistSend() – send a message to a distributed message queue (VxFusion Opt.)

SYNOPSIS STATUS msgQDistSend

(

MSG_Q_ID msgQId, /* message queue on which to send */

char * buffer, /* message to send */

UINT nBytes, /* length of message */

int msgQTimeout, /* ticks to wait at message queue */

int overallTimeout, /* ticks to wait overall */

int priority /* priority */

)

VxWorks OS Libraries API Reference, 5.5
msgQDistSend()

858

DESCRIPTION This routine sends the message specified by buffer of length nBytes to the distributed
message queue or group specified by msgQId.

The argument msgQTimeout specifies the time in ticks to wait for the queuing of the
message. The argument overallTimeout specifies the time in ticks to wait for both the
sending and queuing of the message. While it is an error to set overallTimeout to NO_WAIT
(0), WAIT_FOREVER (-1) is allowed for both msgQTimeout and overallTimeout.

The priority parameter specifies the priority of the message being sent. It ranges between
DIST_MSG_PRI_0 (highest priority) and DIST_MSG_PRI_7 (lowest priority). A priority of
MSG_PRI_URGENT is mapped to DIST_MSG_PRI_0; MSG_PRI_NORMAL is mapped to
DIST_MSG_PRI_4. Messages sent with high priorities (DIST_MSG_PRI_0 to
DIST_MSG_PRI_3) are put to the head of the list of queued messages. Lower priority
messages (DIST_MSG_PRI_4 to DIST_MSG_PRI_7) are placed at the queue’s tail.

NOTE: When msgQDistSend() is called through msgQSend(), msgQTimeout is set to
timeout and overallTimeout to WAIT_FOREVER.

AVAILABILITY This routine is distributed as a component of the unbundled distributed message queues
option, VxFusion.

RETURNS OK, or ERROR if the operation fails.

ERRNO S_distLib_OBJ_ID_ERROR
The argument msgQId is invalid.

S_distLib_UNREACHABLE
Could not establish communications with the remote node.

S_msgQDistLib_INVALID_PRIORITY
The argument priority is invalid.

S_msgQDistLib_INVALID_TIMEOUT
The argument overallTimeout is NO_WAIT.

S_msgQDistLib_RMT_MEMORY_SHORTAGE
There is not enough memory on the remote node.

S_objLib_OBJ_UNAVAILABLE
The argument msgQTimeout is set to NO_WAIT, and the queue is full.

S_objLib_OBJ_TIMEOUT
The queue is full for msgQTimeout ticks.

S_msgQLib_INVALID_MSG_LENGTH
The argument nBytes is larger than the maxMsgLength set for the message queue.

S_msgQDistLib_OVERALL_TIMEOUT
There was no response from the remote side in overallTimeout ticks.

SEE ALSO msgQDistLib, msgQLib

2: Routines
msgQEvStart()

859

M

msgQDistShowInit()

NAME msgQDistShowInit() – initialize the distributed message queue show package (VxFusion
Opt.)

SYNOPSIS void msgQDistShowInit (void)

DESCRIPTION This routine initializes the distributed message queue show package.

NOTE: This routine is called automatically when a target boots using a VxWorks image
with VxFusion installed and show routines enabled.

AVAILABILITY This routine is distributed as a component of the unbundled distributed message queues
option, VxFusion.

RETURNS N/A

SEE ALSO msgQDistShow

msgQEvStart()

NAME msgQEvStart() – start event notification process for a message queue

SYNOPSIS STATUS msgQEvStart

(

MSG_Q_ID msgQId, /* msg Q for which to register events */

UINT32 events, /* 32 possible events */

UINT8 options /* event-related msg Q options */

)

DESCRIPTION This routine turns on the event notification process for a given message queue. When a
message becomes available but not wanted in that particular message queue, the events
specified will be sent to the task registered by this function. A task can overwrite its own
registration without first invoking msgQEvStop() or specifying the ALLOW_OVERWRITE
option.

The options parameter is used for 3 user options:

EVENTS_SEND_ONCE (0x1)
tells the message queue to send the events one time only. Specify if the events are to
be sent only once or every time a message arrives until msgQEvStop() is called.

VxWorks OS Libraries API Reference, 5.5
msgQEvStop()

860

EVENTS_ALLOW_OVERWRITE (0x2)
allows subsequent registrations to overwrite the current one. Specify if another task
can register itself while the current task is still registered. If so, the current task
registration is overwritten without any warning.

EVENTS_SEND_IF_FREE (0x4)
tells the registration process to send events if a message is present on the message
queue. Specify if events are to be sent right away in the case a message is waiting to
be picked up.

If none of those three options is to be used, then the option

EVENTS_OPTIONS_NONE (0x0)
has to be passed to the options parameter.

RETURNS OK on success, or ERROR.

ERRNO S_objLib_OBJ_ID_ERROR
The message queue ID is invalid.

S_eventLib_ALREADY_REGISTERED
A task is already registered on the message queue.

S_intLib_NOT_ISR_CALLABLE
Routine has been called from interrupt level.

S_eventLib_EVENTSEND_FAILED
User chose to send events right away and that operation failed.

S_eventLib_ZERO_EVENTS
User passed in a value of zero to the events parameter.

SEE ALSO msgQEvLib, eventLib, msgQLib, msgQEvStop()

msgQEvStop()

NAME msgQEvStop() – stop event notification process for a message queue

SYNOPSIS STATUS msgQEvStop

(

MSG_Q_ID msgQId

)

2: Routines
msgQInfoGet()

861

M

DESCRIPTION This routine turns off the event notification process for a given message queue. It thus
allows another task to register itself for event notification on that particular message
queue.

RETURNS OK on success, or ERROR.

ERRNO S_objLib_OBJ_ID_ERROR
The message queue ID is invalid.

S_intLib_NOT_ISR_CALLABLE
Routine has been called from interrupt level.

S_eventLib_TASK_NOT_REGISTERED
Routine has not been called by registered task.

SEE ALSO msgQEvLib, eventLib, msgQLib, msgQEvStart()

msgQInfoGet()

NAME msgQInfoGet() – get information about a message queue

SYNOPSIS STATUS msgQInfoGet

(

MSG_Q_ID msgQId, /* message queue to query */

MSG_Q_INFO * pInfo /* where to return msg info */

)

DESCRIPTION This routine gets information about the state and contents of a message queue. The
parameter pInfo is a pointer to a structure of type MSG_Q_INFO defined in msgQLib.h as
follows:

typedef struct /* MSG_Q_INFO */

{

int numMsgs; /* OUT: number of messages queued */

int numTasks; /* OUT: number of tasks waiting on msg q */

int sendTimeouts; /* OUT: count of send timeouts */

int recvTimeouts; /* OUT: count of receive timeouts */

int options; /* OUT: options with which msg q was created */

int maxMsgs; /* OUT: max messages that can be queued */

int maxMsgLength; /* OUT: max byte length of each message */

int taskIdListMax; /* IN: max tasks to fill in taskIdList */

int * taskIdList; /* PTR: array of task IDs waiting on msg q */

int msgListMax; /* IN: max msgs to fill in msg lists */

char ** msgPtrList; /* PTR: array of msg ptrs queued to msg q */

VxWorks OS Libraries API Reference, 5.5
msgQInfoGet()

862

int * msgLenList; /* PTR: array of lengths of msgs */

} MSG_Q_INFO;

If a message queue is empty, there may be tasks blocked on receiving. If a message queue
is full, there may be tasks blocked on sending. This can be determined as follows:

– If numMsgs is 0, then numTasks indicates the number of tasks blocked

on receiving.

– If numMsgs is equal to maxMsgs, then numTasks is the number of

tasks blocked on sending.

– If numMsgs is greater than 0 but less than maxMsgs, then numTasks

will be 0.

A list of pointers to the messages queued and their lengths can be obtained by setting
msgPtrList and msgLenList to the addresses of arrays to receive the respective lists, and
setting msgListMax to the maximum number of elements in those arrays. If either list
pointer is NULL, no data will be returned for that array.

No more than msgListMax message pointers and lengths are returned, although numMsgs
will always be returned with the actual number of messages queued.

For example, if the caller supplies a msgPtrList and msgLenListwith room for 10 messages
and sets msgListMax to 10, but there are 20 messages queued, then the pointers and
lengths of the first 10 messages in the queue are returned in msgPtrList and msgLenList, but
numMsgs will be returned with the value 20.

A list of the task IDs of tasks blocked on the message queue can be obtained by setting
taskIdList to the address of an array to receive the list, and setting taskIdListMax to the
maximum number of elements in that array. If taskIdList is NULL, then no task IDs are
returned. No more than taskIdListMax task IDs are returned, although numTasks will
always be returned with the actual number of tasks blocked.

For example, if the caller supplies a taskIdList with room for 10 task IDs and sets
taskIdListMax to 10, but there are 20 tasks blocked on the message queue, then the IDs of
the first 10 tasks in the blocked queue will be returned in taskIdList, but numTasks will be
returned with the value 20.

Note that the tasks returned in taskIdList may be blocked for either send or receive. As
noted above this can be determined by examining numMsgs.

The variables sendTimeouts and recvTimeouts are the counts of the number of times
msgQSend() and msgQReceive() respectively returned with a timeout.

The variables options, maxMsgs, and maxMsgLength are the parameters with which the
message queue was created.

WARNING: The information returned by this routine is not static and may be obsolete by
the time it is examined. In particular, the lists of task IDs and/or message pointers may no

2: Routines
msgQNumMsgs()

863

M

longer be valid. However, the information is obtained atomically, thus it will be an
accurate snapshot of the state of the message queue at the time of the call. This
information is generally used for debugging purposes only.

WARNING: The current implementation of this routine locks out interrupts while
obtaining the information. This can compromise the overall interrupt latency of the
system. Generally this routine is used for debugging purposes only.

RETURNS OK or ERROR.

ERRNO S_distLib_NOT_INITIALIZED, S_smObjLib_NOT_INITIALIZED, S_objLib_OBJ_ID_ERROR

SEE ALSO msgQShow

msgQNumMsgs()

NAME msgQNumMsgs() – get the number of messages queued to a message queue

SYNOPSIS int msgQNumMsgs

(

MSG_Q_ID msgQId /* message queue to examine */

)

DESCRIPTION This routine returns the number of messages currently queued to a specified message
queue.

RETURNS The number of messages queued, or ERROR.

ERRNO S_distLib_NOT_INITIALIZED, S_smObjLib_NOT_INITIALIZED, S_objLib_OBJ_ID_ERROR

SEE ALSO msgQLib, msgQSmLib

VxWorks OS Libraries API Reference, 5.5
msgQReceive()

864

msgQReceive()

NAME msgQReceive() – receive a message from a message queue

SYNOPSIS int msgQReceive

(

MSG_Q_ID msgQId, /* message queue from which to receive */

char * buffer, /* buffer to receive message */

UINT maxNBytes, /* length of buffer */

int timeout /* ticks to wait */

)

DESCRIPTION This routine receives a message from the message queue msgQId. The received message is
copied into the specified buffer, which is maxNBytes in length. If the message is longer than
maxNBytes, the remainder of the message is discarded (no error indication is returned).

The timeout parameter specifies the number of ticks to wait for a message to be sent to the
queue, if no message is available when msgQReceive() is called. The timeout parameter
can also have the following special values:

NO_WAIT (0)
return immediately, whether a message has been received or not.

WAIT_FOREVER (-1)
never time out.

WARNING: This routine must not be called by interrupt service routines.

RETURNS The number of bytes copied to buffer, or ERROR.

ERRNO S_distLib_NOT_INITIALIZED, S_smObjLib_NOT_INITIALIZED, S_objLib_OBJ_ID_ERROR,
S_objLib_OBJ_DELETED, S_objLib_OBJ_UNAVAILABLE, S_objLib_OBJ_TIMEOUT,
S_msgQLib_INVALID_MSG_LENGTH, S_intLib_NOT_ISR_CALLABLE

SEE ALSO msgQLib, msgQSmLib

2: Routines
msgQSend()

865

M

msgQSend()

NAME msgQSend() – send a message to a message queue

SYNOPSIS STATUS msgQSend

(

MSG_Q_ID msgQId, /* message queue on which to send */

char * buffer, /* message to send */

UINT nBytes, /* length of message */

int timeout, /* ticks to wait */

int priority /* MSG_PRI_NORMAL or MSG_PRI_URGENT */

)

DESCRIPTION This routine sends the message in buffer of length nBytes to the message queue msgQId. If
any tasks are already waiting to receive messages on the queue, the message is
immediately delivered to the first waiting task. If no task is waiting to receive messages,
the message is saved in the message queue and if a task has previously registered to
receive events from the message queue, these events are sent in the context of this call.
This may result in the unpending of the task waiting for the events. If the message queue
fails to send events and if it was created using the MSG_Q_EVENTSEND_ERR_NOTIFY
option, ERROR is returned even though the send operation was successful.

The timeout parameter specifies the number of ticks to wait for free space if the message
queue is full. The timeout parameter can also have the following special values:

NO_WAIT (0)
return immediately, even if the message has not been sent.

WAIT_FOREVER (-1)
never time out.

The priority parameter specifies the priority of the message being sent. The possible values
are:

MSG_PRI_NORMAL (0)
normal priority; add the message to the tail of the list of queued messages.

MSG_PRI_URGENT (1)
urgent priority; add the message to the head of the list of queued messages.

USE BY INTERRUPT SERVICE ROUTINES

This routine can be called by interrupt service routines as well as by tasks. This is one of
the primary means of communication between an interrupt service routine and a task.
When called from an interrupt service routine, timeout must be NO_WAIT.

RETURNS OK on success or ERROR otherwise.

VxWorks OS Libraries API Reference, 5.5
msgQShow()

866

ERRNO S_distLib_NOT_INITIALIZED
Distributed objects message queue library (VxFusion) not initialized.

S_smObjLib_NOT_INITIALIZED
Shared memory message queue library (VxMP Opt.) not initialized.

S_objLib_OBJ_ID_ERROR
Invalid message queue ID.

S_objLib_OBJ_DELETED
Message queue deleted while calling task was pended.

S_objLib_OBJ_UNAVAILABLE
No free buffer space when NO_WAIT timeout specified.

S_objLib_OBJ_TIMEOUT
Timeout occurred while waiting for buffer space.

S_msgQLib_INVALID_MSG_LENGTH
Message length exceeds limit.

S_msgQLib_NON_ZERO_TIMEOUT_AT_INT_LEVEL
Called from ISR with non-zero timeout.

S_eventLib_EVENTSEND_FAILED
Message queue failed to send events to registered task. This errno value can only
exist if the message queue was created with the MSG_Q_EVENTSEND_ERR_NOTIFY
option.

SEE ALSO msgQLib, msgQSmLib, msgQEvStart()

msgQShow()

NAME msgQShow() – show information about a message queue

SYNOPSIS STATUS msgQShow

(

MSG_Q_ID msgQId, /* message queue to display */

int level /* 0 = summary, 1 = details */

)

DESCRIPTION This routine displays the state and optionally the contents of a message queue.

A summary of the state of the message queue is displayed as follows:

Message Queue Id : 0x3f8c20
Task Queuing : FIFO
Message Byte Len : 150
Messages Max : 50

2: Routines
msgQShowInit()

867

M

Messages Queued : 0
Receivers Blocked : 1
Send timeouts : 0
Receive timeouts : 0
Options : 0x1 MSG_Q_FIFO
VxWorks Events

Registered Task : 0x3f5c70 (t1)
Event(s) to Send : 0x1
Options : 0x7 EVENTS_SEND_ONCE

EVENTS_ALLOW_OVERWRITE
EVENTS_SEND_IF_FREE

If level is 1, then more detailed information will be displayed. If messages are queued, they
will be displayed as follows:

Messages queued:
address length value
1 0x123eb204 4 0x00000001 0x12345678

If tasks are blocked on the queue, they will be displayed as follows:

Receivers blocked:
NAME TID PRI DELAY

---------- -------- --- -----
tExcTask 3fd678 0 21

RETURNS OK or ERROR.

ERRNO S_distLib_NOT_INITIALIZED, S_smObjLib_NOT_INITIALIZED

SEE ALSO msgQShow, VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s Guide: Shell

msgQShowInit()

NAME msgQShowInit() – initialize the message queue show facility

SYNOPSIS void msgQShowInit (void)

DESCRIPTION This routine links the message queue show facility into the VxWorks system. It is called
automatically when the message queue show facility is configured into VxWorks using
either of the following methods:

– If you use the configuration header files, define INCLUDE_SHOW_ROUTINES in
config.h.

– If you use the Tornado project facility, select INCLUDE_MSG_Q_SHOW.

VxWorks OS Libraries API Reference, 5.5
msgQSmCreate()

868

RETURNS N/A

SEE ALSO msgQShow

msgQSmCreate()

NAME msgQSmCreate() – create and initialize a shared memory message queue (VxMP Opt.)

SYNOPSIS MSG_Q_ID msgQSmCreate

(

int maxMsgs, /* max messages that can be queued */

int maxMsgLength, /* max bytes in a message */

int options /* message queue options */

)

DESCRIPTION This routine creates a shared memory message queue capable of holding up to maxMsgs
messages, each up to maxMsgLength bytes long. It returns a message queue ID used to
identify the created message queue. The queue can only be created with the option
MSG_Q_FIFO (0), thus queuing pended tasks in FIFO order.

The global message queue identifier returned can be used directly by generic message
queue handling routines in msgQLib -- msgQSend(), msgQReceive(), and
msgQNumMsgs() -- and by the show routines show() and msgQShow().

If there is insufficient memory to store the message queue structure in the shared memory
message queue partition or if the shared memory system pool cannot handle the
requested message queue size, shared memory message queue creation will fail with
errno set to S_memLib_NOT_ENOUGH_MEMORY. This problem can be solved by
incrementing the value of SM_OBJ_MAX_MSG_Q and/or the shared memory objects
dedicated memory size SM_OBJ_MEM_SIZE.

Before this routine can be called, the shared memory objects facility must be initialized
(see msgQSmLib).

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects
support option, VxMP.

RETURNS MSG_Q_ID, or NULL if error.

ERRNO S_memLib_NOT_ENOUGH_MEMORY, S_intLib_NOT_ISR_CALLABLE,
S_msgQLib_INVALID_QUEUE_TYPE, S_smObjLib_LOCK_TIMEOUT

SEE ALSO msgQSmLib, smObjLib, msgQLib, msgQShow

2: Routines
munlockall()

869

M

munlock()

NAME munlock() – unlock specified pages (POSIX)

SYNOPSIS int munlock

(

const void * addr,

size_t len

)

DESCRIPTION This routine unlocks specified pages from being memory resident.

RETURNS 0 (OK) always.

ERRNO N/A

SEE ALSO mmanPxLib

munlockall()

NAME munlockall() – unlock all pages used by a process (POSIX)

SYNOPSIS int munlockall (void)

DESCRIPTION This routine unlocks all pages used by a process from being memory resident.

RETURNS 0 (OK) always.

ERRNO N/A

SEE ALSO mmanPxLib

VxWorks OS Libraries API Reference, 5.5
muxAddressForm()

870

muxAddressForm()

NAME muxAddressForm() – form a frame with a link-layer address

SYNOPSIS M_BLK_ID muxAddressForm

(

void * pCookie, /* protocol/device binding from muxBind() */

M_BLK_ID pMblk, /* structure to contain packet */

M_BLK_ID pSrcAddr, /* structure containing source address */

M_BLK_ID pDstAddr /* structure containing destination address */

)

DESCRIPTION Use this routine to create a frame with an appropriate link-layer address. As input, this
function expects the source address, the destination address, and the data you want to
include in the frame. When control returns from the muxAddressForm() call, the pMblk
parameter references a frame ready for transmission. Internally, muxAddressForm()
either prepended the link-layer header to the data buffer supplied in pMblk (if there was
enough room) or it allocated a new mBlk-clBlk-cluster and prepended the new mBlk to
the mBlk chain supplied in pMblk.

NOTE: You should set the pDstAddr.mBlkHdr.reserved field to the network service type.

pCookie
Expects the cookie returned from the muxBind(). This cookie indicates the device to
which the MUX has bound this protocol.

pMblk
Expects a pointer to the mBlk structure that contains the packet.

pSrcAddr
Expects a pointer to the mBlk that contains the source address.

pDstAddr
Expects a pointer to the mBlk that contains the destination address.

NOTE: This routine is used only with ENDs, and is not needed for NPT drivers.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call muxAddressForm() from within the kernel protection
domain only, and the data referenced in the pCookie parameter must reside in the kernel
protection domain. In addition, the returned M_BLK_ID is valid in the kernel protection
domain only. This restriction does not apply under non-AE versions of VxWorks.

RETURNS M_BLK_ID or NULL.

2: Routines
muxAddrResFuncAdd()

871

M

ERRNO S_muxLib_NO_DEVICE

SEE ALSO muxLib

muxAddrResFuncAdd()

NAME muxAddrResFuncAdd() – replace the default address resolution function

SYNOPSIS STATUS muxAddrResFuncAdd

(

long ifType, /* Media interface type, typically from m2Lib.h */

long protocol, /* Service type, for instance from RFC 1700 */

FUNCPTR addrResFunc /* Function to call. */

)

DESCRIPTION Use this routine to register an address resolution function for an interface-type/protocol
pair. You must call muxAddrResFuncAdd() prior to calling the protocol’s
protocolAttach() routine. If the driver registers itself as an Ethernet driver, you do not
need to call this routine. VxWorks automatically assigns arpresolve() to registered
Ethernet devices. The muxAddrResFuncAdd() functionality is intended for using the
VxWorks network stack with non-Ethernet drivers that require address resolution.

ifType
Expects a media interface or network driver type, such as can be found in m2Lib.h. If
using the END model, the ifType argument is restricted to the values in m2Lib.h. In
the NPT model, this restriction does not apply.

protocol
Expects a network service or protocol type, such as can be found in RFC 1700. Look
for the values under ETHER TYPES. For example, Internet IP would be identified as
2048 (0x800 hexadecimal). If using the END model, protocol is restricted to the values
in RFC 1700. In the NPT model, this restriction does not apply.

addrResFunc
Expects a pointer to an address resolution function for this combination of driver type
and service type. The prototype of your replacement address resolution function
must match that of arpresolve():

int arpresolve

(

struct arpcom * ac,

struct rtentry * rt,

struct mbuf * m,

struct sockaddr * dst,

VxWorks OS Libraries API Reference, 5.5
muxAddrResFuncDel()

872

u_char * desten

)

This function returns one upon success, which indicates that desten has been updated with
the necessary data-link layer information and that the IP sublayer output function can
transmit the packet.

This function returns zero if it cannot resolve the address immediately. In the default
arpresolve() implementation, resolving the address immediately means arpresolve() was
able to find the address in its table of results from previous ARP requests. Returning zero
indicates that the table did not contain the information but that the packet has been stored
and that an ARP request has been queued.

If the ARP request times out, the packet is dropped. If the ARP request completes
successfully, processing that event updates the local ARP table and resubmits the packet
to the IP sublayer’s output function for transmission. This time, the arpresolve() call will
return one.

What is essential to note here is that arpresolve() did not wait for the ARP request to
complete before returning. If you replace the default arpresolve() function, you must
make sure your function returns as soon as possible and that it never blocks. Otherwise,
you block the IP sublayer from transmitting other packets out through the interface for
which this packet was queued. You must also make sure that your arpresolve() function
takes responsibility for the packet if it returns zero. Otherwise, the packet is dropped.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call muxAddrResFuncAdd() from within the kernel
protection domain only, and the data referenced in the addrResFunc parameter must reside
in the kernel protection domain. This restriction does not apply under non-AE versions
of VxWorks.

RETURNS OK, or ERROR.

SEE ALSO muxLib

muxAddrResFuncDel()

NAME muxAddrResFuncDel() – delete an address resolution function

SYNOPSIS STATUS muxAddrResFuncDel

(

long ifType, /* ifType of function you want to delete */

long protocol /* protocol from which to delete the function */

)

2: Routines
muxAddrResFuncGet()

873

M

DESCRIPTION This function deletes the address resolution function registered for the specified
interface-protocol pair. If using the NPT architecture, the ifType and protocol arguments are
not restricted to the m2Lib.h or RFC 1700 values.

ifType
Expects a media interface or network driver type. For and END driver, use the values
specified in m2Lib.h.

protocol
Expects a network service or protocol type. For example, Internet IP would be
identified as 2048 (0x800 hexadecimal). This value can be found in RFC 1700 under
the heading, ETHER TYPES.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call muxAddrResFuncDel() from within the kernel
protection domain only. This restriction does not apply under non-AE versions of
VxWorks.

RETURNS OK or ERROR.

SEE ALSO muxLib

muxAddrResFuncGet()

NAME muxAddrResFuncGet() – get the address resolution function for ifType/protocol

SYNOPSIS FUNCPTR muxAddrResFuncGet

(

long ifType, /* ifType from m2Lib.h */

long protocol /* protocol from RFC 1700 */

)

DESCRIPTION This routine gets a pointer to the registered address resolution function for the specified
interface-protocol pair. If no such function exists, muxAddResFuncGet() returns NULL.

ifType
Expects a media interface or network driver type, such as those found in m2Lib.h. If
using the END model, the ifType argument is restricted to the m2Lib.h values. In the
NPT model, this restriction does not apply.

protocol
Expects a network service or protocol type such as those found in RFC 1700. Look for
the values under ETHER TYPES. For example, Internet IP would be identified as 2048
(0x800 hexadecimal). If using the END model, the protocol argument is restricted to
the RFC 1700 values. In the NPT model, this restriction does not apply.

VxWorks OS Libraries API Reference, 5.5
muxBind()

874

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call muxAddrResFuncGet() from within the kernel
protection domain only. In addition, the returned FUNCPTR is valid in the kernel
protection domain only. This restriction does not apply under non-AE versions of
VxWorks.

RETURNS FUNCPTR to the routine or NULL.

SEE ALSO muxLib

muxBind()

NAME muxBind() – create a binding between a network service and an END

SYNOPSIS void * muxBind

(

char * pName, /* interface name, for example, ln, ei,... */

int unit, /* unit number */

BOOL (* stackRcvRtn) (void* , long, M_BLK_ID, LL_HDR_INFO * , void*),

/* receive function to be called. */

STATUS (* stackShutdownRtn) (void* , void*),

/* routine to call to shutdown the stack */

STATUS (* stackTxRestartRtn) (void* , void*),

/* routine to tell the stack it can transmit */

void (* stackErrorRtn) (END_OBJ* , END_ERR* , void*),

/* routine to call on an error. */

long type, /* protocol type from RFC1700 and many */

/* other sources (for example, 0x800 is IP) */

char * pProtoName, /* string name for protocol */

void * pSpare /* per protocol spare pointer */

)

DESCRIPTION A network service uses this routine to bind to an END specified by the pName and unit
arguments (for example, ln and 0, ln and 1, or ei and 0).

NOTE: This routine should only be used to bind to drivers that use the old END driver
callback function prototypes. NPT drivers, or END drivers that use the newer callback
function prototypes, should use muxTkBind() instead. See the Network Protocol Toolkit
Programmer’s Guide for more information on when to use muxBind() and muxTkBind().

The type argument assigns a network service to one of several classes. Standard services
receive the portion of incoming data associated with type values from RFC 1700. Only one
service for each RFC 1700 type value may be bound to an END.

2: Routines
muxBind()

875

M

Services with type MUX_PROTO_SNARF provide a mechanism for bypassing the standard
services for purposes such as firewalls. These services will get incoming packets before
any of the standard services.

Promiscuous services with type MUX_PROTO_PROMISC receive any packets not
consumed by the snarf or standard services.

The MUX allows multiple snarf and promiscuous services but does not coordinate
between them. It simply delivers available packets to each service in FIFO order. Services
that consume packets may prevent “downstream” services from receiving data if the
desired packets overlap.

An output service (with type MUX_PROTO_OUTPUT) receives outgoing data before it is
sent to the device. This service type allows two network services to communicate directly
and provides a mechanism for loop-back testing. Only one output service is supported for
each driver.

The MUX calls the registered stackRcvRtn whenever it receives a packet of the appropriate
type. If that routine returns TRUE, the packet is not offered to any remaining services (or
to the driver in the case of output services). A service (including an output service) may
return FALSE to examine a packet without consuming it. See the description of a
stackRcvRtn() in the Network Protocol Toolkit Programmer’s Guide for additional
information about the expected behavior of that routine.

The stackShutdownRtn argument provides a function that the MUX can use to shut down
the service. See the Network Protocol Toolkit Programmer’s Guide for a description of how to
write such a routine.

The pProtoName argument provides the name of the service as a character string. A service
name is assigned internally if the argument is NULL.

The pSpare argument registers a pointer to data defined by the service. The MUX includes
this argument in calls to the call back routines from this service.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call muxBind() from within the kernel protection domain
only, and the data referenced in the stackRcvRtn, stackShutdownRtn, stackTxRestartRtn,
stackErrorRtn and pSpare parameters must reside in the kernel protection domain. In
addition, the returned void pointer is valid in the kernel protection domain only. This
restriction does not apply under non-AE versions of VxWorks.

RETURNS A cookie identifying the binding between service and driver; or NULL, if an error
occurred.

ERRNO S_muxLib_NO_DEVICE, S_muxLib_ALREADY_BOUND, S_muxLib_ALLOC_FAILED

SEE ALSO muxLib

VxWorks OS Libraries API Reference, 5.5
muxDevExists()

876

muxDevExists()

NAME muxDevExists() – tests whether a device is already loaded into the MUX

SYNOPSIS BOOL muxDevExists

(

char * pName, /* string containing a device name (ln, ei, ...)*/

int unit /* unit number */

)

DESCRIPTION This routine takes a string device name (for example, ln or ei) and a unit number. If this
device is already known to the MUX, it returns TRUE. Otherwise, this routine returns
FALSE.

pName
Expects a pointer to a string containing the device name

unit
Expects the unit number of the device

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call muxDevExists() from within the kernel protection
domain only, and the data referenced in the pName parameter must reside in the kernel
protection domain. This restriction does not apply under non-AE versions of VxWorks.

RETURNS TRUE, if the device exists; else FALSE.

SEE ALSO muxLib

muxDevLoad()

NAME muxDevLoad() – load a driver into the MUX

SYNOPSIS void * muxDevLoad

(

int unit, /* unit number of device */

END_OBJ * (* endLoad) (char* , void*),

/* load function of the driver */

char * pInitString, /* init string for this driver */

BOOL loaning, /* we loan buffers */

void * pBSP /* for BSP group */

)

2: Routines
muxDevStart()

877

M

DESCRIPTION The muxDevLoad() routine loads a network driver into the MUX. Internally, this routine
calls the specified endLoad routine to initialize the software state of the device. After the
device is initialized, you must call muxDevStart() to start the device.

unit
Expects the unit number of the device.

endLoad
Expects a pointer to the network driver’s endLoad() or nptLoad() entry point.

pInitString
Expects a pointer to an initialization string, typically a colon-delimited list of options.
The muxDevLoad() routine passes this along blindly to the endLoad function.

loaning
Currently unused.

pBSP
The MUX blindly passes this argument to the driver, which may or may not use it.
Some BSPs use this parameter to pass in tables of functions that the diver can use to
deal with the particulars of the BSP.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call muxDevLoad() from within the kernel protection
domain only, and the data referenced in the endLoad and pBSP parameters must reside in
the kernel protection domain. In addition, the returned void pointer is valid in the kernel
protection domain only. This restriction does not apply under non-AE versions of
VxWorks.

RETURNS A cookie representing the new device, or NULL if an error occurred.

ERRNO S_muxLib_LOAD_FAILED

SEE ALSO muxLib

muxDevStart()

NAME muxDevStart() – start a device by calling its start routine

SYNOPSIS STATUS muxDevStart

(

void * pCookie /* device identifier from muxDevLoad() routine */

)

VxWorks OS Libraries API Reference, 5.5
muxDevStop()

878

DESCRIPTION This routine starts a device that has already been initialized and loaded into the MUX
with muxDevLoad(). muxDevStart() activates the network interfaces for a device, and
calls the device’s endStart() or nptStart() routine, which registers the driver’s interrupt
service routine and does whatever else is needed to allow the device to handle receiving
and transmitting. This call to endStart() or nptStart() puts the device into a running state.

pCookie
Expects the pointer returned as the function value of the muxDevLoad() call for this
device. This pointer identifies the device.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call muxDevStart() from within the kernel protection
domain only, and the data referenced in the pCookie parameter must reside in the kernel
protection domain. This restriction does not apply under non-AE versions of VxWorks.

RETURNS OK; ENETDOWN, if pCookie does not represent a valid device; or ERROR, if the start
routine for the device fails.

ERRNO S_muxLib_NO_DEVICE

SEE ALSO muxLib

muxDevStop()

NAME muxDevStop() – stop a device by calling its stop routine

SYNOPSIS STATUS muxDevStop

(

void * pCookie /* device identifier from muxDevLoad() routine */

)

DESCRIPTION This routine stops the device specified in pCookie. muxDevStop() calls the device’s
endStop() or nptStop() routine.

pCookie
Expects the cookie returned as the function value of the muxDevLoad() call for this
device. This cookie identifies the device.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call muxDevStop() from within the kernel protection
domain only, and the data referenced in the pCookie parameter must reside in the kernel
protection domain. This restriction does not apply under non-AE versions of VxWorks.

2: Routines
muxDevUnload()

879

M

RETURNS OK; ENETDOWN, if pCookie does not represent a valid device; or ERROR, if the endStop()
or nptStop() routine for the device fails.

ERRNO S_muxLib_NO_DEVICE

SEE ALSO muxLib

muxDevUnload()

NAME muxDevUnload() – unloads a device from the MUX

SYNOPSIS STATUS muxDevUnload

(

char * pName, /* a string containing the name of the */

/* device for example, ln or ei */

int unit /* the unit number */

)

DESCRIPTION This routine unloads a device from the MUX. This breaks any network connections that
use the device. When this routine is called, each service bound to the device disconnects
from it with the stackShutdownRtn() routine that was registered by the service. The
stackShutdownRtn() should call muxUnbind() to detach from the device. Then,
muxDevUnload() calls the device’s endUnload() or nptUnload() routine.

pName
Expects a pointer to a string containing the name of the device, for example ln or ei

unit
Expects the unit number of the device indicated by pName

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call muxDevUnLoad() from within the kernel protection
domain only. This restriction does not apply under non-AE versions of VxWorks.

RETURNS OK, on success; ERROR, if the specified device was not found or some other error
occurred; or the error value returned by the driver’s unload() routine.

ERRNO S_muxLib_UNLOAD_FAILED, S_muxLib_NO_DEVICE

SEE ALSO muxLib

VxWorks OS Libraries API Reference, 5.5
muxIoctl()

880

muxIoctl()

NAME muxIoctl() – send control information to the MUX or to a device

SYNOPSIS STATUS muxIoctl

(

void * pCookie, /* service/device binding from */

/* muxBind()/muxTkBind() */

int cmd, /* command to pass to ioctl */

caddr_t data /* data need for command in cmd */

)

DESCRIPTION This routine gives the service access to the network driver’s control functions. The MUX
itself can implement some of the standard control functions, so not all commands
necessarily pass down to the device. Otherwise, both command and data pass to the
device without modification.

Typical uses of muxIoctl() include commands to start, stop, or reset the network interface,
or to add or configure MAC and network addresses.

pCookie
Expects the cookie returned from muxBind() or muxTkBind(). This cookie indicates
the device to which this service is bound.

cmd
Expects a value indicating the control command you want to execute. For valid cmd
values, see the description of the endIoctl() and nptIoctl() routines provided in the
Network Protocol Toolkit Programmer’s Guide.

data
Expects the data or a pointer to the data needed to carry out the command specified
in cmd.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call muxIoctl() from within the kernel protection domain
only, and the data referenced in the pCookie and data parameters must reside in the kernel
protection domain. This restriction does not apply under non-AE versions of VxWorks.

RETURNS OK; ENETDOWN, if pCookie does not represent a bound device; or ERROR, if the command
fails.

ERRNO S_muxLib_NO_DEVICE

SEE ALSO muxLib

2: Routines
muxLinkHeaderCreate()

881

M

muxLibInit()

NAME muxLibInit() – initialize global state for the MUX

SYNOPSIS STATUS muxLibInit (void)

DESCRIPTION This routine initializes all global states for the MUX.

RETURNS OK or ERROR.

SEE ALSO muxLib

muxLinkHeaderCreate()

NAME muxLinkHeaderCreate() – attach a link-level header to a packet

SYNOPSIS M_BLK_ID muxLinkHeaderCreate

(

void * pCookie, /* protocol/device binding from muxBind() */

M_BLK_ID pPacket, /* structure containing frame contents */

M_BLK_ID pSrcAddr, /* structure containing source address */

M_BLK_ID pDstAddr, /* structure containing destination address */

BOOL bcastFlag /* use broadcast destination (if available)? */

)

DESCRIPTION This routine constructs a link-level header using the source address of the device
indicated by the pCookie argument as returned from the muxBind() routine.

The pDstAddr argument provides an M_BLK_ID buffer containing the link-level
destination address. Alternatively, the bcastFlag argument, if TRUE, indicates that the
routine should use the link-level broadcast address, if available for the device. Although
other information contained in the pDstAddrargument must be accurate, the address data
itself is ignored in that case.

The pPacket argument contains the contents of the resulting link-level frame. This routine
prepends the new link-level header to the initial mBlk in that network packet if space is
available or allocates a new mBlk-clBlk-cluster triplet and prepends it to the mBlk chain.
When construction of the header is complete, it returns an M_BLK_ID that points to the
initial mBlk in the assembled link-level frame.

RETURNS M_BLK_ID or NULL.

VxWorks OS Libraries API Reference, 5.5
muxMCastAddrAdd()

882

ERRNO S_muxLib_INVALID_ARGS

SEE ALSO muxLib

muxMCastAddrAdd()

NAME muxMCastAddrAdd() – add a multicast address to a device’s multicast table

SYNOPSIS STATUS muxMCastAddrAdd

(

void * pCookie, /* binding instance from muxBind() or */

/* muxTkBind() */

char * pAddress /* address to add to the table */

)

DESCRIPTION This routine adds an address to the multicast table maintained by a device. This routine
calls the driver’s endMCastAddrAdd() or nptMCastAddrAdd() routine to accomplish
this.

If the device does not support multicasting, muxMCastAddrAdd() will return ERROR
and errno will be set to ENOTSUP (assuming the driver has been written properly).

pCookie
Expects the cookie returned from the muxBind() or muxTkBind() call. This cookie
identifies the device to which the MUX has bound this service.

pAddress
Expects a pointer to a character string containing the address you want to add.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call muxMCastAddrAdd() from within the kernel
protection domain only, and the data referenced in the pCookie parameter must reside in
the kernel protection domain. This restriction does not apply under non-AE versions of
VxWorks.

RETURNS OK; ENETDOWN, if pCookie does not represent a valid device; or ERROR, if the device’s
endMCastAddrAdd() function fails.

ERRNO S_muxLib_NO_DEVICE

SEE ALSO muxLib

2: Routines
muxMCastAddrDel()

883

M

muxMCastAddrDel()

NAME muxMCastAddrDel() – delete a multicast address from a device’s multicast table

SYNOPSIS STATUS muxMCastAddrDel

(

void * pCookie, /* binding instance from muxBind() or */

/* muxTkBind() */

char * pAddress /* Address to delete from the table. */

)

DESCRIPTION This routine deletes an address from the multicast table maintained by a device by calling
that device’s endMCastAddrDel() or nptMCastAddrDel() routine.

If the device does not support multicasting, muxMCastAddrAdd() will return ERROR
and errno will be set to ENOTSUP (assuming the driver has been written properly).

pCookie
Expects the cookie returned from muxBind() or muxTkBind() call. This cookie
identifies the device to which the MUX bound this service.

pAddress
Expects a pointer to a character string containing the address you want to delete.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call muxMCastAddrDell() from within the kernel
protection domain only, and the data referenced in the pCookie parameter must reside in
the kernel protection domain. This restriction does not apply under non-AE versions of
VxWorks.

RETURNS OK; ENETDOWN, if pCookie does not represent a valid driver; or ERROR, if the driver’s
registered endMCastAddrDel() or nptMCastAddrDel() functions fail.

ERRNO S_muxLib_NO_DEVICE

SEE ALSO muxLib

VxWorks OS Libraries API Reference, 5.5
muxMCastAddrGet()

884

muxMCastAddrGet()

NAME muxMCastAddrGet() – get the multicast address table from the MUX/Driver

SYNOPSIS int muxMCastAddrGet

(

void * pCookie, /* binding instance from muxBind() or */

/* muxTkBind() */

MULTI_TABLE * pTable /* pointer to a table to be filled and */

/* returned. */

)

DESCRIPTION This routine writes the list of multicast addresses for a specified device into a buffer. To
get this list, it calls the driver’s own endMCastAddrGet() or nptMCastAddrGet()
routine.

pCookie
Expects the cookie returned from muxBind() or muxTkBind() call. This cookie
indicates the device to which the MUX has bound this service.

pTable
Expects a pointer to a MULTI_TABLE structure. You must have allocated this structure
at some time before the call to muxMCastAddrGet(). The MULTI_TABLE structure is
defined in end.h as:

typedef struct multi_table

{

int tableLen; /* length of table in bytes */

char * pTable; /* pointer to entries */

} MULTI_TABLE;

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call muxMCastAddrGet() from within the kernel protection
domain only, and the data referenced in the pCookie parameter must reside in the kernel
protection domain. This restriction does not apply under non-AE versions of VxWorks.

RETURNS OK; ENETDOWN, if pCookie does not represent a valid driver; or ERROR, if the driver’s
registered endMCastAddrGet() or nptMCastAddrGet() routines fail.

ERRNO S_muxLib_NO_DEVICE

SEE ALSO muxLib

2: Routines
muxPacketAddrGet()

885

M

muxPacketAddrGet()

NAME muxPacketAddrGet() – get addressing information from a packet

SYNOPSIS STATUS muxPacketAddrGet

(

void * pCookie, /* protocol/device binding from muxBind() */

M_BLK_ID pMblk, /* structure to contain packet */

M_BLK_ID pSrcAddr, /* structure containing source address */

M_BLK_ID pDstAddr, /* structure containing destination address */

M_BLK_ID pESrcAddr, /* structure containing the end source */

M_BLK_ID pEDstAddr /* structure containing the end destination */

)

DESCRIPTION The routine returns the immediate source, immediate destination, ultimate source, and
ultimate destination addresses from the packet pointed to in the first M_BLK_ID. This
routine makes no attempt to extract that information from the packet directly. Instead, it
passes the packet to the driver call that knows how to interpret the packets it has received.

pCookie
Expects the cookie returned from the muxBind() call. This cookie indicates the device
to which the MUX bound this service.

pMblk
Expects an M_BLK_ID representing packet data from which the addressing
information is to be extracted

pSrcAddr
Expects NULL or an M_BLK_ID which will hold the local source address extracted
from the packet

pDstAddr
Expects NULL or an M_BLK_ID which will hold the local destination address
extracted from the packet

pESrcAddr
Expects NULL or an M_BLK_ID which will hold the end source address extracted from
the packet

pEDstAddr
Expects NULL or an M_BLK_ID which will hold the end destination address extracted
from the packet

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call muxPacketAddrGet() from within the kernel protection
domain only, and the data referenced in the parameters must reside in the kernel
protection domain. This restriction does not apply under non-AE versions of VxWorks.

VxWorks OS Libraries API Reference, 5.5
muxPacketDataGet()

886

RETURNS OK or ERROR.

ERRNO S_muxLib_NO_DEVICE

SEE ALSO muxLib

muxPacketDataGet()

NAME muxPacketDataGet() – return the data from a packet

SYNOPSIS STATUS muxPacketDataGet

(

void * pCookie, /* protocol/device binding from muxBind() */

M_BLK_ID pMblk, /* returns the packet data */

LL_HDR_INFO * pLinkHdrInfo /* returns the packet header information */

)

DESCRIPTION Any service bound to a driver may use this routine to extract the packet data and remove
the link-level header information. This routine copies the header information from the
packet referenced in pMblk into the LL_HDR_INFO structure referenced in pLinkHdrInfo.

pCookie
Expects the cookie returned from the muxBind() call. This cookie indicates the device
to which the MUX bound this service.

pMblk
Expects a pointer to an mBlk or mBlk cluster representing a packet containing the
data to be returned

pLinkHdrInfo
Expects a pointer to an LL_HDR_INFO structure into which the packet header
information is copied from the incoming mBlk

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call muxPacketDataGet() from within the kernel protection
domain only, and the data referenced in the parameters must reside in the kernel
protection domain. This restriction does not apply under non-AE versions of VxWorks.

RETURNS OK; or ERROR, if the device type is not recognized.

ERRNO S_muxLib_NO_DEVICE

SEE ALSO muxLib

2: Routines
muxPollDevDel()

887

M

muxPollDevAdd()

NAME muxPollDevAdd() – adds a device to list polled by tMuxPollTask

SYNOPSIS STATUS muxPollDevAdd

(

int unit, /* Device unit number */

char * pName /* Device name */

)

DESCRIPTION This routine adds a device to list of devices polled by tMuxPollTask. It assumes that you
have already called muxPollStart() and that tMuxPollTask is still running.

NOTE: You cannot use a device for WDB_COMM_END type debugging while that device
is on the tMuxPollTask poll list.

RETURNS OK or ERROR

SEE ALSO muxLib

muxPollDevDel()

NAME muxPollDevDel() – removes a device from the list polled by tMuxPollTask

SYNOPSIS STATUS muxPollDevDel

(

int unit, /* Device unit number */

char * pName /* Device name */

)

DESCRIPTION This routine removes a device from the list of devices polled by tMuxPollTask. If you
remove the last device on the list, a call to muxPollDevDel() also makes an internal call to
muxPollEnd(). This shuts down tMuxPollTask completely.

RETURNS OK or ERROR

SEE ALSO muxLib

VxWorks OS Libraries API Reference, 5.5
muxPollDevStat()

888

muxPollDevStat()

NAME muxPollDevStat() – reports whether device is on list polled by tMuxPollTask

SYNOPSIS BOOL muxPollDevStat

(

int unit, /* Device unit number */

char * pName /* Device name */

)

DESCRIPTION This routine returns true or false depending on whether the specified device is on the list
of devices polled by tMuxPollTask.

RETURNS TRUE, if it is; or FALSE.

SEE ALSO muxLib

muxPollEnd()

NAME muxPollEnd() – shuts down tMuxPollTask and returns devices to interrupt mode

SYNOPSIS STATUS muxPollEnd ()

DESCRIPTION This routine shuts down tMuxPollTask and returns network devices to run in their
interrupt-driven mode.

RETURNS OK or ERROR

SEE ALSO muxLib

2: Routines
muxPollReceive()

889

M

muxPollReceive()

NAME muxPollReceive() – now deprecated, see muxTkPollReceive()

SYNOPSIS STATUS muxPollReceive

(

void * pCookie, /* binding instance from muxBind() */

M_BLK_ID pNBuff /* a vector of buffers passed to us */

)

DESCRIPTION NOTE: This routine has been deprecated in favor of muxTkPollReceive()

Upper layers can call this routine to poll for a packet.

pCookie
Expects the cookie that was returned from muxBind(). This cookie indicates which
driver to query for available data.

pNBuff
Expects a pointer to a buffer chain into which to receive data.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call muxPollReceive() from within the kernel protection
domain only, and the data referenced in the pCookie and pNBuff parameters must reside
in the kernel protection domain. This restriction does not apply under non-AE versions
of VxWorks.

RETURNS OK; ENETDOWN, if the pCookie argument does not represent a loaded driver; or an error
value returned from the driver’s registered endPollReceive() function.

ERRNO S_muxLib_NO_DEVICE

SEE ALSO muxLib

VxWorks OS Libraries API Reference, 5.5
muxPollSend()

890

muxPollSend()

NAME muxPollSend() – now deprecated, see muxTkPollSend()

SYNOPSIS STATUS muxPollSend

(

void * pCookie, /* binding instance from muxBind() */

M_BLK_ID pNBuff /* data to be sent */

)

DESCRIPTION This routine transmits a packet for the service specified by pCookie. You got this cookie
from a previous bind call that bound the service to a particular interface. This
muxPollSend() call uses this bound interface to transmit the packet. The pNBuff
argument is a buffer (mBlk) chain that contains the packet to be sent.

RETURNS OK; ENETDOWN, if pCookie does not represent a valid device; ERROR, if the device type is
not recognized; or an error value from the device’s registered endPollSend() routine.

ERRNO S_muxLib_NO_DEVICE

SEE ALSO muxLib

2: Routines
muxPollStart()

891

M

muxPollStart()

NAME muxPollStart() – initialize and start the MUX poll task

SYNOPSIS STATUS muxPollStart

(

int numDev, /* Maximum number of devices to support */

/* poll mode. */

int priority, /* tMuxPollTask priority, not to exceed */

/* tNetTask. */

int delay /* Delay, in ticks, at end of each polling */

/* cycle. */

)

DESCRIPTION This routine initializes and starts the MUX poll task, tMuxPollTask. This task runs an
infinite loop in which it polls each of the interfaces referenced on a list of network
interfaces. To add or remove devices from this list, use muxPollDevAdd() and
muxPollDevDel(). Removing all devices from the list automatically triggers a call to
muxPollEnd(), which shuts down tMuxPollTask.

Using the priority parameter, you assign the priority to tMuxPollTask. Valid values are
between 0 and 255, inclusive. However, you must not set the priority of tMuxPollTask to
exceed that of tNetTask. Otherwise, you risk shutting tNetTask out from getting
processor time. To reset the tMuxPollTask priority after launch, use
muxTaskPrioritySet().

Using the delay parameter, you can set up a delay at the end of each trip though the poll
list. To reset the value of this delay after the launch of tNetTask, call muxTaskDelaySet().

To shut down tMuxPollTask, call muxPollEnd().

RETURNS OK or ERROR

SEE ALSO muxLib

VxWorks OS Libraries API Reference, 5.5
muxSend()

892

muxSend()

NAME muxSend() – send a packet out on a network interface

SYNOPSIS STATUS muxSend

(

void * pCookie, /* protocol/device binding from muxBind() */

M_BLK_ID pNBuff /* data to be sent */

)

DESCRIPTION This routine transmits a packet for the service specified by pCookie. You got this cookie
from a previous bind call that bound the service to a particular interface. This muxSend()
call uses this bound interface to transmit the packet.

pCookie
Expects the cookie returned from muxBind(). This cookie identifies a particular
service-to-interface binding.

pNBuff
Expects a pointer to the buffer that contains the packet you want to transmit. Before
you call muxSend(), you need to put the addressing information at the head of the
buffer. To do this, call muxAddressForm().

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call muxSend() from within the kernel protection domain
only, and the data referenced in the pCookie and pNBuff parameters must reside in the
kernel protection domain. This restriction does not apply under non-AE versions of
VxWorks.

RETURNS OK; ENETDOWN, if pCookie does not represent a valid binding; or ERROR, if the driver’s
endSend() routine fails.

ERRNO S_muxLib_NO_DEVICE

SEE ALSO muxLib

2: Routines
muxTaskDelayGet()

893

M

muxShow()

NAME muxShow() – display configuration of devices registered with the MUX

SYNOPSIS void muxShow

(

char * pDevName, /* pointer to device name, or NULL for all */

int unit /* unit number for a single device */

)

DESCRIPTION If the pDevName and unit arguments specify an existing device, this routine reports the
name and type of each protocol bound to it. Otherwise, if pDevName is NULL, the routine
displays the entire list of existing devices and their associated protocols.

pDevName
A string that contains the name of the device, or a null pointer to indicate “all
devices.”

unit
Specifies the unit number of the device (if pDevName is not a null pointer).

RETURNS N/A

SEE ALSO muxLib

muxTaskDelayGet()

NAME muxTaskDelayGet() – get the delay on the polling task

SYNOPSIS STATUS muxTaskDelayGet

(

int* pDelay

)

DESCRIPTION This routine returns the amount of delay (in ticks) that is inserted between the polling
runs of tMuxPollTask. This value is written to the location specified by pDelay.

RETURNS OK; or ERROR, if NULL is passed in the pDelay variable.

SEE ALSO muxLib

VxWorks OS Libraries API Reference, 5.5
muxTaskDelaySet()

894

muxTaskDelaySet()

NAME muxTaskDelaySet() – set the inter-cycle delay on the polling task

SYNOPSIS STATUS muxTaskDelaySet

(

int delay

)

DESCRIPTION This routine sets up a delay (measured in ticks) that is inserted at the end of each run
through the list of devices polled by tMuxPollTask.

RETURNS OK; or ERROR, if you specify a delay less than zero.

SEE ALSO muxLib

muxTaskPriorityGet()

NAME muxTaskPriorityGet() – get the priority of tMuxPollTask

SYNOPSIS STATUS muxTaskPriorityGet

(

int* pPriority

)

DESCRIPTION This routine returns the current priority of tMuxPollTask. This value is returned to the
location specified by the pPriority parameter.

RETURNS OK; or ERROR, if NULL is passed in the pPriority parameter.

SEE ALSO muxLib

2: Routines
muxTkBind()

895

M

muxTaskPrioritySet()

NAME muxTaskPrioritySet() – reset the priority of tMuxPollTask

SYNOPSIS STATUS muxTaskPrioritySet

(

int priority

)

DESCRIPTION This routine resets the priority of a running tMuxPollTask. Valid task priorities are values
between zero and 255 inclusive. However, do not set the priority of tMuxPollTask to
exceed that of tNetTask. Otherwise, you will shut out tNetTask from getting any
processor time.

RETURNS OK; or ERROR, if you specify a non-valid priority value.

SEE ALSO muxLib

muxTkBind()

NAME muxTkBind() – bind an NPT protocol to a driver

SYNOPSIS void * muxTkBind
(
char * pName, /* interface name, for example, ln, ei,... */
int unit, /* unit number */
BOOL (* stackRcvRtn) (void* ,long, M_BLK_ID, void *),

/* receive function to be called. */
STATUS (* stackShutdownRtn) (void *),

/* routine to call to shutdown the stack */
STATUS (* stackTxRestartRtn) (void *),

/* routine to tell the stack it can transmit */
void (* stackErrorRtn) (void* , END_ERR*),

/* routine to call on an error. */
long type, /* protocol type from RFC1700 and many */

/* other sources (for example, 0x800 is IP) */
char * pProtoName, /* string name for protocol */
void * pNetCallbackId, /* returned to network service sublayer */

/* during recv */
void * pNetSvcInfo, /* reference to netSrvInfo structure */
void * pNetDrvInfo /* reference to netDrvInfo structure */
)

VxWorks OS Libraries API Reference, 5.5
muxTkBind()

896

DESCRIPTION A network protocol, network service, or service sublayer uses this routine to bind to a
specific driver. This bind routine is valid both for END and NPT drivers, but the specified
stack routine parameters must use the NPT function prototypes, and are somewhat
different from those used with muxBind().

The driver is specified by the pName and unit arguments, (for example, ln and 0, ln and 1,
or ei and 0).

pName
Expects a pointer to a character string that contains the name of the device that this
network service wants to use to send and receive packets.

unit
Expects the unit number of the device of the type indicated by pName.

stackRcvRtn
Expects a pointer to the function that the MUX will call when it wants to pass a
packet up to the network service. For a description of how to write this routine, see
the WindNet TCP/IP Network Programmer’s Guide

stackShutdownRtn
Expects a pointer to the function that the MUX will call to shutdown the network
service. For a description of how to write such a routine, see the WindNet TCP/IP
Network Programmer’s Guide

stackTxRestartRtn
Expects a pointer to the function that the MUX will call after packet transmission has
been suspended, to tell the network service that it can continue transmitting packets.
For a description of how to write this routine, see the WindNet TCP/IP Network
Programmer’s Guide

stackErrorRtn
Expects a pointer to the function that the MUX will call to give errors to the network
service. For a description of how to write this routine, see the section WindNet TCP/IP
Network Programmer’s Guide

type
Expects a value that indicates the protocol type. The MUX uses this type to prioritize
a network service as well as to modify its capabilities. For example, a network service
of type MUX_PROTO_SNARF has the highest priority (see the description of protocol
prioritizing provided in WindNet TCP/IP Network Programmer’s Guide. Aside from
MUX_PROTO_SNARF and MUX_PROTO_PROMISC, valid network service types
include any of the values specified in RFC 1700, or can be user-defined.

The stackRcvRtn is called whenever the MUX has a packet of the specified type. If the type
is MUX_PROTO_PROMISC, the protocol is considered promiscuous and will get all of the
packets that have not been consumed by any other protocol. If the type is
MUX_PROTO_SNARF, it will get all of the packets that the MUX sees.

If the type is MUX_PROTO_OUTPUT, this network service is an output protocol and all
packets that are to be output on this device are first passed to stackRcvRtn routine rather

2: Routines
muxTkCookieGet()

897

M

than being sent to the device. This can be used by a network service that needs to send
packets directly to another network service, or in a loop-back test. If the stackRcvRtn
returns OK, the packet is consumed and as no longer available. The stackRcvRtn for an
output protocol may return ERROR to indicate that it wants to look at the packet without
consuming it.

pProtoName
Expects a pointer to a character string for the name of this network service. This
string can be NULL, in which case a network service name is assigned internally.

pNetCallbackId
Expects a pointer to a structure defined by the protocol. This argument is passed up
to the protocol as the first argument of all the callbacks. This argument corresponds
to the pSpare argument in muxBind()

pNetSvcInfo
Reference to an optional structure specifying network service layer information
needed by the driver

pNetDrvInfo
Reference to an optional structure specifying network driver information needed by
the network protocol, network service, or service sublayer

RETURNS A cookie that uniquely represents the binding instance, or NULL if the bind fails.

ERRNO S_muxLib_NO_DEVICE, S_muxLib_END_BIND_FAILED, S_muxLib_NO_TK_DEVICE,
S_muxLib_NOT_A_TK_DEVICE, S_muxLib_ALREADY_BOUND, S_muxLib_ALLOC_FAILED

SEE ALSO muxTkLib, muxBind()

muxTkCookieGet()

NAME muxTkCookieGet() – returns the cookie for a device

SYNOPSIS void *muxTkCookieGet

(

char * pName, /* Device Name */

int unit /* Device Unit */

)

DESCRIPTION This routine returns the cookie for a device.

RETURNS a cookie to the device or NULL if unsuccessful

SEE ALSO muxTkLib

VxWorks OS Libraries API Reference, 5.5
muxTkDrvCheck()

898

muxTkDrvCheck()

NAME muxTkDrvCheck() – checks if the device is an NPT or an END interface

SYNOPSIS int muxTkDrvCheck

(

char * pDevName /* device name */

)

DESCRIPTION This function returns 1 if the driver indicated by pDevName is of the Toolkit (NPT)
paradigm, and 0 (zero) if it is an END. This routine is called by the network service
sublayer so that it can discover the driver type before it binds to it via the MUX.

RETURNS 1 for an NPT driver, 0 for an END or other driver, or ERROR (-1) if no device is found with
the given name

SEE ALSO muxTkLib, muxTkBind(), muxBind()

muxTkPollReceive()

NAME muxTkPollReceive() – poll for a packet from a NPT or END driver

SYNOPSIS STATUS muxTkPollReceive

(

void * pCookie, /* cookie from muxTkBind routine */

M_BLK_ID pNBuff, /* a vector of buffers passed to us */

void * pSpare /* a reference to spare data is returned here */

)

DESCRIPTION This is the routine that an upper layer can call to poll for a packet. Any service type
retrieved from the MAC frame is passed via the reserved member of the M_BLK header.

This API effectively replaces muxPollReceive() for both END and NPT drivers.

For an NPT driver its pollReceive() entry point is called based on the new prototype:

STATUS nptPollReceive

(

END_OBJ * pEND, /* END object */

M_BLK_ID pPkt, /* network packet buffer */

long * pNetSvc, /* service type from MAC frame */

long * pNetOffset, /* offset to network packet */

2: Routines
muxTkPollSend()

899

M

void * pSpareData /* optional network service data */

)

The pollReceive() entry point for an END driver uses the original prototype:

STATUS endPollRcv

(

END_OBJ * pEND, /* END object */

M_BLK_ID pPkt, /* network packet buffer */

)

An END driver must continue to provide the packetDataGet() entry point

pCookie
Expects the cookie that was returned from muxBind() or muxTkBind(). This
“cookie” identifies the driver.

pNBuff
Expects a pointer to a buffer chain into which incoming data will be put.

pSpareData
A pointer to any optional spare data provided by a NPT driver. Always NULL with
an END driver.

RETURNS OK; EAGAIN, if no packet was available; ENETDOWN, if the pCookiedoes not represent a
loaded driver; or an error value returned from the driver’s registered pollReceive()
function.

ERRNO S_muxLib_NO_DEVICE

SEE ALSO muxTkLib

muxTkPollSend()

NAME muxTkPollSend() – send a packet out in polled mode to an END or NPT interface

SYNOPSIS STATUS muxTkPollSend

(

void * pCookie, /* returned by muxTkBind()*/

M_BLK_ID pNBuff, /* data to be sent */

char * dstMacAddr, /* destination MAC address */

USHORT netType, /* network protocol that is calling us * is */

/* netType redundant? * */

void * pSpareData /* spare data passed on each send */

)

VxWorks OS Libraries API Reference, 5.5
muxTkPollSend()

900

DESCRIPTION This routine uses pCookie to find a specific network interface and use that driver’s
pollSend() routine to transmit a packet.

This routine replaces the muxPollSend() routine for both END and NPT drivers.

When using this routine, the driver does not need to call muxAddressForm() to complete
the packet, nor does it need to prepend an mBlk of type MF_IFADDR containing the
destination address.

An NPT driver’s pollSend() entry point is called based on this prototype:

STATUS nptPollSend

(

END_OBJ * pEND, /* END object */

M_BLK_ID pPkt, /* network packet to transmit */

char * pDstAddr, /* destination MAC address */

long netType /* network service type */

void * pSpareData /* optional network service data */

)

The pollSend() entry point for an END uses this prototype:

STATUS endPollSend

(

END_OBJ * pEND, /* END object */

M_BLK_ID pPkt, /* network packet to transmit */

)

An END driver must provide the addressForm() entry point to construct the appropriate
link-level header. The pDst and pSrc M_BLK arguments to that routine supply the
link-level addresses with the mData and mLen fields. The reserved field of the destination
M_BLK contains the network service type. Both arguments must be treated as read-only.

pCookie
Expects the cookie returned from muxBind() or muxTkBind(). This cookie identifies
the device to which the MUX has bound this protocol.

pNBuff
The network packet to be sent.

dstMacAddr
Destination MAC address to which packet is to be sent

netType
Network service type that will be used to identify the payload data in the MAC
frame.

pSpareData
Reference to any additional data the network service wants to pass to the driver
during the send operation.

2: Routines
muxTkReceive()

901

M

RETURNS OK, ENETDOWN if pCookie doesn’t represent a valid device, or an error if the driver’s
pollSend() routine fails.

ERRNO S_muxLib_NO_DEVICE

SEE ALSO muxTkLib

muxTkReceive()

NAME muxTkReceive() – receive a packet from a NPT driver

SYNOPSIS STATUS muxTkReceive

(

void * pCookie, /* cookie passed in endLoad() call */

M_BLK_ID pMblk, /* a buffer passed to us. */

long netSvcOffset, /* offset to network datagram in the packet */

long netSvcType, /* network service type */

BOOL uniPromiscuous, /* TRUE when driver is in promiscuous mode */

void * pSpareData /* out of band data */

)

DESCRIPTION This is the routine that the NPT driver calls to hand a packet to the MUX. This routine
forwards the received mBlk chain to the network service sublayer by calling its registered
stackRcvRtn().

Typically, a driver includes an interrupt handling routine to process received packets. It
should keep processing to a minimum during interrupt context and then arrange for
processing of the received packet within task context.

Once the frame has been validated, the driver should pass it to the MUX with the
receiveRtn member of its END_OBJ structure. This routine has the same prototype as (and
typically is) muxTkReceive().

Depending on the protocol type (for example, MUX_PROTO_SNARF or
MUX_PROTO_PROMISC), this routine either forwards the received packet chain
unmodified or it changes the data pointer in the mBlk to strip off the frame header before
forwarding the packet.

pCookie
Expects the END_OBJ pointer returned by the driver’s endLoad() or nptLoad()
function

pMblk
Expects a pointer to the mBlk structure containing the packet that has been received

VxWorks OS Libraries API Reference, 5.5
muxTkSend()

902

netSvcOffset
Expects an offset into the frame to the point where the data field (the network service
layer header) begins

netSvcType
Expects the network service type of the service for which the packet is destined
(typically this value can be found in the header of the received frame)

uniPromiscuous
Expects a boolean set to TRUE when driver is in promiscuous mode and receives a
unicast or a multicast packet not intended for this device. When TRUE the packet is
not handed over to network services other than those registered as SNARF or
PROMISCUOUS.

pSpareData
Expects a pointer to any spare data the driver needs to pass up to the network service
layer, or NULL

RETURNS OK or ERROR.

ERRNO S_muxLib_NO_DEVICE

SEE ALSO muxTkLib

muxTkSend()

NAME muxTkSend() – send a packet out on a Toolkit or END network interface

SYNOPSIS STATUS muxTkSend

(

void * pCookie, /* returned by muxTkBind()*/

M_BLK_ID pNBuff, /* data to be sent */

char * dstMacAddr, /* destination MAC address */

USHORT netType, /* network protocol that is calling us * is */

/* netType redundant? * */

void * pSpareData /* spare data passed on each send */

)

DESCRIPTION This routine uses pCookie to find a specific network interface and uses that driver’s send
routine to transmit a packet.

The transmit entry point for an NPT driver uses the following prototype:

2: Routines
muxTkSend()

903

M

STATUS nptSend

(

END_OBJ * pEND, /* END object */

M_BLK_ID pPkt, /* network packet to transmit */

char * pDstAddr, /* destination MAC address */

int netType /* network service type */

void * pSpareData /* optional network service data */

)

The transmit entry point for an END driver the following prototype:

STATUS endSend

(

void * pEND, /* END object */

M_BLK_ID pPkt, /* Network packet to transmit */

)

An END driver must continue to provide the addressForm() entry point to construct the
appropriate link-level header. The pDst and pSrc M_BLK arguments to that routine supply
the link-level addresses with the mData and mLen fields. The reserved field of the
destination M_BLK contains the network service type. Both arguments must be treated as
read-only.

To send a fully formed physical layer frame to a device using an NPT driver (which
typically forms the frame itself), set the M_L2HDR flag in the mBlk header.

A driver may be written so that it returns the error END_ERR_BLOCK if the driver has
insufficient resources to transmit data. The network service sublayer can use this feedback
to establish a flow control mechanism by holding off on making any further calls to
muxTkSend() until the device is ready to restart transmission, at which time the device
should call muxTxRestart() which will call the service sublayer’s stackRestartRtn() that
was registered for the interface at bind time.

pCookie
Expects the cookie returned from muxTkBind(). This Cookie identifies the device to
which the MUX has bound this protocol.

pNBuff
The network packet to be sent, formed into an mBlk chain.

dstMacAddr
Destination MAC address to which packet is to be sent, determined perhaps by
calling the address resolution function that was registered for this service/device
interface.

netType
Network service type of the sending service. This will be used to identify the payload
type in the MAC frame.

VxWorks OS Libraries API Reference, 5.5
muxUnbind()

904

pSpareData
Reference to any additional data the network service wants to pass to the driver
during the send operation.

NOTE: A driver may return END_ERR_BLOCK if it is temporarily unable to complete the
send, and then call muxTxRestart() to indicate that it is again able to send data. If the
driver has been written in this way, muxTkSend() will pass the ERR_END_BLOCK back as
its own return value and the service can wait for its stackRestartRtn() callback routine to
be called before trying the send operation again.

RETURNS OK; ENETDOWN, if pCookie doesn’t represent a valid device; or an error, if the driver’s
send() routine fails.

ERRNO S_muxLib_NO_DEVICE

SEE ALSO muxTkLib

muxUnbind()

NAME muxUnbind() – detach a network service from the specified device

SYNOPSIS STATUS muxUnbind

(

void * pCookie, /* binding instance from muxBind() or */

/* muxTkBind() */

long type, /* type passed to muxBind() or muxTkBind() call */

FUNCPTR stackRcvRtn /* pointer to stack receive routine */

)

DESCRIPTION This routine disconnects a network service from the specified device. The pCookie
argument indicates the service/device binding returned by the muxBind() or
muxTkBind() routine. The type and stackRcvRtn arguments must also match the values
given to the original muxBind() or muxTkBind() call.

NOTE: If muxUnbind() returns ERROR, and errno is set to EINVAL, this indicates that the
device is not bound to the service.

RETURNS OK; or ERROR, if muxUnbind() fails.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call muxUnBind() from within the kernel protection

2: Routines
mv()

905

M

domain only, and the data referenced in the stackRcvRtn and pCookie parameters must
reside in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

ERRNO EINVAL, S_muxLib_NO_DEVICE

SEE ALSO muxLib

mv()

NAME mv() – mv file into other directory.

SYNOPSIS STATUS mv

(

const char * src, /* source file name or wildcard */

const char * dest /* destination name or directory */

)

DESCRIPTION This function is similar to rename() but behaves somewhat more like the UNIX program
“mv”, it will overwrite files.

This command moves the src file or directory into a file which name is passed in the dest
argument, if dest is a regular file or does not exist. If dest name is a directory, the source
object is moved into this directory as with the same name, if dest is NULL, the current
directory is assumed as the destination directory. src may be a single file name or a path
containing a wildcard pattern, in which case all files or directories matching the pattern
will be moved to dest which must be a directory in this case.

EXAMPLES -> mv("/sd0/dir1","/sd0/dir2")

-> mv("/sd0/*.tmp","/sd0/junkdir")

-> mv("/sd0/FILE1.DAT","/sd0/dir2/f001.dat")

RETURNS OK, or ERROR if any of the files or directories could not be moved, or if src is a pattern but
the destination is not a directory.

SEE ALSO usrFsLib

VxWorks OS Libraries API Reference, 5.5
nanosleep()

906

nanosleep()

NAME nanosleep() – suspend the current task until the time interval elapses (POSIX)

SYNOPSIS int nanosleep

(

const struct timespec * rqtp, /* time to delay */

struct timespec * rmtp /* premature wakeup (NULL=no result) */

)

DESCRIPTION This routine suspends the current task for a specified time rqtpor until a signal or event
notification is made.

The suspension may be longer than requested due to the rounding up of the request to the
timer’s resolution or to other scheduling activities (e.g., a higher priority task intervenes).

The timespec structure is defined as follows:

struct timespec

{

/* interval = tv_sec*10**9 + tv_nsec */

time_t tv_sec; /* seconds */

long tv_nsec; /* nanoseconds (0 - 1,000,000,000) */

};

If rmtp is non-NULL, the timespec structure is updated to contain the amount of time
remaining. If rmtp is NULL, the remaining time is not returned. The rqtp parameter is
greater than 0 or less than or equal to 1,000,000,000.

RETURNS 0 (OK), or -1 (ERROR) if the routine is interrupted by a signal or an asynchronous event
notification, or rqtp is invalid.

ERRNO EINVAL, EINTR

SEE ALSO timerLib, sleep(), taskDelay()

2: Routines
netClBlkFree()

907

N

netBufLibInit()

NAME netBufLibInit() – initialize netBufLib

SYNOPSIS STATUS netBufLibInit (void)

DESCRIPTION This routine executes during system startup if INCLUDE_NETWORK is defined when the
image is built. It links the network buffer library into the image.

RETURNS OK or ERROR.

SEE ALSO netBufLib

netClBlkFree()

NAME netClBlkFree() – free a clBlk-cluster construct back to the memory pool

SYNOPSIS void netClBlkFree

(

NET_POOL_ID pNetPool, /* pointer to the net pool */

CL_BLK_ID pClBlk /* pointer to the clBlk to free */

)

DESCRIPTION This routine decrements the reference counter in the specified clBlk. If the reference count
falls to zero, this routine frees both the clBlk and its associated cluster back to the
specified memory pool.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is valid
in the kernel protection domain. This restriction does not apply under non-AE versions of
VxWorks.

RETURNS N/A

SEE ALSO netBufLib

VxWorks OS Libraries API Reference, 5.5
netClBlkGet()

908

netClBlkGet()

NAME netClBlkGet() – get a clBlk

SYNOPSIS CL_BLK_ID netClBlkGet

(

NET_POOL_ID pNetPool, /* pointer to the net pool */

int canWait /* M_WAIT/M_DONTWAIT */

)

DESCRIPTION This routine gets a clBlk from the specified memory pool.

pNetPool
Expects a pointer to the pool from which you want a clBlk.

canWait
Expects either M_WAIT or M_DONTWAIT. If no clBlk is immediately available, the
M_WAIT value allows this routine to repeat the allocation attempt after performing
garbage collection. It omits these steps when the M_DONTWAIT value is used.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. Likewise, the returned ID is valid in the kernel
protection domain only. This restriction does not apply under non-AE versions of
VxWorks.

RETURNS CL_BLK_ID or a NULL if no clBlk was available.

SEE ALSO netBufLib

netClBlkJoin()

NAME netClBlkJoin() – join a cluster to a clBlk structure

SYNOPSIS CL_BLK_ID netClBlkJoin

(

CL_BLK_ID pClBlk, /* pointer to a cluster Blk */

char * pClBuf, /* pointer to a cluster buffer */

int size, /* size of the cluster buffer */

2: Routines
netClFree()

909

N

FUNCPTR pFreeRtn, /* pointer to the free routine */

int arg1, /* argument 1 of the free routine */

int arg2, /* argument 2 of the free routine */

int arg3 /* argument 3 of the free routine */

)

DESCRIPTION This routine joins the previously reserved cluster specified by pClBuf to the previously
reserved clBlk structure specified by pClBlk. The size parameter passes in the size of the
cluster referenced in pClBuf. The arguments pFreeRtn, arg1, arg2, arg3 set the values of the
pCLFreeRtn, clFreeArg1, clFreeArg2, and clFreeArg1, members of the specified clBlk
structure.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. Likewise, the returned ID is valid in the kernel
protection domain only. This restriction does not apply under non-AE versions of
VxWorks.

RETURNS CL_BLK_ID or NULL.

SEE ALSO netBufLib

netClFree()

NAME netClFree() – free a cluster back to the memory pool

SYNOPSIS void netClFree

(

NET_POOL_ID pNetPool, /* pointer to the net pool */

UCHAR * pClBuf /* pointer to the cluster buffer */

)

DESCRIPTION This routine returns the specified cluster buffer back to the specified memory pool.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

VxWorks OS Libraries API Reference, 5.5
netClPoolIdGet()

910

RETURNS N/A

SEE ALSO netBufLib

netClPoolIdGet()

NAME netClPoolIdGet() – return a CL_POOL_ID for a specified buffer size

SYNOPSIS CL_POOL_ID netClPoolIdGet

(

NET_POOL_ID pNetPool, /* pointer to the net pool */

int bufSize, /* size of the buffer */

BOOL bestFit /* TRUE/FALSE */

)

DESCRIPTION This routine returns a CL_POOL_ID for a cluster pool containing clusters that match the
specified bufSize. If bestFit is TRUE, this routine returns a CL_POOL_ID for a pool that
contains clusters greater than or equal to bufSize. If bestFit is FALSE, this routine returns a
CL_POOL_ID for a cluster from whatever cluster pool is available. If the memory pool
specified by pNetPool contains only one cluster pool, bestFit should always be FALSE.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. Likewise, the returned ID is valid in the kernel
protection domain only. This restriction does not apply under non-AE versions of
VxWorks.

RETURNS CL_POOL_ID or NULL.

SEE ALSO netBufLib

2: Routines
netDevCreate()

911

N

netClusterGet()

NAME netClusterGet() – get a cluster from the specified cluster pool

SYNOPSIS char * netClusterGet

(

NET_POOL_ID pNetPool, /* pointer to the net pool */

CL_POOL_ID pClPool /* ptr to the cluster pool */

)

DESCRIPTION This routine gets a cluster from the specified cluster pool pClPool within the specified
memory pool pNetPool.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. Likewise, the returned ID is valid in the kernel
protection domain only. This restriction does not apply under non-AE versions of
VxWorks.

RETURNS This routine returns a character pointer to a cluster buffer or NULL if none was available.

SEE ALSO netBufLib

netDevCreate()

NAME netDevCreate() – create a remote file device

SYNOPSIS STATUS netDevCreate

(

char * devName, /* name of device to create */

char * host, /* host this device will talk to */

int protocol /* remote file access protocol 0 = RSH, 1 = FTP */

)

DESCRIPTION This routine creates a remote file device. Normally, a network device is created for each
remote machine whose files are to be accessed. By convention, a network device name is
the remote machine name followed by a colon “:”. For example, for a UNIX host on the

VxWorks OS Libraries API Reference, 5.5
netDevCreate2()

912

network whose name is “wrs”, files can be accessed by creating a device called “wrs:”.
Files can be accessed via RSH as follows:

netDevCreate ("wrs:", "wrs", rsh);

The file /usr/dog on the UNIX system “wrs” can now be accessed as “wrs:/usr/dog” via
RSH.

Before creating a device, the host must have already been created with hostAdd().

RETURNS OK or ERROR.

SEE ALSO netDrv, hostAdd()

netDevCreate2()

NAME netDevCreate2() – create a remote file device with fixed buffer size

SYNOPSIS STATUS netDevCreate2

(

char * devName, /* name of device to create */

char * host, /* host this device will talk to */

int protocol, /* remote file access protocol 0 = RSH, 1 = FTP */

UINT bufSize /* size of buffer in NET_FD */

)

DESCRIPTION This routine creates a remote file device, just like netDevCreate(), but it allows very large
files to be accessed without loading the entire file to memory. The fourth parameter
bufSize specifies the amount of memory. If bufSize is zero, the behavior is exactly the same
as netDevCreate(). If bufSize is not zero, the following restrictions apply:

– O_RDONLY, O_WRONLY open mode are supported, but not O_RDWR open mode.
– seek is supported in O_RDONLY open mode, but not in O_WRONLY open mode.
– backward seek might be slow if it is beyond the buffer.

RETURNS OK or ERROR.

SEE ALSO netDrv, netDevCreate()

2: Routines
netDrvDebugLevelSet()

913

N

netDrv()

NAME netDrv() – install the network remote file driver

SYNOPSIS STATUS netDrv (void)

DESCRIPTION This routine initializes and installs the network driver. It must be called before other
network remote file functions are performed. It is called automatically when
INCLUDE_NET_DRV is defined.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. This restriction does not apply under non-AE versions of VxWorks.

RETURNS OK or ERROR.

SEE ALSO netDrv

netDrvDebugLevelSet()

NAME netDrvDebugLevelSet() – set the debug level of the netDrv library routines

SYNOPSIS STATUS netDrvDebugLevelSet

(

UINT32 debugLevel /* NETDRV_DEBUG_OFF, NETDRV_DEBUG_ERRORS, */

/* NETDRV_DEBUG_ALL */

)

DESCRIPTION This routine enables the debugging of calls to the net driver. The argument
NETLIB_DEBUG_ERRORS will display only error messages to the console. The argument
NETLIB_DEBUG_ALL will display warnings and errors to the console.

RETURNS OK, or ERROR if the debug level is invalid

SEE ALSO netDrv

VxWorks OS Libraries API Reference, 5.5
netDrvFileDoesNotExistInstall()

914

netDrvFileDoesNotExistInstall()

NAME netDrvFileDoesNotExistInstall() – install an applette to test if a file exists

SYNOPSIS STATUS netDrvFileDoesNotExistInstall

(

FUNCPTR pAppletteRtn /* function that returns TRUE or FALSE */

)

DESCRIPTION Install a function to test if a file exists. pAppletteRtn should be of the following format:

STATUS appletteRoutine

(

char *filename, /* filename queried */

char *response /* server response string */

)

The netDrv() routine calls the applette during an open with O_CREAT. The system
performs an NLST command and uses the applette to parse the response. The routine
compensates for server response implementation variations. The applette should return
OK if the file is not found and ERROR if the file is found.

RETURNS OK, installation successful; ERROR, installation error.

SEE ALSO netDrv, open()

netHelp()

NAME netHelp() – print a synopsis of network routines

SYNOPSIS void netHelp (void)

DESCRIPTION This command prints a brief synopsis of network facilities typically called from the shell.

hostAdd "hostname","inetaddr" - add a host to remote host table;
"inetaddr" must be in standard
Internet address format e.g. "90.0.0.4"

hostShow - print current remote host table
netDevCreate "devname","hostname",protocol

- create an I/O device to access
files on the specified host
(protocol 0=rsh, 1=ftp)

2: Routines
netLibInit()

915

N

routeAdd "destaddr","gateaddr" - add route to route table
routeDelete "destaddr","gateaddr" - delete route from route table
routeShow - print current route table
iam "usr"[,"passwd"] - specify the user name by which

you will be known to remote
hosts (and optional password)

whoami - print the current remote ID
rlogin "host" - log in to a remote host;

"host" can be inet address or
host name in remote host table

ifShow ["ifname"] - show info about network interfaces
inetstatShow - show all Internet protocol sockets
tcpstatShow - show statistics for TCP
udpstatShow - show statistics for UDP
ipstatShow - show statistics for IP
icmpstatShow - show statistics for ICMP
arptabShow - show a list of known ARP entries
mbufShow - show mbuf statistics

RETURNS N/A

SEE ALSO usrLib, VxWorks Programmer’s Guide: Target Shell

netLibInit()

NAME netLibInit() – initialize the network package

SYNOPSIS STATUS netLibInit (void)

DESCRIPTION This creates the network task job queue, and spawns the network task netTask(). It
should be called once to initialize the network. This is done automatically when
INCLUDE_NET_LIB is defined.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. This restriction does not apply under non-AE versions of VxWorks.

RETURNS OK, or ERROR if network support cannot be initialized.

SEE ALSO netLib, usrConfig, netTask()

VxWorks OS Libraries API Reference, 5.5
netMblkChainDup()

916

netMblkChainDup()

NAME netMblkChainDup() – duplicate an mBlk chain

SYNOPSIS M_BLK_ID netMblkChainDup

(

NET_POOL_ID pNetPool, /* pointer to the pool */

M_BLK_ID pMblk, /* pointer to source mBlk chain*/

int offset, /* offset to duplicate from */

int len, /* length to copy */

int canWait /* M_DONTWAIT/M_WAIT */

)

DESCRIPTION This routine makes a copy of an mBlk chain starting at offset bytes from the beginning of
the chain and continuing for len bytes. If len is M_COPYALL, then this routine will copy the
entire mBlk chain from the offset.

This routine copies the references from a source pMblk chain to a newly allocated mBlk
chain. This lets the two mBlk chains share the same clBlk-cluster constructs. This routine
also increments the reference count in the shared clBlk. The pMblk expects a pointer to the
source mBlk chain. The pNetPool parameter expects a pointer to the netPool from which
the new mBlk chain is allocated.

The canWait parameter determines the behavior if any required mBlk is not immediately
available. A value of M_WAIT allows this routine to repeat the allocation attempt after
performing garbage collection. The M_DONTWAIT value prevents those extra steps.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. Likewise, the returned ID is valid in the kernel
protection domain only. This restriction does not apply under non-AE versions of
VxWorks.

SEE ALSO netBufLib, netMblkDup()

RETURNS A pointer to the newly allocated mBlk chain or NULL.

ERRNO S_netBufLib_INVALID_ARGUMENT
S_netBufLib_NO_POOL_MEMORY

2: Routines
netMblkClFree()

917

N

netMblkClChainFree()

NAME netMblkClChainFree() – free a chain of mBlk-clBlk-cluster constructs

SYNOPSIS void netMblkClChainFree

(

M_BLK_ID pMblk /* pointer to the mBlk */

)

DESCRIPTION For the specified chain of mBlk-clBlk-cluster constructs, this routine frees all the mBlk
structures back to the specified memory pool. It also decrements the reference count in
all the clBlk structures. If the reference count in a clBlk falls to zero, this routine also frees
that clBlk and its associated cluster back to the specified memory pool.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

RETURNS N/A

ERRNO S_netBufLib_MBLK_INVALID

SEE ALSO netBufLib

netMblkClFree()

NAME netMblkClFree() – free an mBlk-clBlk-cluster construct

SYNOPSIS M_BLK_ID netMblkClFree

(

M_BLK_ID pMblk /* pointer to the mBlk */

)

DESCRIPTION For the specified mBlk-clBlk-cluster construct, this routine frees the mBlk back to the
specified memory pool. It also decrements the reference count in the clBlk structure. If the
reference count falls to zero, no other mBlk structure reference this clBlk. In that case, this
routine also frees the clBlk structure and its associated cluster back to the specified
memory pool.

VxWorks OS Libraries API Reference, 5.5
netMblkClGet()

918

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. Likewise, the returned ID is valid in the kernel
protection domain only. This restriction does not apply under non-AE versions of
VxWorks.

RETURNS If the specified mBlk was part of an mBlk chain, this routine returns a pointer to the next
mBlk. Otherwise, it returns a NULL.

ERRNO S_netBufLib_MBLK_INVALID

SEE ALSO netBufLib

netMblkClGet()

NAME netMblkClGet() – get a clBlk-cluster and join it to the specified mBlk

SYNOPSIS STATUS netMblkClGet

(

NET_POOL_ID pNetPool, /* pointer to the net pool */

M_BLK_ID pMblk, /* mBlk to embed the cluster in */

int bufSize, /* size of the buffer to get */

int canWait, /* wait or dontwait */

BOOL bestFit /* TRUE/FALSE */

)

DESCRIPTION This routine gets a clBlk-cluster pair from the specified memory pool and joins it to the
specified mBlk structure. The mBlk-clBlk-cluster triplet it produces is the basic structure
for handling data at all layers of the network stack.

pNetPool
Expects a pointer to the memory pool from which you want to get a free clBlk-cluster
pair.

pMbkl
Expects a pointer to the mBlk structure (previously allocated) to which you want to
join the retrieved clBlk-cluster pair.

bufSize
Expects the size, in bytes, of the cluster in the clBlk-cluster pair.

2: Routines
netMblkClJoin()

919

N

canWait
Expects either M_WAIT or M_DONTWAIT. If either item is not immediately available,
the M_WAIT value allows this routine to repeat the allocation attempt after
performing garbage collection. It omits those steps when the M_DONTWAIT value is
used.

bestFit
Expects either TRUE or FALSE. If bestFit is TRUE and a cluster of the exact size is
unavailable, this routine gets a larger cluster (if available). If bestFit is FALSE and an
exact size cluster is unavailable, this routine gets either a smaller or a larger cluster
(depending on what is available). Otherwise, it returns immediately with an ERROR
value. For memory pools containing only one cluster size, bestFit should always be set
to FALSE.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

RETURNS OK or ERROR.

ERRNO S_netBufLib_CLSIZE_INVALID

SEE ALSO netBufLib

netMblkClJoin()

NAME netMblkClJoin() – join an mBlk to a clBlk-cluster construct

SYNOPSIS M_BLK_ID netMblkClJoin

(

M_BLK_ID pMblk, /* pointer to an mBlk */

CL_BLK_ID pClBlk /* pointer to a cluster Blk */

)

DESCRIPTION This routine joins the previously reserved mBlk referenced in pMblk to the clBlk-cluster
construct referenced in pClBlk. Internally, this routine sets the M_EXT flag in
mBlk.mBlkHdr.mFlags. It also and sets the mBlk.mBlkHdr.mData to point to the start of
the data in the cluster.

VxWorks OS Libraries API Reference, 5.5
netMblkDup()

920

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. Likewise, the returned ID is valid in the kernel
protection domain only. This restriction does not apply under non-AE versions of
VxWorks.

RETURNS M_BLK_ID or NULL.

SEE ALSO netBufLib

netMblkDup()

NAME netMblkDup() – duplicate an mBlk

SYNOPSIS M_BLK_ID netMblkDup

(

M_BLK_ID pSrcMblk, /* pointer to source mBlk */

M_BLK_ID pDestMblk /* pointer to the destination mBlk */

)

DESCRIPTION This routine copies the references from a source mBlk in an mBlk-clBlk-cluster construct
to a stand-alone mBlk. This lets the two mBlk structures share the same clBlk-cluster
construct. This routine also increments the reference count in the shared clBlk. The
pSrcMblk expects a pointer to the source mBlk. The pDescMblk parameter expects a
pointer to the destination mBlk.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. Likewise, the returned ID is valid in the kernel
protection domain only. This restriction does not apply under non-AE versions of
VxWorks.

RETURNS A pointer to the destination mBlk or NULL if the source mBlk referenced in pSrcMblk is
not part of a valid mBlk-clBlk-cluster construct.

SEE ALSO netBufLib

2: Routines
netMblkGet()

921

N

netMblkFree()

NAME netMblkFree() – free an mBlk back to its memory pool

SYNOPSIS void netMblkFree

(

NET_POOL_ID pNetPool, /* pointer to the net pool */

M_BLK_ID pMblk /* mBlk to free */

)

DESCRIPTION This routine frees the specified mBlk back to the specified memory pool.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

RETURNS N/A

SEE ALSO netBufLib

netMblkGet()

NAME netMblkGet() – get an mBlk from a memory pool

SYNOPSIS M_BLK_ID netMblkGet

(

NET_POOL_ID pNetPool, /* pointer to the net pool */

int canWait, /* M_WAIT/M_DONTWAIT */

UCHAR type /* mBlk type */

)

DESCRIPTION This routine allocates an mBlk from the specified memory pool, if available.

pNetPool
Expects a pointer to the pool from which you want an mBlk.

canWait
Expects either M_WAIT or M_DONTWAIT. If no mBlk is immediately available, the

VxWorks OS Libraries API Reference, 5.5
netMblkToBufCopy()

922

M_WAIT value allows this routine to repeat the allocation attempt after performing
garbage collection. It omits these steps when the M_DONTWAIT value is used.

type
Expects the type value that you want to associate with the returned mBlk.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. Likewise, the returned ID is valid in the kernel
protection domain only. This restriction does not apply under non-AE versions of
VxWorks.

RETURNS M_BLK_ID or NULL if no mBlk is available.

ERRNO S_netBufLib_MBLK_INVALID

SEE ALSO netBufLib

netMblkToBufCopy()

NAME netMblkToBufCopy() – copy data from an mBlk to a buffer

SYNOPSIS int netMblkToBufCopy

(

M_BLK_ID pMblk, /* pointer to an mBlk */

char * pBuf, /* pointer to the buffer to copy */

FUNCPTR pCopyRtn /* function pointer for copy routine */

)

DESCRIPTION This routine copies data from the mBlk chain referenced in pMblk to the buffer referenced
in pBuf. It is assumed that pBuf points to enough memory to contain all the data in the
entire mBlk chain. The argument pCopyRtn expects either a NULL or a function pointer to
a copy routine. The arguments passed to the copy routine are source pointer, destination
pointer and the length of data to copy. If pCopyRtn is NULL, netMblkToBufCopy() uses a
default routine to extract the data from the chain.

RETURNS The length of data copied or zero.

SEE ALSO netBufLib

2: Routines
netPoolInit()

923

N

netPoolDelete()

NAME netPoolDelete() – delete a memory pool

SYNOPSIS STATUS netPoolDelete

(

NET_POOL_ID pNetPool /* pointer to a net pool */

)

DESCRIPTION This routine deletes the specified netBufLib-managed memory pool.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

RETURNS OK or ERROR.

ERRNO S_netBufLib_NETPOOL_INVALID

SEE ALSO netBufLib

netPoolInit()

NAME netPoolInit() – initialize a netBufLib-managed memory pool

SYNOPSIS STATUS netPoolInit

(

NET_POOL_ID pNetPool, /* pointer to a net pool */

M_CL_CONFIG * pMclBlkConfig, /* pointer to a mBlk configuration */

CL_DESC * pClDescTbl, /* pointer to cluster desc table */

int clDescTblNumEnt, /* number of cluster desc entries */

POOL_FUNC * pFuncTbl /* pointer to pool function table */

)

DESCRIPTION Call this routine to set up a netBufLib-managed memory pool. Within this pool,
netPoolInit() organizes several sub-pools: one for mBlk structures, one for clBlk
structures, and as many cluster sub-pools are there are cluster sizes. As input, this routine
expects the following parameters:

VxWorks OS Libraries API Reference, 5.5
netPoolInit()

924

pNetPool
Expects a NET_POOL_ID that points to a previously allocated NET_POOL structure.
You need not initialize any values in this structure. That is handled by netPoolInit().

pMclBlkConfig
Expects a pointer to a previously allocated and initialized M_CL_CONFIG structure.
Within this structure, you must provide four values: mBlkNum, a count of mBlk
structures; clBlkNum, a count of clBlk structures; memArea, a pointer to an area of
memory that can contain all the mBlk and clBlk structures; and memSize, the size of
that memory area. For example, you can set up an M_CL_CONFIG structure as
follows:

M_CL_CONFIG mClBlkConfig = /* mBlk, clBlk configuration table */

{

mBlkNum clBlkNum memArea memSize

---------- ---- ------- -------

400, 245, 0xfe000000, 21260

};

You can calculate the memArea and memSize values. Such code could first define a table
as shown above, but set both memArea and memSize as follows:

mClBlkConfig.memSize = (mClBlkConfig.mBlkNum * (M_BLK_SZ + sizeof(long))) +

(mClBlkConfig.clBlkNum * CL_BLK_SZ);

You can set the memArea value to a pointer to private memory, or you can reserve the
memory with a call to malloc(). For example:

mClBlkConfig.memArea = malloc(mClBlkConfig.memSize);

The netBufLib.h file defines M_BLK_SZ as:

sizeof(struct mBlk)

Currently, this evaluates to 32 bytes. Likewise, this file defines CL_BLK_SZ as:

sizeof(struct clBlk)

Currently, this evaluates to 32 bytes.

When choosing values for mBlkNum and clBlkNum, remember that you need as many
clBlk structures as you have clusters (data buffers). You also need at least as many mBlk
structures as you have clBlk structures, but you will most likely need more. That is
because netBufLib shares buffers by letting multiple mBlk structures join to the same
clBlk and thus to its underlying cluster. The clBlk keeps a count of the number of mBlk
structures that reference it.

pClDescTbl
Expects a pointer to a table of previously allocated and initialized CL_DESC
structures. Each structure in this table describes a single cluster pool. You need a
dedicated cluster pool for each cluster size you want to support. Within each
CL_DESC structure, you must provide four values: clusterSize, the size of a cluster in

2: Routines
netPoolInit()

925

N

this cluster pool; num, the number of clusters in this cluster pool; memArea, a pointer
to an area of memory that can contain all the clusters; and memSize, the size of that
memory area.

Thus, if you need to support six different cluster sizes, this parameter must point to a table
containing six CL_DESC structures. For example, consider the following:

CL_DESC clDescTbl [] = /* cluster descriptor table */

{

/*

clusterSize num memArea memSize

---------- ---- ------- -------

*/

{64, 100, 0x10000, 6800},

{128, 50, 0x20000, 6600},

{256, 50, 0x30000, 13000},

{512, 25, 0x40000, 12900},

{1024, 10, 0x50000, 10280},

{2048, 10, 0x60000, 20520}

};

As with the memArea and memSize members in the M_CL_CONFIG structure, you can set
these members of the CL_DESC structures by calculation after you create the table. The
formula would be as follows:

clDescTbl[n].memSize =

(clDescTbl[n].num * (clDescTbl[n].clusterSize + sizeof(long)));

The memArea member can point to a private memory area that you know to be available
for storing clusters, or you can use malloc().

clDescTbl[n].memArea = malloc(clDescTbl[n].memSize);

Valid cluster sizes range from 64 bytes to 65536 bytes. If there are multiple cluster pools,
valid sizes are further restricted to powers of two (for example, 64, 128, 256, and so on). If
there is only one cluster pool (as is often the case for the memory pool specific to a single
device driver), there is no power of two restriction. Thus, the cluster can be of any size
between 64 bytes and 65536 bytes on 4-byte alignment. A typical buffer size for Ethernet
devices is 1514 bytes. However, because a cluster size requires a 4-byte alignment, the
cluster size for this Ethernet buffer would have to be increased to at least 1516 bytes.

clDescTblNumEnt
Expects a count of the elements in the CL_DESC table referenced by the pClDescTbl
parameter. This is a count of the number of cluster pools. You can get this value using
the NELEMENTS macro defined in vxWorks.h. For example:

int clDescTblNumEnt = (NELEMENTS(clDescTbl));

pFuncTbl
Expects a NULL or a pointer to a function table. This table contains pointers to the

VxWorks OS Libraries API Reference, 5.5
netPoolInit()

926

functions used to manage the buffers in this memory pool. Using a NULL for this
parameter tells netBufLib to use its default function table. If you opt for the default
function table, every mBlk and every cluster is prepended by a 4-byte header (which
is why the size calculations above for clusters and mBlk structures contained an extra
sizeof(long)). However, users need not concern themselves with this header when
accessing these buffers. The returned pointers from functions such as
netClusterGet() return pointers to the start of data, which is just after the header.

Assuming you have set up the configuration tables as shown above, a typical call to
netPoolInit() would be as follows:

int clDescTblNumEnt = (NELEMENTS(clDescTbl));

NET_POOL netPool;

NET_POOL_ID pNetPool = &netPool;

if (netPoolInit (pNetPool, &mClBlkConfig, &clDescTbl [0],

clDescTblNumEnt,

NULL) != OK)

return (ERROR);

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, access to the contents of a memory pool is limited to the protection
domain within which you made the netPoolInit() call that created the pool. In addition,
all parameters to a netPoolInit() call must be valid within the protection domain from
which you make the call. This restriction does not apply under non-AE versions of
VxWorks.

RETURNS OK or ERROR.

ERRNO S_netBufLib_MEMSIZE_INVALID
S_netBufLib_CLSIZE_INVALID
S_netBufLib_NO_SYSTEM_MEMORY
S_netBufLib_MEM_UNALIGNED
S_netBufLib_MEMSIZE_UNALIGNED
S_netBufLib_MEMAREA_INVALID

SEE ALSO netBufLib, netPoolDelete()

2: Routines
netPoolShow()

927

N

netPoolKheapInit()

NAME netPoolKheapInit() – kernel heap version of netPoolInit()

SYNOPSIS STATUS netPoolKheapInit

(

NET_POOL_ID pNetPool, /* pointer to a net pool */

M_CL_CONFIG * pMclBlkConfig, /* pointer to a mBlk configuration */

CL_DESC * pClDescTbl, /* pointer to cluster desc table */

int clDescTblNumEnt, /* number of cluster desc entries */

POOL_FUNC * pFuncTbl /* pointer to pool function table */

)

DESCRIPTION This initializes a netBufLib-managed memory pool from Kernel heap. See netPoolInit()
for more detail.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

RETURNS OK or ERROR.

ERRNO N/A

SEE ALSO netBufLib, netPoolInit(), netPoolDelete()

netPoolShow()

NAME netPoolShow() – show pool statistics

SYNOPSIS void netPoolShow

(

NET_POOL_ID pNetPool

)

DESCRIPTION This routine displays the distribution of mBlks and clusters in a given network pool ID.

VxWorks OS Libraries API Reference, 5.5
netShowInit()

928

EXAMPLE void endPoolShow

(

char * devName, /* The inteface name: "dc", "ln" ...*/

int unit /* the unit number: usually 0 */

)

{

END_OBJ * pEnd;

if ((pEnd = endFindByName (devName, unit)) != NULL)

netPoolShow (pEnd->pNetPool);

else

printf ("Could not find device %s\n", devName);

return;

}

RETURNS N/A

SEE ALSO netShow

netShowInit()

NAME netShowInit() – initialize network show routines

SYNOPSIS void netShowInit (void)

DESCRIPTION This routine links the network show facility into the VxWorks system. These routines are
included automatically if INCLUDE_NET_SHOWis defined.

RETURNS N/A

SEE ALSO netShow

2: Routines
netStackSysPoolShow()

929

N

netStackDataPoolShow()

NAME netStackDataPoolShow() – show network stack data pool statistics

SYNOPSIS void netStackDataPoolShow (void)

DESCRIPTION This routine displays the distribution of mBlks and clusters in a the network data pool.
The network data pool is used only for data transfer through the network stack.

The “clusters” column indicates the total number of clusters of that size that have been
allocated. The “free” column indicates the number of available clusters of that size (the
total number of clusters minus those clusters that are in use). The “usage” column
indicates the number of times clusters have been allocated (not, as you might expect, the
number of clusters currently in use).

RETURNS N/A

SEE ALSO netShow, netStackSysPoolShow(), netBufLib

netStackSysPoolShow()

NAME netStackSysPoolShow() – show network stack system pool statistics

SYNOPSIS void netStackSysPoolShow (void)

DESCRIPTION This routine displays the distribution of mBlks and clusters in a the network system pool.
The network system pool is used only for system structures such as sockets, routes,
interface addresses, protocol control blocks, multicast addresses, and multicast route
entries.

The “clusters” column indicates the total number of clusters of that size that have been
allocated. The “free” column indicates the number of available clusters of that size (the
total number of clusters minus those clusters that are in use). The “usage” column
indicates the number of times clusters have been allocated (not, as you might expect, the
number of clusters currently in use).

RETURNS N/A

SEE ALSO netShow, netStackDataPoolShow(), netBufLib

VxWorks OS Libraries API Reference, 5.5
netTask()

930

netTask()

NAME netTask() – network task entry point

SYNOPSIS void netTask (void)

DESCRIPTION This routine is the VxWorks network support task. Most of the VxWorks network runs in
this task’s context.

NOTE: To prevent an application task from monopolizing the CPU if it is in an infinite
loop or is never blocked, the priority of netTask() relative to an application may need to
be adjusted. Network communication may be lost if netTask() is “starved” of CPU time.
The default task priority of netTask() is 50. Use taskPrioritySet() to change the priority of
a task.

This task is spawned by netLibInit().

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. This restriction does not apply under non-AE versions of VxWorks.

RETURNS N/A

SEE ALSO netLib, netLibInit()

netTupleGet()

NAME netTupleGet() – get an mBlk-clBlk-cluster

SYNOPSIS M_BLK_ID netTupleGet

(

NET_POOL_ID pNetPool, /* pointer to the net pool */

int bufSize, /* size of the buffer to get */

int canWait, /* wait or dontwait */

UCHAR type, /* type of data */

BOOL bestFit /* TRUE/FALSE */

)

DESCRIPTION This routine gets an mBlk-clBlk-cluster triplet from the specified memory pool. The
resulting structure is the basic method for accessing data at all layers of the network stack.

2: Routines
netTupleGet()

931

N

pNetPool
Expects a pointer to the memory pool with which you want to build a
mBlk-clBlk-cluster triplet.

bufSize
Expects the size, in bytes, of the cluster in the clBlk-cluster pair.

canWait
Expects either M_WAIT or M_DONTWAIT. If any item in the triplet is not immediately
available, the M_WAIT value allows this routine to repeat the allocation attempt after
performing garbage collection. The M_DONTWAIT value prevents those extra steps.

type
Expects the type of data, for example MT_DATA, MT_HEADER. The various values for
this type are defined in netBufLib.h.

bestFit
Expects either TRUE or FALSE. If bestFit is TRUE and a cluster of the exact size is
unavailable, this routine gets a larger cluster (if available). If bestFit is FALSE and an
exact size cluster is unavailable, this routine gets either a smaller or a larger cluster
(depending on what is available). Otherwise, it returns immediately with an ERROR
value. For memory pools containing only one cluster size, bestFit should always be set
to FALSE.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. Likewise, the returned ID is valid in the kernel
protection domain only. This restriction does not apply under non-AE versions of
VxWorks.

RETURNS M_BLK_ID or NULL.

ERRNO S_netBufLib_MBLK_INVALID
S_netBufLib_CLSIZE_INVALID
S_netBufLib_NETPOOL_INVALID

SEE ALSO netBufLib

VxWorks OS Libraries API Reference, 5.5
nextIndex()

932

nextIndex()

NAME nextIndex() – the comparison routine for the AVL tree

SYNOPSIS int nextIndex

(

void * pAvlNode, /* The node to compare with */

GENERIC_ARGUMENT key /* The given index */

)

DESCRIPTION This routine compares the two indexes and returns a code based on wether the index, in
question, is lesser than, equal to or greater than the one being compared.

RETURNS -1, if the given index is lesser; 0, if equal; and 1, if greater.

SEE ALSO m2IfLib

nfsAuthUnixGet()

NAME nfsAuthUnixGet() – get the NFS UNIX authentication parameters

SYNOPSIS void nfsAuthUnixGet

(

char * machname, /* where to store host machine */

int * pUid, /* where to store user ID */

int * pGid, /* where to store group ID */

int * pNgids, /* where to store number of group IDs */

int * gids /* where to store array of group IDs */

)

DESCRIPTION This routine gets the previously set UNIX authentication values.

RETURNS N/A

SEE ALSO nfsLib, nfsAuthUnixPrompt(), nfsAuthUnixShow(), nfsAuthUnixSet(), nfsIdSet()

2: Routines
nfsAuthUnixSet()

933

N

nfsAuthUnixPrompt()

NAME nfsAuthUnixPrompt() – modify the NFS UNIX authentication parameters

SYNOPSIS void nfsAuthUnixPrompt (void)

DESCRIPTION This routine allows UNIX authentication parameters to be changed from the shell. The
user is prompted for each parameter, which can be changed by entering the new value
next to the current one.

EXAMPLE -> nfsAuthUnixPrompt

machine name: yuba

user ID: 2001 128

group ID: 100

num of groups: 1 3

group #1: 100 100

group #2: 0 120

group #3: 0 200

value = 3 = 0x3

SEE ALSO nfsLib, nfsAuthUnixShow(), nfsAuthUnixSet(), nfsAuthUnixGet(), nfsIdSet()

nfsAuthUnixSet()

NAME nfsAuthUnixSet() – set the NFS UNIX authentication parameters

SYNOPSIS void nfsAuthUnixSet

(

char * machname, /* host machine */

int uid, /* user ID */

int gid, /* group ID */

int ngids, /* number of group IDs */

int * aup_gids /* array of group IDs */

)

DESCRIPTION This routine sets UNIX authentication parameters. It is initially called by usrNetInit().
machname should be set with the name of the mounted system (i.e., the target name itself)
to distinguish hosts from hosts on a NFS network.

VxWorks OS Libraries API Reference, 5.5
nfsAuthUnixShow()

934

RETURNS N/A

SEE ALSO nfsLib, nfsAuthUnixPrompt(), nfsAuthUnixShow(), nfsAuthUnixGet(), nfsIdSet()

nfsAuthUnixShow()

NAME nfsAuthUnixShow() – display the NFS UNIX authentication parameters

SYNOPSIS void nfsAuthUnixShow (void)

DESCRIPTION This routine displays the parameters set by nfsAuthUnixSet() or nfsAuthUnixPrompt().

EXAMPLE -> nfsAuthUnixShow

machine name = yuba

user ID = 2001

group ID = 100

group [0] = 100

value = 1 = 0x1

RETURNS N/A

SEE ALSO nfsLib, nfsAuthUnixPrompt(), nfsAuthUnixSet(), nfsAuthUnixGet(), nfsIdSet()

nfsDevInfoGet()

NAME nfsDevInfoGet() – read configuration information from the requested NFS device

SYNOPSIS STATUS nfsDevInfoGet

(

unsigned long nfsDevHandle, /* NFS device handle */

NFS_DEV_INFO * pnfsInfo /* ptr to struct to hold config info */

)

DESCRIPTION This routine accesses the NFS device specified in the parameter nfsDevHandleand fills in
the structure pointed to by pnfsInfo. The calling function should allocate memory for
pnfsInfo and for the two character buffers, remFileSys and locFileSys, that are part of
pnfsInfo. These buffers should have a size of nfsMaxPath.

2: Routines
nfsDevShow()

935

N

RETURNS OK if pnfsInfo information is valid, otherwise ERROR.

SEE ALSO nfsDrv, nfsDevListGet()

nfsDevListGet()

NAME nfsDevListGet() – create list of all the NFS devices in the system

SYNOPSIS int nfsDevListGet

(

unsigned long nfsDevList[], /* NFS dev list of handles */

int listSize /* number of elements available in list */

)

DESCRIPTION This routine fills the array nfsDevlist up to listSize, with handles to NFS devices currently
in the system.

RETURNS The number of entries filled in the nfsDevList array.

SEE ALSO nfsDrv, nfsDevInfoGet()

nfsDevShow()

NAME nfsDevShow() – display the mounted NFS devices

SYNOPSIS void nfsDevShow (void)

DESCRIPTION This routine displays the device names and their associated NFS file systems.

EXAMPLE -> nfsDevShow

device name file system

----------- -----------

/yuba1/ yuba:/yuba1

/wrs1/ wrs:/wrs1

RETURNS N/A

SEE ALSO nfsDrv

VxWorks OS Libraries API Reference, 5.5
nfsdInit()

936

nfsdInit()

NAME nfsdInit() – initialize the NFS server

SYNOPSIS STATUS nfsdInit

(

int nServers, /* the number of NFS servers to create */

int nExportedFs, /* maximum number of exported file systems */

int priority, /* the priority for the NFS servers */

FUNCPTR authHook, /* authentication hook */

FUNCPTR mountAuthHook, /* authentication hook for mount daemon */

int options /* currently unused */

)

DESCRIPTION This routine initializes the NFS server. nServers specifies the number of tasks to be
spawned to handle NFS requests. priority is the priority that those tasks will run at.
authHook is a pointer to an authorization routine. mountAuthHook is a pointer to a similar
routine, passed to mountdInit(). options is provided for future expansion.

Normally, no authorization is performed by either mountd or nfsd. If you want to add
authorization, set authHook to a function pointer to a routine declared as follows:

nfsstat routine

(

int progNum, /* RPC program number */

int versNum, /* RPC program version number */

int procNum, /* RPC procedure number */

struct sockaddr_in clientAddr, /* address of the client */

NFSD_ARGUMENT * nfsdArg /* argument of the call */

)

The authHook routine should return NFS_OK if the request is authorized, and
NFSERR_ACCES if not. (NFSERR_ACCES is not required; any legitimate NFS error code can
be returned.)

See mountdInit() for documentation on mountAuthHook. Note that mountAuthHook and
authHook can point to the same routine. Simply use the progNum, versNum, and procNum
fields to decide whether the request is an NFS request or a mountd request.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

2: Routines
nfsDrvNumGet()

937

N

RETURNS OK, or ERROR if the NFS server cannot be started.

SEE ALSO nfsdLib, nfsExport(), mountdInit()

nfsDrv()

NAME nfsDrv() – install the NFS driver

SYNOPSIS STATUS nfsDrv (void)

DESCRIPTION This routine initializes and installs the NFS driver. It must be called before any reads,
writes, or other NFS calls. This is done automatically when INCLUDE_NFS is defined.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. This restriction does not apply under non-AE versions of VxWorks.

RETURNS OK, or ERROR if there is no room for the driver.

SEE ALSO nfsDrv

nfsDrvNumGet()

NAME nfsDrvNumGet() – return the IO system driver number for the NFS driver

SYNOPSIS int nfsDrvNumGet (void)

DESCRIPTION This routine returns the NFS driver number allocated by iosDrvInstall() during the NFS
driver initialization. If the NFS driver has yet to be initialized, or if initialization failed,
nfsDrvNumGet() will return ERROR.

RETURNS the NFS driver number or ERROR

SEE ALSO nfsDrv

VxWorks OS Libraries API Reference, 5.5
nfsdStatusGet()

938

nfsdStatusGet()

NAME nfsdStatusGet() – get the status of the NFS server

SYNOPSIS STATUS nfsdStatusGet

(

NFS_SERVER_STATUS * serverStats /* pointer to status structure */

)

DESCRIPTION This routine gets status information about the NFS server.

RETURNS OK, or ERROR if the information cannot be obtained.

SEE ALSO nfsdLib

nfsdStatusShow()

NAME nfsdStatusShow() – show the status of the NFS server

SYNOPSIS STATUS nfsdStatusShow

(

int options /* unused */

)

DESCRIPTION This routine shows status information about the NFS server.

RETURNS OK, or ERROR if the information cannot be obtained.

SEE ALSO nfsdLib

2: Routines
nfsExportShow()

939

N

nfsExport()

NAME nfsExport() – specify a file system to be NFS exported

SYNOPSIS STATUS nfsExport

(

char * directory, /* Directory to export - FS must support NFS */

int id, /* ID number for file system */

BOOL readOnly, /* TRUE if file system is exported read-only */

int options /* Reserved for future use - set to 0 */

)

DESCRIPTION This routine makes a file system available for mounting by a client. The client should be in
the local host table (see hostAdd()), although this is not required.

The id parameter can either be set to a specific value, or to 0. If it is set to 0, an ID number
is assigned sequentially. Every time a file system is exported, it must have the same ID
number, or clients currently mounting the file system will not be able to access files.

To display a list of exported file systems, use:

-> nfsExportShow "localhost"

RETURNS OK, or ERROR if the file system could not be exported.

SEE ALSO mountLib, nfsLib, nfsExportShow(), nfsUnexport()

nfsExportShow()

NAME nfsExportShow() – display the exported file systems of a remote host

SYNOPSIS STATUS nfsExportShow

(

char * hostName /* host machine to show exports for */

)

DESCRIPTION This routine displays the file systems of a specified host and the groups that are allowed
to mount them.

EXAMPLE -> nfsExportShow "wrs"

/d0 staff

VxWorks OS Libraries API Reference, 5.5
nfsHelp()

940

/d1 staff eng

/d2 eng

/d3

value = 0 = 0x0

RETURNS OK or ERROR.

SEE ALSO nfsLib

nfsHelp()

NAME nfsHelp() – display the NFS help menu

SYNOPSIS void nfsHelp (void)

DESCRIPTION This routine displays a summary of NFS facilities typically called from the shell:

nfsHelp Print this list

netHelp Print general network help list

nfsMount "host","filesystem"[,"devname"] Create device with

file system/directory from host

nfsUnmount "devname" Remove an NFS device

nfsAuthUnixShow Print current UNIX authentication

nfsAuthUnixPrompt Prompt for UNIX authentication

nfsIdSet id Set user ID for UNIX authentication

nfsDevShow Print list of NFS devices

nfsExportShow "host" Print a list of NFS file systems which

are exported on the specified host

mkdir "dirname" Create directory

rm "file" Remove file

EXAMPLE: -> hostAdd "wrs", "90.0.0.2"

-> nfsMount "wrs","/disk0/path/mydir","/mydir/"

-> cd "/mydir/"

-> nfsAuthUnixPrompt /* fill in user ID, etc. */

-> ls /* list /disk0/path/mydir */

-> copy < foo /* copy foo to standard out */

-> ld < foo.o /* load object module foo.o */

-> nfsUnmount "/mydir/" /* remove NFS device /mydir/ */

RETURNS N/A

SEE ALSO nfsLib

2: Routines
nfsMount()

941

N

nfsIdSet()

NAME nfsIdSet() – set the ID number of the NFS UNIX authentication parameters

SYNOPSIS void nfsIdSet

(

int uid /* user ID on host machine */

)

DESCRIPTION This routine sets only the UNIX authentication user ID number. For most NFS permission
needs, only the user ID needs to be changed. Set uid to the user ID on the NFS server.

RETURNS N/A

SEE ALSO nfsLib, nfsAuthUnixPrompt(), nfsAuthUnixShow(), nfsAuthUnixSet(),
nfsAuthUnixGet()

nfsMount()

NAME nfsMount() – mount an NFS file system

SYNOPSIS STATUS nfsMount
(
char * host, /* name of remote host */
char * fileSystem, /* name of remote directory to mount */
char * localName /* local device name for remote dir (NULL = */

/* use fileSystem name) */
)

DESCRIPTION This routine mounts a remote file system. It creates a local device localName for a remote
file system on a specified host. The host must have already been added to the local host
table with hostAdd(). If localName is NULL, the local name will be the same as the remote
name.

RETURNS OK, or ERROR if the driver is not installed, host is invalid, or memory is insufficient.

SEE ALSO nfsDrv, nfsUnmount(), hostAdd()

VxWorks OS Libraries API Reference, 5.5
nfsMountAll()

942

nfsMountAll()

NAME nfsMountAll() – mount all file systems exported by a specified host

SYNOPSIS STATUS nfsMountAll
(
char * pHostName, /* name of remote host */
char * pClientName, /* name of a client specified in access */

/* list, if any */
BOOL quietFlag /* FALSE = print name of each mounted file system */
)

DESCRIPTION This routine mounts the file systems exported by the host pHostNamewhich are accessible
by pClientName. A pClientName entry of NULL will only mount file systems that are
accessible by any client. The nfsMount() routine is called to mount each file system. It
creates a local device for each mount that has the same name as the remote file system.

If the quietFlag setting is FALSE, each file system is printed on standard output after it is
mounted successfully.

RETURNS OK, or ERROR if any mount fails.

SEE ALSO nfsDrv, nfsMount()

nfsUnexport()

NAME nfsUnexport() – remove a file system from the list of exported file systems

SYNOPSIS STATUS nfsUnexport

(

char * dirName /* Name of the directory to unexport */

)

DESCRIPTION This routine removes a file system from the list of file systems exported from the target.
Any client attempting to mount a file system that is not exported will receive an error
(NFSERR_ACCESS).

RETURNS OK, or ERROR if the file system could not be removed from the exports list.

ERRNO ENOENT

SEE ALSO mountLib, nfsLib, nfsExportShow(), nfsExport()

2: Routines
ntPassFsDevInit()

943

N

nfsUnmount()

NAME nfsUnmount() – unmount an NFS device

SYNOPSIS STATUS nfsUnmount

(

char * localName /* local of nfs device */

)

DESCRIPTION This routine unmounts file systems that were previously mounted via NFS.

RETURNS OK, or ERROR if localName is not an NFS device or cannot be mounted.

SEE ALSO nfsDrv, nfsMount()

ntPassFsDevInit()

NAME ntPassFsDevInit() – associate a device with ntPassFs file system functions

SYNOPSIS void *ntPassFsDevInit

(

char * devName /* device name */

)

DESCRIPTION This routine associates the name devName with the file system and installs it in the I/O
System’s device table. The driver number used when the device is added to the table is
that which was assigned to the ntPassFs library during ntPassFsInit().

RETURNS A pointer to the volume descriptor, or NULL if there is an error.

SEE ALSO ntPassFsLib

VxWorks OS Libraries API Reference, 5.5
ntPassFsInit()

944

ntPassFsInit()

NAME ntPassFsInit() – prepare to use the ntPassFs library

SYNOPSIS STATUS ntPassFsInit

(

int nPassfs /* number of ntPass-through file systems */

)

DESCRIPTION This routine initializes the ntPassFs library. It must be called exactly once, before any
other routines in the library. The argument specifies the number of ntPassFs devices that
may be open at once. This routine installs ntPassFsLib as a driver in the I/O system
driver table, allocates and sets up the necessary memory structures, and initializes
semaphores.

Normally this routine is called from the root task, usrRoot(), in usrConfig(). To enable
this initialization, define INCLUDE_PASSFS in configAll.h.

NOTE: Maximum number of ntPass-through file systems is 1.

RETURNS OK, or ERROR.

SEE ALSO ntPassFsLib

2: Routines
open()

945

O

open()

NAME open() – open a file

SYNOPSIS int open

(

const char * name, /* name of the file to open */

int flags, /* O_RDONLY, O_WRONLY, O_RDWR, or O_CREAT */

int mode /* mode of file to create (UNIX chmod style) */

)

DESCRIPTION This routine opens a file for reading, writing, or updating, and returns a file descriptor for
that file. The arguments to open() are the filename and the type of access:

In general, open() can only open pre-existing devices and files. However, for NFS
network devices only, files can also be created with open() by performing a logical OR
operation with O_CREAT and the flags argument. In this case, the file is created with a
UNIX chmod-style file mode, as indicated with mode. For example:

fd = open ("/usr/myFile", O_CREAT | O_RDWR, 0644);

Only the NFS driver uses the mode argument.

NOTE: For more information about situations when there are no file descriptors available,
see the manual entry for iosInit().

RETURNS A file descriptor number, or ERROR if a file name is not specified, the device does not
exist, no file descriptors are available, or the driver returns ERROR.

ERRNO ELOOP

SEE ALSO ioLib, creat()

O_RDONLY (0) (or READ) - open for reading only.
O_WRONLY (1) (or WRITE) - open for writing only.
O_RDWR (2) (or UPDATE) - open for reading and writing.
O_CREAT (0x0200) - create a file.

VxWorks OS Libraries API Reference, 5.5
opendir()

946

opendir()

NAME opendir() – open a directory for searching (POSIX)

SYNOPSIS DIR *opendir

(

char * dirName /* name of directory to open */

)

DESCRIPTION This routine opens the directory named by dirName and allocates a directory descriptor
(DIR) for it. A pointer to the DIR structure is returned. The return of a NULL pointer
indicates an error.

After the directory is opened, readdir() is used to extract individual directory entries.
Finally, closedir() is used to close the directory.

WARNING: For remote file systems mounted over netDrv, opendir() fails, because the
netDrv implementation strategy does not provide a way to distinguish directories from
plain files. To permit use of opendir() on remote files, use NFS rather than netDrv.

RETURNS A pointer to a directory descriptor, or NULL if there is an error.

SEE ALSO dirLib, closedir(), readdir(), rewinddir(), ls()

operator delete()

NAME operator delete() – default run-time support for memory deallocation (C++)

SYNOPSIS extern void operator delete

(

void * pMem /* pointer to dynamically-allocated object */

)

DESCRIPTION This function provides the default implementation of operator delete. It returns the
memory, previously allocated by operator new, to the VxWorks system memory partition.

RETURNS N/A

SEE ALSO cplusLib

2: Routines
operator new()

947

O

operator new()

NAME operator new() – default run-time support for operator new (C++)

SYNOPSIS extern void * operator new

(

size_t n /* size of object to allocate */

)

DESCRIPTION This function provides the default implementation of operator new. It allocates memory
from the system memory partition for the requested object. The value, when evaluated, is
a pointer of the type pointer-to-T where T is the type of the new object.

If allocation fails a new-handler, if one is defined, is called. If the new-handler returns,
presumably after attempting to recover from the memory allocation failure, allocation is
retried. If there is no new-handler an exception of type “bad_alloc” is thrown.

RETURNS Pointer to new object.

THROWS std::bad_alloc if allocation failed.

SEE ALSO cplusLib

operator new()

NAME operator new() – default run-time support for operator new (nothrow) (C++)

SYNOPSIS extern void * operator new
(
size_t n, /* size of object to allocate */
const nothrow_t & /* supply argument of "nothrow" here */
)

DESCRIPTION This function provides the default implementation of operator new (nothrow). It allocates
memory from the system memory partition for the requested object. The value, when
evaluated, is a pointer of the type pointer-to-T where T is the type of the new object.

If allocation fails, a new-handler, if one is defined, is called. If the new-handler returns,
presumably after attempting to recover from the memory allocation failure, allocation is
retried. If the new_handler throws a bad_alloc exception, the exception is caught and 0 is
returned. If allocation fails and there is no new_handler 0 is returned.

VxWorks OS Libraries API Reference, 5.5
operator new()

948

RETURNS Pointer to new object or 0 if allocation fails.

INCLUDE FILES new

SEE ALSO cplusLib

operator new()

NAME operator new() – run-time support for operator new with placement (C++)

SYNOPSIS extern void * operator new
(
size_t n, /* size of object to allocate (unused) */
void * pMem /* pointer to allocated memory */
)

DESCRIPTION This function provides the default implementation of the global new operator, with
support for the placement syntax. New-with-placement is used to initialize objects for
which memory has already been allocated. pMem points to the previously allocated
memory.

RETURNS pMem

INCLUDE FILES new

SEE ALSO cplusLib

2: Routines
passFsInit()

949

P

passFsDevInit()

NAME passFsDevInit() – associate a device with passFs file system functions

SYNOPSIS void *passFsDevInit

(

char * devName /* device name */

)

DESCRIPTION This routine associates the name devName with the file system and installs it in the I/O
System’s device table. The driver number used when the device is added to the table is
that which was assigned to the passFs library during passFsInit().

RETURNS A pointer to the volume descriptor, or NULL if there is an error.

SEE ALSO passFsLib

passFsInit()

NAME passFsInit() – prepare to use the passFs library

SYNOPSIS STATUS passFsInit

(

int nPassfs /* number of pass-through file systems */

)

DESCRIPTION This routine initializes the passFs library. It must be called exactly once, before any other
routines in the library. The argument specifies the number of passFs devices that may be
open at once. This routine installs passFsLib as a driver in the I/O system driver table,
allocates and sets up the necessary memory structures, and initializes semaphores.

Normally this routine is called from the root task, usrRoot(), in usrConfig(). This
initialization is enabled when the configuration macro INCLUDE_PASSFS is defined.

NOTE: Maximum number of pass-through file systems is 1.

RETURNS OK, or ERROR.

SEE ALSO passFsLib

VxWorks OS Libraries API Reference, 5.5
pause()

950

pause()

NAME pause() – suspend the task until delivery of a signal (POSIX)

SYNOPSIS int pause (void)

DESCRIPTION This routine suspends the task until delivery of a signal.

NOTE: Since the pause() function suspends thread execution indefinitely, there is no
successful completion return value.

RETURNS -1, always.

ERRNO EINTR

SEE ALSO sigLib

pc()

NAME pc() – return the contents of the program counter

SYNOPSIS int pc

(

int task /* task ID */

)

DESCRIPTION This command extracts the contents of the program counter for a specified task from the
task’s TCB. If task is omitted or 0, the current task is used.

RETURNS The contents of the program counter.

SEE ALSO usrLib, ti(), VxWorks Programmer’s Guide: Target Shell

2: Routines
pentiumBts()

951

P

pentiumBtc()

NAME pentiumBtc() – execute atomic compare-and-exchange instruction to clear a bit

SYNOPSIS STATUS pentiumBtc (pFlag)

char * pFlag; /* flag address */

DESCRIPTION This routine compares a byte specified by the first parameter with TRUE. If it is TRUE, it
changes it to 0 and returns OK. If it is not TRUE, it returns ERROR. LOCK and
CMPXCHGB are used to get the atomic memory access.

RETURNS OK or ERROR if the specified flag is not TRUE

SEE ALSO pentiumALib

pentiumBts()

NAME pentiumBts() – execute atomic compare-and-exchange instruction to set a bit

SYNOPSIS STATUS pentiumBts (pFlag)

char * pFlag; /* flag address */

DESCRIPTION This routine compares a byte specified by the first parameter with 0. If it is 0, it changes it
to TRUE and returns OK. If it is not 0, it returns ERROR. LOCK and CMPXCHGB are used
to get the atomic memory access.

RETURNS OK or ERROR if the specified flag is not zero.

SEE ALSO pentiumALib

VxWorks OS Libraries API Reference, 5.5
pentiumCr4Get()

952

pentiumCr4Get()

NAME pentiumCr4Get() – get contents of CR4 register

SYNOPSIS int pentiumCr4Get (void)

DESCRIPTION This routine gets the contents of the CR4 register.

RETURNS Contents of CR4 register.

SEE ALSO pentiumALib

pentiumCr4Set()

NAME pentiumCr4Set() – sets specified value to the CR4 register

SYNOPSIS void pentiumCr4Set (cr4)

int cr4; /* value to write CR4 register */

DESCRIPTION This routine sets a specified value to the CR4 register.

RETURNS N/A

SEE ALSO pentiumALib

2: Routines
pentiumMcaShow()

953

P

pentiumMcaEnable()

NAME pentiumMcaEnable() – enable/disable the MCA (Machine Check Architecture)

SYNOPSIS void pentiumMcaEnable

(

BOOL enable /* TRUE to enable, FALSE to disable the MCA */

)

DESCRIPTION This routine enables/disables 1) the Machine Check Architecture and its Error Reporting
register banks 2) the Machine Check Exception by toggling the MCE bit in the CR4. This
routine works on either P5, P6 or P7 family.

RETURNS N/A

SEE ALSO pentiumLib

pentiumMcaShow()

NAME pentiumMcaShow() – show MCA (Machine Check Architecture) registers

SYNOPSIS void pentiumMcaShow (void)

DESCRIPTION This routine shows Machine-Check global control registers and Error-Reporting register
banks. Number of the Error-Reporting register banks is kept in a variable mcaBanks.
MCi_ADDR and MCi_MISC registers in the Error-Reporting register bank are showed if
MCi_STATUS indicates that these registers are valid.

RETURNS N/A

SEE ALSO pentiumShow

VxWorks OS Libraries API Reference, 5.5
pentiumMsrGet()

954

pentiumMsrGet()

NAME pentiumMsrGet() – get the contents of the specified MSR (Model Specific Register)

SYNOPSIS void pentiumMsrGet (addr, pData)

int addr; /* MSR address */

long long int * pData; /* MSR data */

DESCRIPTION This routine gets the contents of the specified MSR. The first parameter is an address of
the MSR. The second parameter is a pointer of 64Bit variable.

RETURNS N/A

SEE ALSO pentiumALib

pentiumMsrInit()

NAME pentiumMsrInit() – initialize all the MSRs (Model Specific Register)

SYNOPSIS STATUS pentiumMsrInit (void)

DESCRIPTION This routine initializes all the MSRs in the processor. This routine works on either P5, P6
or P7 family processors.

RETURNS OK, or ERROR if RDMSR/WRMSR instructions are not supported.

SEE ALSO pentiumLib

2: Routines
pentiumMsrShow()

955

P

pentiumMsrSet()

NAME pentiumMsrSet() – set a value to the specified MSR (Model Specific Registers)

SYNOPSIS void pentiumMsrSet (addr, pData)

int addr; /* MSR address */

long long int * pData; /* MSR data */

DESCRIPTION This routine sets a value to a specified MSR. The first parameter is an address of the MSR.
The second parameter is a pointer of 64Bit variable.

RETURNS N/A

SEE ALSO pentiumALib

pentiumMsrShow()

NAME pentiumMsrShow() – show all the MSR (Model Specific Register)

SYNOPSIS void pentiumMsrShow (void)

DESCRIPTION This routine shows all the MSRs in the Pentium and Pentium[234].

RETURNS N/A

SEE ALSO pentiumShow

VxWorks OS Libraries API Reference, 5.5
pentiumMtrrDisable()

956

pentiumMtrrDisable()

NAME pentiumMtrrDisable() – disable MTRR (Memory Type Range Register)

SYNOPSIS void pentiumMtrrDisable (void)

DESCRIPTION This routine disables the MTRR that provide a mechanism for associating the memory
types with physical address ranges in system memory.

RETURNS N/A

SEE ALSO pentiumLib

pentiumMtrrEnable()

NAME pentiumMtrrEnable() – enable MTRR (Memory Type Range Register)

SYNOPSIS void pentiumMtrrEnable (void)

DESCRIPTION This routine enables the MTRR that provide a mechanism for associating the memory
types with physical address ranges in system memory.

RETURNS N/A

SEE ALSO pentiumLib

2: Routines
pentiumMtrrSet()

957

P

pentiumMtrrGet()

NAME pentiumMtrrGet() – get MTRRs to a specified MTRR table

SYNOPSIS STATUS pentiumMtrrGet

(

MTRR * pMtrr /* MTRR table */

)

DESCRIPTION This routine gets MTRRs to a specified MTRR table with RDMSR instruction. The read
MTRRs are CAP register, DEFTYPE register, fixed range MTRRs, and variable range
MTRRs.

RETURNS OK, or ERROR if MTRR is being accessed.

SEE ALSO pentiumLib

pentiumMtrrSet()

NAME pentiumMtrrSet() – set MTRRs from specified MTRR table with WRMSR instruction.

SYNOPSIS STATUS pentiumMtrrSet

(

MTRR * pMtrr /* MTRR table */

)

DESCRIPTION This routine sets MTRRs from specified MTRR table with WRMSR instruction. The
written MTRRs are DEFTYPE register, fixed range MTRRs, and variable range MTRRs.

RETURNS OK, or ERROR if MTRR is enabled or being accessed.

SEE ALSO pentiumLib

VxWorks OS Libraries API Reference, 5.5
pentiumP5PmcGet()

958

pentiumP5PmcGet()

NAME pentiumP5PmcGet() – get the contents of P5 PMC0 and PMC1

SYNOPSIS void pentiumP5PmcGet (pPmc0, pPmc1)

long long int * pPmc0; /* Performance Monitoring Counter 0 */

long long int * pPmc1; /* Performance Monitoring Counter 1 */

DESCRIPTION This routine gets the contents of both PMC0 (Performance Monitoring Counter 0) and
PMC1. The first parameter is a pointer of 64Bit variable to store the content of the Counter
0, and the second parameter is for the Counter 1.

RETURNS N/A

SEE ALSO pentiumALib

pentiumP5PmcGet0()

NAME pentiumP5PmcGet0() – get the contents of P5 PMC0

SYNOPSIS void pentiumP5PmcGet0 (pPmc0)

long long int * pPmc0; /* Performance Monitoring Counter 0 */

DESCRIPTION This routine gets the contents of PMC0 (Performance Monitoring Counter 0). The
parameter is a pointer of 64Bit variable to store the content of the Counter.

RETURNS N/A

SEE ALSO pentiumALib

2: Routines
pentiumP5PmcReset()

959

P

pentiumP5PmcGet1()

NAME pentiumP5PmcGet1() – get the contents of P5 PMC1

SYNOPSIS void pentiumP5PmcGet1 (pPmc1)

long long int * pPmc1; /* Performance Monitoring Counter 1 */

DESCRIPTION This routine gets a content of PMC1 (Performance Monitoring Counter 1). Parameter is a
pointer of 64Bit variable to store the content of the Counter.

RETURNS N/A

SEE ALSO pentiumALib

pentiumP5PmcReset()

NAME pentiumP5PmcReset() – reset both PMC0 and PMC1

SYNOPSIS void pentiumP5PmcReset (void)

DESCRIPTION This routine resets both PMC0 (Performance Monitoring Counter 0) and PMC1.

RETURNS N/A

SEE ALSO pentiumALib

VxWorks OS Libraries API Reference, 5.5
pentiumP5PmcReset0()

960

pentiumP5PmcReset0()

NAME pentiumP5PmcReset0() – reset PMC0

SYNOPSIS void pentiumP5PmcReset0 (void)

DESCRIPTION This routine resets PMC0 (Performance Monitoring Counter 0).

RETURNS N/A

SEE ALSO pentiumALib

pentiumP5PmcReset1()

NAME pentiumP5PmcReset1() – reset PMC1

SYNOPSIS void pentiumP5PmcReset1 (void)

DESCRIPTION This routine resets PMC1 (Performance Monitoring Counter 1).

RETURNS N/A

SEE ALSO pentiumALib

2: Routines
pentiumP5PmcStart1()

961

P

pentiumP5PmcStart0()

NAME pentiumP5PmcStart0() – start PMC0

SYNOPSIS STATUS pentiumP5PmcStart0 (pmc0Cesr)

int pmc0Cesr; /* PMC0 control and event select */

DESCRIPTION This routine starts PMC0 (Performance Monitoring Counter 0) by writing specified PMC0
events to Performance Event Select Registers. The only parameter is the content of
Performance Event Select Register.

RETURNS OK or ERROR if PMC0 is already started.

SEE ALSO pentiumALib

pentiumP5PmcStart1()

NAME pentiumP5PmcStart1() – start PMC1

SYNOPSIS STATUS pentiumP5PmcStart1 (pmc1Cesr)

int pmc1Cesr; /* PMC1 control and event select */

DESCRIPTION This routine starts PMC1 (Performance Monitoring Counter 0) by writing specified PMC1
events to Performance Event Select Registers. The only parameter is the content of
Performance Event Select Register.

RETURNS OK or ERROR if PMC1 is already started.

SEE ALSO pentiumALib

VxWorks OS Libraries API Reference, 5.5
pentiumP5PmcStop()

962

pentiumP5PmcStop()

NAME pentiumP5PmcStop() – stop both P5 PMC0 and PMC1

SYNOPSIS void pentiumP5PmcStop (void)

DESCRIPTION This routine stops both PMC0 (Performance Monitoring Counter 0) and PMC1 by clearing
two Performance Event Select Registers.

RETURNS N/A

SEE ALSO pentiumALib

pentiumP5PmcStop0()

NAME pentiumP5PmcStop0() – stop P5 PMC0

SYNOPSIS void pentiumP5PmcStop0 (void)

DESCRIPTION This routine stops only PMC0 (Performance Monitoring Counter 0) by clearing the PMC0
bits of Control and Event Select Register.

RETURNS N/A

SEE ALSO pentiumALib

2: Routines
pentiumP6PmcGet()

963

P

pentiumP5PmcStop1()

NAME pentiumP5PmcStop1() – stop P5 PMC1

SYNOPSIS void pentiumP5PmcStop1 (void)

DESCRIPTION This routine stops only PMC1 (Performance Monitoring Counter 1) by clearing the PMC1
bits of Control and Event Select Register.

RETURNS N/A

SEE ALSO pentiumALib

pentiumP6PmcGet()

NAME pentiumP6PmcGet() – get the contents of PMC0 and PMC1

SYNOPSIS void pentiumP6PmcGet (pPmc0, pPmc1)

long long int * pPmc0; /* Performance Monitoring Counter 0 */

long long int * pPmc1; /* Performance Monitoring Counter 1 */

DESCRIPTION This routine gets the contents of both PMC0 (Performance Monitoring Counter 0) and
PMC1. The first parameter is a pointer of 64Bit variable to store the content of the Counter
0, and the second parameter is for the Counter 1.

RETURNS N/A

SEE ALSO pentiumALib

VxWorks OS Libraries API Reference, 5.5
pentiumP6PmcGet0()

964

pentiumP6PmcGet0()

NAME pentiumP6PmcGet0() – get the contents of PMC0

SYNOPSIS void pentiumP6PmcGet0 (pPmc0)

long long int * pPmc0; /* Performance Monitoring Counter 0 */

DESCRIPTION This routine gets the contents of PMC0 (Performance Monitoring Counter 0). The
parameter is a pointer of 64Bit variable to store the content of the Counter.

RETURNS N/A

SEE ALSO pentiumALib

pentiumP6PmcGet1()

NAME pentiumP6PmcGet1() – get the contents of PMC1

SYNOPSIS void pentiumP6PmcGet1 (pPmc1)

long long int * pPmc1; /* Performance Monitoring Counter 1 */

DESCRIPTION This routine gets a content of PMC1 (Performance Monitoring Counter 1). Parameter is a
pointer of 64Bit variable to store the content of the Counter.

RETURNS N/A

SEE ALSO pentiumALib

2: Routines
pentiumP6PmcReset1()

965

P

pentiumP6PmcReset()

NAME pentiumP6PmcReset() – reset both PMC0 and PMC1

SYNOPSIS void pentiumP6PmcReset (void)

DESCRIPTION This routine resets both PMC0 (Performance Monitoring Counter 0) and PMC1.

RETURNS N/A

SEE ALSO pentiumALib

pentiumP6PmcReset0()

NAME pentiumP6PmcReset0() – reset PMC0

SYNOPSIS void pentiumP6PmcReset0 (void)

DESCRIPTION This routine resets PMC0 (Performance Monitoring Counter 0).

RETURNS N/A

SEE ALSO pentiumALib

pentiumP6PmcReset1()

NAME pentiumP6PmcReset1() – reset PMC1

SYNOPSIS void pentiumP6PmcReset1 (void)

DESCRIPTION This routine resets PMC1 (Performance Monitoring Counter 1).

RETURNS N/A

SEE ALSO pentiumALib

VxWorks OS Libraries API Reference, 5.5
pentiumP6PmcStart()

966

pentiumP6PmcStart()

NAME pentiumP6PmcStart() – start both PMC0 and PMC1

SYNOPSIS STATUS pentiumP6PmcStart (pmcEvtSel0, pmcEvtSel1)

int pmcEvtSel0; /* Performance Event Select Register 0 */

int pmcEvtSel1; /* Performance Event Select Register 1 */

DESCRIPTION This routine starts both PMC0 (Performance Monitoring Counter 0) and PMC1 by writing
specified events to Performance Event Select Registers. The first parameter is a content of
Performance Event Select Register 0, and the second parameter is for the Performance
Event Select Register 1.

RETURNS OK or ERROR if PMC is already started.

SEE ALSO pentiumALib

pentiumP6PmcStop()

NAME pentiumP6PmcStop() – stop both PMC0 and PMC1

SYNOPSIS void pentiumP6PmcStop (void)

DESCRIPTION This routine stops both PMC0 (Performance Monitoring Counter 0) and PMC1 by clearing
two Performance Event Select Registers.

RETURNS N/A

SEE ALSO pentiumALib

2: Routines
pentiumPmcGet()

967

P

pentiumP6PmcStop1()

NAME pentiumP6PmcStop1() – stop PMC1

SYNOPSIS void pentiumP6PmcStop1 (void)

DESCRIPTION This routine stops only PMC1 (Performance Monitoring Counter 1) by clearing the
Performance Event Select Register 1. Note, clearing the Performance Event Select Register
0 stops both counters, PMC0 and PMC1.

RETURNS N/A

SEE ALSO pentiumALib

pentiumPmcGet()

NAME pentiumPmcGet() – get the contents of PMC0 and PMC1

SYNOPSIS void pentiumPmcGet (pPmc0, pPmc1)

long long int * pPmc0; /* Performance Monitoring Counter 0 */

long long int * pPmc1; /* Performance Monitoring Counter 1 */

DESCRIPTION This routine gets the contents of both PMC0 (Performance Monitoring Counter 0) and
PMC1. The first parameter is a pointer of 64Bit variable to store the content of the Counter
0, and the second parameter is for the Counter 1.

RETURNS N/A

SEE ALSO pentiumLib

VxWorks OS Libraries API Reference, 5.5
pentiumPmcGet0()

968

pentiumPmcGet0()

NAME pentiumPmcGet0() – get the contents of PMC0

SYNOPSIS void pentiumPmcGet0 (pPmc0)

long long int * pPmc0; /* Performance Monitoring Counter 0 */

DESCRIPTION This routine gets the contents of PMC0 (Performance Monitoring Counter 0). The
parameter is a pointer of 64Bit variable to store the content of the Counter.

RETURNS N/A

SEE ALSO pentiumLib

pentiumPmcGet1()

NAME pentiumPmcGet1() – get the contents of PMC1

SYNOPSIS void pentiumPmcGet1 (pPmc1)

long long int * pPmc1; /* Performance Monitoring Counter 1 */

DESCRIPTION This routine gets a content of PMC1 (Performance Monitoring Counter 1). Parameter is a
pointer of 64Bit variable to store the content of the Counter.

RETURNS N/A

SEE ALSO pentiumLib

2: Routines
pentiumPmcReset1()

969

P

pentiumPmcReset()

NAME pentiumPmcReset() – reset both PMC0 and PMC1

SYNOPSIS void pentiumPmcReset (void)

DESCRIPTION This routine resets both PMC0 (Performance Monitoring Counter 0) and PMC1.

RETURNS N/A

SEE ALSO pentiumLib

pentiumPmcReset0()

NAME pentiumPmcReset0() – reset PMC0

SYNOPSIS void pentiumPmcReset0 (void)

DESCRIPTION This routine resets PMC0 (Performance Monitoring Counter 0).

RETURNS N/A

SEE ALSO pentiumLib

pentiumPmcReset1()

NAME pentiumPmcReset1() – reset PMC1

SYNOPSIS void pentiumPmcReset1 (void)

DESCRIPTION This routine resets PMC1 (Performance Monitoring Counter 1).

RETURNS N/A

SEE ALSO pentiumLib

VxWorks OS Libraries API Reference, 5.5
pentiumPmcShow()

970

pentiumPmcShow()

NAME pentiumPmcShow() – show PMCs (Performance Monitoring Counters)

SYNOPSIS void pentiumPmcShow

(

BOOL zap /* 1: reset PMC0 and PMC1 */

)

DESCRIPTION This routine shows Performance Monitoring Counter 0 and 1. Monitored events are
selected by Performance Event Select Registers in pentiumPmcStart (). These counters are
cleared to 0 if the parameter “zap” is TRUE.

RETURNS N/A

SEE ALSO pentiumShow

pentiumPmcStart()

NAME pentiumPmcStart() – start both PMC0 and PMC1

SYNOPSIS STATUS pentiumPmcStart (pmcEvtSel0, pmcEvtSel1)

int pmcEvtSel0; /* Performance Event Select Register 0 */

int pmcEvtSel1; /* Performance Event Select Register 1 */

DESCRIPTION This routine starts both PMC0 (Performance Monitoring Counter 0) and PMC1 by writing
specified events to Performance Event Select Registers. The first parameter is a content of
Performance Event Select Register 0, and the second parameter is for the Performance
Event Select Register 1.

RETURNS OK or ERROR if PMC is already started.

SEE ALSO pentiumLib

2: Routines
pentiumPmcStart1()

971

P

pentiumPmcStart0()

NAME pentiumPmcStart0() – start PMC0

SYNOPSIS STATUS pentiumPmcStart0 (pmcEvtSel0)

int pmcEvtSel0; /* PMC0 control and event select */

This routine starts PMC0 (Performance Monitoring Counter 0) by writing specified PMC0
events to Performance Event Select Registers. The only parameter is the content of
Performance Event Select Register.

RETURNS OK or ERROR if PMC is already started.

SEE ALSO pentiumLib

pentiumPmcStart1()

NAME pentiumPmcStart1() – start PMC1

SYNOPSIS STATUS pentiumPmcStart1 (pmcEvtSel1)

int pmcEvtSel1; /* PMC1 control and event select */

This routine starts PMC1 (Performance Monitoring Counter 0) by writing specified PMC1
events to Performance Event Select Registers. The only parameter is the content of
Performance Event Select Register.

RETURNS OK or ERROR if PMC1 is already started.

SEE ALSO pentiumLib

VxWorks OS Libraries API Reference, 5.5
pentiumPmcStop()

972

pentiumPmcStop()

NAME pentiumPmcStop() – stop both PMC0 and PMC1

SYNOPSIS void pentiumPmcStop (void)

This routine stops both PMC0 (Performance Monitoring Counter 0) and PMC1 by clearing
two Performance Event Select Registers.

RETURNS N/A

SEE ALSO pentiumLib

pentiumPmcStop0()

NAME pentiumPmcStop0() – stop PMC0

SYNOPSIS void pentiumPmcStop0 (void)

This routine stops only PMC0 (Performance Monitoring Counter 0) by clearing the PMC0
bits of Control and Event Select Register.

RETURNS N/A

SEE ALSO pentiumLib

pentiumPmcStop1()

NAME pentiumPmcStop1() – stop PMC1

SYNOPSIS void pentiumPmcStop1 (void)

This routine stops only PMC1 (Performance Monitoring Counter 1) by clearing the PMC1
bits of Control and Event Select Register.

RETURNS N/A

SEE ALSO pentiumLib

2: Routines
pentiumTlbFlush()

973

P

pentiumSerialize()

NAME pentiumSerialize() – execute a serializing instruction CPUID

SYNOPSIS void pentiumSerialize (void)

DESCRIPTION This routine executes a serializing instruction CPUID. Serialization means that all
modifications to flags, registers, and memory by previous instructions are completed
before the next instruction is fetched and executed and all buffered writes have drained to
memory.

RETURNS N/A

SEE ALSO pentiumALib

pentiumTlbFlush()

NAME pentiumTlbFlush() – flush TLBs (Translation Lookaside Buffers)

SYNOPSIS void pentiumTlbFlush (void)

DESCRIPTION This routine flushes TLBs by loading the CR3 register. All of the TLBs are automatically
invalidated any time the CR3 register is loaded. The page global enable (PGE) flag in
register CR4 and the global flag in a page-directory or page-table entry can be used to
frequently used pages from being automatically invalidated in the TLBs on a load of CR3
register. The only way to deterministically invalidate global page entries is to clear the
PGE flag and then invalidate the TLBs.

RETURNS N/A

SEE ALSO pentiumALib

VxWorks OS Libraries API Reference, 5.5
pentiumTscGet32()

974

pentiumTscGet32()

NAME pentiumTscGet32() – get the lower half of the 64Bit TSC (Timestamp Counter)

SYNOPSIS UINT32 pentiumTscGet32 (void)

DESCRIPTION This routine gets a lower half of the 64Bit TSC by RDTSC instruction. RDTSC instruction
saves the lower 32Bit in EAX register, so this routine simply returns after executing
RDTSC instruction.

RETURNS Lower half of the 64Bit TSC (Timestamp Counter)

SEE ALSO pentiumALib

pentiumTscGet64()

NAME pentiumTscGet64() – get 64Bit TSC (Timestamp Counter)

SYNOPSIS void pentiumTscGet64 (pTsc)

long long int * pTsc; /* Timestamp Counter */

DESCRIPTION This routine gets 64Bit TSC by RDTSC instruction. Parameter is a pointer of 64Bit variable
to store the content of the Counter.

RETURNS N/A

SEE ALSO pentiumALib

pentiumTscReset()

NAME pentiumTscReset() – reset the TSC (Timestamp Counter)

SYNOPSIS void pentiumTscReset (void)

DESCRIPTION This routine resets the TSC by writing zero to the TSC with WRMSR instruction.

2: Routines
period()

975

P

RETURNS N/A

SEE ALSO pentiumALib

period()

NAME period() – spawn a task to call a function periodically

SYNOPSIS int period

(

int secs, /* period in seconds */

FUNCPTR func, /* function to call repeatedly */

int arg1, /* first of eight args to pass to func */

int arg2,

int arg3,

int arg4,

int arg5,

int arg6,

int arg7,

int arg8

)

DESCRIPTION This command spawns a task that repeatedly calls a specified function, with up to eight of
its arguments, delaying the specified number of seconds between calls.

For example, to have i() display task information every 5 seconds, just type:

-> period 5, i

NOTE: The task is spawned using the sp() routine. See the description of sp() for details
about priority, options, stack size, and task ID.

RETURNS A task ID, or ERROR if the task cannot be spawned.

SEE ALSO usrLib, periodRun(), sp(), VxWorks Programmer’s Guide: Target Shell, windsh, Tornado
User’s Guide: Shell

VxWorks OS Libraries API Reference, 5.5
periodRun()

976

periodRun()

NAME periodRun() – call a function periodically

SYNOPSIS void periodRun

(

int secs, /* no. of seconds to delay between calls */

FUNCPTR func, /* function to call repeatedly */

int arg1, /* first of eight args to pass to func */

int arg2,

int arg3,

int arg4,

int arg5,

int arg6,

int arg7,

int arg8

)

DESCRIPTION This command repeatedly calls a specified function, with up to eight of its arguments,
delaying the specified number of seconds between calls.

Normally, this routine is called only by period(), which spawns it as a task.

RETURNS N/A

SEE ALSO usrLib, period(), VxWorks Programmer’s Guide: Target Shell

perror()

NAME perror() – map an error number in errno to an error message (ANSI)

SYNOPSIS void perror

(

const char * __s /* error string */

)

DESCRIPTION This routine maps the error number in the integer expression errno to an error message. It
writes a sequence of characters to the standard error stream as follows: first (if __s is not a
null pointer and the character pointed to by __s is not the null character), the string
pointed to by __s followed by a colon (:) and a space; then an appropriate error message

2: Routines
ping()

977

P

string followed by a new-line character. The contents of the error message strings are the
same as those returned by strerror() with the argument errno.

INCLUDE FILES stdio.h

RETURNS N/A

SEE ALSO ansiStdio, strerror()

ping()

NAME ping() – test that a remote host is reachable

SYNOPSIS STATUS ping

(

char * host, /* host to ping */

int numPackets, /* number of packets to receive */

ulong_t options /* option flags */

)

DESCRIPTION This routine tests that a remote host is reachable by sending ICMP echo request packets,
and waiting for replies. It may called from the VxWorks shell as follows:

-> ping "remoteSystem", 1, 0

where remoteSystem is either a host name that has been previously added to the remote
host table by a call to hostAdd(), or an Internet address in dot notation (for example,
“90.0.0.2”).

The second parameter, numPackets, specifies the number of ICMP packets to receive from
the remote host. If numPackets is 1, this routine waits for a single echo reply packet, and
then prints a short message indicating whether the remote host is reachable. For all other
values of numPackets, timing and sequence information is printed as echoed packets are
received. If numPackets is 0, this routine runs continuously.

If no replies are received within a 5-second timeout period, the routine exits. An ERROR
status is returned if no echo replies are received from the remote host.

The following flags may be given through the options parameter:

PING_OPT_SILENT
Suppress output. This option is useful for applications that use ping()
programmatically to examine the return status.

VxWorks OS Libraries API Reference, 5.5
pingLibInit()

978

PING_OPT_DONTROUTE
Do not route packets past the local network. This also prevents pinging local
addresses (i.e., the IP address of the host itself). The 127.x.x.x addresses will still work
however.

PING_OPT_NOHOST
Suppress host lookup. This is useful when you have the DNS resolver but the DNS
server is down and not returning host names.

PING_OPT_DEBUG
Enables debug output.

NOTE The following global variables can be set from the target shell or Windsh to configure the
ping() parameters:

_pingTxLen
Size of the ICMP echo packet (default 64).

_pingTxInterval
Packet interval in seconds (default 1 second).

_pingTxTmo
Packet timeout in seconds (default 5 seconds).

RETURNS OK, or ERROR if the remote host is not reachable.

ERRNO EINVAL, S_pingLib_NOT_INITIALIZED, S_pingLib_TIMEOUT

SEE ALSO pingLib

pingLibInit()

NAME pingLibInit() – initialize the ping() utility

SYNOPSIS STATUS pingLibInit (void)

DESCRIPTION This routine allocates resources used by the ping() utility. It is called automatically when
INCLUDE_PING is defined.

RETURNS OK

SEE ALSO pingLib

2: Routines
pipeDevDelete()

979

P

pipeDevCreate()

NAME pipeDevCreate() – create a pipe device

SYNOPSIS STATUS pipeDevCreate

(

char * name, /* name of pipe to be created */

int nMessages, /* max. number of messages in pipe */

int nBytes /* size of each message */

)

DESCRIPTION This routine creates a pipe device. It cannot be called from an interrupt service routine. It
allocates memory for the necessary structures and initializes the device. The pipe device
will have a maximum of nMessages messages of up to nBytes each in the pipe at once.
When the pipe is full, a task attempting to write to the pipe will be suspended until a
message has been read. Messages are lost if written to a full pipe at interrupt level.

RETURNS OK, or ERROR if the call fails.

ERRNO S_ioLib_NO_DRIVER - driver not initialized
S_intLib_NOT_ISR_CALLABLE - cannot be called from an ISR

SEE ALSO pipeDrv

pipeDevDelete()

NAME pipeDevDelete() – delete a pipe device

SYNOPSIS STATUS pipeDevDelete

(

char * name, /* name of pipe to be deleted */

BOOL force /* if TRUE, force pipe deletion */

)

DESCRIPTION This routine deletes a pipe device of a given name. The name must match that passed to
pipeDevCreate() else ERROR will be returned. This routine frees memory for the
necessary structures and deletes the device. It cannot be called from an interrupt service
routine.

VxWorks OS Libraries API Reference, 5.5
pipeDrv()

980

A pipe device cannot be deleted until its number of open requests has been reduced to
zero by an equal number of close requests and there are no tasks pending in its select list.
If the optional force flag is asserted, the above restrictions are ignored, resulting in forced
deletion of any select list and freeing of pipe resources.

WARNING: Forced pipe deletion can have catastrophic results if used indiscriminately.
Use only as a last resort.

RETURNS OK, or ERROR if the call fails.

ERRNO S_ioLib_NO_DRIVER - driver not initialized
S_intLib_NOT_ISR_CALLABLE - cannot be called from an ISR
EMFILE - pipe still has other openings
EBUSY - pipe is selected by at least one pending task

SEE ALSO pipeDrv

pipeDrv()

NAME pipeDrv() – initialize the pipe driver

SYNOPSIS STATUS pipeDrv (void)

DESCRIPTION This routine initializes and installs the driver. It must be called before any pipes are
created. It is called automatically by the root task, usrRoot(), in usrConfig.c when the
configuration macro INCLUDE_PIPES is defined.

RETURNS OK, or ERROR if the driver installation fails.

SEE ALSO pipeDrv

2: Routines
pow()

981

P

pow()

NAME pow() – compute the value of a number raised to a specified power (ANSI)

SYNOPSIS double pow

(

double x, /* operand */

double y /* exponent */

)

DESCRIPTION This routine returns x to the power of y in double precision (IEEE double, 53 bits).

A domain error occurs if x is negative and y is not an integral value. A domain error
occurs if the result cannot be represented when x is zero and y is less than or equal to zero.
A range error may occur.

INCLUDE FILES math.h

RETURNS The double-precision value of x to the power of y. Special cases:

SEE ALSO ansiMath, mathALib

 (anything) ** 0 is 1
 (anything) ** 1 is itself
 (anything) ** NaN is NaN
 NaN ** (anything except 0) is NaN
 +-(anything> 1) ** +INF is +INF
 +-(anything> 1) ** -INF is +0
 +-(anything \< 1) ** +INF is +0
 +-(anything \< 1) ** -INF is +INF
 +-1 ** +-INF is NaN, signal INVALID
 +0 ** +(anything non-0, NaN) is +0
 -0 ** +(anything non-0, NaN, odd int) is +0
 +0 ** -(anything non-0, NaN) is +INF, signal DIV-BY-ZERO
 -0 ** -(anything non-0, NaN, odd int) is +INF with signal
 -0 ** (odd integer) = -(+0 ** (odd integer))
 +INF ** +(anything except 0, NaN) is +INF
 +INF ** -(anything except 0, NaN) is +0
 -INF ** (odd integer) = -(+INF ** (odd integer))
 -INF ** (even integer) = (+INF ** (even integer))
 -INF ** -(any non-integer, NaN) is NaN with signal
 -(x=anything) ** (k=integer) is (-1)**k * (x ** k)
 -(anything except 0) ** (non-integer) is NaN with signal

VxWorks OS Libraries API Reference, 5.5
powf()

982

powf()

NAME powf() – compute the value of a number raised to a specified power (ANSI)

SYNOPSIS float powf

(

float x, /* operand */

float y /* exponent */

)

DESCRIPTION This routine returns the value of x to the power of y in single precision.

INCLUDE FILES math.h

RETURNS The single-precision value of x to the power of y.

SEE ALSO mathALib

pppDelete()

NAME pppDelete() – delete a PPP network interface

SYNOPSIS void pppDelete

(

int unit /* PPP interface unit number to delete */

)

DESCRIPTION This routine deletes the Point-to-Point Protocol (PPP) network interface specified by the
unit number unit.

A Link Control Protocol (LCP) terminate request packet is sent to notify the peer of the
impending PPP link shut-down. The associated serial interface (tty) is then detached from
the PPP driver, and the PPP interface is deleted from the list of network interfaces. Finally,
all resources associated with the PPP link are returned to the VxWorks system.

RETURNS N/A

SEE ALSO pppLib

2: Routines
pppHookDelete()

983

P

pppHookAdd()

NAME pppHookAdd() – add a hook routine on a unit basis

SYNOPSIS STATUS pppHookAdd

(

int unit, /* unit number */

FUNCPTR hookRtn, /* hook routine */

int hookType /* hook type connect/disconnect */

)

DESCRIPTION This routine adds a hook to the Point-to-Point Protocol (PPP) channel. The parameters to
this routine specify the unit number (unit) of the PPP interface, the hook routine (hookRtn),
and the type of hook specifying either a connect hook or a disconnect hook (hookType). The
following hook types can be specified for the hookType parameter:

PPP_HOOK_CONNECT
Specify a connect hook.

PPP_HOOK_DISCONNECT
Specify a disconnect hook.

RETURNS OK, or ERROR if the hook cannot be added to the unit.

SEE ALSO pppHookLib, pppHookDelete()

pppHookDelete()

NAME pppHookDelete() – delete a hook routine on a unit basis

SYNOPSIS STATUS pppHookDelete

(

int unit, /* unit number */

int hookType /* hook type connect/disconnect */

)

DESCRIPTION This routine deletes a hook added previously to the Point-to-Point Protocol (PPP) channel.
The parameters to this routine specify the unit number (unit) of the PPP interface and the
type of hook specifying either a connect hook or a disconnect hook (hookType). The
following hook types can be specified for the hookType parameter:

VxWorks OS Libraries API Reference, 5.5
pppInfoGet()

984

PPP_HOOK_CONNECT
Specify a connect hook.

PPP_HOOK_DISCONNECT
Specify a disconnect hook.

RETURNS OK, or ERROR if the hook cannot be deleted for the unit.

SEE ALSO pppHookLib, pppHookAdd()

pppInfoGet()

NAME pppInfoGet() – get PPP link status information

SYNOPSIS STATUS pppInfoGet

(

int unit, /* PPP interface unit number to examine */

PPP_INFO * pInfo /* PPP_INFO structure to be filled */

)

DESCRIPTION This routine gets status information pertaining to the specified Point-to-Point Protocol
(PPP) link, regardless of the link state. State and option information is gathered for the
Link Control Protocol (LCP), Internet Protocol Control Protocol (IPCP), Password
Authentication Protocol (PAP), and Challenge-Handshake Authentication Protocol
(CHAP).

The PPP link information is returned through a PPP_INFO structure, which is defined in
h/netinet/ppp/pppShow.h.

RETURNS OK, or ERROR if unit is an invalid PPP unit number.

SEE ALSO pppShow, pppLib

2: Routines
pppInit()

985

P

pppInfoShow()

NAME pppInfoShow() – display PPP link status information

SYNOPSIS void pppInfoShow (void)

DESCRIPTION This routine displays status information pertaining to each initialized Point-to-Point
Protocol (PPP) link, regardless of the link state. State and option information is gathered
for the Link Control Protocol (LCP), Internet Protocol Control Protocol (IPCP), Password
Authentication Protocol (PAP), and Challenge-Handshake Authentication Protocol
(CHAP).

RETURNS N/A

SEE ALSO pppShow, pppLib

pppInit()

NAME pppInit() – initialize a PPP network interface

SYNOPSIS int pppInit

(

int unit, /* PPP interface unit number to initialize */

char * devname, /* name of the tty device to be used */

char * local_addr, /* local IP address of the PPP interface */

char * remote_addr, /* remote peer IP address of the PPP link */

int baud, /* baud rate of tty; NULL = default */

PPP_OPTIONS * pOptions, /* PPP options structure pointer */

char * fOptions /* PPP options file name */

)

DESCRIPTION This routine initializes a Point-to-Point Protocol (PPP) network interface. The parameters
to this routine specify the unit number (unit) of the PPP interface, the name of the serial
interface (tty) device (devname), the IP addresses of the local and remote ends of the link,
the interface baud rate, an optional configuration options structure pointer, and an
optional configuration options file name.

IP ADDRESSES The local_addr and remote_addr parameters specify the IP addresses of the local and remote
ends of the PPP link, respectively. If local_addr is NULL, the local IP address will be

VxWorks OS Libraries API Reference, 5.5
pppInit()

986

negotiated with the remote peer. If the remote peer does not assign a local IP address, it
will default to the address associated with the local target’s machine name. If remote_addr
is NULL, the remote peer’s IP address will obtained from the remote peer. A routing table
entry to the remote peer will be automatically added once the PPP link is established.

CONFIGURATION OPTIONS STRUCTURE

The optional parameter pOptions specifies configuration options for the PPP link. If NULL,
this parameter is ignored, otherwise it is assumed to be a pointer to a PPP_OPTIONS
options structure (defined in h/netinet/ppp/options.h).

The “flags” member of the PPP_OPTIONS structure is a bit-mask, where the following
bit-flags may be specified:

OPT_NO_ALL
Do not request/allow any options.

OPT_PASSIVE_MODE
Set passive mode.

OPT_SILENT_MODE
Set silent mode.

OPT_DEFAULTROUTE
Add default route.

OPT_PROXYARP
Add proxy ARP entry.

OPT_IPCP_ACCEPT_LOCAL
Accept peer’s idea of the local IP address.

OPT_IPCP_ACCEPT_REMOTE
Accept peer’s idea of the remote IP address.

OPT_NO_IP
Disable IP address negotiation.

OPT_NO_ACC
Disable address/control compression.

OPT_NO_PC
Disable protocol field compression.

OPT_NO_VJ
Disable VJ (Van Jacobson) compression.

OPT_NO_VJCCOMP
Disable VJ (Van Jacobson) connnection ID compression.

OPT_NO_ASYNCMAP
Disable async map negotiation.

OPT_NO_MN
Disable magic number negotiation.

2: Routines
pppInit()

987

P

OPT_NO_MRU
Disable MRU (Maximum Receive Unit) negotiation.

OPT_NO_PAP
Do not allow PAP authentication with peer.

OPT_NO_CHAP
Do not allow CHAP authentication with peer.

OPT_REQUIRE_PAP
Require PAP authentication with peer.

OPT_REQUIRE_CHAP
Require CHAP authentication with peer.

OPT_LOGIN
Use the login password database for PAP authentication of peer.

OPT_DEBUG
Enable PPP daemon debug mode.

OPT_DRIVER_DEBUG
Enable PPP driver debug mode.

The remaining members of the PPP_OPTIONS structure specify PPP configurations
options that require string values. These options are:

char *asyncmap
Set the desired async map to the specified string.

char *escape_chars
Set the chars to escape on transmission to the specified string.

char *vj_max_slots
Set maximum number of VJ compression header slots to the specified string.

char *netmask
Set netmask value for negotiation to the specified string.

char *mru
Set MRU value for negotiation to the specified string.

char *mtu
Set MTU (Maximum Transmission Unit) value for negotiation to the specified string.

char *lcp_echo_failure
Set the maximum number of consecutive LCP echo failures to the specified string.

char *lcp_echo_interval
Set the interval in seconds between LCP echo requests to the specified string.

char *lcp_restart
Set the timeout in seconds for the LCP negotiation to the specified string.

VxWorks OS Libraries API Reference, 5.5
pppInit()

988

char *lcp_max_terminate
Set the maximum number of transmissions for LCP termination requests to the
specified string.

char *lcp_max_configure
Set the maximum number of transmissions for LCP configuration requests to the
specified string.

char *lcp_max_failure
Set the maximum number of LCP configuration NAKs to the specified string.

char *ipcp_restart
Set the timeout in seconds for IPCP negotiation to the specified string.

char *ipcp_max_terminate
Set the maximum number of transmissions for IPCP termination requests to the
specified string.

char *ipcp_max_configure
Set the maximum number of transmissions for IPCP configuration requests to the
specified string.

char *ipcp_max_failure
Set the maximum number of IPCP configuration NAKs to the specified string.

char *local_auth_name
Set the local name for authentication to the specified string.

char *remote_auth_name
Set the remote name for authentication to the specified string.

char *pap_file
Get PAP secrets from the specified file. This option is necessary if either peer requires
PAP authentication.

char *pap_user_name
Set the user name for PAP authentication with the peer to the specified string.

char *pap_passwd
Set the password for PAP authentication with the peer to the specified string.

char *pap_restart
Set the timeout in seconds for PAP negotiation to the specified string.

char *pap_max_authreq
Set the maximum number of transmissions for PAP authentication requests to the
specified string.

char *chap_file
Get CHAP secrets from the specified file. This option is necessary if either peer
requires CHAP authentication.

2: Routines
pppInit()

989

P

char *chap_restart
Set the timeout in seconds for CHAP negotiation to the specified string.

char *chap_interval
Set the interval in seconds for CHAP re-challenge to the specified string.

char *chap_max_challenge
Set the maximum number of transmissions for CHAP challenge to the specified
string.

CONFIGURATION OPTIONS FILE

The optional parameter fOptions specifies configuration options for the PPP link. If NULL,
this parameter is ignored, otherwise it is assumed to be the name of a configuration
options file. The format of the options file is one option per line; comment lines start with
“#”. The following options are recognized:

no_all
Do not request/allow any options.

passive_mode
Set passive mode.

silent_mode
Set silent mode.

defaultroute
Add default route.

proxyarp
Add proxy ARP entry.

ipcp_accept_local
Accept peer’s idea of the local IP address.

ipcp_accept_remote
Accept peer’s idea of the remote IP address.

no_ip
Disable IP address negotiation.

no_acc
Disable address/control compression.

no_pc
Disable protocol field compression.

no_vj
Disable VJ (Van Jacobson) compression.

no_vjccomp
Disable VJ (Van Jacobson) connection ID compression.

VxWorks OS Libraries API Reference, 5.5
pppInit()

990

no_asyncmap
Disable async map negotiation.

no_mn
Disable magic number negotiation.

no_mru
Disable MRU (Maximum Receive Unit) negotiation.

no_pap
Do not allow PAP authentication with peer.

no_chap
Do not allow CHAP authentication with peer.

require_pap
Require PAP authentication with peer.

require_chap
Require CHAP authentication with peer.

login
Use the login password database for PAP authentication of peer.

debug
Enable PPP daemon debug mode.

driver_debug
Enable PPP driver debug mode.

asyncmap value
Set the desired async map to the specified value.

escape_chars value
Set the chars to escape on transmission to the specified value.

vj_max_slots value
Set maximum number of VJ compression header slots to the specified value.

netmask value
Set netmask value for negotiation to the specified value.

mru value
Set MRU value for negotiation to the specified value.

mtu value
Set MTU value for negotiation to the specified value.

lcp_echo_failure value
Set the maximum consecutive LCP echo failures to the specified value.

lcp_echo_interval value
Set the interval in seconds between LCP echo requests to the specified value.

2: Routines
pppInit()

991

P

lcp_restart value
Set the timeout in seconds for the LCP negotiation to the specified value.

lcp_max_terminate value
Set the maximum number of transmissions for LCP termination requests.

lcp_max_configure value
Set the maximum number of transmissions for LCP configuration requests to the
specified value.

lcp_max_failure value
Set the maximum number of LCP configuration NAKs to the specified value.

ipcp_restart value
Set the timeout in seconds for IPCP negotiation to the specified value.

ipcp_max_terminate value
Set the maximum number of transmissions for IPCP termination requests to the
specified value.

ipcp_max_configure value
Set the maximum number of transmissions for IPCP configuration requests to the
specified value.

ipcp_max_failure value
Set the maximum number of IPCP configuration NAKs to the specified value.

local_auth_name name
Set the local name for authentication to the specified name.

remote_auth_name name
Set the remote name for authentication to the specified name.

pap_file file
Get PAP secrets from the specified file. This option is necessary if either peer requires
PAP authentication.

pap_user_name name
Set the user name for PAP authentication with the peer to the specified name.

-
Set the password for PAP authentication with the peer to the specified password.

pap_restart value
Set the timeout in seconds for PAP negotiation to the specified value.

pap_max_authreq value
Set the maximum number of transmissions for PAP authentication requests to the
specified value.

chap_file file
Get CHAP secrets from the specified file. This option is necessary if either peer
requires CHAP authentication.

VxWorks OS Libraries API Reference, 5.5
pppInit()

992

chap_restart value
Set the timeout in seconds for CHAP negotiation to the specified value.

chap_interval value
Set the interval in seconds for CHAP re-challenge to the specified value.

chap_max_challenge value
Set the maximum number of transmissions for CHAP challenge to the specified
value.

AUTHENTICATION The VxWorks PPP implementation supports two separate user authentication protocols:
the Password Authentication Protocol (PAP) and the Challenge-Handshake
Authentication Protocol (CHAP). If authentication is required by either peer, it must be
satisfactorily completed before the PPP link becomes fully operational. If authentication
fails, the link will be automatically terminated.

EXAMPLES The following routine initializes a PPP interface that uses the target’s second serial port
(/tyCo/1). The local IP address is 90.0.0.1; the IP address of the remote peer is 90.0.0.10.
The baud rate is the default rate for the tty device. VJ compression and authentication
have been disabled, and LCP echo requests have been enabled.

PPP_OPTIONS pppOpt; /* PPP configuration options */

void routine ()

{

pppOpt.flags = OPT_PASSIVE_MODE | OPT_NO_PAP | OPT_NO_CHAP | OPT_NO_VJ;

pppOpt.lcp_echo_interval = "30";

pppOpt.lcp_echo_failure = "10";

pppInit (0, "/tyCo/1", "90.0.0.1", "90.0.0.10", 0, &pppOpt, NULL);

}

The following routine generates the same results as the previous example. The difference
is that the configuration options are obtained from a file rather than a structure.

pppFile = "phobos:/tmp/ppp_options"; /* PPP configuration options file */

void routine ()

{

pppInit (0, "/tyCo/1", "90.0.0.1", "90.0.0.10", 0, NULL, pppFile);

}

where phobos:/tmp/ppp_options contains:

passive

no_pap

no_chap

no_vj

lcp_echo_interval 30

lcp_echo_failure 10

2: Routines
pppSecretAdd()

993

P

RETURNS OK, or ERROR if the PPP interface cannot be initialized because the daemon task cannot be
spawned or memory is insufficient.

SEE ALSO pppLib, pppShow, pppDelete(), VxWorks Programmer’s Guide: Network

pppSecretAdd()

NAME pppSecretAdd() – add a secret to the PPP authentication secrets table

SYNOPSIS STATUS pppSecretAdd

(

char * client, /* client being authenticated */

char * server, /* server performing authentication */

char * secret, /* secret used for authentication */

char * addrs /* acceptable client IP addresses */

)

DESCRIPTION This routine adds a secret to the Point-to-Point Protocol (PPP) authentication secrets table.
This table may be used by the Password Authentication Protocol (PAP) and
Challenge-Handshake Authentication Protocol (CHAP) user authentication protocols.

When a PPP link is established, a “server” may require a “client” to authenticate itself
using a “secret”. Clients and servers obtain authentication secrets by searching secrets
files, or by searching the secrets table constructed by this routine. Clients and servers
search the secrets table by matching client and server names with table entries, and
retrieving the associated secret.

Client and server names in the table consisting of “*” are considered wildcards; they serve
as matches for any client and/or server name if an exact match cannot be found.

If secret starts with “@”, secret is assumed to be the name of a file, wherein the actual secret
can be read.

If addrs is not NULL, it should contain a list of acceptable client IP addresses. When a
server is authenticating a client and the client’s IP address is not contained in the list of
acceptable addresses, the link is terminated. Any IP address will be considered acceptable
if addrs is NULL. If this parameter is “-”, all IP addresses are disallowed.

RETURNS OK, or ERROR if the secret cannot be added to the table.

SEE ALSO pppSecretLib, pppSecretDelete(), pppSecretShow()

VxWorks OS Libraries API Reference, 5.5
pppSecretDelete()

994

pppSecretDelete()

NAME pppSecretDelete() – delete a secret from the PPP authentication secrets table

SYNOPSIS STATUS pppSecretDelete

(

char * client, /* client being authenticated */

char * server, /* server performing authentication */

char * secret /* secret used for authentication */

)

DESCRIPTION This routine deletes a secret from the Point-to-Point Protocol (PPP) authentication secrets
table. When searching for a secret to delete from the table, the wildcard substitution
(using “*”) is not performed for client and/or server names. The client, server, and
secretstrings must match the table entry exactly in order to be deleted.

RETURNS OK, or ERROR if the table entry being deleted is not found.

SEE ALSO pppSecretLib, pppSecretAdd(), pppSecretShow()

pppSecretShow()

NAME pppSecretShow() – display the PPP authentication secrets table

SYNOPSIS void pppSecretShow (void)

DESCRIPTION This routine displays the Point-to-Point Protocol (PPP) authentication secrets table. The
information in the secrets table may be used by the Password Authentication Protocol
(PAP) and Challenge-Handshake Authentication Protocol (CHAP) user authentication
protocols.

RETURNS N/A

SEE ALSO pppShow, pppLib, pppSecretAdd(), pppSecretDelete()

2: Routines
pppstatShow()

995

P

pppstatGet()

NAME pppstatGet() – get PPP link statistics

SYNOPSIS STATUS pppstatGet

(

int unit, /* PPP interface unit number to examine */

PPP_STAT * pStat /* PPP_STAT structure to be filled */

)

DESCRIPTION This routine gets statistics for the specified Point-to-Point Protocol (PPP) link. Detailed are
the numbers of bytes and packets received and sent through the PPP interface.

The PPP link statistics are returned through a PPP_STAT structure, which is defined in
h/netinet/ppp/pppShow.h.

RETURNS OK, or ERROR if unit is an invalid PPP unit number.

SEE ALSO pppShow, pppLib

pppstatShow()

NAME pppstatShow() – display PPP link statistics

SYNOPSIS void pppstatShow (void)

DESCRIPTION This routine displays statistics for each initialized Point-to-Point Protocol (PPP) link.
Detailed are the numbers of bytes and packets received and sent through each PPP
interface.

RETURNS N/A

SEE ALSO pppShow, pppLib

VxWorks OS Libraries API Reference, 5.5
printErr()

996

printErr()

NAME printErr() – write a formatted string to the standard error stream

SYNOPSIS int printErr

(

const char * fmt, /* format string to write */

... /* optional arguments to format */

)

DESCRIPTION This routine writes a formatted string to standard error. Its function and syntax are
otherwise identical to printf().

RETURNS The number of characters output, or ERROR if there is an error during output.

SEE ALSO fioLib, printf()

printErrno()

NAME printErrno() – print the definition of a specified error status value

SYNOPSIS void printErrno

(

int errNo /* status code whose name is to be printed */

)

DESCRIPTION This command displays the error-status string, corresponding to a specified error-status
value. It is only useful if the error-status symbol table has been built and included in the
system. If errNo is zero, then the current task status is used by calling errnoGet().

This facility is described in errnoLib.

RETURNS N/A

SEE ALSO usrLib, errnoLib, errnoGet(), VxWorks Programmer’s Guide: Target Shell, windsh,
Tornado User’s Guide: Shell

2: Routines
printf()

997

P

printf()

NAME printf() – write a formatted string to the standard output stream (ANSI)

SYNOPSIS int printf

(

const char * fmt, /* format string to write */

... /* optional arguments to format string */

)

DESCRIPTION This routine writes output to standard output under control of the string fmt. The string
fmt contains ordinary characters, which are written unchanged, plus conversion
specifications, which cause the arguments that follow fmt to be converted and printed as
part of the formatted string.

The number of arguments for the format is arbitrary, but they must correspond to the
conversion specifications in fmt. If there are insufficient arguments, the behavior is
undefined. If the format is exhausted while arguments remain, the excess arguments are
evaluated but otherwise ignored. The routine returns when the end of the format string is
encountered.

The format is a multibyte character sequence, beginning and ending in its initial shift
state. The format is composed of zero or more directives: ordinary multibyte characters
(not %) that are copied unchanged to the output stream; and conversion specification,
each of which results in fetching zero or more subsequent arguments. Each conversion
specification is introduced by the % character. After the %, the following appear in
sequence:

– Zero or more flags (in any order) that modify the meaning of the conversion
specification.

– An optional minimum field width. If the converted value has fewer characters than
the field width, it will be padded with spaces (by default) on the left (or right, if the
left adjustment flag, described later, has been given) to the field width. The field
width takes the form of an asterisk (*) (described later) or a decimal integer.

– An optional precision that gives the minimum number of digits to appear for the d, i,
o, u, x, and X conversions, the number of digits to appear after the decimal-point
character for e, E, and f conversions, the maximum number of significant digits for
the g and G conversions, or the maximum number of characters to be written from a
string in the s conversion. The precision takes the form of a period (.) followed either
by an asterisk (*) (described later) or by an optional decimal integer; if only the period
is specified, the precision is taken as zero. If a precision appears with any other
conversion specifier, the behavior is undefined.

– An optional h specifying that a following d, i, o, u, x, and X conversion specifier
applies to a short int or unsigned short int argument (the argument will have been

VxWorks OS Libraries API Reference, 5.5
printf()

998

promoted according to the integral promotions, and its value converted to short int
or unsigned short int before printing); an optional h specifying that a following n
conversion specifier applies to a pointer to a short int argument. An optional l (ell)
specifying that a following d, i, o, u, x, and X conversion specifier applies to a long
int or unsigned long int argument; or an optional l specifying that a following n
conversion specifier applies to a pointer to a long int argument. An optional ll (ell-ell)
specifying that a following d, i, o, u, x, and X conversion specifier applies to a long
long int or unsigned long long int argument; or an optional ll specifying that a
following n conversion specifier applies to a pointer to a long long int argument. If
a h, l or ll appears with any other conversion specifier, the behavior is undefined.

WARNING: ANSI C also specifies an optional L in some of the same contexts as l above,
corresponding to a long double argument. However, the current release of VxWorks does
not support long double data; using the optional L gives unpredictable results.

– A character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, can be indicated by an asterisk (*). In
this case, an int argument supplies the field width or precision. The arguments specifying
field width or precision, or both, should appear (in that order) before the argument to be
converted. A negative field width argument is taken as a - flag followed by a positive field
width. A negative precision argument is taken as if the precision were omitted.

The flag characters and their meanings are:

-
The result of the conversion will be left-justified within the field. (it will be
right-justified if this flag is not specified.)

+
The result of a signed conversion will always begin with a plus or minus sign. (It will
begin with a sign only when a negative value is converted if this flag is not specified.)

space
If the first character of a signed conversion is not a sign, or if a signed conversion
results in no characters, a space will be prefixed to the result. If the space and + flags
both appear, the space flag will be ignored.

#
The result is to be converted to an “alternate form.” For o conversion it increases the
precision to force the first digit of the result to be a zero. For x (or X) conversion, a
non-zero result will have “0x” (or “0X”) prefixed to it. For e, E, f, g, and g
conversions, the result will always contain a decimal-point character, even if no digits
follow it. (Normally, a decimal-point character appears in the result of these
conversions only if no digit follows it). For g and G conversions, trailing zeros will
not be removed from the result. For other conversions, the behavior is undefined.

0
For d, i, o, u, x, X, e, E, f, g, and G conversions, leading zeros (following any

2: Routines
printf()

999

P

indication of sign or base) are used to pad to the field width; no space padding is
performed. If the 0 and -flags both appear, the 0 flag will be ignored. For d, i, o, u, x,
and X conversions, if a precision is specified, the 0 flag will be ignored. For other
conversions, the behavior is undefined.

The conversion specifiers and their meanings are:

d, i
The int argument is converted to signed decimal in the style [-]dddd. The precision
specifies the minimum number of digits to appear; if the value being converted can
be represented in fewer digits, it will be expanded with leading zeros. The default
precision is 1. The result of converting a zero value with a precision of zero is no
characters.

o, u, x, X
The unsigned int argument is converted to unsigned octal (o), unsigned decimal (u),
or unsigned hexadecimal notation (x or X) in the style dddd; the letters abcdef are
used for x conversion and the letters ABCDEF for X conversion. The precision
specifies the minimum number of digits to appear; if the value being converted can
be represented in fewer digits, it will be expanded with leading zeros. The default
precision is 1. The result of converting a zero value with a precision of zero is no
characters.

f
The double argument is converted to decimal notation in the style [-]ddd.ddd, where
the number of digits after the decimal point character is equal to the precision
specification. If the precision is missing, it is taken as 6; if the precision is zero and the
flag is not specified, no decimal-point character appears. If a decimal-point
character appears, at least one digit appears before it. The value is rounded to the
appropriate number of digits.

e, E
The double argument is converted in the style [-]d.ddde+/-dd, where there is one
digit before the decimal-point character (which is non-zero if the argument is
non-zero) and the number of digits after it is equal to the precision; if the precision is
missing, it is taken as 6; if the precision is zero and the # flag is not specified, no
decimal-point character appears. The value is rounded to the appropriate number of
digits. The E conversion specifier will produce a number with E instead of e
introducing the exponent. The exponent always contains at least two digits. If the
value is zero, the exponent is zero.

g, G
The double argument is converted in style f or e (or in style E in the case of a G
conversion specifier), with the precision specifying the number of significant digits. If
the precision is zero, it is taken as 1. The style used depends on the value converted;
style e (or E) will be used only if the exponent resulting from such a conversion is less
than -4 or greater than or equal to the precision. Trailing zeros are removed from the
fractional portion of the result; a decimal-point character appears only if it is followed

VxWorks OS Libraries API Reference, 5.5
printf()

1000

by a digit.

c
The int argument is converted to unsigned char; the resulting character is written.

s
The argument should be a pointer to an array of character type. Characters from the
array are written up to (but not including) a terminating null character; if the
precision is specified, no more than that many characters are written. If the precision
is not specified or is greater than the size of the array, the array will contain a null
character.

p
The argument should be a pointer to void. The value of the pointer is converted to a
sequence of printable characters, in hexadecimal representation (prefixed with “0x”).

n
The argument should be a pointer to an integer into which the number of characters
written to the output stream so far by this call to fprintf() is written. No argument is
converted.

%
A % is written. No argument is converted. The complete conversion specification is
%%.

If a conversion specification is invalid, the behavior is undefined.

If any argument is, or points to, a union or an aggregate (except for an array of character
type using s conversion, or a pointer using p conversion), the behavior is undefined.

In no case does a non-existent or small field width cause truncation of a field if the result
of a conversion is wider than the field width, the field is expanded to contain the
conversion result.

INCLUDE FILES fioLib.h

RETURNS The number of characters written, or a negative value if an output error occurs.

SEE ALSO fioLib, fprintf(), American National Standard for Information Systems -Programming
Language - C, ANSI X3.159-1989: Input/Output (stdio.h)

2: Routines
proxyArpLibInit()

1001

P

printLogo()

NAME printLogo() – print the VxWorks logo

SYNOPSIS void printLogo (void)

DESCRIPTION This command displays the VxWorks banner seen at boot time. It also displays the
VxWorks version number and kernel version number.

RETURNS N/A

SEE ALSO usrLib, VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s Guide: Shell

proxyArpLibInit()

NAME proxyArpLibInit() – initialize proxy ARP

SYNOPSIS STATUS proxyArpLibInit

(

int clientSizeLog2, /* client table size as power of two */

int portSizeLog2 /* port table size as power of two */

)

DESCRIPTION This routine starts the proxy ARP server by initializing the required data structures and
installing the necessary input hooks. It should be called only once; subsequent calls have
no effect. The clientSizeLog2 and portSizeLog2 parameters specify the internal hash table
sizes. Each must be equal to a power of two, or zero to use a default size value.

RETURNS OK, or ERROR if unsuccessful.

SEE ALSO proxyArpLib

VxWorks OS Libraries API Reference, 5.5
proxyNetCreate()

1002

proxyNetCreate()

NAME proxyNetCreate() – create a proxy ARP network

SYNOPSIS STATUS proxyNetCreate

(

char * proxyAddr, /* address of proxy network interface */

char * mainAddr /* address of main network interface */

)

DESCRIPTION This routine activates proxy services between the proxy network connected to the
interface with the proxyAddr IP address and the main network connected to the interface
with the mainAddr address. Once registration is complete, the proxy server will disguise
the physically separated networks as a single logical network.

The corresponding interfaces must be attached and configured with IP addresses before
calling this routine. If the proxy network shares the same logical subnet number as the
main network, the corresponding interface to the proxy network must use a value of
255.255.255.255 for the netmask.

RETURNS OK, or ERROR if unsuccessful.

ERRNO S_proxyArpLib_INVALID_ADDRESS

SEE ALSO proxyArpLib

proxyNetDelete()

NAME proxyNetDelete() – delete a proxy network

SYNOPSIS STATUS proxyNetDelete

(

char * proxyAddr /* proxy net address */

)

DESCRIPTION This routine deletes the proxy network specified by proxyAddr. It also removes all the
proxy clients that exist on that network.

RETURNS OK, or ERROR if unsuccessful.

SEE ALSO proxyArpLib

2: Routines
proxyPortFwdOff()

1003

P

proxyNetShow()

NAME proxyNetShow() – show proxy ARP networks

SYNOPSIS void proxyNetShow (void)

DESCRIPTION This routine displays the proxy networks and their associated clients.

EXAMPLE -> proxyNetShow

main interface 147.11.1.182 proxy interface 147.11.1.183

client 147.11.1.184

RETURNS N/A

SEE ALSO proxyArpLib

proxyPortFwdOff()

NAME proxyPortFwdOff() – disable broadcast forwarding for a particular port

SYNOPSIS STATUS proxyPortFwdOff

(

int port /* port number */

)

DESCRIPTION This routine disables broadcast forwarding on port number port. To disable the
(previously enabled) forwarding of all ports via proxyPortFwdOn(), specify zero for port.

RETURNS OK, or ERROR if unsuccessful.

SEE ALSO proxyArpLib

VxWorks OS Libraries API Reference, 5.5
proxyPortFwdOn()

1004

proxyPortFwdOn()

NAME proxyPortFwdOn() – enable broadcast forwarding for a particular port

SYNOPSIS STATUS proxyPortFwdOn

(

int port /* port number */

)

DESCRIPTION This routine enables broadcasts destined for the port, port, to be forwarded to and from
the proxy network. To enable all ports, specify zero for port.

RETURNS OK, or ERROR if unsuccessful.

SEE ALSO proxyArpLib

proxyPortShow()

NAME proxyPortShow() – show ports enabled for broadcast forwarding

SYNOPSIS void proxyPortShow (void)

DESCRIPTION This routine displays the destination ports for which the proxy ARP server will forward
broadcast messages between the physically separate networks.

EXAMPLE -> proxyPortShow

enabled ports:

port 67

RETURNS N/A

SEE ALSO proxyArpLib

2: Routines
proxyUnreg()

1005

P

proxyReg()

NAME proxyReg() – register a proxy client

SYNOPSIS STATUS proxyReg

(

char * ifName, /* interface name */

char * proxyAddr /* proxy address */

)

DESCRIPTION This routine sends a message over the network interface ifName to register proxyAddr as a
proxy client.

RETURNS OK, or ERROR if unsuccessful.

SEE ALSO proxyLib

proxyUnreg()

NAME proxyUnreg() – unregister a proxy client

SYNOPSIS STATUS proxyUnreg

(

char * ifName, /* interface name */

char * proxyAddr /* proxy address */

)

DESCRIPTION This routine sends a message over the network interface ifName to unregister proxyAddr as
a proxy client.

RETURNS OK, or ERROR if unsuccessful.

SEE ALSO proxyLib

VxWorks OS Libraries API Reference, 5.5
psrShow()

1006

psrShow()

NAME psrShow() – display the meaning of a specified psr value, symbolically (ARM)

SYNOPSIS void psrShow

(

ULONG psrValue /* psr value to show */

)

DESCRIPTION This routine displays the meaning of all the fields in a specified psr value, symbolically.

Extracted from psl.h:

Definition of bits in the Sun-4 PSR (Processor Status Register)

--

| IMPL | VER | ICC | resvd | EC | EF | PIL | S | PS | ET | CWP |

| | | N | Z | V | C | | | | | | | | |

|------|-----|---|---|---|---|-------|----|----|-----|---|----|----|-----|

31 28 27 24 23 22 21 20 19 14 13 12 11 8 7 6 5 4 0

For compatibility with future revisions, reserved bits are defined to be initialized to zero
and, if written, must be preserved.

EXAMPLE -> psrShow 0x00001FE7

Implementation 0, mask version 0:

Fujitsu MB86900 or LSI L64801, 7 windows

no SWAP, FSQRT, CP, extended fp instructions

Condition codes:

Coprocessor enables: . EF

Processor interrupt level: f

Flags: S PS ET

Current window pointer: 0x07

->

RETURNS N/A

SEE ALSO dbgArchLib, psr(), ARM Architecture Reference Manual

2: Routines
pthread_attr_destroy()

1007

P

pthreadLibInit()

NAME pthreadLibInit() – initialize POSIX threads support

SYNOPSIS void pthreadLibInit (void)

DESCRIPTION This routine initializes the POSIX threads (pthreads) support for VxWorks. It should be
called before any POSIX threads functions are used; normally it will be called as part of
the kernel’s initialization sequence.

RETURNS N/A

SEE ALSO pthreadLib

pthread_attr_destroy()

NAME pthread_attr_destroy() – destroy a thread attributes object (POSIX)

SYNOPSIS int pthread_attr_destroy

(

pthread_attr_t * pAttr /* thread attributes */

)

DESCRIPTION Destroy the thread attributes object pAttr. It should not be re-used until it has been
re-initialized.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL

SEE ALSO pthreadLib, pthread_attr_init()

VxWorks OS Libraries API Reference, 5.5
pthread_attr_getdetachstate()

1008

pthread_attr_getdetachstate()

NAME pthread_attr_getdetachstate() – get value of detachstate attribute from thread attributes
object (POSIX)

SYNOPSIS int pthread_attr_getdetachstate

(

const pthread_attr_t * pAttr, /* thread attributes */

int * pDetachstate /* current detach state (out) */

)

DESCRIPTION This routine returns the current detach state specified in the thread attributes object pAttr.
The value is stored in the location pointed to by pDetachstate. Possible values for the
detach state are: PTHREAD_CREATE_DETACHED and PTHREAD_CREATE_JOINABLE.

RETURNS Always returns zero.

ERRNOS None.

SEE ALSO pthreadLib, pthread_attr_init(), pthread_attr_setdetachstate()

pthread_attr_getinheritsched()

NAME pthread_attr_getinheritsched() – get value of inheritsched attribute in thread attributes
object (POSIX)

SYNOPSIS int pthread_attr_getinheritsched

(

const pthread_attr_t * pAttr, /* thread attributes object */

int * pInheritsched /* inheritance mode (out) */

)

DESCRIPTION This routine gets the scheduling inheritance value from the thread attributes object pAttr.

Possible values are:

PTHREAD_INHERIT_SCHED
Inherit scheduling parameters from parent thread.

PTHREAD_EXPLICIT_SCHED
Use explicitly provided scheduling parameters (i.e., those specified in the thread
attributes object).

2: Routines
pthread_attr_getschedparam()

1009

P

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL

SEE ALSO pthreadLib, pthread_attr_init(), pthread_attr_getschedparam(),
pthread_attr_getschedpolicy(), pthread_attr_setinheritsched()

pthread_attr_getname()

NAME pthread_attr_getname() – get name of thread attribute object

SYNOPSIS int pthread_attr_getname

(

pthread_attr_t * pAttr,

char * *name

)

DESCRIPTION This routine gets the name in the specified thread attributes object, pAttr.

RETURNS Always returns zero

ERRNOS None.

SEE ALSO pthreadLib, pthread_attr_setname(),

pthread_attr_getschedparam()

NAME pthread_attr_getschedparam() – get value of schedparam attribute from thread attributes
object (POSIX)

SYNOPSIS int pthread_attr_getschedparam

(

const pthread_attr_t * pAttr, /* thread attributes */

struct sched_param * pParam /* current parameters (out) */

)

VxWorks OS Libraries API Reference, 5.5
pthread_attr_getschedpolicy()

1010

DESCRIPTION Return, via the pointer pParam, the current scheduling parameters from the thread
attributes object pAttr.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL

SEE ALSO pthreadLib, schedPxLib, pthread_attr_init(), pthread_attr_setschedparam(),
pthread_getschedparam(), pthread_setschedparam(), sched_getparam(),
sched_setparam()

pthread_attr_getschedpolicy()

NAME pthread_attr_getschedpolicy() – get schedpolicy attribute from thread attributes object
(POSIX)

SYNOPSIS int pthread_attr_getschedpolicy

(

const pthread_attr_t * pAttr, /* thread attributes */

int * pPolicy /* current policy (out) */

)

DESCRIPTION This routine returns, via the pointer pPolicy, the current scheduling policy in the thread
attributes object specified by pAttr. Possible values for VxWorks systems are SCHED_RR
and SCHED_FIFO; SCHED_OTHER is not supported.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL

SEE ALSO pthreadLib, schedPxLib, pthread_attr_init(), pthread_attr_setschedpolicy(),
pthread_getschedparam(), pthread_setschedparam(), sched_setscheduler(),
sched_getscheduler()

2: Routines
pthread_attr_getstackaddr()

1011

P

pthread_attr_getscope()

NAME pthread_attr_getscope() – get contention scope from thread attributes (POSIX)

SYNOPSIS int pthread_attr_getscope

(

const pthread_attr_t * pAttr, /* thread attributes object */

int * pContentionScope /* contention scope (out) */

)

DESCRIPTION Reads the current contention scope setting from a thread attributes object. For VxWorks
this is always PTHREAD_SCOPE_SYSTEM. If the thread attributes object is uninitialized
then EINVAL will be returned. The contention scope is returned in the location pointed to
by pContentionScope.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL

SEE ALSO pthreadLib, pthread_attr_init(), pthread_attr_setscope()

pthread_attr_getstackaddr()

NAME pthread_attr_getstackaddr() – get value of stackaddr attribute from thread attributes object
(POSIX)

SYNOPSIS int pthread_attr_getstackaddr

(

const pthread_attr_t * pAttr, /* thread attributes */

void * *ppStackaddr /* current stack address (out) */

)

DESCRIPTION This routine returns the stack address from the thread attributes object pAttr in the
location pointed to by ppStackaddr.

RETURNS Always returns zero.

ERRNOS None.

SEE ALSO pthreadLib, pthread_attr_init(), pthread_attr_setstacksize()

VxWorks OS Libraries API Reference, 5.5
pthread_attr_getstacksize()

1012

pthread_attr_getstacksize()

NAME pthread_attr_getstacksize() – get stack value of stacksize attribute from thread attributes
object (POSIX)

SYNOPSIS int pthread_attr_getstacksize

(

const pthread_attr_t * pAttr, /* thread attributes */

size_t * pStacksize /* current stack size (out) */

)

DESCRIPTION This routine gets the current stack size from the thread attributes object pAttr and places it
in the location pointed to by pStacksize.

RETURNS Always returns zero.

ERRNOS None.

SEE ALSO pthreadLib, pthread_attr_init(), pthread_attr_setstacksize()

pthread_attr_init()

NAME pthread_attr_init() – initialize thread attributes object (POSIX)

SYNOPSIS int pthread_attr_init

(

pthread_attr_t * pAttr /* thread attributes */

)

DESCRIPTION This routine initializes a thread attributes object. If pAttr is NULL then this function will
return EINVAL.

The attributes that are set by default are as follows:

Stack Address
NULL - allow the system to allocate the stack.

Stack Size
0 - use the VxWorks taskLib default stack size.

Detach State
PTHREAD_CREATE_JOINABLE

2: Routines
pthread_attr_setdetachstate()

1013

P

Contention Scope
PTHREAD_SCOPE_SYSTEM

Scheduling Inheritance
PTHREAD_INHERIT_SCHED

Scheduling Policy
SCHED_RR

Scheduling Priority
Use pthreadLib default priority

Note that the scheduling policy and priority values are only used if the scheduling
inheritance mode is changed to PTHREAD_EXPLICIT_SCHED - see
pthread_attr_setinheritsched() for information.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL

SEE ALSO pthreadLib, pthread_attr_destroy(), pthread_attr_getdetachstate(),
pthread_attr_getinheritsched(), pthread_attr_getschedparam(),
pthread_attr_getschedpolicy(), pthread_attr_getscope(), pthread_attr_getstackaddr(),
pthread_attr_getstacksize(), pthread_attr_setdetachstate(),
pthread_attr_setinheritsched(), pthread_attr_setschedparam(),
pthread_attr_setschedpolicy(), pthread_attr_setscope(), pthread_attr_setstackaddr(),
pthread_attr_setstacksize()

pthread_attr_setdetachstate()

NAME pthread_attr_setdetachstate() – set detachstate attribute in thread attributes object (POSIX)

SYNOPSIS int pthread_attr_setdetachstate

(

pthread_attr_t * pAttr, /* thread attributes */

int detachstate /* new detach state */

)

DESCRIPTION This routine sets the detach state in the thread attributes object pAttr. The new detach state
specified by detachstate must be one of PTHREAD_CREATE_DETACHED or
PTHREAD_CREATE_JOINABLE. Any other values will cause an error to be returned
(EINVAL).

RETURNS On success zero; on failure a non-zero error code.

VxWorks OS Libraries API Reference, 5.5
pthread_attr_setinheritsched()

1014

ERRNOS EINVAL

SEE ALSO pthreadLib, pthread_attr_getdetachstate(), pthread_attr_init()

pthread_attr_setinheritsched()

NAME pthread_attr_setinheritsched() – set inheritsched attribute in thread attribute object
(POSIX)

SYNOPSIS int pthread_attr_setinheritsched

(

pthread_attr_t * pAttr, /* thread attributes object */

int inheritsched /* inheritance mode */

)

DESCRIPTION This routine sets the scheduling inheritance to be used when creating a thread with the
thread attributes object specified by pAttr.

Possible values are:

PTHREAD_INHERIT_SCHED
Inherit scheduling parameters from parent thread.

PTHREAD_EXPLICIT_SCHED
Use explicitly provided scheduling parameters (i.e., those specified in the thread
attributes object).

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL

SEE ALSO pthreadLib, pthread_attr_getinheritsched(), pthread_attr_init(),
pthread_attr_setschedparam(), pthread_attr_setschedpolicy()

2: Routines
pthread_attr_setschedparam()

1015

P

pthread_attr_setname()

NAME pthread_attr_setname() – set name in thread attribute object

SYNOPSIS int pthread_attr_setname

(

pthread_attr_t * pAttr,

char * name

)

DESCRIPTION This routine sets the name in the specified thread attributes object, pAttr.

RETURNS Always returns zero.

ERRNOS None.

SEE ALSO pthreadLib, pthread_attr_getname()

pthread_attr_setschedparam()

NAME pthread_attr_setschedparam() – set schedparam attribute in thread attributes object
(POSIX)

SYNOPSIS int pthread_attr_setschedparam

(

pthread_attr_t * pAttr, /* thread attributes */

const struct sched_param * pParam /* new parameters */

)

DESCRIPTION Set the scheduling parameters in the thread attributes object pAttr. The scheduling
parameters are essentially the thread’s priority.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL

SEE ALSO pthreadLib, schedPxLib, pthread_attr_getschedparam(), pthread_attr_init(),
pthread_getschedparam(), pthread_setschedparam(), sched_getparam(),
sched_setparam()

VxWorks OS Libraries API Reference, 5.5
pthread_attr_setschedpolicy()

1016

pthread_attr_setschedpolicy()

NAME pthread_attr_setschedpolicy() – set schedpolicy attribute in thread attributes object
(POSIX)

SYNOPSIS int pthread_attr_setschedpolicy

(

pthread_attr_t * pAttr, /* thread attributes */

int policy /* new policy */

)

DESCRIPTION Select the thread scheduling policy. The default scheduling policy is to inherit the current
system setting. Unlike the POSIX model, scheduling policies under VxWorks are global. If
a scheduling policy is being set explicitly, the PTHREAD_EXPLICIT_SCHED mode must be
set (see pthread_attr_setinheritsched() for information), and the selected scheduling
policy must match the global scheduling policy in place at the time; failure to do so will
result in pthread_create() failing with the non-POSIX error ENOTTY.

POSIX defines the following policies:

SCHED_RR
Real-time, round-robin scheduling.

SCHED_FIFO
Real-time, first-in first-out scheduling.

SCHED_OTHER
Other, non-real-time scheduling.

VxWorks only supports SCHED_RR and SCHED_FIFO.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL

SEE ALSO pthreadLib, schedPxLib, pthread_attr_getschedpolicy(), pthread_attr_init(),
pthread_attr_setinheritsched(), pthread_getschedparam(), pthread_setschedparam(),
sched_setscheduler(), sched_getscheduler()

2: Routines
pthread_attr_setstackaddr()

1017

P

pthread_attr_setscope()

NAME pthread_attr_setscope() – set contention scope for thread attributes (POSIX)

SYNOPSIS int pthread_attr_setscope

(

pthread_attr_t * pAttr, /* thread attributes object */

int contentionScope /* new contention scope */

)

DESCRIPTION For VxWorks PTHREAD_SCOPE_SYSTEM is the only supported contention scope. Any
other value passed to this function will result in EINVAL being returned.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL

SEE ALSO pthreadLib, pthread_attr_getscope(), pthread_attr_init()

pthread_attr_setstackaddr()

NAME pthread_attr_setstackaddr() – set stackaddr attribute in thread attributes object (POSIX)

SYNOPSIS int pthread_attr_setstackaddr

(

pthread_attr_t * pAttr, /* thread attributes */

void * pStackaddr /* new stack address */

)

DESCRIPTION This routine sets the stack address in the thread attributes object pAttr to be pStackaddr.

Note that the size of this stack must be large enough to also include the task’s TCB. The
size of the TCB varies by architecture but can be determined by calling sizeof
(WIND_TCB). Set stack size using the routine pthread_attr_setstacksize().

RETURNS Zero, always.

ERRNOS None.

SEE ALSO pthreadLib, pthread_attr_getstacksize(), pthread_attr_setstacksize(),
pthread_attr_init()

VxWorks OS Libraries API Reference, 5.5
pthread_attr_setstacksize()

1018

pthread_attr_setstacksize()

NAME pthread_attr_setstacksize() – set stacksize attribute in thread attributes object (POSIX)

SYNOPSIS int pthread_attr_setstacksize
(
pthread_attr_t * pAttr, /* thread attributes */
size_t stacksize /* new stack size */
)

DESCRIPTION This routine sets the thread stack size in the specified thread attributes object, pAttr.

RETURNS Always returns zero.

ERRNOS None.

SEE ALSO pthreadLib, pthread_attr_getstacksize(), pthread_attr_init()

pthread_cancel()

NAME pthread_cancel() – cancel execution of a thread (POSIX)

SYNOPSIS int pthread_cancel
(
pthread_t thread /* thread to cancel */
)

DESCRIPTION This routine sends a cancellation request to the thread specified by thread. Depending on
the settings of that thread, it may ignore the request, terminate immediately or defer
termination until it reaches a cancellation point. When the thread terminates it performs
as if pthread_exit() had been called with the exit status PTHREAD_CANCELED.

NOTE: In VxWorks, asynchronous thread cancellation is accomplished using a signal. The
signal SIGCNCL has been reserved for this purpose. Applications should take care not to
block or handle this signal.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS ESRCH

SEE ALSO pthreadLib, pthread_exit(), pthread_setcancelstate(), pthread_setcanceltype(),
pthread_testcancel()

2: Routines
pthread_cleanup_push()

1019

P

pthread_cleanup_pop()

NAME pthread_cleanup_pop() – pop a cleanup routine off the top of the stack (POSIX)

SYNOPSIS void pthread_cleanup_pop

(

int run /* execute handler? */

)

DESCRIPTION This routine removes the cleanup handler routine at the top of the cancellation cleanup
stack of the calling thread and executes it if run is non-zero. The routine should have been
added using the pthread_cleanup_push() function.

Once the routine is removed from the stack it is no longer called when the thread exits.

RETURNS N/A

ERRNOS N/A

SEE ALSO pthreadLib, pthread_cleanup_push(), pthread_exit()

pthread_cleanup_push()

NAME pthread_cleanup_push() – pushes a routine onto the cleanup stack (POSIX)

SYNOPSIS void pthread_cleanup_push

(

void (* routine)(void *),/* cleanup routine */

void * arg /* argument */

)

DESCRIPTION This routine pushes the specified cancellation cleanup handler routine, routine, onto the
cancellation cleanup stack of the calling thread. When a thread exits and its cancellation
cleanup stack is not empty, the cleanup handlers are invoked with the argument arg in
LIFO order from the cancellation cleanup stack.

RETURNS N/A

ERRNOS N/A

SEE ALSO pthreadLib, pthread_cleanup_pop(), pthread_exit()

VxWorks OS Libraries API Reference, 5.5
pthread_cond_broadcast()

1020

pthread_cond_broadcast()

NAME pthread_cond_broadcast() – unblock all threads waiting on a condition (POSIX)

SYNOPSIS int pthread_cond_broadcast

(

pthread_cond_t * pCond

)

DESCRIPTION This function unblocks all threads blocked on the condition variable pCond. Nothing
happens if no threads are waiting on the specified condition variable.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL

SEE ALSO pthreadLib, pthread_condattr_init(), pthread_condattr_destroy(),
pthread_cond_destroy(), pthread_cond_init(), pthread_cond_signal(),
pthread_cond_timedwait(), pthread_cond_wait()

pthread_cond_destroy()

NAME pthread_cond_destroy() – destroy a condition variable (POSIX)

SYNOPSIS int pthread_cond_destroy

(

pthread_cond_t * pCond /* condition variable */

)

DESCRIPTION This routine destroys the condition variable pointed to by pCond. No threads can be
waiting on the condition variable when this function is called. If there are threads waiting
on the condition variable, then pthread_cond_destroy() returns EBUSY.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL, EBUSY

SEE ALSO pthreadLib, pthread_condattr_init(), pthread_condattr_destroy(),
pthread_cond_broadcast(), pthread_cond_init(), pthread_cond_signal(),
pthread_cond_timedwait(), pthread_cond_wait()

2: Routines
pthread_cond_init()

1021

P

pthread_cond_init()

NAME pthread_cond_init() – initialize condition variable (POSIX)

SYNOPSIS int pthread_cond_init

(

pthread_cond_t * pCond, /* condition variable */

pthread_condattr_t * pAttr /* condition variable attributes */

)

DESCRIPTION This function initializes a condition variable. A condition variable is a synchronization
device that allows threads to block until some predicate on shared data is satisfied. The
basic operations on conditions are to signal the condition (when the predicate becomes
true), and wait for the condition, blocking the thread until another thread signals the
condition.

A condition variable must always be associated with a mutex to avoid a race condition
between the wait and signal operations.

If pAttr is NULL then the default attributes are used as specified by POSIX; if pAttr is
non-NULL then it is assumed to point to a condition attributes object initialized by
pthread_condattr_init(), and those are the attributes used to create the condition variable.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL, EBUSY

SEE ALSO pthreadLib, pthread_condattr_init(), pthread_condattr_destroy(),
pthread_cond_broadcast(), pthread_cond_destroy(), pthread_cond_signal(),
pthread_cond_timedwait(), pthread_cond_wait()

VxWorks OS Libraries API Reference, 5.5
pthread_cond_signal()

1022

pthread_cond_signal()

NAME pthread_cond_signal() – unblock a thread waiting on a condition (POSIX)

SYNOPSIS int pthread_cond_signal

(

pthread_cond_t * pCond

)

DESCRIPTION This routine unblocks one thread waiting on the specified condition variable pCond. If no
threads are waiting on the condition variable then this routine does nothing; if more than
one thread is waiting, then one will be released, but it is not specified which one.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL

SEE ALSO pthreadLib, pthread_condattr_init(), pthread_condattr_destroy(),
pthread_cond_broadcast(), pthread_cond_destroy(), pthread_cond_init(),
pthread_cond_timedwait(), pthread_cond_wait()

pthread_cond_timedwait()

NAME pthread_cond_timedwait() – wait for a condition variable with a timeout (POSIX)

SYNOPSIS int pthread_cond_timedwait

(

pthread_cond_t * pCond, /* condition variable */

pthread_mutex_t * pMutex, /* POSIX mutex */

const struct timespec * pAbstime /* timeout time */

)

DESCRIPTION This function atomically releases the mutex pMutex and waits for another thread to signal
the condition variable pCond. As with pthread_cond_wait(), the mutex must be locked by
the calling thread when pthread_cond_timedwait() is called.

If the condition variable is signalled before the system time reaches the time specified by
pAbsTime, then the mutex is re-acquired and the calling thread unblocked.

2: Routines
pthread_cond_wait()

1023

P

If the system time reaches or exceeds the time specified by pAbsTime before the condition
is signalled, then the mutex is re-acquired, the thread unblocked and ETIMEDOUT
returned.

NOTE: The timeout is specified as an absolute value of the system clock in a timespec
structure (see clock_gettime() for more information). This is different from most
VxWorks timeouts which are specified in ticks relative to the current time.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL, ETIMEDOUT

SEE ALSO pthreadLib, pthread_condattr_init(), pthread_condattr_destroy(),
pthread_cond_broadcast(), pthread_cond_destroy(), pthread_cond_init(),
pthread_cond_signal(), pthread_cond_wait()

pthread_cond_wait()

NAME pthread_cond_wait() – wait for a condition variable (POSIX)

SYNOPSIS int pthread_cond_wait

(

pthread_cond_t * pCond, /* condition variable */

pthread_mutex_t * pMutex /* POSIX mutex */

)

DESCRIPTION This function atomically releases the mutex pMutex and waits for the condition variable
pCond to be signalled by another thread. The mutex must be locked by the calling thread
when pthread_cond_wait() is called; if it is not then this function returns an error
(EINVAL).

Before returning to the calling thread, pthread_cond_wait() re-acquires the mutex.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL

SEE ALSO pthreadLib, pthread_condattr_init(), pthread_condattr_destroy(),
pthread_cond_broadcast(), pthread_cond_destroy(), pthread_cond_init(),
pthread_cond_signal(), pthread_cond_timedwait()

VxWorks OS Libraries API Reference, 5.5
pthread_condattr_destroy()

1024

pthread_condattr_destroy()

NAME pthread_condattr_destroy() – destroy a condition attributes object (POSIX)

SYNOPSIS int pthread_condattr_destroy

(

pthread_condattr_t * pAttr /* condition variable attributes */

)

DESCRIPTION This routine destroys the condition attribute object pAttr. It must not be reused until it is
re-initialized.

RETURNS Always returns zero.

ERRNOS None.

SEE ALSO pthreadLib, pthread_cond_init(), pthread_condattr_init()

pthread_condattr_init()

NAME pthread_condattr_init() – initialize a condition attribute object (POSIX)

SYNOPSIS int pthread_condattr_init

(

pthread_condattr_t * pAttr /* condition variable attributes */

)

DESCRIPTION This routine initializes the condition attribute object pAttr and fills it with default values
for the attributes.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL

SEE ALSO pthreadLib, pthread_cond_init(), pthread_condattr_destroy()

2: Routines
pthread_detach()

1025

P

pthread_create()

NAME pthread_create() – create a thread (POSIX)

SYNOPSIS int pthread_create

(

pthread_t * pThread, /* Thread ID (out) */

const pthread_attr_t * pAttr, /* Thread attributes object */

void * (* startRoutine)(void *), /* Entry function */

void * arg /* Entry function argument */

)

DESCRIPTION This routine creates a new thread and if successful writes its ID into the location pointed
to by pThread. If pAttr is NULL then default attributes are used. The new thread executes
startRoutine with arg as its argument.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL, EAGAIN

SEE ALSO pthreadLib, pthread_exit(), pthread_join()

pthread_detach()

NAME pthread_detach() – dynamically detach a thread (POSIX)

SYNOPSIS int pthread_detach

(

pthread_t thread /* thread to detach */

)

DESCRIPTION This routine puts the thread thread into the detached state. This prevents other threads
from synchronizing on the termination of the thread using pthread_join().

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL, ESRCH

SEE ALSO pthreadLib, pthread_join()

VxWorks OS Libraries API Reference, 5.5
pthread_equal()

1026

pthread_equal()

NAME pthread_equal() – compare thread IDs (POSIX)

SYNOPSIS int pthread_equal

(

pthread_t t1, /* thread one */

pthread_t t2 /* thread two */

)

DESCRIPTION Tests the equality of the two threads t1 and t2.

RETURNS Non-zero if t1 and t2 refer to the same thread, otherwise zero.

SEE ALSO pthreadLib

pthread_exit()

NAME pthread_exit() – terminate a thread (POSIX)

SYNOPSIS void pthread_exit

(

void * status /* exit status */

)

DESCRIPTION This function terminates the calling thread. All cleanup handlers that have been set for the
calling thread with pthread_cleanup_push() are executed in reverse order (the most
recently added handler is executed first). Termination functions for thread-specific data
are then called for all keys that have non-NULL values associated with them in the calling
thread (see pthread_key_create() for more details). Finally, execution of the calling thread
is stopped.

The status argument is the return value of the thread and can be consulted from another
thread using pthread_join() unless this thread was detached (i.e., a call to
pthread_detach() had been made for it, or it was created in the detached state).

All threads that remain joinable at the time they exit should ensure that pthread_join() is
called on their behalf by another thread to reclaim the resources that they hold.

RETURNS Does not return.

2: Routines
pthread_getspecific()

1027

P

ERRNOS N/A

SEE ALSO pthreadLib, pthread_cleanup_push(), pthread_detach(), pthread_join(),
pthread_key_create()

pthread_getschedparam()

NAME pthread_getschedparam() – get value of schedparam attribute from a thread (POSIX)

SYNOPSIS int pthread_getschedparam

(

pthread_t thread, /* thread */

int * pPolicy, /* current policy (out) */

struct sched_param * pParam /* current parameters (out) */

)

DESCRIPTION This routine reads the current scheduling parameters and policy of the thread specified by
thread. The information is returned via pPolicy and pParam.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS ESRCH

SEE ALSO pthreadLib, schedPxLib, pthread_attr_getschedparam(),
pthread_attr_getschedpolicy(), pthread_attr_setschedparam(),
pthread_attr_setschedpolicy(), pthread_setschedparam(), sched_getparam(),
sched_setparam()

pthread_getspecific()

NAME pthread_getspecific() – get thread specific data (POSIX)

SYNOPSIS void *pthread_getspecific

(

pthread_key_t key /* thread specific data key */

)

VxWorks OS Libraries API Reference, 5.5
pthread_join()

1028

DESCRIPTION This routine returns the value associated with the thread specific data key key for the
calling thread.

RETURNS The value associated with key, or NULL.

ERRNOS N/A

SEE ALSO pthreadLib, pthread_key_create(), pthread_key_delete(), pthread_setspecific()

pthread_join()

NAME pthread_join() – wait for a thread to terminate (POSIX)

SYNOPSIS int pthread_join

(

pthread_t thread, /* thread to wait for */

void * *ppStatus /* exit status of thread (out) */

)

DESCRIPTION This routine will block the calling thread until the thread specified by thread terminates, or
is canceled. The thread must be in the joinable state, i.e., it cannot have been detached by a
call to pthread_detach(), or created in the detached state.

If ppStatus is not NULL, when thread terminates its exit status will be stored in the specified
location. The exit status will be either the value passed to pthread_exit(), or
PTHREAD_CANCELED if the thread was canceled.

Only one thread can wait for the termination of a given thread. If another thread is
already waiting when this function is called an error will be returned (EINVAL).

If the calling thread passes its own ID in thread, the call will fail with the error EDEADLK.

NOTE: All threads that remain joinable at the time they exit should ensure that
pthread_join() is called on their behalf by another thread to reclaim the resources that
they hold.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL, ESRCH, EDEADLK

SEE ALSO pthreadLib, pthread_detach(), pthread_exit()

2: Routines
pthread_key_delete()

1029

P

pthread_key_create()

NAME pthread_key_create() – create a thread specific data key (POSIX)

SYNOPSIS int pthread_key_create

(

pthread_key_t * pKey, /* thread specific data key */

void (* destructor)(void *) /* destructor function */

)

DESCRIPTION This routine allocates a new thread specific data key. The key is stored in the location
pointed to by key. The value initially associated with the returned key is NULL in all
currently executing threads. If the maximum number of keys are already allocated, the
function returns an error (EAGAIN).

The destructor parameter specifies a destructor function associated with the key. When a
thread terminates via pthread_exit(), or by cancellation, destructor is called with the value
associated with the key in that thread as an argument. The destructor function is not
called if that value is NULL. The order in which destructor functions are called at thread
termination time is unspecified.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EAGAIN

SEE ALSO pthreadLib, pthread_getspecific(), pthread_key_delete(), pthread_setspecific()

pthread_key_delete()

NAME pthread_key_delete() – delete a thread specific data key (POSIX)

SYNOPSIS int pthread_key_delete

(

pthread_key_t key /* thread specific data key to delete */

)

DESCRIPTION This routine deletes the thread specific data associated with key, and deallocates the key
itself. It does not call any destructor associated with the key.

RETURNS On success zero; on failure a non-zero error code.

VxWorks OS Libraries API Reference, 5.5
pthread_kill()

1030

ERRNOS EINVAL

SEE ALSO pthreadLib, pthread_key_create()

pthread_kill()

NAME pthread_kill() – send a signal to a thread (POSIX)

SYNOPSIS int pthread_kill

(

pthread_t thread, /* thread to signal */

int sig /* signal to send */

)

DESCRIPTION This routine sends signal number sig to the thread specified by thread. The signal is
delivered and handled as described for the kill() function.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS ESRCH, EINVAL

SEE ALSO pthreadLib, kill(), pthread_sigmask(), sigprocmask(), sigaction(), sigsuspend(),
sigwait()

pthread_mutex_destroy()

NAME pthread_mutex_destroy() – destroy a mutex (POSIX)

SYNOPSIS int pthread_mutex_destroy

(

pthread_mutex_t * pMutex /* POSIX mutex */

)

DESCRIPTION This routine destroys a mutex object, freeing the resources it might hold. The mutex must
be unlocked when this function is called, otherwise it will return an error (EBUSY).

RETURNS On success zero; on failure a non-zero error code.

2: Routines
pthread_mutex_init()

1031

P

ERRNOS EINVAL, EBUSY

SEE ALSO pthreadLib, semLib, semMLib, pthread_mutex_init(), pthread_mutex_lock(),
pthread_mutex_trylock(), pthread_mutex_unlock(), pthread_mutexattr_init(),
semDelete()

pthread_mutex_getprioceiling()

NAME pthread_mutex_getprioceiling() – get the value of the prioceiling attribute of a mutex
(POSIX)

SYNOPSIS int pthread_mutex_getprioceiling

(

pthread_mutex_t * pMutex, /* POSIX mutex */

int * pPrioceiling /* current priority ceiling (out) */

)

DESCRIPTION This function gets the current value of the prioceiling attribute of a mutex. Unless the
mutex was created with a protocol attribute value of PTHREAD_PRIO_PROTECT, this
value is meaningless.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL

SEE ALSO pthreadLib, pthread_mutex_setprioceiling(), pthread_mutexattr_getprioceiling(),
pthread_mutexattr_setprioceiling()

pthread_mutex_init()

NAME pthread_mutex_init() – initialize mutex from attributes object (POSIX)

SYNOPSIS int pthread_mutex_init

(

pthread_mutex_t * pMutex, /* POSIX mutex */

const pthread_mutexattr_t * pAttr /* mutex attributes */

)

VxWorks OS Libraries API Reference, 5.5
pthread_mutex_lock()

1032

DESCRIPTION This routine initializes the mutex object pointed to by pMutex according to the mutex
attributes specified in pAttr. If pAttr is NULL, default attributes are used as defined in the
POSIX specification.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL, EBUSY

SEE ALSO pthreadLib, semLib, semMLib, pthread_mutex_destroy(), pthread_mutex_lock(),
pthread_mutex_trylock(), pthread_mutex_unlock(), pthread_mutexattr_init(),
semMCreate()

pthread_mutex_lock()

NAME pthread_mutex_lock() – lock a mutex (POSIX)

SYNOPSIS int pthread_mutex_lock

(

pthread_mutex_t * pMutex /* POSIX mutex */

)

DESCRIPTION This routine locks the mutex specified by pMutex. If the mutex is currently unlocked, it
becomes locked, and is said to be owned by the calling thread. In this case
pthread_mutex_lock() returns immediately.

If the mutex is already locked by another thread, pthread_mutex_lock() blocks the calling
thread until the mutex is unlocked by its current owner.

If it is already locked by the calling thread, pthread_mutex_lock will deadlock on itself
and the thread will block indefinitely.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL

SEE ALSO pthreadLib, semLib, semMLib, pthread_mutex_init(), pthread_mutex_lock(),
pthread_mutex_trylock(), pthread_mutex_unlock(), pthread_mutexattr_init(),
semTake()

2: Routines
pthread_mutex_trylock()

1033

P

pthread_mutex_setprioceiling()

NAME pthread_mutex_setprioceiling() – dynamically set the prioceiling attribute of a mutex
(POSIX)

SYNOPSIS int pthread_mutex_setprioceiling

(

pthread_mutex_t * pMutex, /* POSIX mutex */

int prioceiling, /* new priority ceiling */

int * pOldPrioceiling /* old priority ceiling (out) */

)

DESCRIPTION This function dynamically sets the value of the prioceiling attribute of a mutex. Unless the
mutex was created with a protocol value of PTHREAD_PRIO_PROTECT, this function does
nothing.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL, EPERM, S_objLib_OBJ_ID_ERROR, S_semLib_NOT_ISR_CALLABLE

SEE ALSO pthreadLib, pthread_mutex_getprioceiling(), pthread_mutexattr_getprioceiling(),
pthread_mutexattr_setprioceiling()

pthread_mutex_trylock()

NAME pthread_mutex_trylock() – lock mutex if it is available (POSIX)

SYNOPSIS int pthread_mutex_trylock

(

pthread_mutex_t * pMutex /* POSIX mutex */

)

DESCRIPTION This routine locks the mutex specified by pMutex. If the mutex is currently unlocked, it
becomes locked and owned by the calling thread. In this case pthread_mutex_trylock()
returns immediately.

If the mutex is already locked by another thread, pthread_mutex_trylock() returns
immediately with the error code EBUSY.

RETURNS On success zero; on failure a non-zero error code.

VxWorks OS Libraries API Reference, 5.5
pthread_mutex_unlock()

1034

ERRNOS EINVAL, EBUSY

SEE ALSO pthreadLib, semLib, semMLib, pthread_mutex_init(), pthread_mutex_lock(),
pthread_mutex_trylock(), pthread_mutex_unlock(), pthread_mutexattr_init(),
semTake()

pthread_mutex_unlock()

NAME pthread_mutex_unlock() – unlock a mutex (POSIX)

SYNOPSIS int pthread_mutex_unlock

(

pthread_mutex_t * pMutex

)

DESCRIPTION This routine unlocks the mutex specified by pMutex. If the calling thread is not the current
owner of the mutex, pthread_mutex_unlock() returns with the error code EPERM.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL, EPERM, S_objLib_OBJ_ID_ERROR, S_semLib_NOT_ISR_CALLABLE

SEE ALSO pthreadLib, semLib, semMLib, pthread_mutex_init(), pthread_mutex_lock(),
pthread_mutex_trylock(), pthread_mutex_unlock(), pthread_mutexattr_init(),
semGive()

pthread_mutexattr_destroy()

NAME pthread_mutexattr_destroy() – destroy mutex attributes object (POSIX)

SYNOPSIS int pthread_mutexattr_destroy

(

pthread_mutexattr_t * pAttr /* mutex attributes */

)

DESCRIPTION This routine destroys a mutex attribute object. The mutex attribute object must not be
reused until it is re-initialized.

2: Routines
pthread_mutexattr_getprioceiling()

1035

P

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL

SEE ALSO pthreadLib, pthread_mutexattr_getprioceiling(), pthread_mutexattr_getprotocol(),
pthread_mutexattr_init(), pthread_mutexattr_setprioceiling(),
pthread_mutexattr_setprotocol(), pthread_mutex_init()

pthread_mutexattr_getprioceiling()

NAME pthread_mutexattr_getprioceiling() – get the current value of the prioceiling attribute in a
mutex attributes object (POSIX)

SYNOPSIS int pthread_mutexattr_getprioceiling

(

pthread_mutexattr_t * pAttr, /* mutex attributes */

int * pPrioceiling /* current priority ceiling (out) */

)

DESCRIPTION This function gets the current value of the prioceiling attribute in a mutex attributes
object. Unless the value of the protocol attribute is PTHREAD_PRIO_PROTECT, this value
is ignored.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL

SEE ALSO pthreadLib, pthread_mutexattr_destroy(), pthread_mutexattr_getprotocol(),
pthread_mutexattr_init(), pthread_mutexattr_setprioceiling(),
pthread_mutexattr_setprotocol(), pthread_mutex_init()

VxWorks OS Libraries API Reference, 5.5
pthread_mutexattr_getprotocol()

1036

pthread_mutexattr_getprotocol()

NAME pthread_mutexattr_getprotocol() – get value of protocol in mutex attributes object (POSIX)

SYNOPSIS int pthread_mutexattr_getprotocol

(

pthread_mutexattr_t * pAttr, /* mutex attributes */

int * pProtocol /* current protocol (out) */

)

DESCRIPTION This function gets the current value of the protocol attribute in a mutex attributes object.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL

SEE ALSO pthreadLib, pthread_mutexattr_destroy(), pthread_mutexattr_getprioceiling(),
pthread_mutexattr_init(), pthread_mutexattr_setprioceiling(),
pthread_mutexattr_setprotocol(), pthread_mutex_init()

pthread_mutexattr_init()

NAME pthread_mutexattr_init() – initialize mutex attributes object (POSIX)

SYNOPSIS int pthread_mutexattr_init

(

pthread_mutexattr_t * pAttr /* mutex attributes */

)

DESCRIPTION This routine initializes the mutex attribute object pAttr and fills it with default values for
the attributes as defined by the POSIX specification.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL

SEE ALSO pthreadLib, pthread_mutexattr_destroy(), pthread_mutexattr_getprioceiling(),
pthread_mutexattr_getprotocol(), pthread_mutexattr_setprioceiling(),
pthread_mutexattr_setprotocol(), pthread_mutex_init()

2: Routines
pthread_mutexattr_setprotocol()

1037

P

pthread_mutexattr_setprioceiling()

NAME pthread_mutexattr_setprioceiling() – set prioceiling attribute in mutex attributes object
(POSIX)

SYNOPSIS int pthread_mutexattr_setprioceiling

(

pthread_mutexattr_t * pAttr, /* mutex attributes */

int prioceiling /* new priority ceiling */

)

DESCRIPTION This function sets the value of the prioceiling attribute in a mutex attributes object. Unless
the protocol attribute is set to PTHREAD_PRIO_PROTECT, this attribute is ignored.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL

SEE ALSO pthreadLib, pthread_mutexattr_destroy(), pthread_mutexattr_getprioceiling(),
pthread_mutexattr_getprotocol(), pthread_mutexattr_init(),
pthread_mutexattr_setprotocol(), pthread_mutex_init()

pthread_mutexattr_setprotocol()

NAME pthread_mutexattr_setprotocol() – set protocol attribute in mutex attribute object (POSIX)

SYNOPSIS int pthread_mutexattr_setprotocol

(

pthread_mutexattr_t * pAttr, /* mutex attributes */

int protocol /* new protocol */

)

DESCRIPTION This function selects the locking protocol to be used when a mutex is created using this
attributes object. The protocol to be selected is either PTHREAD_PRIO_INHERIT or
PTHREAD_PRIO_PROTECT.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL, ENOTSUP

VxWorks OS Libraries API Reference, 5.5
pthread_once()

1038

SEE ALSO pthreadLib, pthread_mutexattr_destroy(), pthread_mutexattr_getprioceiling(),
pthread_mutexattr_getprotocol(), pthread_mutexattr_init(),
pthread_mutexattr_setprioceiling(), pthread_mutex_init()

pthread_once()

NAME pthread_once() – dynamic package initialization (POSIX)

SYNOPSIS int pthread_once

(

pthread_once_t * onceControl, /* once control location */

void (* initFunc)(void) /* function to call */

)

DESCRIPTION This routine provides a mechanism to ensure that one, and only one call to a user
specified initialization function will occur. This allows all threads in a system to attempt
initialization of some feature they need to use, without any need for the application to
explicitly prevent multiple calls.

When a thread makes a call to pthread_once(), the first thread to call it with the specified
control variable, onceControl, will result in a call to initFunc, but subsequent calls will not.
The onceControl parameter determines whether the associated initialization routine has
been called. The initFunc function is complete when pthread_once() returns.

The function pthread_once() is not a cancellation point; however, if the function initFunc
is a cancellation point, and the thread is canceled while executing it, the effect on
onceControl is the same as if pthread_once() had never been called.

WARNING: If onceControl has automatic storage duration or is not initialized to the value
PTHREAD_ONCE_INIT, the behavior of pthread_once() is undefined. The constant
PTHREAD_ONCE_INIT is defined in the pthread.h header file.

RETURNS Always returns zero.

ERRNOS None.

SEE ALSO pthreadLib

2: Routines
pthread_setcancelstate()

1039

P

pthread_self()

NAME pthread_self() – get the calling thread’s ID (POSIX)

SYNOPSIS pthread_t pthread_self (void)

DESCRIPTION This function returns the calling thread’s ID.

RETURNS Calling thread’s ID.

SEE ALSO pthreadLib

pthread_setcancelstate()

NAME pthread_setcancelstate() – set cancellation state for calling thread (POSIX)

SYNOPSIS int pthread_setcancelstate

(

int state, /* new state */

int * oldstate /* old state (out) */

)

DESCRIPTION This routine sets the cancellation state for the calling thread to state, and, if oldstate is not
NULL, returns the old state in the location pointed to by oldstate.

The state can be one of the following:

PTHREAD_CANCEL_ENABLE
Enable thread cancellation.

PTHREAD_CANCEL_DISABLE
Disable thread cancellation (i.e., thread cancellation requests are ignored).

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL

SEE ALSO pthreadLib, pthread_cancel(), pthread_setcanceltype(), pthread_testcancel()

VxWorks OS Libraries API Reference, 5.5
pthread_setcanceltype()

1040

pthread_setcanceltype()

NAME pthread_setcanceltype() – set cancellation type for calling thread (POSIX)

SYNOPSIS int pthread_setcanceltype

(

int type, /* new type */

int * oldtype /* old type (out) */

)

DESCRIPTION This routine sets the cancellation type for the calling thread to type. If oldtype is not NULL,
then the old cancellation type is stored in the location pointed to by oldtype.

Possible values for type are:

PTHREAD_CANCEL_ASYNCHRONOUS
Any cancellation request received by this thread will be acted upon as soon as it is
received.

PTHREAD_CANCEL_DEFERRED
Cancellation requests received by this thread will be deferred until the next
cancellation point is reached.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL

SEE ALSO pthreadLib, pthread_cancel(), pthread_setcancelstate(), pthread_testcancel()

pthread_setschedparam()

NAME pthread_setschedparam() – dynamically set schedparam attribute for a thread (POSIX)

SYNOPSIS int pthread_setschedparam

(

pthread_t thread, /* thread */

int policy, /* new policy */

const struct sched_param * pParam /* new parameters */

)

2: Routines
pthread_setspecific()

1041

P

DESCRIPTION This routine will set the scheduling parameters (pParam) and policy (policy) for the thread
specified by thread.

In VxWorks the scheduling policy is global and not set on a per-thread basis; if the
selected policy does not match the current global setting then this function will return an
error (EINVAL).

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL, ESRCH

SEE ALSO pthreadLib, schedPxLib, pthread_attr_getschedparam(),
pthread_attr_getschedpolicy(), pthread_attr_setschedparam(),
pthread_attr_setschedpolicy(), pthread_getschedparam(), sched_getparam(),
sched_setparam()

pthread_setspecific()

NAME pthread_setspecific() – set thread specific data (POSIX)

SYNOPSIS int pthread_setspecific

(

pthread_key_t key, /* thread specific data key */

const void * value /* new value */

)

DESCRIPTION Sets the value of the thread specific data associated with key to value for the calling thread.

RETURNS On success zero; on failure a non-zero error code.

ERRNOS EINVAL, ENOMEM

SEE ALSO pthreadLib, pthread_getspecific(), pthread_key_create(), pthread_key_delete()

VxWorks OS Libraries API Reference, 5.5
pthread_sigmask()

1042

pthread_sigmask()

NAME pthread_sigmask() – change and/or examine calling thread’s signal mask (POSIX)

SYNOPSIS int pthread_sigmask

(

int how, /* method for changing set */

const sigset_t * set, /* new set of signals */

sigset_t * oset /* old set of signals */

)

DESCRIPTION This routine changes the signal mask for the calling thread as described by the how and set
arguments. If oset is not NULL, the previous signal mask is stored in the location pointed
to by it.

The value of how indicates the manner in which the set is changed and consists of one of
the following defined in signal.h:

SIG_BLOCK
The resulting set is the union of the current set and the signal set pointed to by set.

SIG_UNBLOCK
The resulting set is the intersection of the current set and the complement of the
signal set pointed to by set.

SIG_SETMASK
The resulting set is the signal set pointed to by oset.

RETURNS On success zero; on failure a non-zero error code is returned.

ERRNOS EINVAL

SEE ALSO pthreadLib, kill(), pthread_kill(), sigprocmask(), sigaction(), sigsuspend(), sigwait()

2: Routines
ptyDevCreate()

1043

P

pthread_testcancel()

NAME pthread_testcancel() – create a cancellation point in the calling thread (POSIX)

SYNOPSIS void pthread_testcancel (void)

DESCRIPTION This routine creates a cancellation point in the calling thread. It has no effect if cancellation
is disabled (i.e., the cancellation state has been set to PTHREAD_CANCEL_DISABLE using
the pthread_setcancelstate() function).

If cancellation is enabled, the cancellation type is PTHREAD_CANCEL_DEFERRED and a
cancellation request has been received, then this routine will call pthread_exit() with the
exit status set to PTHREAD_CANCELED. If any of these conditions is not met, then the
routine does nothing.

RETURNS N/A

ERRNOS N/A

SEE ALSO pthreadLib, pthread_cancel(), pthread_setcancelstate(), pthread_setcanceltype()

ptyDevCreate()

NAME ptyDevCreate() – create a pseudo terminal

SYNOPSIS STATUS ptyDevCreate

(

char * name, /* name of pseudo terminal */

int rdBufSize, /* size of terminal read buffer */

int wrtBufSize /* size of write buffer */

)

DESCRIPTION This routine creates a master and slave device which can then be opened by the master
and slave processes. The master process simulates the “hardware” side of the driver,
while the slave process is the application program that normally talks to a tty driver.
Data written to the master device can then be read on the slave device, and vice versa.

RETURNS OK, or ERROR if memory is insufficient.

SEE ALSO ptyDrv

VxWorks OS Libraries API Reference, 5.5
ptyDevRemove()

1044

ptyDevRemove()

NAME ptyDevRemove() – destroy a pseudo terminal

SYNOPSIS STATUS ptyDevRemove

(

char * pName /* name of pseudo terminal to remove */

)

DESCRIPTION This routine removes an existing master and slave device and releases all allocated
memory. It will close any open files using either device.

RETURNS OK, or ERROR if terminal not found

SEE ALSO ptyDrv

ptyDrv()

NAME ptyDrv() – initialize the pseudo-terminal driver

SYNOPSIS STATUS ptyDrv (void)

DESCRIPTION This routine initializes the pseudo-terminal driver. It must be called before any other
routine in this module.

RETURNS OK, or ERROR if the master or slave devices cannot be installed.

SEE ALSO ptyDrv

2: Routines
putc()

1045

P

ptyShow()

NAME ptyShow() – show the state of the Pty Buffers

SYNOPSIS void ptyShow (void)

SEE ALSO ptyDrv

putc()

NAME putc() – write a character to a stream (ANSI)

SYNOPSIS int putc

(

int c, /* character to write */

FILE * fp /* stream to write to */

)

DESCRIPTION This routine writes a character c to a specified stream, at the position indicated by the
stream’s file position indicator (if defined), and advances the indicator appropriately.

This routine is equivalent to fputc(), except that if it is implemented as a macro, it may
evaluate fp more than once; thus, the argument should never be an expression with side
effects.

INCLUDE FILES stdio.h

RETURNS The character written, or EOF if a write error occurs, with the error indicator set for the
stream.

SEE ALSO ansiStdio, fputc()

VxWorks OS Libraries API Reference, 5.5
putchar()

1046

putchar()

NAME putchar() – write a character to the standard output stream (ANSI)

SYNOPSIS int putchar

(

int c /* character to write */

)

DESCRIPTION This routine writes a character c to the standard output stream, at the position indicated
by the stream’s file position indicator (if defined), and advances the indicator
appropriately.

This routine is equivalent to putc() with a second argument of stdout.

INCLUDE FILES stdio.h

RETURNS The character written, or EOF if a write error occurs, with the error indicator set for the
standard output stream.

SEE ALSO ansiStdio, putc(), fputc()

putenv()

NAME putenv() – set an environment variable

SYNOPSIS STATUS putenv

(

char * pEnvString /* string to add to env */

)

DESCRIPTION This routine sets an environment variable to a value by altering an existing variable or
creating a new one. The parameter points to a string of the form “variableName=value”.
Unlike the UNIX implementation, the string passed as a parameter is copied to a private
buffer.

RETURNS OK, or ERROR if space cannot be malloc’d.

SEE ALSO envLib, envLibInit(), getenv()

2: Routines
putw()

1047

P

puts()

NAME puts() – write a string to the standard output stream (ANSI)

SYNOPSIS int puts

(

char const * s /* string to write */

)

DESCRIPTION This routine writes to the standard output stream a specified string s, minus the
terminating null character, and appends a new-line character to the output.

INCLUDE FILES stdio.h

RETURNS A non-negative value, or EOF if a write error occurs.

SEE ALSO ansiStdio, fputs()

putw()

NAME putw() – write a word (32-bit integer) to a stream

SYNOPSIS int putw

(

int w, /* word (32-bit integer) */

FILE * fp /* output stream */

)

DESCRIPTION This routine appends the 32-bit quantity w to a specified stream.

This routine is provided for compatibility with earlier VxWorks releases.

INCLUDE FILES stdio.h

RETURNS The value written.

SEE ALSO ansiStdio

VxWorks OS Libraries API Reference, 5.5
pwd()

1048

pwd()

NAME pwd() – print the current default directory

SYNOPSIS void pwd (void)

DESCRIPTION This command displays the current working device/directory.

NOTE: This is a target resident function, which manipulates the target I/O system. It must
be preceded with the @ letter if executed from the Tornado Shell (windsh), which has a
built-in command of the same name that operates on the Host’s I/O system.

RETURNS N/A

SEE ALSO usrFsLib, cd(), VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s Guide:
Shell

2: Routines
qsort()

1049

Q

qsort()

NAME qsort() – sort an array of objects (ANSI)

SYNOPSIS void qsort

(

void * bot, /* initial element in array */

size_t nmemb, /* no. of objects in array */

size_t size, /* size of array element */

int (* compar) (const void * , const void *)

/* comparison function */

)

DESCRIPTION This routine sorts an array of nmemb objects, the initial element of which is pointed to by
bot. The size of each object is specified by size.

The contents of the array are sorted into ascending order according to a comparison
function pointed to by compar, which is called with two arguments that point to the objects
being compared. The function shall return an integer less than, equal to, or greater than
zero if the first argument is considered to be respectively less than, equal to, or greater
than the second.

If two elements compare as equal, their order in the sorted array is unspecified.

INCLUDE FILES stdlib.h

RETURNS N/A

SEE ALSO ansiStdlib

VxWorks OS Libraries API Reference, 5.5
r0()

1050

r0()

NAME r0() – return the contents of register r0 (also r1 - r14, r1-r15 for SH) (ARM, SH)

SYNOPSIS int r0

(

int taskId /* task ID, 0 means default task */

)

DESCRIPTION This command extracts the contents of register r0 from the TCB of a specified task. If taskId
is omitted or zero, the last task referenced is assumed.

Similar routines are provided for registers (r1 - r15): r1() - r15().

RETURNS The contents of register r0 (or the requested register).

SEE ALSO dbgArchLib, VxWorks Programmer’s Guide: Debugging

raise()

NAME raise() – send a signal to the caller’s task

SYNOPSIS int raise

(

int signo /* signal to send to caller’s task */

)

DESCRIPTION This routine sends the signal signo to the task invoking the call.

RETURNS OK (0), or ERROR (-1) if the signal number or task ID is invalid.

ERRNO EINVAL

SEE ALSO sigLib

2: Routines
ramDevCreate()

1051

R

ramDevCreate()

NAME ramDevCreate() – create a RAM disk device

SYNOPSIS BLK_DEV *ramDevCreate

(

char * ramAddr, /* where it is in memory (0 = malloc) */

int bytesPerBlk, /* number of bytes per block */

int blksPerTrack, /* number of blocks per track */

int nBlocks, /* number of blocks on this device */

int blkOffset /* no. of blks to skip at start of device */

)

DESCRIPTION This routine creates a RAM disk device.

Memory for the RAM disk can be pre-allocated separately; if so, the ramAddr parameter
should be the address of the pre-allocated device memory. Or, memory can be
automatically allocated with malloc() by setting ramAddr to zero.

The bytesPerBlk parameter specifies the size of each logical block on the RAM disk. If
bytesPerBlk is zero, 512 is used.

The blksPerTrack parameter specifies the number of blocks on each logical track of the
RAM disk. If blksPerTrack is zero, the count of blocks per track is set to nBlocks (i.e., the
disk is defined as having only one track).

The nBlocks parameter specifies the size of the disk, in blocks. If nBlocks is zero, a default
size is used. The default is calculated using a total disk size of either 51,200 bytes or
one-half of the size of the largest memory area available, whichever is less. This default
disk size is then divided by bytesPerBlk to determine the number of blocks.

The blkOffset parameter specifies an offset, in blocks, from the start of the device to be
used when writing or reading the RAM disk. This offset is added to the block numbers
passed by the file system during disk accesses. (VxWorks file systems always use block
numbers beginning at zero for the start of a device.) This offset value is typically useful
only if a specific address is given for ramAddr. Normally, blkOffsetis 0.

FILE SYSTEMS Once the device has been created, it must be associated with a name and a file system
(dosFs, rt11Fs, or rawFs). This is accomplished using the file system’s device initialization
routine or make-file-system routine, e.g., dosFsDevInit() or dosFsMkfs(). The
ramDevCreate() call returns a pointer to a block device structure (BLK_DEV). This
structure contains fields that describe the physical properties of a disk device and specify
the addresses of routines within the ramDrv driver. The BLK_DEV structure address must
be passed to the desired file system (dosFs, rt11Fs or rawFs) via the file system’s device
initialization or make-file-system routine. Only then is a name and file system associated
with the device, making it available for use.

VxWorks OS Libraries API Reference, 5.5
ramDiskDevCreate()

1052

EXAMPLE In the following example, a 200-Kbyte RAM disk is created with automatically allocated
memory, 512-byte blocks, a single track, and no block offset. The device is then initialized
for use with dosFs and assigned the name “DEV1:”:

BLK_DEV *pBlkDev;

DOS_VOL_DESC *pVolDesc;

pBlkDev = ramDevCreate (0, 512, 400, 400, 0);

pVolDesc = dosFsMkfs ("DEV1:", pBlkDev);

The dosFsMkfs() routine calls dosFsDevInit() with default parameters and initializes the
file system on the disk by calling ioctl() with the FIODISKINIT function.

If the RAM disk memory already contains a disk image created elsewhere, the first
argument to ramDevCreate() should be the address in memory, and the formatting
parameters -- bytesPerBlk, blksPerTrack, nBlocks, and blkOffset -- must be identical to those
used when the image was created. For example:

pBlkDev = ramDevCreate (0xc0000, 512, 400, 400, 0);

pVolDesc = dosFsDevInit ("DEV1:", pBlkDev, NULL);

In this case, dosFsDevInit() must be used instead of dosFsMkfs(), because the file
system already exists on the disk and should not be re-initialized. This procedure is useful
if a RAM disk is to be created at the same address used in a previous boot of VxWorks.
The contents of the RAM disk will then be preserved.

These same procedures apply when creating a RAM disk with rt11Fs using
rt11FsDevInit() and rt11FsMkfs(), or creating a RAM disk with rawFs using
rawFsDevInit().

RETURNS A pointer to a block device structure (BLK_DEV) or NULL if memory cannot be allocated
for the device structure or for the RAM disk.

SEE ALSO ramDrv, dosFsMkfs(), dosFsDevInit(), rt11FsDevInit(), rt11FsMkfs(),
rawFsDevInit()

ramDiskDevCreate()

NAME ramDiskDevCreate() – initialize a RAM Disk device

SYNOPSIS CBIO_DEV_ID ramDiskDevCreate

(

char * pRamAddr, /* where it is in memory (0 = malloc) */

int bytesPerBlk, /* number of bytes per block */

int blksPerTrack, /* number of blocks per track */

int nBlocks, /* number of blocks on this device */

2: Routines
ramDrv()

1053

R

int blkOffset /* no. of blks to skip at start of device */

)

DESCRIPTION This function creates a compact RAM-Disk device that can be directly utilized by
dosFsLib, without the intermediate disk cache. It can be used for non-volatile RAM as
well as volatile RAM disks.

The RAM size is specified in terms of total number of blocks in the device and the block
size in bytes. The minimal block size is 32 bytes. If pRamAddr is NULL, space will be
allocated from the default memory pool.

RETURNS a CBIO handle that can be directly used by dosFsDevCreate() or NULL if the requested
amount of RAM is not available.

WARNING: When used with NV-RAM, this module can not eliminate mid-block write
interruption, which may cause file system corruption not existent in common disk drives.

SEE ALSO ramDiskCbio, dosFsDevCreate().

ramDrv()

NAME ramDrv() – prepare a RAM disk driver for use (optional)

SYNOPSIS STATUS ramDrv (void)

DESCRIPTION This routine performs no real function, except to provide compatibility with earlier
versions of ramDrv and to parallel the initialization function found in true disk device
drivers. It also is used in usrConfig.c to link in the RAM disk driver when building
VxWorks. Otherwise, there is no need to call this routine before using the RAM disk
driver.

RETURNS OK, always.

SEE ALSO ramDrv

VxWorks OS Libraries API Reference, 5.5
rand()

1054

rand()

NAME rand() – generate a pseudo-random integer between 0 and RAND_MAX (ANSI)

SYNOPSIS int rand (void)

DESCRIPTION This routine generates a pseudo-random integer between 0 and RAND_MAX. The seed
value for rand() can be reset with srand().

INCLUDE FILES stdlib.h

RETURNS A pseudo-random integer.

SEE ALSO ansiStdlib, srand()

rawFsDevInit()

NAME rawFsDevInit() – associate a block device with raw volume functions

SYNOPSIS RAW_VOL_DESC *rawFsDevInit

(

char * pVolName, /* volume name to be used with iosDevAdd */

BLK_DEV * pDevice /* a pointer to a BLK_DEV or a CBIO_DEV_ID */

)

DESCRIPTION This routine takes a block device created by a device driver and defines it as a raw file
system volume. As a result, when high-level I/O operations, such as open() and write(),
are performed on the device, the calls will be routed through rawFsLib.

This routine associates pVolName with a device and installs it in the VxWorks I/O
System’s device table. The driver number used when the device is added to the table is
that which was assigned to the raw library during rawFsInit(). (The driver number is
kept in the global variable rawFsDrvNum.)

The pDevice is a CBIO_DEV_ID or BLK_DEV ptr and contains configuration data
describing the device and the addresses of routines which will be called to access device.
These routines will not be called until they are required by subsequent I/O operations.

RETURNS A pointer to the volume descriptor (RAW_VOL_DESC), or NULL if there is an error.

SEE ALSO rawFsLib

2: Routines
rawFsModeChange()

1055

R

rawFsInit()

NAME rawFsInit() – prepare to use the raw volume library

SYNOPSIS STATUS rawFsInit

(

int maxFiles /* max no. of simultaneously open files */

)

DESCRIPTION This routine initializes the raw volume library. It must be called exactly once, before any
other routine in the library. The argument specifies the number of file descriptors that
may be open at once. This routine allocates and sets up the necessary memory structures
and initializes semaphores.

This routine also installs raw volume library routines in the VxWorks I/O system driver
table. The driver number assigned to rawFsLib is placed in the global variable
rawFsDrvNum. This number will later be associated with system file descriptors opened
to rawFs devices.

To enable this initialization, define INCLUDE_RAWFS in configAll.h; rawFsInit() will
then be called from the root task, usrRoot(), in usrConfig.c.

RETURNS OK or ERROR.

SEE ALSO rawFsLib

rawFsModeChange()

NAME rawFsModeChange() – modify the mode of a raw device volume

SYNOPSIS void rawFsModeChange

(

RAW_VOL_DESC * pVd, /* pointer to volume descriptor */

int newMode /* O_RDONLY/O_WRONLY/O_RDWR (both) */

)

DESCRIPTION This routine sets the device’s mode to newMode by setting the mode field in the device
structure. This routine should be called whenever the read and write capabilities are
determined, usually after a ready change.

VxWorks OS Libraries API Reference, 5.5
rawFsReadyChange()

1056

The driver’s device initialization routine should initially set the mode to O_RDWR (i.e.,
both O_RDONLY and O_WRONLY).

RETURNS N/A

SEE ALSO rawFsLib, rawFsReadyChange()

rawFsReadyChange()

NAME rawFsReadyChange() – notify rawFsLib of a change in ready status

SYNOPSIS void rawFsReadyChange

(

RAW_VOL_DESC * pVd /* pointer to volume descriptor */

)

DESCRIPTION This routine sets the volume descriptor state to RAW_VD_READY_CHANGED. It should be
called whenever a driver senses that a device has come on-line or gone off-line, (e.g., a
disk has been inserted or removed).

After this routine has been called, the next attempt to use the volume will result in an
attempted remount.

RETURNS N/A

SEE ALSO rawFsLib

rawFsVolUnmount()

NAME rawFsVolUnmount() – disable a raw device volume

SYNOPSIS STATUS rawFsVolUnmount

(

RAW_VOL_DESC * pVd /* pointer to volume descriptor */

)

DESCRIPTION This routine is called when I/O operations on a volume are to be discontinued. This is
commonly done before changing removable disks. All buffered data for the volume is

2: Routines
rcmd()

1057

R

written to the device (if possible), any open file descriptors are marked as obsolete, and
the volume is marked as not mounted.

Because this routine will flush data from memory to the physical device, it should not be
used in situations where the disk-change is not recognized until after a new disk has been
inserted. In these circumstances, use the ready-change mechanism. (See the manual entry
for rawFsReadyChange().)

This routine may also be called by issuing an ioctl() call using the FIOUNMOUNT function
code.

RETURNS OK, or ERROR if the routine cannot access the volume.

SEE ALSO rawFsLib, rawFsReadyChange()

rcmd()

NAME rcmd() – execute a shell command on a remote machine

SYNOPSIS int rcmd

(

char * host, /* host name or inet address */

int remotePort, /* remote port to connect to (rshd) */

char * localUser, /* local user name */

char * remoteUser, /* remote user name */

char * cmd, /* command */

int * fd2p /* if this pointer is non-zero, stderr */

/* socket is opened and socket descriptor is */

/* filled in */

)

DESCRIPTION This routine uses a remote shell daemon, rshd, to execute a command on a remote system.
It is analogous to the BSD rcmd() routine.

Internally, this rcmd() implementation uses a select() call to wait for a response from the
rshd daemon. If rcmd() receives a response within its timeout, rcmd() calls accept() and
completes by returning a socket descriptor for the data generated on the remote machine.

The default timeout lets the rcmd() call wait forever. However, you can change the
timeout value using the RSH_STDERR_SETUP_TIMEOUT parameter associated with the
NETWRS_REMLIB configuration component.

VxWorks OS Libraries API Reference, 5.5
rcvEtherAddrAdd()

1058

RETURNS A socket descriptor if the remote shell daemon accepts, or ERROR if the remote command
fails.

ERRNO S_remLib_RSH_ERROR, S_remLib_RSH_STDERR_SETUP_FAILED

SEE ALSO remLib, BSD reference entry for rcmd()

rcvEtherAddrAdd()

NAME rcvEtherAddrAdd() – add a physical address into the linked list

SYNOPSIS STATUS rcvEtherAddrAdd

(

M2_IFINDEX * pIfIndexEntry, /* the avl node */

unsigned char * pEnetAddr /* the addr to be added */

)

DESCRIPTION This function is a helper function for rcvEtherAddrGet(). It is called to add a single
physical address into the linked list of addresses maintained by the AVL node.

RETURNS OK, if successful; ERROR, otherwise.

SEE ALSO m2IfLib

rcvEtherAddrGet()

NAME rcvEtherAddrGet() – populate the rcvAddr fields for the ifRcvAddressTable

SYNOPSIS STATUS rcvEtherAddrGet

(

struct ifnet * pIfNet, /* pointer to the interface’s ifnet */

M2_IFINDEX * pIfIndexEntry /* avl node */

)

DESCRIPTION This function needs to be called to add all physical addresses for which an interface may
receive or send packets. This includes unicast and multicast addresses. The address is
inserted into the linked list maintained in the AVL node corresponding to the interface.

2: Routines
rdCtl()

1059

R

Given the ifnet struct and the AVL node corresponding to the interface, this function goes
through all the physical addresses associated with this interface and adds them into the
linked list.

RETURNS OK, if successful; ERROR, otherwise.

SEE ALSO m2IfLib

rdCtl()

NAME rdCtl() – implement the ICMP router discovery control function

SYNOPSIS STATUS rdCtl

(

char * ifName,

int cmd,

void* value /* my be an int (set-cmds) or an int* */

/* (get-cmds) */

)

DESCRIPTION This routine allows a user to get and set router discovery parameters, and control the
mode of operation.

OPTIONS The following section discuss the various flags that may be passed to rdCtl().

SET_MODE
Set debug mode or exit router discovery

This flag does not require an interface to be specified it is best to specify NULL.

This flag is used in conjunction with the following values:

MODE_DEBUG_ON
Turn debugging messages on.

rdCtl (NULL, SET_MODE, MODE_DEBUG_ON);

MODE_DEBUG_OFF
Turn debugging messages off.

rdCtl (NULL, SET_MODE, MODE_DEBUG_OFF);

MODE_STOP
Exit from router discovery.

rdCtl (NULL, SET_MODE, MODE_STOP);

VxWorks OS Libraries API Reference, 5.5
rdCtl()

1060

SET_MIN_ADVERT_INT
Set minimum advertisement interval in seconds

Specify the minimum time between advertisements in seconds. The minimum value
allowed is 4 seconds, the maximum is 1800.

rdCtl (NULL, SET_MIN_ADVERT_INT, <seconds>);

SET_MAX_ADVERT_INT
Set maximum advertisement interval in seconds

Specify the maximum time between advertisements in seconds. The minimum value
allowed is 4 seconds, the maximum is 1800.

rdCtl (NULL, SET_MAX_ADVERT_INT, <seconds>);

SET_FLAG
Set whether advertisements are sent on an interface.

If this flag is 1 then advertisements are sent on this interface. If it is 0 then they are
not.

rdCtl (<interface>, SET_FLAG, <0 or 1>);

SET_ADVERT_ADDRESS
Set the IP address to which advertisements are sent.

Set the multicast IP address to which advertisements are sent.

rdCtl (<interface>, SET_ADVERT_ADDRESS, <multicast address>);

SET_ADVERT_LIFETIME
Set the lifetime for advertisements in seconds.

Set the lifetime in seconds to be contained in each advertisement.

rdCtl (<interface>, SET_ADVERT_LIFETIME, seconds);

SET_ADVERT_PREF
Set the preference level contained in advertisements.

rdCtl (<interface>, SET_ADVERT_PREF, value);

GET_MIN_ADVERT_INT
Get the minimum advertisement interval.

rdCtl (NULL, GET_MIN_ADVERT_INT, &value);

GET_MAX_ADVERT_INT
Get the maximum advertisement interval.

rdCtl (NULL, GET_MAX_ADVERT_INT, &value);

GET_FLAG
Get the flag on an interface.

rdCtl (<interface>, GET_FLAG, &value);

2: Routines
rdisc()

1061

R

GET_ADVERT_ADDRESS
Get the advertisement address for an interface.

rdCtl (<interface>, GET_ADVERT_ADDRESS, &value);

GET_ADVERT_LIFETIME
Get the advertisement lifetime.

rdCtl (<interface>, GET_ADVERT_LIFETIME, &value);

GET_ADVERT_PREF
Get the advertisement preference.

rdCtl (<interface>, GET_ADVERT_PREF, value);

RETURNS OK on success, ERROR on failure

SEE ALSO rdiscLib

rdisc()

NAME rdisc() – implement the ICMP router discovery function

SYNOPSIS void rdisc ()

DESCRIPTION This routine is the entry point for the router discovery function. It allocates and initializes
resources, listens for solicitation messages on the ALL_ROUTERS (224.0.0.1) multicast
address and processes the messages.

This routine usually runs until explicitly killed by a system operator, but can also be
terminated cleanly (see rdCtl() routine).

RETURNS N/A

SEE ALSO rdiscLib

VxWorks OS Libraries API Reference, 5.5
rdiscIfReset()

1062

rdiscIfReset()

NAME rdiscIfReset() – check for new or removed interfaces for router discovery

SYNOPSIS STATUS rdiscIfReset ()

DESCRIPTION This routine must be called any time an interface is added to or removed from the system
so that the router discovery code can deal with this case. Failure to do so will cause the
sending of packets on missing interfaces to fail as well as no transmission of packets on
new interfaces.

SEE ALSO rdiscLib

rdiscInit()

NAME rdiscInit() – initialize the ICMP router discovery function

SYNOPSIS STATUS rdiscInit ()

DESCRIPTION This routine allocates resources for the router discovery function. Since it called in the
rdisc() routine, it should not be called subsequently.

RETURNS OK on successful initialization, ERROR otherwise

SEE ALSO rdiscLib

2: Routines
rdiscTimerEvent()

1063

R

rdiscLibInit()

NAME rdiscLibInit() – initialize router discovery

SYNOPSIS void rdiscLibInit

(

int priority, /* Priority of router discovery task. */

int options, /* Options to taskSpawn(1) for router */

/* discovery task. */

int stackSize /* Stack size for router discovery task. */

)

DESCRIPTION This routine links the ICMP Router Discovery facility into the VxWorks system. The
arguments are the task’s priority, options and stack size.

RETURNS N/A

SEE ALSO rdiscLib

rdiscTimerEvent()

NAME rdiscTimerEvent() – called after watchdog timeout

SYNOPSIS void rdiscTimerEventRestart

(

int stackNum

)

DESCRIPTION This routine is called when a new advertisement is to be sent.

RETURNS N/A

SEE ALSO rdiscLib

VxWorks OS Libraries API Reference, 5.5
read()

1064

read()

NAME read() – read bytes from a file or device

SYNOPSIS int read

(

int fd, /* file descriptor from which to read */

char * buffer, /* pointer to buffer to receive bytes */

size_t maxbytes /* max no. of bytes to read into buffer */

)

DESCRIPTION This routine reads a number of bytes (less than or equal to maxbytes) from a specified file
descriptor and places them in buffer. It calls the device driver to do the work.

RETURNS The number of bytes read (between 1 and maxbytes, 0 if end of file), or ERROR if the file
descriptor does not exist, the driver does not have a read routines, or the driver returns
ERROR. If the driver does not have a read routine, errno is set to ENOTSUP.

SEE ALSO ioLib

readdir()

NAME readdir() – read one entry from a directory (POSIX)

SYNOPSIS struct dirent *readdir

(

DIR * pDir /* pointer to directory descriptor */

)

DESCRIPTION This routine obtains directory entry data for the next file from an open directory. The pDir
parameter is the pointer to a directory descriptor (DIR) which was returned by a previous
opendir().

This routine returns a pointer to a dirent structure which contains the name of the next
file. Empty directory entries and MS-DOS volume label entries are not reported. The name
of the file (or subdirectory) described by the directory entry is returned in the d_name
field of the dirent structure. The name is a single null-terminated string.

The returned dirent pointer will be NULL, if it is at the end of the directory or if an error
occurred. Because there are two conditions which might cause NULL to be returned, the

2: Routines
realloc()

1065

R

task’s error number (errno) must be used to determine if there was an actual error. Before
calling readdir(), set errno to OK. If a NULL pointer is returned, check the new value of
errno. If errno is still OK, the end of the directory was reached; if not, errno contains the
error code for an actual error which occurred.

RETURNS A pointer to a dirent structure, or NULL if there is an end-of-directory marker or error.

SEE ALSO dirLib, opendir(), closedir(), rewinddir(), ls()

realloc()

NAME realloc() – reallocate a block of memory (ANSI)

SYNOPSIS void *realloc

(

void * pBlock, /* block to reallocate */

size_t newSize /* new block size */

)

DESCRIPTION This routine changes the size of a specified block of memory and returns a pointer to the
new block of memory. The contents that fit inside the new size (or old size if smaller)
remain unchanged. The memory alignment of the new block is not guaranteed to be the
same as the original block.

RETURNS A pointer to the new block of memory, or NULL if the call fails.

SEE ALSO memLib, American National Standard for Information Systems -Programming Language - C,
ANSI X3.159-1989: General Utilities (stdlib.h)

VxWorks OS Libraries API Reference, 5.5
reboot()

1066

reboot()

NAME reboot() – reset network devices and transfer control to boot ROMs

SYNOPSIS void reboot

(

int startType /* how the boot ROMS will reboot */

)

DESCRIPTION This routine returns control to the boot ROMs after calling a series of preliminary
shutdown routines that have been added via rebootHookAdd(), including routines to
reset all network devices. After calling the shutdown routines, interrupts are locked, all
caches are cleared, and control is transferred to the boot ROMs.

The bit values for startType are defined in sysLib.h:

BOOT_NORMAL (0x00)
causes the system to go through the countdown sequence and try to reboot VxWorks
automatically. Memory is not cleared.

BOOT_NO_AUTOBOOT (0x01)
causes the system to display the VxWorks boot prompt and wait for user input to the
boot ROM monitor. Memory is not cleared.

BOOT_CLEAR (0x02)
the same as BOOT_NORMAL, except that memory is cleared.

BOOT_QUICK_AUTOBOOT (0x04)
the same as BOOT_NORMAL, except the countdown is shorter.

RETURNS N/A

SEE ALSO rebootLib, sysToMonitor(), rebootHookAdd(), VxWorks Programmer’s Guide: Target
Shell, windsh, Tornado User’s Guide: Shell

2: Routines
recv()

1067

R

rebootHookAdd()

NAME rebootHookAdd() – add a routine to be called at reboot

SYNOPSIS STATUS rebootHookAdd

(

FUNCPTR rebootHook /* routine to be called at reboot */

)

DESCRIPTION This routine adds the specified routine to a list of routines to be called when VxWorks is
rebooted. The specified routine should be declared as follows:

void rebootHook

(

int startType /* startType is passed to all hooks */

)

RETURNS OK, or ERROR if memory is insufficient.

SEE ALSO rebootLib, reboot()

recv()

NAME recv() – receive data from a socket

SYNOPSIS int recv

(

int s, /* socket to receive data from */

char * buf, /* buffer to write data to */

int bufLen, /* length of buffer */

int flags /* flags to underlying protocols */

)

DESCRIPTION This routine receives data from a connection-based (stream) socket.

The maximum length of buf is subject to the limits on TCP buffer size; see the discussion of
SO_RCVBUF in the setsockopt() manual entry.

You may OR the following values into the flags parameter with this operation:

VxWorks OS Libraries API Reference, 5.5
recvfrom()

1068

MSG_OOB (0x1)
Out-of-band data.

MSG_PEEK (0x2)
Return data without removing it from socket.

RETURNS The number of bytes received, or ERROR if the call fails.

SEE ALSO sockLib, setsockopt()

recvfrom()

NAME recvfrom() – receive a message from a socket

SYNOPSIS int recvfrom

(

int s, /* socket to receive from */

char * buf, /* pointer to data buffer */

int bufLen, /* length of buffer */

int flags, /* flags to underlying protocols */

struct sockaddr * from, /* where to copy sender’s addr */

int * pFromLen /* value/result length of from */

)

DESCRIPTION This routine receives a message from a datagram socket regardless of whether it is
connected. If from is non-zero, the address of the sender’s socket is copied to it. The
value-result parameter pFromLen should be initialized to the size of the from buffer. On
return, pFromLen contains the actual size of the address stored in from.

The maximum length of buf is subject to the limits on UDP buffer size; see the discussion
of SO_RCVBUF in the setsockopt() manual entry.

You may OR the following values into the flags parameter with this operation:

MSG_OOB (0x1)
Out-of-band data.

MSG_PEEK (0x2)
Return data without removing it from socket.

RETURNS The number of number of bytes received, or ERROR if the call fails.

SEE ALSO sockLib, setsockopt()

2: Routines
reld()

1069

R

recvmsg()

NAME recvmsg() – receive a message from a socket

SYNOPSIS int recvmsg

(

int sd, /* socket to receive from */

struct msghdr * mp, /* scatter-gather message header */

int flags /* flags to underlying protocols */

)

DESCRIPTION This routine receives a message from a datagram socket. It may be used in place of
recvfrom() to decrease the overhead of breaking down the message-header structure
msghdr for each message.

For BSD 4.4 sockets a copy of the mp>msg_iov array will be made. This requires a cluster
from the network stack system pool of size mp>msg_iovlen * sizeof (struct iovec) or 8
bytes.

RETURNS The number of bytes received, or ERROR if the call fails.

SEE ALSO sockLib

reld()

NAME reld() – reload an object module

SYNOPSIS MODULE_ID reld

(

void * nameOrId, /* name or ID of the object module file */

int options /* options used for unloading */

)

DESCRIPTION This routine unloads a specified object module from the system, and then calls
loadModule() to load a new copy of the same name.

If the file was originally loaded using a complete pathname, then reld() will use the
complete name to locate the file. If the file was originally loaded using a partial pathname,
then the current working directory must be changed to the working directory in use at the
time of the original load.

VxWorks OS Libraries API Reference, 5.5
remCurIdGet()

1070

Valid values for the options parameter are the same as those allowed for the function
unld().

This routine is a shell command. That is, it is designed to be used only in the shell, and
not in code running on the target. In future releases, calling reld() directly from code may
not be supported.

RETURNS A module ID (type MODULE_ID), or NULL.

SEE ALSO unldLib, unld()

remCurIdGet()

NAME remCurIdGet() – get the current user name and password

SYNOPSIS void remCurIdGet

(

char * user, /* where to return current user name */

char * passwd /* where to return current password */

)

DESCRIPTION This routine gets the user name and password currently used for remote host access
privileges and copies them to user and passwd. Either parameter can be initialized to NULL,
and the corresponding item will not be passed.

RETURNS N/A

SEE ALSO remLib, iam(), whoami()

remCurIdSet()

NAME remCurIdSet() – set the remote user name and password

SYNOPSIS STATUS remCurIdSet

(

char * newUser, /* user name to use on remote */

char * newPasswd /* password to use on remote (NULL = none) */

)

2: Routines
remove()

1071

R

DESCRIPTION This routine specifies the user name that will have access privileges on the remote
machine. The user name must exist in the remote machine’s /etc/passwd, and if it has been
assigned a password, the password must be specified in newPasswd.

Either parameter can be NULL, and the corresponding item will not be set.

The maximum length of the user name and the password is MAX_IDENTITY_LEN(defined
in remLib.h).

NOTE: A more convenient version of this routine is iam(), which is intended to be used
from the shell.

RETURNS OK, or ERROR if the name or password is too long.

SEE ALSO remLib, iam(), whoami()

remove()

NAME remove() – remove a file (ANSI)

SYNOPSIS STATUS remove

(

const char * name /* name of the file to remove */

)

DESCRIPTION This routine deletes a specified file. It calls the driver for the particular device on which
the file is located to do the work.

RETURNS OK if there is no delete routine for the device or the driver returns OK; ERROR if there is
no such device or the driver returns ERROR.

SEE ALSO ioLib, American National Standard for Information Systems -Programming Language - C, ANSI
X3.159-1989: Input/Output (stdio.h)

VxWorks OS Libraries API Reference, 5.5
rename()

1072

rename()

NAME rename() – change the name of a file

SYNOPSIS int rename

(

const char * oldname, /* name of file to rename */

const char * newname /* name with which to rename file */

)

DESCRIPTION This routine changes the name of a file from oldfile to newfile.

NOTE: Only certain devices support rename(). To confirm that your device supports it,
consult the respective xxDrv or xxFs listings to verify that ioctl FIORENAME exists. For
example, dosFs and rt11Fs support rename(), but netDrv and nfsDrv do not.

RETURNS OK, or ERROR if the file could not be opened or renamed.

SEE ALSO ioLib

repeat()

NAME repeat() – spawn a task to call a function repeatedly

SYNOPSIS int repeat

(

int n, /* no. of times to call func (0=forever) */

FUNCPTR func, /* function to call repeatedly */

int arg1, /* first of eight args to pass to func */

int arg2,

int arg3,

int arg4,

int arg5,

int arg6,

int arg7,

int arg8

)

2: Routines
repeatRun()

1073

R

DESCRIPTION This command spawns a task that calls a specified function n times, with up to eight of its
arguments. If n is 0, the routine is called endlessly, or until the spawned task is deleted.

NOTE: The task is spawned using sp(). See the description of sp() for details about
priority, options, stack size, and task ID.

RETURNS A task ID, or ERROR if the task cannot be spawned.

SEE ALSO usrLib, repeatRun(), sp(), VxWorks Programmer’s Guide: Target Shell, windsh, Tornado
User’s Guide: Shell

repeatRun()

NAME repeatRun() – call a function repeatedly

SYNOPSIS void repeatRun

(

int n, /* no. of times to call func (0=forever) */

FUNCPTR func, /* function to call repeatedly */

int arg1, /* first of eight args to pass to func */

int arg2,

int arg3,

int arg4,

int arg5,

int arg6,

int arg7,

int arg8

)

DESCRIPTION This command calls a specified function n times, with up to eight of its arguments. If n is
0, the routine is called endlessly.

Normally, this routine is called only by repeat(), which spawns it as a task.

RETURNS N/A

SEE ALSO usrLib, repeat(), VxWorks Programmer’s Guide: Target Shell

VxWorks OS Libraries API Reference, 5.5
resolvDNComp()

1074

resolvDNComp()

NAME resolvDNComp() – compress a DNS name in a DNS packet

SYNOPSIS int resolvDNComp

(

const u_char * exp_dn, /* ptr to the expanded domain name */

u_char * comp_dn, /* ptr to where to output the compressed name */

int length, /* length of the buffer pointed by comp_dn */

u_char * * dnptrs, /* ptr to a ptr list of compressed names */

u_char * * lastdnptr /* ptr to the last entry pointed by dnptrs */

)

DESCRIPTION This routine takes the expanded domain name referenced in the exp_dn parameter,
compresses it, and stores the compressed name in the location pointed to by the comp_dn
parameter. The length parameter passes in the length of the buffer starting at comp_dn. The
dnptrs parameter is a pointer to a list of pointers to previously compressed names. The
lastdnptr parameter points to the last entry in the dnptrs array.

RETURNS The size of the compressed name, or ERROR.

SEE ALSO resolvLib, resolvGetHostByName(), resolvGetHostByAddr(), resolvDNExpand(),
resolvInit(), resolvSend(), resolvParamsSet(), resolvParamsGet(), resolvMkQuery(),
resolvQuery()

resolvDNExpand()

NAME resolvDNExpand() – expand a DNS compressed name from a DNS packet

SYNOPSIS int resolvDNExpand

(

const u_char * msg, /* ptr to the start of the DNS packet */

const u_char * eomorig, /* ptr to the last location +1 of the DNS */

/* packet */

const u_char * comp_dn, /* ptr to the compressed domain name */

u_char * exp_dn, /* ptr to where the expanded DN is output */

int length /* length of the buffer pointed by expd_dn */

)

2: Routines
resolvGetHostByAddr()

1075

R

DESCRIPTION This functions expands a compressed DNS name from a DNS packet. The msg parameter
points to that start of the DNS packet. The eomorig parameter points to the last location of
the DNS packet plus 1. The comp_dn parameter points to the compress domain name, and
exp_dn parameter expects a pointer to a buffer. Upon function completion, this buffer
contains the expanded domain name. Use the length parameter to pass in the size of the
buffer referenced by the exp_dn parameter.

RETURNS The length of the expanded domain name, or ERROR on failure.

SEE ALSO resolvLib, resolvGetHostByName(), resolvGetHostByAddr(), resolvInit(),
resolvDNComp(), resolvSend(), resolvParamsSet(), resolvParamsGet(),
resolvMkQuery(), resolvQuery()

resolvGetHostByAddr()

NAME resolvGetHostByAddr() – query the DNS server for the host name of an IP address

SYNOPSIS struct hostent * resolvGetHostByAddr

(

const char * pInetAddr,

char * pHostBuf,

int bufLen

)

DESCRIPTION This function returns a hostent structure, which is defined as follows:

struct hostent

{

char * h_name; /* official name of host */

char ** h_aliases; /* alias list */

int h_addrtype; /* address type */

int h_length; /* length of address */

char ** h_addr_list; /* list of addresses from name server */

unsigned int h_ttl; /* Time to Live in Seconds for this entry */

}

The h_aliases and h_addr_list vectors are NULL-terminated. For a locally resolved entry
h_ttl is always 60 (an externally resolved entry may also have a TTL of 60 depending on
its age but it is usually much higher).

The pinetAddr parameter passes in the IP address (in network byte order) for the host
whose name you want to discover. The pBuf and bufLen parameters specify the location

VxWorks OS Libraries API Reference, 5.5
resolvGetHostByName()

1076

and size (512 bytes or more) of the buffer that is to receive the hostent structure.
resolvGetHostByAddr() returns host addresses are returned in network byte order.

RETURNS A pointer to a hostent structure if the host is found, or NULL if the parameters are invalid,
host is not found, or the buffer is too small.

ERRNO S_resolvLib_INVALID_PARAMETER
S_resolvLib_BUFFER_2_SMALL
S_resolvLib_TRY_AGAIN
S_resolvLib_HOST_NOT_FOUND
S_resolvLib_NO_DATA
S_resolvLib_NO_RECOVERY

SEE ALSO resolvLib, resolvGetHostByName(), resolvInit(), resolvDNExpand(),
resolvDNComp(), resolvSend(), resolvParamsSet(), resolvParamsGet(),
resolvMkQuery(), resolvQuery()

resolvGetHostByName()

NAME resolvGetHostByName() – query the DNS server for the IP address of a host

SYNOPSIS struct hostent * resolvGetHostByName

(

char * pHostName, /* ptr to the name of the host */

char * pHostBuf, /* ptr to the buffer used by hostent structure */

int bufLen /* length of the buffer */

)

DESCRIPTION This function returns a hostent structure. This structure is defined as follows:

struct hostent

{

char * h_name; /* official name of host */

char ** h_aliases; /* alias list */

int h_addrtype; /* address type */

int h_length; /* length of address */

char ** h_addr_list; /* list of addresses from name server */

unsigned int h_ttl; /* Time to Live in Seconds for this entry */

}

The h_aliases and h_addr_list vectors are NULL-terminated. For a locally resolved entry
h_ttl is always 60 (an externally resolved entry may also have a TTL of 60 depending on
its age but it is usually much higher).

2: Routines
resolvInit()

1077

R

Specify the host you want to query in pHostname. Use pBuf and bufLen to specify the
location and size of a buffer to receive the hostent structure and its associated contents.
Host addresses are returned in network byte order. Given the information this routine
retrieves, the pBuf buffer should be 512 bytes or larger.

RETURNS A pointer to a hostent structure if the host is found, or NULL if the parameters are invalid,
the host is not found, or the buffer is too small.

ERRNO S_resolvLib_INVALID_PARAMETER
S_resolvLib_BUFFER_2_SMALL
S_resolvLib_TRY_AGAIN
S_resolvLib_HOST_NOT_FOUND
S_resolvLib_NO_DATA
S_resolvLib_NO_RECOVERY

SEE ALSO resolvLib, resolvInit(), resolvGetHostByAddr(), resolvDNExpand(),
resolvDNComp(), resolvSend(), resolvParamsSet(), resolvParamsGet(),
resolvMkQuery(), resolvQuery()

resolvInit()

NAME resolvInit() – initialize the resolver library

SYNOPSIS STATUS resolvInit

(

char * pNameServer, /* pointer to Name server IP address */

char * pDefaultDomainName, /* default domain name */

FUNCPTR pdnsDebugRtn /* function ptr to debug routine */

)

DESCRIPTION This function initializes the resolver. pNameServer is a single IP address for a name server
in dotted decimal notation. pDefaultDomainName is the default domain name to be
appended to names without a dot. The function pointer pdnsDebugRtn is set to the
resolver debug function. Additional name servers can be configured using the function
resolvParamsSet().

RETURNS OK or ERROR.

SEE ALSO resolvLib, resolvGetHostByName(), resolvGetHostByAddr(), resolvDNExpand(),
resolvDNComp(), resolvSend(), resolvParamsSet(), resolvParamsGet(),
resolvQuery()

VxWorks OS Libraries API Reference, 5.5
resolvMkQuery()

1078

resolvMkQuery()

NAME resolvMkQuery() – create all types of DNS queries

SYNOPSIS int resolvMkQuery

(

int op, /* set to desire query QUERY or IQUERY */

const char * dname, /* domain name to be use in the query */

int class, /* query class for IP is C_IN */

int type, /* type is T_A, T_PTR, ... */

const char * data, /* resource Record (RR) data */

int datalen, /* length of the RR */

const char * newrr_in, /* not used always set to NULL */

char * buf, /* out of the constructed query */

int buflen /* length of the buffer for the query */

)

DESCRIPTION This routine uses the input parameters to create a domain name query. You can set the op
parameter to QUERY or IQUERY. Specify the domain name in dname, the class in class, the
query type in type. Valid values for type include T_A, T_PTR, and so on. Use data to add
Resource Record data to the query. Use datalen to pass in the length of the data buffer. Set
newrr_in to NULL. This parameter is reserved for future use. The buf parameter expects a
pointer to the output buffer for the constructed query. Use buflen to pass in the length of
the buffer referenced in buf.

RETURNS The length of the constructed query or ERROR.

SEE ALSO resolvLib, resolvGetHostByName(), resolvGetHostByAddr(), resolvDNExpand(),
resolvDNComp(), resolvSend(), resolvParamsSet(), resolvParamsGet(), resolvInit(),
resolvQuery()

resolvParamsGet()

NAME resolvParamsGet() – get the parameters which control the resolver library

SYNOPSIS void resolvParamsGet

(

RESOLV_PARAMS_S * pResolvParams /* ptr to resolver parameter struct */

)

2: Routines
resolvParamsSet()

1079

R

DESCRIPTION This routine copies the resolver parameters to the RESOLV_PARAMS_S structure
referenced in the pResolvParms parameter. The RESOLV_PARAMS_S structure is defined in
resolvLib.h as follows:

typedef struct

{

char queryOrder;

char domainName [MAXDNAME];

char nameServersAddr [MAXNS][MAXIPADDRLEN];

} RESOLV_PARAMS_S;

Typically, you call this function just before calling resolvParamsSet(). The
resolvParamsGet() call populates the RESOLV_PARAMS_S structure. You can then
modify the default values just before calling resolvParamsSet().

RETURNS N/A

SEE ALSO resolvLib, resolvGetHostByName(), resolvGetHostByAddr(), resolvDNExpand(),
resolvDNComp(), resolvSend(), resolvParamsSet(), resolvInit(), resolvMkQuery(),
resolvQuery()

resolvParamsSet()

NAME resolvParamsSet() – set the parameters which control the resolver library

SYNOPSIS STATUS resolvParamsSet

(

RESOLV_PARAMS_S * pResolvParams /* ptr to resolver parameter struct */

)

DESCRIPTION This routine sets the resolver parameters. pResolvParams passes in a pointer to a
RESOLV_PARAMS_S structure, which is defined as follows:

typedef struct

{

char queryOrder;

char domainName [MAXDNAME];

char nameServersAddr [MAXNS][MAXIPADDRLEN];

} RESOLV_PARAMS_S;

Use the members of this structure to specify the settings you want to apply to the resolver.
It is important to remember that multiple tasks can use the resolver library and that the
settings specified in this RESOLV_PARAMS_S structure affect all queries from all tasks. In

VxWorks OS Libraries API Reference, 5.5
resolvQuery()

1080

addition, you should set resolver parameters at initialization and not while queries could
be in progress. Otherwise, the results of the query are unpredictable.

Before calling resolvParamsSet(), you should first call resolvParamsGet() to populate a
RESOLV_PARAMS_S structure with the current settings. Then you change the values of
the members that interest you.

Valid values for the queryOrder member of RESOLV_PARAMS_S structure are defined in
resolvLib.h. Set the domainName member to the domain to which this resolver belongs.
Set the nameServersAddr member to the IP addresses of the DNS server that the resolver
can query. You must specify the IP addresses in standard dotted decimal notation. This
function tries to validate the values in the queryOrder and nameServerAddr members.
This function does not try to validate the domain name.

RETURNS OK if the parameters are valid, ERROR otherwise.

SEE ALSO resolvLib, resolvGetHostByName(), resolvGetHostByAddr(), resolvDNExpand(),
resolvDNComp(), resolvSend(), resolvInit(), resolvParamsGet(), resolvMkQuery(),
resolvQuery()

resolvQuery()

NAME resolvQuery() – construct a query, send it, wait for a response

SYNOPSIS int resolvQuery

(

char * name, /* domain name */

int class, /* query class for IP is C_IN */

int type, /* type is T_A, T_PTR, ... */

u_char * answer, /* buffer to put answer */

int anslen /* length of answer buffer */

)

DESCRIPTION This routine constructs a query for the domain specified in the name parameter. The class
parameter specifies the class of the query. The type parameter specifies the type of query.
The routine then sends the query to the DNS server. When the server responds, the
response is validated and copied to the buffer you supplied in the answer parameter. Use
the anslen parameter to pass in the size of the buffer referenced in answer.

RETURNS The length of the response or ERROR.

2: Routines
resolvSend()

1081

R

ERRNO S_resolvLib_TRY_AGAIN
S_resolvLib_HOST_NOT_FOUND
S_resolvLib_NO_DATA
S_resolvLib_NO_RECOVERY

SEE ALSO resolvLib, resolvGetHostByName(), resolvGetHostByAddr(), resolvDNExpand(),
resolvDNComp(), resolvInit(), resolvParamsSet(), resolvParamsGet(),
resolvMkQuery()

resolvSend()

NAME resolvSend() – send a pre-formatted query and return the answer

SYNOPSIS int resolvSend

(

const char * buf, /* pre-formatted query */

int buflen, /* length of query */

char * answer, /* buffer for answer */

int anslen /* length of answer */

)

DESCRIPTION This routine takes a pre-formatted DNS query and sends it to the domain server. Use buf
to pass in a pointer to the query. Use buflen to pass in the size of the buffer referenced in
buf. The answer parameter expects a pointer to a buffer into which this routine can write
the answer retrieved from the server. Use anslen to pass in the size of the buffer you have
provided in anslen.

RETURNS The length of the response or ERROR.

ERRNO S_resolvLib_TRY_AGAIN
ECONNREFUSE
ETIMEDOU

SEE ALSO resolvLib, resolvGetHostByName(), resolvGetHostByAddr(), resolvDNExpand(),
resolvDNComp(), resolvInit(), resolvParamsSet(), resolvParamsGet(),
resolvMkQuery(), resolvQuery()

VxWorks OS Libraries API Reference, 5.5
rewind()

1082

rewind()

NAME rewind() – set the file position indicator to the beginning of a file (ANSI)

SYNOPSIS void rewind

(

FILE * fp /* stream */

)

DESCRIPTION This routine sets the file position indicator for a specified stream to the beginning of the
file.

It is equivalent to:

(void) fseek (fp, 0L, SEEK_SET);

except that the error indicator for the stream is cleared.

INCLUDE FILES stdio.h

RETURNS N/A

SEE ALSO ansiStdio, fseek(), ftell()

rewinddir()

NAME rewinddir() – reset position to the start of a directory (POSIX)

SYNOPSIS void rewinddir

(

DIR * pDir /* pointer to directory descriptor */

)

DESCRIPTION This routine resets the position pointer in a directory descriptor (DIR). The pDir parameter
is the directory descriptor pointer that was returned by opendir().

As a result, the next readdir() will cause the current directory data to be read in again, as
if an opendir() had just been performed. Any changes in the directory that have occurred
since the initial opendir() will now be visible. The first entry in the directory will be
returned by the next readdir().

2: Routines
ripAddrsXtract()

1083

R

RETURNS N/A

SEE ALSO dirLib, opendir(), readdir(), closedir()

rindex()

NAME rindex() – find the last occurrence of a character in a string

SYNOPSIS char *rindex

(

const char * s, /* string in which to find character */

int c /* character to find in string */

)

DESCRIPTION This routine finds the last occurrence of character c in string s.

RETURNS A pointer to c, or NULL if c is not found.

SEE ALSO bLib

ripAddrsXtract()

NAME ripAddrsXtract() – extract socket address pointers from the route message

SYNOPSIS void ripAddrsXtract

(

ROUTE_INFO * pRtInfo, /* Route information message */

struct sockaddr * * pDstAddr, /* Where to store the Destination */

/* addr pointer */

struct sockaddr * * pNetmask, /* Where to store the netmask pointer*/

struct sockaddr * * pGateway, /* Where to store the Gateway addr */

/* pointer */

struct sockaddr * * pOldGateway /* Where to store the Old gateway */

/* addr (if any) pointer */

)

VxWorks OS Libraries API Reference, 5.5
ripAuthHook()

1084

DESCRIPTION This routine extracts the socket addresses from the route message in pRtInfo and uses the
other parameters to return pointers to the extracted messages.

pRtInfo
Passes in a pointer to a route information message.

pDstAddr
Returns a pointer to the destination address.

pNetmask
Returns a pointer to the netmask.

pGateway
Returns a pointer to the gateway address.

pOldGateway
Returns a pointer to the OLD gateway address if it exists.

If the route message doesn’t specify an address, the corresponding address pointer is set
to NULL

RETURNS N/A

ERRNO N/A

SEE ALSO ripLib

ripAuthHook()

NAME ripAuthHook() – sample authentication hook

SYNOPSIS STATUS ripAuthHook

(

char * pKey, /* rip2IfConfAuthKey entry from MIB-II family */

RIP_PKT * pRip /* received RIP message */

)

DESCRIPTION This hook demonstrates one possible authentication mechanism. It rejects all RIP-2
messages that used simple password authentication since they did not match the key
contained in the MIB variable. All other RIP-2 messages are also rejected since no other
authentication type is supported and all RIP-1 messages are also rejected, as
recommended by the RFC specification. This behavior is the same as if no hook were
installed.

2: Routines
ripAuthHookAdd()

1085

R

RETURNS OK, if message is acceptable; or ERROR otherwise.

SEE ALSO ripLib

ripAuthHookAdd()

NAME ripAuthHookAdd() – add an authentication hook to a RIP interface

SYNOPSIS STATUS ripAuthHookAdd

(

char* pIpAddr, /* IP address in dotted decimal notation */

FUNCPTR pAuthHook /* routine to handle message authentication */

)

DESCRIPTION This routine installs a hook routine to validate incoming RIP messages for a registered
interface given by pIpAddr. (Interfaces created or changed after a RIP session has started
may be installed/updated with the ripIfSearch() and ripIfReset() routines). The hook is
only called if an SNMP agent enables authentication for the corresponding interface. It
uses the following prototype:

STATUS ripAuthHookRtn (char *pKey, RIP_PKT *pRip);

The first argument contains the authentication key for the message stored in the
rip2IfConfAuthKey MIB variable and the second argument uses the RIP_PKT structure
(defined in rip/ripLib.h) to access the message body. The routine must return OK if the
message is acceptable, or ERROR otherwise. All RIP-2 messages sent to that routine
already contain an authentication entry, but have not been verified. (Any unauthenticated
RIP-2 messages have already been discarded as required by the RFC specification). RIP-1
messages may be accepted or rejected. RIP-2 messages requesting simple password
authentication that match the key are accepted automatically before the hook is called.
The remaining RIP-2 messages either did not match that key or are using an unknown
authentication type. If any messages are rejected, the MIB-II counters are updated
appropriately outside of the hook routine.

The current RIP implementation contains a sample authentication hook that you may add
as follows:

if (ripAuthHookAdd ("90.0.0.1", ripAuthHook) == ERROR)

logMsg ("Unable to add authorization hook.\n", 0, 0, 0, 0, 0, 0);

The sample routine supports only simple password authentication against the key
included in the MIB variable. Since all such messages have already been accepted, all
RIP-2 messages received by the routine are discarded. All RIP-1 messages are also
discarded, so the hook actually has no effect. The body of that routine is:

VxWorks OS Libraries API Reference, 5.5
ripAuthHookAdd()

1086

STATUS ripAuthHook

(

char * pKey, /* rip2IfConfAuthKey entry from MIB-II family */

RIP_PKT * pRip /* received RIP message */

)

{

if (pRip->rip_vers == 1)

{

/*

* The RFC specification recommends, but does not require, rejecting

@ version 1 packets when authentication is enabled.

*/

return (ERROR);

}

/*

@ The authentication type field in the RIP message corresponds to

@ the first two bytes of the sa_data field overlayed on that

@ message by the sockaddr structure contained within the RIP_PKT

@ structure (see rip/ripLib.h).

*/

if ((pRip->rip_nets[0].rip_dst.sa_data[0] != 0) ||

(pRip->rip_nets[0].rip_dst.sa_data[1] !=

M2_rip2IfConfAuthType_simplePassword))

{

/* Unrecognized authentication type. */

return (ERROR);

}

/*

* Discard version 2 packets requesting simple password authentication

@ which did not match the MIB variable.

*/

return (ERROR);

}

A comparison against a different key could be performed as follows:

bzero ((char *)&key, AUTHKEYLEN); /* AUTHKEYLEN from rip/m2RipLib.h */

/*

@ The start of the authorization key corresponds to the third byte

@ of the sa_data field in the sockaddr structure overlayed on the

@ body of the RIP message by the RIP_PKT structure. It continues

@ for the final 14 bytes of that structure and the first two bytes

@ of the following rip_metric field.

*/

bcopy ((char *)(pRip->rip_nets[0].rip_dst.sa_data + 2),

(char *)&key, AUTHKEYLEN);

if (bcmp ((char *) key, privateKey, AUTHKEYLEN) != 0)

2: Routines
ripAuthHookDelete()

1087

R

{

/* Key does not match: reject message. */

return (ERROR);

}

return (OK);

The ripAuthHookDelete() routine will remove the installed function. If authentication is
still enabled for the interface, all incoming messages that do not use simple password
authentication will be rejected until a routine is provided.

RETURNS OK, if hook added; or ERROR otherwise.

ERRNO S_m2Lib_INVALID_PARAMETER
S_m2Lib_ENTRY_NOT_FOUND

SEE ALSO ripLib

ripAuthHookDelete()

NAME ripAuthHookDelete() – remove an authentication hook from a RIP interface

SYNOPSIS STATUS ripAuthHookDelete

(

char* pIpAddr /* IP address in dotted decimal notation */

)

DESCRIPTION This routine removes an assigned authentication hook from a registered interface
indicated by pIpAddr. (Interfaces created or changed after a RIP session has started may be
installed/updated with the ripIfSearch() and ripIfReset() routines). If authentication is
still enabled for the interface, RIP-2 messages using simple password authentication will
be accepted if they match the key in the MIB variable, but all other incoming messages
will be rejected until a routine is provided.

RETURNS OK; or ERROR, if the interface could not be found.

ERRNO S_m2Lib_INVALID_PARAMETER
S_m2Lib_ENTRY_NOT_FOUND

SEE ALSO ripLib

VxWorks OS Libraries API Reference, 5.5
ripAuthKeyAdd()

1088

ripAuthKeyAdd()

NAME ripAuthKeyAdd() – add a new RIP authentication key

SYNOPSIS STATUS ripAuthKeyAdd

(

char * pInterfaceName, /* interface to add a key */

UINT16 keyId, /* the keyId for this new key */

char * pKey, /* the secret key */

UINT keyLen, /* length of the secret key */

UINT authProto, /* auth protocol to use (1 = MD5) */

ULONG timeValid /* number of seconds until key expires */

)

DESCRIPTION This routine is used to add a new RIP authentication key for a specific interface.

RETURNS ERROR, if the interface does not exist, or the keyId already exists, or if the protocol is not
supported; OK, if key was entered.

SEE ALSO ripLib

ripAuthKeyDelete()

NAME ripAuthKeyDelete() – delete an existing RIP authentication key

SYNOPSIS STATUS ripAuthKeyDelete

(

char * pInterfaceName, /* interface to delete a key from */

UINT16 keyId /* the keyId of the key to delete */

)

DESCRIPTION This routine is used to delete a RIP authentication key for a specific interface.

RETURNS ERROR, if the interface does not exist, or the keyId does not exist; OK, if key was deleted.

SEE ALSO ripLib

2: Routines
ripAuthKeyFindFirst()

1089

R

ripAuthKeyFind()

NAME ripAuthKeyFind() – find a RIP authentication key

SYNOPSIS STATUS ripAuthKeyFind

(

struct interface * ifp, /* interface to search for key */

UINT16 keyId, /* the keyId of the key to search for */

RIP_AUTH_KEY * * pKey /* storage for the key data */

)

DESCRIPTION This routine is used to find a RIP authentication key based on a specified interface and
keyId. When a key is found, a pointer to the RIP_AUTH_KEY struct for the key is stored in
pKey.

RETURNS ERROR, if the key is not found; OK if the key was found.

SEE ALSO ripLib

ripAuthKeyFindFirst()

NAME ripAuthKeyFindFirst() – find a RIP authentication key

SYNOPSIS STATUS ripAuthKeyFindFirst

(

struct interface * ifp, /* interface to search for key */

RIP_AUTH_KEY * * pKey /* storage for the key data */

)

DESCRIPTION This routine is used to find a RIP authentication key based on a specified interface.
Because a keyId is not specified, this routine returns the first non-expired key found for the
interface. When a key is found, a pointer to the RIP_AUTH_KEY structure for the key is
returned in pKey.

RETURNS ERROR, if a key is not found; OK, if a key was found.

SEE ALSO ripLib

VxWorks OS Libraries API Reference, 5.5
ripAuthKeyInMD5()

1090

ripAuthKeyInMD5()

NAME ripAuthKeyInMD5() – authenticate an incoming RIP-2 message using MD5

SYNOPSIS STATUS ripAuthKeyInMD5

(

struct interface * ifp, /* interface message received on */

RIP_PKT * pRip, /* received RIP message */

UINT size /* length of the RIP message */

)

DESCRIPTION This routine is used to authenticate an incoming RIP-2 message using the MD5 digest
protocol. This authentication scheme is described in RFC 2082.

RETURNS ERROR, if could not authenticate; OK, if authenticated.

SEE ALSO ripLib

ripAuthKeyOut1MD5()

NAME ripAuthKeyOut1MD5() – start MD5 authentication of an outgoing RIP-2 message

SYNOPSIS STATUS ripAuthKeyOut1MD5

(

struct interface * pIfp, /* interface message being sent on */

struct netinfo * pNetinfo, /* pointer to next RIP entry to fill in */

RIP2_AUTH_PKT_HDR * * ppAuthHdr, /* stores the authentication header */

RIP_AUTH_KEY * * ppAuthKey /* stores the authentication key to use */

)

DESCRIPTION This routine is used to start the authentication of an outgoing RIP-2 message by adding
the authentication header used for MD5 authentication. This authentication scheme is
described in RFC 2082. This function returns a pointer the authentication header and a
pointer to the looked up authentication key.

RETURNS ERROR, if a key could not be found; OK, if the header was added.

SEE ALSO ripLib

2: Routines
ripAuthKeyShow()

1091

R

ripAuthKeyOut2MD5()

NAME ripAuthKeyOut2MD5() – authenticate an outgoing RIP-2 message using MD5

SYNOPSIS void ripAuthKeyOut2MD5

(

RIP_PKT * pRip, /* RIP message to authenticate */

UINT * pSize, /* length of the RIP message */

struct netinfo * pNetinfo, /* pointer to next RIP entry to fill in */

RIP2_AUTH_PKT_HDR * pAuthHdr, /* pointer to auth header in the message */

RIP_AUTH_KEY * pAuthKey /* the auth key data to use */

)

DESCRIPTION This routine is used to authenticate an outgoing RIP-2 message using the MD5 digest
protocol. This authentication scheme is described in RFC 2082. This function modifies the
size given in pSize to account for the extra auth trailer data. The auth trailer is appended
to the given RIP_PKT and the authentication digest is filled in.

RETURNS N/A

SEE ALSO ripLib

ripAuthKeyShow()

NAME ripAuthKeyShow() – show current authentication configuration

SYNOPSIS void ripAuthKeyShow

(

UINT showKey /* if non-zero then key values are shown */

)

DESCRIPTION This routines shows the current configuration of the authentication keys for each interface.

RETURNS N/A

SEE ALSO ripLib

VxWorks OS Libraries API Reference, 5.5
ripDebugLevelSet()

1092

ripDebugLevelSet()

NAME ripDebugLevelSet() – specify amount of debugging output

SYNOPSIS void ripDebugLevelSet

(

int level /* verbosity level (0 - 3) */

)

DESCRIPTION This routine determines the amount of debugging information sent to standard output
during the RIP session. Higher values of the level parameter result in increasingly verbose
output. A level of zero restores the default behavior by disabling all debugging output.

RETURNS N/A

ERRNO N/A

SEE ALSO ripLib

ripFilterDisable()

NAME ripFilterDisable() – prevent strict border gateway filtering

SYNOPSIS void ripFilterDisable (void)

DESCRIPTION This routine configures an active RIP session to ignore the restrictions necessary for RIP-1
and RIP-2 routers to operate correctly in the same network. All border gateway filtering is
ignored and all routes to subnets, supernets, and specific hosts will be sent over any
available interface. This operation is only correct if no RIP-1 routers are present anywhere
on the network. Results are unpredictable if that condition is not met, but high rates of
packet loss and widespread routing failures are likely.

The border gateway filtering rules are in force by default.

RETURNS N/A

ERRNO N/A

SEE ALSO ripLib

2: Routines
ripIfExcludeListAdd()

1093

R

ripFilterEnable()

NAME ripFilterEnable() – activate strict border gateway filtering

SYNOPSIS void ripFilterEnable (void)

DESCRIPTION This routine configures an active RIP session to enforce the restrictions necessary for RIP-1
and RIP-2 routers to operate correctly in the same network as described in section 3.2 of
RFC 1058 and section 3.3 of RFC 1723. When enabled, routes to portions of a logical
network (including host routes) are limited to routers within that network. Updates sent
outside that network include only a single entry representing the entire network. That
entry subsumes all subnets and host-specific routes. If supernets are used, the entry
advertises the largest class-based portion of the supernet reachable through the connected
interface.

RETURNS N/A

ERRNO N/A

SEE ALSO ripLib

ripIfExcludeListAdd()

NAME ripIfExcludeListAdd() – add an interface to the RIP exclusion list

SYNOPSIS STATUS ripIfExcludeListAdd

(

char * pIfName /* name of interface to be excluded */

)

DESCRIPTION This function adds the interface specified by ifName to a list of interfaces on which RIP will
not be started. This can be used to prevent RIP from starting on an interface.

RETURNS OK if the interface was successfully added to the list; ERROR otherwise.

NOTE: This command must be issued prior to the interface being added to the system, as
RIP starts on an interface, unless it has been excluded, as soon as an interface comes up. If
RIP was already running on the interface which is now desired to be excluded from RIP,
the ripIfReset() command should be used after the ripIfExcludeListAdd() command.

VxWorks OS Libraries API Reference, 5.5
ripIfExcludeListDelete()

1094

SEE ALSO ripLib

ripIfExcludeListDelete()

NAME ripIfExcludeListDelete() – delete an interface from RIP exclusion list

SYNOPSIS STATUS ripIfExcludeListDelete

(

char * pIfName /* name of un-excluded interface */

)

DESCRIPTION This function deletes the interface specified by ifName from the list of interfaces on which
RIP will not be started. That is, RIP will start on the interface when it is added or comes
up.

RETURNS OK if the interface was successfully removed from the list;
ERROR otherwise.

NOTE: RIP will not automatically start on the interface. The ripIfSearch() call will need to
be made after this call to cause RIP to start on this interface.

SEE ALSO ripLib

ripIfExcludeListShow()

NAME ripIfExcludeListShow() – show the RIP interface exclusion list

SYNOPSIS void ripIfExcludeListShow (void)

DESCRIPTION This function prints out the interfaces on which RIP will not be started.

RETURNS Nothing

SEE ALSO ripLib

2: Routines
ripIfSearch()

1095

R

ripIfReset()

NAME ripIfReset() – alter the RIP configuration after an interface changes

SYNOPSIS STATUS ripIfReset

(

char * pIfName /* name of changed interface */

)

DESCRIPTION This routine updates the interface list and routing tables to reflect address and/or
netmask changes for the device indicated by pIfName. To accommodate possible changes
in the network number, all routes using the named interface are removed from the routing
tables, but will be added in the next route update if appropriate. None of the removed
routes are poisoned, so it may take some time for the routing tables of all the RIP
participants to stabilize if the network number has changed. This routine replaces the
existing interface structure with a new one. Thus, any interface specific MIB2 changes that
were made to the interface being reset will be lost

RETURNS OK, or ERROR if named interface not found or not added to list.

ERRNO N/A

SEE ALSO ripLib

ripIfSearch()

NAME ripIfSearch() – add new interfaces to the internal list

SYNOPSIS void ripIfSearch (void)

DESCRIPTION By default, a RIP session will not recognize any interfaces initialized after it has started.
This routine schedules a search for additional interfaces that will occur during the next
update of the internal routing table. Once completed, the session will accept and send RIP
messages over the new interfaces.

RETURNS N/A

ERRNO N/A

SEE ALSO ripLib

VxWorks OS Libraries API Reference, 5.5
ripIfShow()

1096

ripIfShow()

NAME ripIfShow() – display the internal interface table maintained by RIP

SYNOPSIS void ripIfShow (void)

DESCRIPTION This routine prints every entry in the local RIP interface table. The interface name,
interface index, the UP/DOWN status and the interface address and netmask are
displayed.

RETURNS N/A

ERRNO N/A

SEE ALSO ripLib

ripLeakHookAdd()

NAME ripLeakHookAdd() – add a hook to bypass the RIP and kernel routing tables

SYNOPSIS STATUS ripLeakHookAdd

(

char * pIpAddr, /* IP address in dotted decimal notation */

FUNCPTR pLeakHook /* function pointer to hook */

)

DESCRIPTION This routine installs a hook routine to support alternative routing protocols for the
registered interface given by pIpAddr. (Interfaces created or changed after a RIP session
has started may be installed/updated with the ripIfSearch() and ripIfReset() routines).

The hook uses the following interface:

STATUS ripLeakHookRtn (long dest, long gateway, long netmask)

The RIP session will not add the given route to any tables if the hook routine returns OK,
but will create a route entry otherwise.

The ripLeakHookDelete() will allow the RIP session to add new routes unconditionally.

RETURNS OK; or ERROR, if the interface could not be found.

2: Routines
ripLibInit()

1097

R

ERRNO S_m2Lib_INVALID_PARAMETER
S_m2Lib_ENTRY_NOT_FOUND

SEE ALSO ripLib

ripLeakHookDelete()

NAME ripLeakHookDelete() – remove a table bypass hook from a RIP interface

SYNOPSIS STATUS ripLeakHookDelete

(

char* pIpAddr /* IP address in dotted decimal notation */

)

DESCRIPTION This routine removes the assigned bypass hook from a registered interface indicated by
pIpAddr. (Interfaces created or changed after a RIP session has started may be
installed/updated with the ripIfSearch() and ripIfReset() routines). The RIP session will
return to the default behavior and add entries to the internal RIP table and kernel routing
table unconditionally.

RETURNS OK; or ERROR, if the interface could not be found.

ERRNO S_m2Lib_INVALID_PARAMETER
S_m2Lib_ENTRY_NOT_FOUND

SEE ALSO ripLib

ripLibInit()

NAME ripLibInit() – initialize the RIP routing library

SYNOPSIS STATUS ripLibInit

(

BOOL supplier, /* operate in silent mode? */

BOOL gateway, /* act as gateway to the Internet? */

BOOL multicast, /* use multicast or broadcast addresses? */

int version, /* 1 or 2: selects format of outgoing messages */

int timerRate, /* update frequency for internal routing table */

VxWorks OS Libraries API Reference, 5.5
ripLibInit()

1098

int supplyInterval, /* update frequency for neighboring routers */

int expire, /* maximum interval for renewing learned routes */

int garbage, /* elapsed time before deleting stale route */

int authType /* default authentication type to use */

)

DESCRIPTION This routine creates and initializes the global data structures used by the RIP routing
library and starts a RIP session to maintain routing tables for a host. You must call
ripLibInit() before you can use any other ripLib routines. A VxWorks image
automatically invokes ripLibInit() if INCLUDE_RIP was defined when the image was
built.

The resulting RIP session will monitor all network interfaces that are currently available
for messages from other RIP routers. If the supplier parameter is true, it will also respond
to specific requests from other routers and transmit route updates over every known
interface at the interval specified by supplyInterval.

Specifying a gateway setting of true establishes this router as a gateway to the wider
Internet, capable of routing packets anywhere within the local networks. The final
multicast flag indicates whether the RIP messages are sent to the pre-defined multicast
address of 224.0.0.9 (which requires a version setting of 2) or to the broadcast address of
the interfaces.

The version parameter determines the format used for outgoing RIP messages, and also
sets the initial settings of the MIB-II compatibility switches in combination with the
multicast flag. A version of 1 will restrict all incoming traffic to that older message type. A
version of 2 will set the receive switch to accept either type unless multicast is true, which
limits reception to version 2 messages only. SNMP agents may alter those settings on a
per-interface basis once startup is complete.

The remaining parameters set various system timers used to maintain the routing table.
All of the values are expressed in seconds, and must be greater than or equal to 1. The
timerRate determines how often the routing table is examined for changes and expired
routes. The supplyInterval must be an exact multiple of that value. The expire parameter
specifies the maximum time between updates before a route is invalidated and removed
from the kernel table. Expired routes are then deleted from the internal RIP routing table
if no update has been received within the time set by the garbage parameter.

The following configuration parameters determine the initial values for all these settings.
The default timer values match the settings indicated in the RFC specification.

Parameter Name Default Value Configuration Parameter

supplier 0 (FALSE) RIP_SUPPLIER

gateway 0 (FALSE) RIP_GATEWAY

multicast 0 (FALSE) RIP_MULTICAST

version 1 RIP_VERSION

timerRate 1 RIP_TIMER_RATE

2: Routines
ripRouteHookAdd()

1099

R

RETURNS OK; or ERROR, if configuration fails.

SEE ALSO ripLib

ripRouteHookAdd()

NAME ripRouteHookAdd() – add a hook to install static and non-RIP routes into RIP

SYNOPSIS STATUS ripRouteHookAdd

(

FUNCPTR pRouteHook /* function pointer to hook */

)

DESCRIPTION This routine installs a hook routine that you can use to give RIP the ability to respond to
route-add events generated by non-RIP agents. By design, RIP is not interested in the
routes generated by non-RIP agents. If you do not install a route hook function, RIP
continues this default behavior. However, if you want RIP to add these non-RIP routes to
its internal routing database and even propagate routes added by other agents, you must
use ripRouteHookAdd() to register a function of the form:

STATUS YourRipRouteHookRtn

(

struct ROUTE_INFO * pRouteInfo,

int protoId,

BOOL primaryRoute,

int flags

)

RIP invokes this function in response to the following events:

1. A non-RIP non-system route was added to the routing table.
2. A route change message arrived.
3. An ICMP redirect message arrived.

The returned function value of the route hook routine tells rip how to respond to the
event. In the first case, the returned function value tells RIP whether to add or ignore the

supplyInterval 30 RIP_SUPPLY_INTERVAL

expire 180 RIP_EXPIRE_TIME

garbage 300 RIP_GARBAGE_TIME

authType 1 RIP_AUTH_TYPE

Parameter Name Default Value Configuration Parameter

VxWorks OS Libraries API Reference, 5.5
ripRouteHookAdd()

1100

new route. In the second case, the returned function tells RIP whether to delete the
specified route or change its metric. In the third case, the event is of no direct importance
for RIP, so RIP ignores the returned value of the route hook function.

pRouteInfo
This parameter passes in a pointer to a route information structure that stores the
routing message. You should not access the contents of this structure directly.
Instead, use ripAddrsXtract() to extract the following information:

- destination address
- netmask
- gateway address
- old gateway address (if available)

protoId
This parameter passes in the ID of the protocol that generated the event. Valid
protocol IDs are defined in m2Lib.h as follows:

M2_ipRouteProto_other (static routes)
M2_ipRouteProto_local
M2_ipRouteProto_netmgmt
M2_ipRouteProto_icmp
M2_ipRouteProto_egp
M2_ipRouteProto_ggp
M2_ipRouteProto_hello
M2_ipRouteProto_rip
M2_ipRouteProto_is_is
M2_ipRouteProto_es_is
M2_ipRouteProto_ciscoIgrp
M2_ipRouteProto_bbnSpfIgp
M2_ipRouteProto_ospf
M2_ipRouteProto_bgp

primaryRoute
This parameter passes in a boolean value that indicates whether the route is a
primary route. TRUE indicates a primary route. FALSE indicates a duplicate route.

flags
This parameter passes in a value that indicates which event occurred:

0 (zero)
This indicates a route added to the routing table by a non-RIP agent.

RIP_ROUTE_CHANGE_RECD
This indicates a route change message.

RIP_REDIRECT_RECD
This indicates and ICMP redirect message.

2: Routines
ripRouteHookAdd()

1101

R

A New Non-RIP Non-System Route was Added to the Routing Table

In response to this event, RIP needs to be told whether to ignore or add the route. RIP
does this on the basis of the returned function value of the route hook routine. In the case
of route-add event, RIP interprets the returned function value of the route hook routine as
the metric for the route.

If the metric is HOPCNT_INFINITY, RIP ignores the route. If the metric is greater than zero
but less than HOPCNT_INFINITY, RIP considers the route for inclusion. If the route is new
to RIP, RIP adds the new route to its internal database, and then propagates the route in
its subsequent update messages. If RIP already stores a route for that destination, RIP
compares the metric of the new route and the stored route. If the new route has a better
(lower) metric, RIP adds the new route. Otherwise, RIP ignores the new route.

When generating its returned function value, your route hook routine can use the creator
of the event (protoID) as a factor in the decision on whether to include the route. For
example, if you wanted the route hook to tell RIP to ignore all non-RIP routes except static
routes, your route hook would return HOPCNT_INFINITY if the protoID were anything
other than M2_ipRouteProto_other. Thus, your route hook routine is a vehicle through
which you can implement a policy for including non-RIP routes in the RIP internal route
data base.

When designing your policy, you should keep in mind how RIP prioritizes these non-RIP
routes and when it deletes these non-RIP routes. For example, non-RIP routes never time
out. They remain in the RIP database until one of the following events occurs:

1. An agent deletes the route from the system routing table.
2. An agent deletes the interface through which the route passes.
3. A route change message for the route arrives.

Also, these non-RIP routes take precedence over RIP routes to the same destination. RIP
ignores routes learned from RIP peers if a route to the same destination was
recommended by the hook routine. This non-RIP route takes precedence over the RIP
route without regard of the route metric. However, if the route hook routine adds
multiple same-destination routes, the route with the lowest metric takes precedence. If the
route hook route approves multiple same-metric same-destination routes, the most
recently added route is installed.

A Route Change Notification Arrived

In response to this event, RIP needs to be told whether to delete the route or change its
metric. If the hook returns a value greater than or equal to HOPCNT_INFINITY, RIP deletes
the route from its internal routing data base. If the hook routine returns a valid metric (a
value greater than zero but less than HOPCNT_INFINITY), RIP reassigns the routes metric
to equal the returned value of the route hook routine. If the returned value of the route
hook route is invalid (less than zero) RIP ignores the event. RIP also ignores the event if
the route specified in pRouteInfo is not one stored in its internal data base.

An ICMP Redirect Message Arrived

In response to this event, RIP never needs to make any changes to its internal routing

VxWorks OS Libraries API Reference, 5.5
ripRouteHookDelete()

1102

database. Thus, RIP ignores the returned function value of the route hook routine called in
response to an ICMP redirect message. However, if the event is of interest to your
particular environment, and it makes sense to catch the event in the context of the RIP
task, you can use the route hook routine to do so.

Within your route hook routine, your can recognize an ICMP event by checking whether
the flags parameter value sets the RIP_REDIRECT_RECD bit. The primaryRoute parameter
passes in a boolean value that indicates whether the route is primary route. If the
primaryRoute passes in FALSE, the route hook routine need will most likely need to do
nothing more. If this parameter passes in TRUE, take whatever action (if any) that you
know to be appropriate to your particular environment.

RETURNS OK; or ERROR, if RIP is not initialized.

SEE ALSO ripLib

ripRouteHookDelete()

NAME ripRouteHookDelete() – remove the route hook

SYNOPSIS STATUS ripRouteHookDelete (void)

DESCRIPTION This routine removes the route hook installed earlier by the ripRouteHookAdd() routine.
This will cause RIP to ignore any routes added to the system Routing database.

RETURNS OK; or ERROR, if RIP is not initialized.

SEE ALSO ripLib

ripRouteShow()

NAME ripRouteShow() – display the internal routing table maintained by RIP

SYNOPSIS void ripRouteShow (void)

DESCRIPTION This routine prints every entry in the local RIP routing table. The flags displayed below
the destination, gateway, and netmask addresses indicate the current route status. Entries
with the RTS_INTERFACE flag indicate locally generated routes to directly connected

2: Routines
ripSendHookAdd()

1103

R

networks. If RTS_SUBNET is set for an entry, it is subject to border gateway filtering (if
enabled). When RTS_INTERNAL is also present, the corresponding entry is an “artificial”
route created to supply distant networks with legitimate destinations if border filtering
excludes the actual entry. Those entries are not copied to the kernel routing table. The
RTS_CHANGED flag marks entries added or modified in the last timer interval that will be
included in a triggered update. The RTS_OTHER flag is set for routes learnt from other
sources. The RTS_PRIMARY flag (set only if the RTS_OTHER flag is also set) indicates that
the route is a primary route, visible to the IP forwarding process. The DOWN flag
indicates that the interface through which the gateway is reachable is down.

SEE ALSO ripLib

ripSendHookAdd()

NAME ripSendHookAdd() – add an update filter to a RIP interface

SYNOPSIS STATUS ripSendHookAdd

(

char* pIpAddr, /* IP address in dotted decimal notation */

BOOL (* ripSendHook) (struct rt_entry* pRt)

/* Routine to use. */

)

DESCRIPTION This routine installs a hook routine to screen individual route entries for inclusion in a
periodic update. The routine is installed for the registered interface given by pIpAddr.
(Interfaces created or changed after a RIP session has started may be installed/updated
with the ripIfSearch() and ripIfReset() routines).

The hook uses the following prototype:

BOOL ripSendHookRtn (struct rt_entry* pRt);

If the hook returns FALSE, the route is not included in the update. Otherwise, it is
included if it meets the other restrictions, such as simple split horizon and border gateway
filtering. The ripSendHookDelete() routine removes this additional filter from the output
processing.

RETURNS OK; or ERROR, if the interface could not be found.

ERRNO S_m2Lib_INVALID_PARAMETER
S_m2Lib_ENTRY_NOT_FOUND

SEE ALSO ripLib

VxWorks OS Libraries API Reference, 5.5
ripSendHookDelete()

1104

ripSendHookDelete()

NAME ripSendHookDelete() – remove an update filter from a RIP interface

SYNOPSIS STATUS ripSendHookDelete

(

char* pIpAddr /* IP address in dotted decimal notation */

)

DESCRIPTION This routine removes the hook routine that allowed additional screening of route entries
in periodic updates from the registered interface indicated by pIpAddr. (Interfaces created
or changed after a RIP session has started may be installed/updated with the
ripIfSearch() and ripIfReset() routines). The RIP session will return to the default
behavior and include any entries that meet the other restrictions (such as simple split
horizon).

RETURNS OK; or ERROR, if the interface could not be found.

ERRNO S_m2Lib_INVALID_PARAMETER
S_m2Lib_ENTRY_NOT_FOUND

SEE ALSO ripLib

ripShutdown()

NAME ripShutdown() – terminate all RIP processing

SYNOPSIS STATUS ripShutdown (void)

DESCRIPTION This routine “poisons” all routes in the current table by transmitting updates with an
infinite metric for each entry over all available interfaces. It then halts all RIP processing
and removes the associated tasks and data structures. When completed successfully, the
RIP services are unavailable until restarted with the ripLibInit() routine.

RETURNS OK if shutdown completed, or ERROR otherwise.

ERRNO N/A

SEE ALSO ripLib

2: Routines
rlogind()

1105

R

rlogin()

NAME rlogin() – log in to a remote host

SYNOPSIS STATUS rlogin

(

char * host /* name of host to connect to */

)

DESCRIPTION This routine allows users to log in to a remote host. It may be called from the VxWorks
shell as follows:

-> rlogin "remoteSystem"

where remoteSystem is either a host name, which has been previously added to the remote
host table by a call to hostAdd(), or an Internet address in dot notation (e.g., “90.0.0.2”).
The remote system will be logged into with the current user name as set by a call to iam().

The user disconnects from the remote system by typing:

~.

as the only characters on the line, or by simply logging out from the remote system using
logout().

RETURNS OK, or ERROR if the host is unknown, no privileged ports are available, the routine is
unable to connect to the host, or the child process cannot be spawned.

SEE ALSO rlogLib, iam(), logout()

rlogind()

NAME rlogind() – the VxWorks remote login daemon

SYNOPSIS void rlogind (void)

DESCRIPTION This routine provides a facility for remote users to log in to VxWorks over the network. If
INCLUDE_RLOGIN is defined, rlogind() is spawned by rlogInit() at boot time.

Remote login requests will cause stdin, stdout, and stderr to be directed away from the
console. When the remote user disconnects, stdin, stdout, and stderr are restored, and the
shell is restarted. The rlogind() routine uses the remote user verification protocol

VxWorks OS Libraries API Reference, 5.5
rlogInit()

1106

specified by the UNIX remote shell daemon documentation, but ignores all the
information except the user name, which is used to set the VxWorks remote identity (see
the manual entry for iam()).

The remote login daemon requires the existence of a pseudo-terminal device, which is
created by rlogInit() before rlogind() is spawned. The rlogind() routine creates two
child processes, tRlogInTask and tRlogOutTask, whenever a remote user is logged in.
These processes exit when the remote connection is terminated.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

RETURNS N/A

SEE ALSO rlogLib, rlogInit(), iam()

rlogInit()

NAME rlogInit() – initialize the remote login facility

SYNOPSIS STATUS rlogInit (void)

DESCRIPTION This routine initializes the remote login facility. It creates a pty (pseudo tty) device and
spawns rlogind(). If INCLUDE_RLOGIN is included, rlogInit() is called automatically at
boot time.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. This restriction does not apply under non-AE versions of VxWorks.

RETURNS OK or ERROR.

SEE ALSO rlogLib, ptyDrv

2: Routines
rmdir()

1107

R

rm()

NAME rm() – remove a file

SYNOPSIS STATUS rm

(

const char * fileName /* name of file to remove */

)

DESCRIPTION This command is provided for UNIX similarity. It simply calls remove().

RETURNS OK, or ERROR if the file cannot be removed.

SEE ALSO usrFsLib, remove(), VxWorks Programmer’s Guide: Target Shell

rmdir()

NAME rmdir() – remove a directory

SYNOPSIS STATUS rmdir

(

const char * dirName /* name of directory to remove */

)

DESCRIPTION This command removes an existing directory from a hierarchical file system. The dirName
string specifies the name of the directory to be removed, and may be either a full or
relative pathname.

This call is supported by the VxWorks NFS and dosFs file systems.

RETURNS OK, or ERROR if the directory cannot be removed.

SEE ALSO usrFsLib, mkdir(), VxWorks Programmer’s Guide: Target Shell

VxWorks OS Libraries API Reference, 5.5
rngBufGet()

1108

rngBufGet()

NAME rngBufGet() – get characters from a ring buffer

SYNOPSIS int rngBufGet

(

RING_ID rngId, /* ring buffer to get data from */

char * buffer, /* pointer to buffer to receive data */

int maxbytes /* maximum number of bytes to get */

)

DESCRIPTION This routine copies bytes from the ring buffer rngId into buffer. It copies as many bytes as
are available in the ring, up to maxbytes. The bytes copied will be removed from the ring.

RETURNS The number of bytes actually received from the ring buffer; it may be zero if the ring
buffer is empty at the time of the call.

SEE ALSO rngLib

rngBufPut()

NAME rngBufPut() – put bytes into a ring buffer

SYNOPSIS int rngBufPut

(

RING_ID rngId, /* ring buffer to put data into */

char * buffer, /* buffer to get data from */

int nbytes /* number of bytes to try to put */

)

DESCRIPTION This routine puts bytes from buffer into ring buffer ringId. The specified number of bytes
will be put into the ring, up to the number of bytes available in the ring.

RETURNS The number of bytes actually put into the ring buffer; it may be less than number
requested, even zero, if there is insufficient room in the ring buffer at the time of the call.

SEE ALSO rngLib

2: Routines
rngDelete()

1109

R

rngCreate()

NAME rngCreate() – create an empty ring buffer

SYNOPSIS RING_ID rngCreate

(

int nbytes /* number of bytes in ring buffer */

)

DESCRIPTION This routine creates a ring buffer of size nbytes, and initializes it. Memory for the buffer is
allocated from the system memory partition.

RETURNS The ID of the ring buffer, or NULL if memory cannot be allocated.

SEE ALSO rngLib

rngDelete()

NAME rngDelete() – delete a ring buffer

SYNOPSIS void rngDelete

(

RING_ID ringId /* ring buffer to delete */

)

DESCRIPTION This routine deletes a specified ring buffer. Any data currently in the buffer will be lost.

RETURNS N/A

SEE ALSO rngLib

VxWorks OS Libraries API Reference, 5.5
rngFlush()

1110

rngFlush()

NAME rngFlush() – make a ring buffer empty

SYNOPSIS void rngFlush

(

RING_ID ringId /* ring buffer to initialize */

)

DESCRIPTION This routine initializes a specified ring buffer to be empty. Any data currently in the buffer
will be lost.

RETURNS N/A

SEE ALSO rngLib

rngFreeBytes()

NAME rngFreeBytes() – determine the number of free bytes in a ring buffer

SYNOPSIS int rngFreeBytes

(

RING_ID ringId /* ring buffer to examine */

)

DESCRIPTION This routine determines the number of bytes currently unused in a specified ring buffer.

RETURNS The number of unused bytes in the ring buffer.

SEE ALSO rngLib

2: Routines
rngIsFull()

1111

R

rngIsEmpty()

NAME rngIsEmpty() – test if a ring buffer is empty

SYNOPSIS BOOL rngIsEmpty

(

RING_ID ringId /* ring buffer to test */

)

DESCRIPTION This routine determines if a specified ring buffer is empty.

RETURNS TRUE if empty, FALSE if not.

SEE ALSO rngLib

rngIsFull()

NAME rngIsFull() – test if a ring buffer is full (no more room)

SYNOPSIS BOOL rngIsFull

(

RING_ID ringId /* ring buffer to test */

)

DESCRIPTION This routine determines if a specified ring buffer is completely full.

RETURNS TRUE if full, FALSE if not.

SEE ALSO rngLib

VxWorks OS Libraries API Reference, 5.5
rngMoveAhead()

1112

rngMoveAhead()

NAME rngMoveAhead() – advance a ring pointer by n bytes

SYNOPSIS void rngMoveAhead

(

RING_ID ringId, /* ring buffer to be advanced */

int n /* number of bytes ahead to move input pointer */

)

DESCRIPTION This routine advances the ring buffer input pointer by n bytes. This makes n bytes
available in the ring buffer, after having been written ahead in the ring buffer with
rngPutAhead().

RETURNS N/A

SEE ALSO rngLib

rngNBytes()

NAME rngNBytes() – determine the number of bytes in a ring buffer

SYNOPSIS int rngNBytes

(

RING_ID ringId /* ring buffer to be enumerated */

)

DESCRIPTION This routine determines the number of bytes currently in a specified ring buffer.

RETURNS The number of bytes filled in the ring buffer.

SEE ALSO rngLib

2: Routines
romStart()

1113

R

rngPutAhead()

NAME rngPutAhead() – put a byte ahead in a ring buffer without moving ring pointers

SYNOPSIS void rngPutAhead

(

RING_ID ringId, /* ring buffer to put byte in */

char byte, /* byte to be put in ring */

int offset /* offset beyond next input byte where to */

/* put byte */

)

DESCRIPTION This routine writes a byte into the ring, but does not move the ring buffer pointers. Thus
the byte will not yet be available to rngBufGet() calls. The byte is written offset bytes
ahead of the next input location in the ring. Thus, an offset of 0 puts the byte in the same
position as RNG_ELEM_PUT would, except that the input pointer is not updated.

Bytes written ahead in the ring buffer with this routine can be made available all at once
by subsequently moving the ring buffer pointers with the routine rngMoveAhead().

Before calling rngPutAhead(), the caller must verify that at least offset + 1 bytes are
available in the ring buffer.

RETURNS N/A

SEE ALSO rngLib

romStart()

NAME romStart() – generic ROM initialization

SYNOPSIS void romStart

(

int startType /* start type */

)

DESCRIPTION This is the first C code executed after reset.

This routine is called by the assembly start-up code in romInit(). It clears memory, copies
ROM to RAM, and possibly invokes the uncompresser. It then jumps to the entry point of
the uncompressed object code.

VxWorks OS Libraries API Reference, 5.5
round()

1114

RETURNS N/A

SEE ALSO bootInit

round()

NAME round() – round a number to the nearest integer

SYNOPSIS double round

(

double x /* value to round */

)

DESCRIPTION This routine rounds a double-precision value x to the nearest integral value.

INCLUDE FILES math.h

RETURNS The double-precision representation of x rounded to the nearest integral value.

SEE ALSO mathALib

roundf()

NAME roundf() – round a number to the nearest integer

SYNOPSIS float roundf

(

float x /* argument */

)

DESCRIPTION This routine rounds a single-precision value x to the nearest integral value.

INCLUDE FILES math.h

RETURNS The single-precision representation of x rounded to the nearest integral value.

SEE ALSO mathALib

2: Routines
routeAdd()

1115

R

routeAdd()

NAME routeAdd() – add a route

SYNOPSIS STATUS routeAdd

(

char * destination, /* inet addr or name of route destination */

char * gateway /* inet addr or name of gateway to destination */

)

DESCRIPTION This routine adds gateways to the network routing tables. It is called from a VxWorks
machine that needs to establish a gateway to a destination network (or machine).

You can specify both destination and gateway in standard Internet address format (for
example, 90.0.0.2), or you can specify them using their host names, as specified with
hostAdd().

This routine can be used to add multiple routes to the same destination differing by the
gateway.

EXAMPLE Consider the following example:

-> routeAdd "90.0.0.0", "gate"

This call tells VxWorks that the machine with the host name “gate” is the gateway to
network 90.0.0.0. The host “gate” must already have been created by hostAdd().

Consider the following example:

-> routeAdd "90.0.0.0", "91.0.0.3"

This call tells VxWorks that the machine with the Internet address 91.0.0.3 is the gateway
to network 90.0.0.0.

Consider the following example:

-> routeAdd "destination", "gate"

This call tells VxWorks that the machine with the host name “gate” is the gateway to the
machine named “destination”. The host names “gate” and “destination” must already
have been created by hostAdd().

Consider the following example:

-> routeAdd "0", "gate"

This call tells VxWorks that the machine with the host name “gate” is the default gateway.
The host “gate” must already have been created by hostAdd(). A default gateway is
where Internet Protocol (IP) datagrams are routed when there is no specific routing table
entry available for the destination IP network or host.

VxWorks OS Libraries API Reference, 5.5
routeDelete()

1116

RETURNS OK or ERROR.

SEE ALSO routeLib

routeDelete()

NAME routeDelete() – delete a route

SYNOPSIS STATUS routeDelete

(

char * destination, /* inet addr or name of route destination */

char * gateway /* inet addr or name of gateway to destination */

)

DESCRIPTION This routine deletes a specified route from the network routing tables.

RETURNS OK or ERROR.

SEE ALSO routeLib, routeAdd()

routeEntryAdd()

NAME routeEntryAdd() – insert a route in the routing table

SYNOPSIS STATUS routeEntryAdd

(

ROUTE_DESC * pRouteDesc /* information for new route entry */

)

DESCRIPTION This routine adds a route to the routing table. The pRouteDesc argument must include a
destination address, gateway, and protocol identifier. If that argument does not include a
netmask or specifies a netmask value of 0, the system creates a host-specific route entry.
The value1 through value5, and routeTag fields store arbitrary values for the new entry. The
required weight field indicates the relative priority of the route (from 1 to 255) in case other
entries to the same destination exist. The route with the lowest weight is visible to the IP
forwarding process. A value of 0 will create an entry with the default weight value.

2: Routines
routeEntryDel()

1117

R

This routine ignores any values in the flags, pIf, and pData fields in the provided structure.
If the add attempt is successful, the system sends callback messages and routing socket
messages announcing the existence of the new route.

RETURNS OK on success and ERROR on failure.

SEE ALSO routeEntryLib

routeEntryDel()

NAME routeEntryDel() – remove a route from the routing table

SYNOPSIS STATUS routeEntryDel

(

ROUTE_DESC * pRouteDesc /* information for deleted route */

)

DESCRIPTION This routine deletes a route in the routing table. The pRouteDesc argument must include a
destination address. If that argument does not include a netmask or specifies a netmask
value of 0, the system attempts to delete a host-specific route to the destination. If a route
which matches the destination and netmask exists, a protocol ID of zero attempts to delete
that entry (which is visible to the IP forwarding process) if the gateway value is not equal
to zero. Otherwise, the system attempts to remove the first (lowest weight) entry which
matches the provided protocol, or a specific entry within the first protocol group which
also matches the supplied gateway address.

NOTE: This routine stores the actual gateway value in the pRouteDesc structure, so the
corresponding buffer must be supplied even if no specific value is assigned. This routine
does not use any fields in the pRouteDesc structure except the destination, gateway,
netmask and protocol ID.

RETURNS OK on success, ERROR on failure

SEE ALSO routeEntryLib

VxWorks OS Libraries API Reference, 5.5
routeEntryLookup()

1118

routeEntryLookup()

NAME routeEntryLookup() – find a matching route for a destination

SYNOPSIS STATUS routeEntryLookup

(

struct sockaddr * pDest, /* IP address reachable with matching route */

ULONG * pMask, /* netmask value, in network byte order */

int protoId, /* route source from m2Lib.h, or 0 for any. */

ROUTE_DESC * pRouteDesc /* information for matching route */

)

DESCRIPTION This routine searches the routing table for an entry which covers the specified destination
address. It provides four types of searches based on the values of the protoId and pMask
arguments.

If no mask is present (pMask is NULL) the search finds the matching entry with the longest
netmask. Otherwise, the search ignores entries whose netmasks permit a match against
the destination but do not equal the given value. Likewise, if protoId is not zero, the search
restricts the possible matches to the specified route source.

Mask values of zero and 0xffffffff both indicate a host-specific route.

If neither value is specified, the search duplicates the results of the IP forwarding process
for the destination (assuming no type-of-service match is required). It retrieves the
matching entry with the longest netmask, regardless of the source which created it.

In all cases, if multiple entries match the search criteria, this routine selects the oldest one.

The chosen entry is copied into the supplied pRouteDesc structure, which is not modified if
the search fails.

RETURNS OK if a route is found, or ERROR otherwise.

SEE ALSO routeEntryLib

2: Routines
routeModify()

1119

R

routeModify()

NAME routeModify() – change an entry in the routing table

SYNOPSIS STATUS routeModify

(

ROUTE_DESC * pRouteDesc, /* information for matching route */

struct sockaddr * pNewGateway /* new gateway, NULL if unchanged */

)

DESCRIPTION This routine searches the routing table for an entry which matches the destination address
and netmask in the pRouteDesc structure. If the route descriptor structure does not include
a netmask, it selects the longest netmask for the matching destination. A netmask value of
zero searches for a host-specific route to the destination. A protocol ID of zero selects the
first entry which matches the destination address and any netmask value. Otherwise, the
search finds the route with the specified protocol. The retrieved route also matches any
specified gateway value.

The pNewGateway argument supplies an optional replacement gateway address. The new
address must be reachable through one of the local interfaces or the modification fails. The
modification also fails if the destination address is not specified or if no route which
matches the search criteria is found.

Once a route is chosen, this routine replaces the current metric values, route weight, and
route tag with the corresponding entries in the pRouteDesc structure. The pointers for the
interface and additional data in the pRouteDesc argument are not used. The route flags are
also not changed.

NOTE: Changing the weight of a route will reorganize any duplicate routes and may alter
which entry is visible to the IP forwarding process.

RETURNS OK if a route is found and changed, or ERROR otherwise.

SEE ALSO routeEntryLib

VxWorks OS Libraries API Reference, 5.5
routeNetAdd()

1120

routeNetAdd()

NAME routeNetAdd() – add a route to a destination that is a network

SYNOPSIS STATUS routeNetAdd

(

char * destination, /* inet addr or name of network destination */

char * gateway /* inet addr or name of gateway to destination */

)

DESCRIPTION This routine is equivalent to routeAdd(), except that the destination address is assumed
to be a network. This is useful for adding a route to a sub-network that is not on the same
overall network as the local network.

This routine can be used to add multiple routes to the same destination differing by the
gateway.

RETURNS OK or ERROR.

SEE ALSO routeLib

routeShow()

NAME routeShow() – display all IP routes (summary information)

SYNOPSIS void routeShow (void)

DESCRIPTION This routine displays the list of destinations in the routing table along with the next-hop
gateway and associated interface for each entry. It separates the routes into network
routes and host-specific entries, but does not display the netmask for a route since it was
created for class-based routes which used predetermined values for that field.

The IP forwarding process will only use the first route entry to a destination. When
multiple routes exist to the same destination with the same netmask (which is not shown),
the first route entry uses the lowest administrative weight. The remaining entries (listed as
additional routes) use the same destination address. One of those entries will replace the
primary route if it is deleted.

EXAMPLE -> routeShow
ROUTE NET TABLE
Destination Gateway Flags Refcnt Use Interface

2: Routines
routeShow()

1121

R

--
90.0.0.0 90.0.0.63 0x1 1 142 enp0
10.0.0.0 90.0.0.70 0x1 1 142 enp0
Additional routes to 10.0.0.0:

80.0.0.70 0x1 0 120 enp1
--
ROUTE HOST TABLE
Destination Gateway Flags Refcnt Use Interface
--
127.0.0.1 127.0.0.1 0x101 0 82 lo0
--

The flags field represents a decimal value of the flags specified for a given route. The
following is a list of currently available flag values:

In the above display example, the entry in the ROUTE NET TABLE has a flag value of 1,
which indicates that this route is “up” and usable and network specific (the 0x4 bit is
turned off). The entry in the ROUTE HOST TABLE has a flag value of 5 (0x1 OR’ed with
0x4), which indicates that this route is “up” and usable and host-specific.

Some configuration is required when this routine is to be used remotely over the network,
e.g., through a telnet session or through the host shell using WDB_COMM_NETWORK. If,
more than 5 routes are expected in the table the parameter RT_BUFFERED_DISPLAY
should be set to TRUE to prevent a possible deadlock. This requires a buffer whose size
can be set with RT_DISPLAY_MEMORY. It will limit the number of routes that can be
displayed (each route requires approx. 70 bytes).

RETURNS N/A

SEE ALSO netShow

0x1 - route is usable (that is, “up”)
0x2 - destination is a gateway
0x4 - host specific routing entry
0x8 - host or net unreachable
0x10 - created dynamically (by redirect)
0x20 - modified dynamically (by redirect)
0x40 - message confirmed
0x80 - subnet mask present
0x100 - generate new routes on use
0x200 - external daemon resolves name
0x400 - generated by ARP
0x800 - manually added (static)
0x1000 - just discard packets (during updates)
0x2000 - modified by management protocol
0x4000 - protocol specific routing flag
0x8000 - protocol specific routing flag

VxWorks OS Libraries API Reference, 5.5
routestatShow()

1122

routestatShow()

NAME routestatShow() – display routing statistics

SYNOPSIS void routestatShow (void)

DESCRIPTION This routine displays routing statistics.

RETURNS N/A

SEE ALSO netShow

routeStorageUnbind()

NAME routeStorageUnbind() – remove a registered handler from the routing system

SYNOPSIS STATUS routeStorageUnbind

(

void * pCookie /* identifier from routeStorageBind() routine */

)

DESCRIPTION A routing protocol uses this routine to prevent a registered function from receiving any
callback messages. Any data accessible with the extra argument to that function must be
maintained until this routine completes successfully.

RETURNS OK if removal succeeds, or ERROR otherwise.

SEE ALSO routeMessageLib

2: Routines
routeTableWalk()

1123

R

routeTableWalk()

NAME routeTableWalk() – traverse the IP routing table

SYNOPSIS STATUS routeTableWalk

(

struct sockaddr * pDest, /* destination address, or NULL if none. */

int protoId, /* route source, or 0 for any. */

VOIDFUNCPTR pFunc, /* callback function */

void * pArg /* optional callback function argument */

)

DESCRIPTION This routine applies the provided function to every entry in the IP routing table which
meets the criteria indicated by the pDestand protoId arguments. If a destination address is
specified, the given function executes for each route table entry which matches the
destination. If a protocol identifier is supplied, the function executes for each entry created
by the protocol instead. If no value is specified, the routine displays every entry in the
table. The supplied argument pArg is passed back to callback function.

RETURNS OK if traversal completes, or ERROR otherwise.

NOTE: Only one of the two values pDest and protoId should be specified. Specifying both
results in ERROR being returned.

NOTE: The provided routine executes while the system holds internal locks which restrict
all network stack activity and any routing operations to the calling task. That routine
MUST NOT perform any operations which alter the existing routing table. This walk
routine relies on a fixed order of all route entries to complete. Creating or removing route
entries could corrupt the table, causing the calling task to enter an endless loop or halt
completely. That behavior would deadlock the entire network system, since other tasks
would wait indefinitely for the unavailable locks.

SEE ALSO routeEntryLib

VxWorks OS Libraries API Reference, 5.5
rpcInit()

1124

rpcInit()

NAME rpcInit() – initialize the RPC package

SYNOPSIS STATUS rpcInit (void)

DESCRIPTION This routine must be called before any task can use the RPC facility; it spawns the
portmap daemon. It is called automatically if INCLUDE_RPC is defined.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. This restriction does not apply under non-AE versions of VxWorks.

RETURNS OK, or ERROR if the portmap daemon cannot be spawned.

SEE ALSO rpcLib

rpcTaskInit()

NAME rpcTaskInit() – initialize a task’s access to the RPC package

SYNOPSIS STATUS rpcTaskInit (void)

DESCRIPTION This routine must be called by a task before it makes any calls to other routines in the RPC
package.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. This restriction does not apply under non-AE versions of VxWorks.

RETURNS OK, or ERROR if there is insufficient memory or the routine is unable to add a task delete
hook.

SEE ALSO rpcLib

2: Routines
rt11FsDateSet()

1125

R

rresvport()

NAME rresvport() – open a socket with a privileged port bound to it

SYNOPSIS int rresvport

(

int * alport /* port number to initially try */

)

DESCRIPTION This routine opens a socket with a privileged port bound to it. It is analogous to the UNIX
routine rresvport().

RETURNS A socket descriptor, or ERROR if either the socket cannot be opened or all ports are in use.

SEE ALSO remLib, UNIX BSD 4.3 manual entry for rresvport()

rt11FsDateSet()

NAME rt11FsDateSet() – set the rt11Fs file system date

SYNOPSIS void rt11FsDateSet

(

int year, /* year (72...03 (RT-11’s days are numbered)) */

int month, /* month (0, or 1...12) */

int day /* day (0, or 1...31) */

)

DESCRIPTION This routine sets the date for the rt11Fs file system, which remains in effect until changed.
All files created are assigned this creation date.

To set a blank date, invoke the command:

rt11FsDateSet (72, 0, 0); /* a date outside RT-11’s epoch */

NOTE: No automatic incrementing of the date is performed; each new date must be set
with a call to this routine.

RETURNS N/A

SEE ALSO rt11FsLib

VxWorks OS Libraries API Reference, 5.5
rt11FsDevInit()

1126

rt11FsDevInit()

NAME rt11FsDevInit() – initialize the rt11Fs device descriptor

SYNOPSIS RT_VOL_DESC *rt11FsDevInit

(

char * devName, /* device name */

BLK_DEV * pBlkDev, /* pointer to block device info */

BOOL rt11Fmt, /* TRUE if RT-11 skew & interleave */

int nEntries, /* no. of dir entries incl term entry */

BOOL changeNoWarn /* TRUE if no disk change warning */

)

DESCRIPTION This routine initializes the device descriptor. The pBlkDev parameter is a pointer to an
already-created BLK_DEV device structure. This structure contains definitions for various
aspects of the physical device format, as well as pointers to the sector read, sector write,
ioctl(), status check, and reset functions for the device.

The rt11Fmt parameter is TRUE if the device is to be accessed using standard RT-11 skew
and interleave.

The device directory will consist of one segment able to contain at least as many files as
specified by nEntries. If nEntries is equal to RT_FILES_FOR_2_BLOCK_SEG, strict RT-11
compatibility is maintained.

The changeNoWarn parameter is TRUE if the disk may be changed without announcing the
change via rt11FsReadyChange(). Setting changeNoWarn to TRUE causes the disk to be
regularly remounted, in case it has been changed. This results in a significant performance
penalty.

NOTE: An ERROR is returned if rt11Fmt is TRUE and the bd_blksPerTrack (sectors per
track) field in the BLK_DEV structure is odd. This is because an odd number of sectors per
track is incompatible with the RT-11 interleaving algorithm.

RETURNS A pointer to the volume descriptor (RT_VOL_DESC), or NULL if invalid device parameters
were specified, or the routine runs out of memory.

SEE ALSO rt11FsLib

2: Routines
rt11FsMkfs()

1127

R

rt11FsInit()

NAME rt11FsInit() – prepare to use the rt11Fs library

SYNOPSIS STATUS rt11FsInit

(

int maxFiles /* max no. of simultaneously open rt11Fs files */

)

DESCRIPTION This routine initializes the rt11Fs library. It must be called exactly once, before any other
routine in the library. The maxFiles parameter specifies the number of rt11Fs files that may
be open at once. This routine initializes the necessary memory structures and semaphores.

This routine is called automatically from the root task, usrRoot(), in usrConfig.c when
the configuration macro INCLUDE_RT11FS is defined.

RETURNS OK, or ERROR if memory is insufficient.

SEE ALSO rt11FsLib

rt11FsMkfs()

NAME rt11FsMkfs() – initialize a device and create an rt11Fs file system

SYNOPSIS RT_VOL_DESC *rt11FsMkfs

(

char * volName, /* volume name to use */

BLK_DEV * pBlkDev /* pointer to block device struct */

)

DESCRIPTION This routine provides a quick method of creating an rt11Fs file system on a device. It is
used instead of the two-step procedure of calling rt11FsDevInit() followed by an ioctl()
call with an FIODISKINIT function code.

This routine provides defaults for the rt11Fs parameters expected by rt11FsDevInit(). The
directory size is set to RT_FILES_FOR_2_BLOCK_SEG(defined in rt11FsLib.h). No standard
disk format is assumed; this allows the use of rt11Fs on block devices with an odd number
of sectors per track. The changeNoWarn parameter is defined as FALSE, indicating that the
disk will not be replaced without rt11FsReadyChange() being called first.

VxWorks OS Libraries API Reference, 5.5
rt11FsModeChange()

1128

If different values are needed for any of these parameters, the routine rt11FsDevInit()
must be used instead of this routine, followed by a request for disk initialization using the
ioctl() function FIODISKINIT.

RETURNS A pointer to an rt11Fs volume descriptor (RT_VOL_DESC), or NULL if there is an error.

SEE ALSO rt11FsLib, rt11FsDevInit()

rt11FsModeChange()

NAME rt11FsModeChange() – modify the mode of an rt11Fs volume

SYNOPSIS void rt11FsModeChange

(

RT_VOL_DESC * vdptr, /* pointer to volume descriptor */

int newMode /* O_RDONLY, O_WRONLY, or O_RDWR (both) */

)

DESCRIPTION This routine sets the volume descriptor mode to newMode. It should be called whenever
the read and write capabilities are determined, usually after a ready change. See the
manual entry for rt11FsReadyChange().

The rt11FsDevInit() routine initially sets the mode to O_RDWR, (e.g., both O_RDONLY
and O_WRONLY).

RETURNS N/A

SEE ALSO rt11FsLib, rt11FsDevInit(), rt11FsReadyChange()

rt11FsReadyChange()

NAME rt11FsReadyChange() – notify rt11Fs of a change in ready status

SYNOPSIS void rt11FsReadyChange

(

RT_VOL_DESC * vdptr /* pointer to device descriptor */

)

2: Routines
rt11FsReadyChange()

1129

R

DESCRIPTION This routine sets the volume descriptor state to RT_VD_READY_CHANGED. It should be
called whenever a driver senses that a device has come on-line or gone off-line (e.g., a disk
has been inserted or removed).

RETURNS N/A

SEE ALSO rt11FsLib

VxWorks OS Libraries API Reference, 5.5
s()

1130

s()

NAME s() – single-step a task

SYNOPSIS STATUS s

(

int taskNameOrId, /* task to step; 0 = use default */

INSTR * addr, /* address to step to; 0 = next instruction */

)

DESCRIPTION This routine single-steps a task that is stopped at a breakpoint.

To execute, enter:

-> s [task[,addr[,addr1]]]

If task is omitted or zero, the last task referenced is assumed. If addr is non-zero, then the
program counter is changed to addr; if addr1 is non-zero, the next program counter is
changed to addr1, and the task is stepped.

WARNING: When a task is continued, s() does not distinguish between a suspended task
or a task suspended by the debugger. Therefore, its use should be restricted to only those
tasks being debugged.

RETURNS OK, or ERROR if the debugging package is not installed, the task cannot be found, or the
task is not suspended.

SEE ALSO dbgLib, VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s Guide: Shell

scanf()

NAME scanf() – read and convert characters from the standard input stream (ANSI)

SYNOPSIS int scanf

(

char const * fmt, /* format string */

... /* arguments to format string */

)

DESCRIPTION This routine reads input from the standard input stream under the control of the string
fmt. It is equivalent to fscanf() with an fp argument of stdin.

2: Routines
sched_get_priority_max()

1131

S

INCLUDE FILES stdio.h

RETURNS The number of input items assigned, which can be fewer than provided for, or even zero,
in the event of an early matching failure; or EOF if an input failure occurs before any
conversion.

SEE ALSO ansiStdio, fscanf(), sscanf()

sched_get_priority_max()

NAME sched_get_priority_max() – get the maximum priority (POSIX)

SYNOPSIS int sched_get_priority_max

(

int policy /* scheduling policy */

)

DESCRIPTION This routine returns the value of the highest possible task priority for a specified
scheduling policy (SCHED_FIFO or SCHED_RR).

NOTE: If the global variable posixPriorityNumbering is FALSE, the VxWorks native
priority numbering scheme is used, in which higher priorities are indicated by smaller
numbers. This is different than the priority numbering scheme specified by POSIX, in
which higher priorities are indicated by larger numbers.

RETURNS Maximum priority value, or -1 (ERROR) on error.

ERRNO EINVAL
 - invalid scheduling policy.

SEE ALSO schedPxLib

VxWorks OS Libraries API Reference, 5.5
sched_get_priority_min()

1132

sched_get_priority_min()

NAME sched_get_priority_min() – get the minimum priority (POSIX)

SYNOPSIS int sched_get_priority_min

(

int policy /* scheduling policy */

)

DESCRIPTION This routine returns the value of the lowest possible task priority for a specified
scheduling policy (SCHED_FIFO or SCHED_RR).

NOTE: If the global variable posixPriorityNumbering is FALSE, the VxWorks native
priority numbering scheme is used, in which higher priorities are indicated by smaller
numbers. This is different than the priority numbering scheme specified by POSIX, in
which higher priorities are indicated by larger numbers.

RETURNS Minimum priority value, or -1 (ERROR) on error.

ERRNO EINVAL
 - invalid scheduling policy.

SEE ALSO schedPxLib

sched_getparam()

NAME sched_getparam() – get the scheduling parameters for a specified task (POSIX)

SYNOPSIS int sched_getparam

(

pid_t tid, /* task ID */

struct sched_param * param /* scheduling param to store priority */

)

DESCRIPTION This routine gets the scheduling priority for a specified task, tid. If tid is 0, it gets the
priority of the calling task. The task’s priority is copied to the sched_param structure
pointed to by param.

2: Routines
sched_getscheduler()

1133

S

NOTE: If the global variable posixPriorityNumbering is FALSE, the VxWorks native
priority numbering scheme is used, in which higher priorities are indicated by smaller
numbers. This is different than the priority numbering scheme specified by POSIX, in
which higher priorities are indicated by larger numbers.

RETURNS 0 (OK) if successful, or -1 (ERROR) on error.

ERRNO ESRCH
 - invalid task ID.

SEE ALSO schedPxLib

sched_getscheduler()

NAME sched_getscheduler() – get the current scheduling policy (POSIX)

SYNOPSIS int sched_getscheduler

(

pid_t tid /* task ID */

)

DESCRIPTION This routine returns the currents scheduling policy (i.e., SCHED_FIFO or SCHED_RR).

RETURNS Current scheduling policy (SCHED_FIFO or SCHED_RR), or -1 (ERROR) on error.

ERRNO ESRCH
 - invalid task ID.

SEE ALSO schedPxLib

VxWorks OS Libraries API Reference, 5.5
sched_rr_get_interval()

1134

sched_rr_get_interval()

NAME sched_rr_get_interval() – get the current time slice (POSIX)

SYNOPSIS int sched_rr_get_interval

(

pid_t tid, /* task ID */

struct timespec * interval /* struct to store time slice */

)

DESCRIPTION This routine sets interval to the current time slice period if round-robin scheduling is
currently enabled.

RETURNS 0 (OK) if successful, -1 (ERROR) on error.

ERRNO EINVAL
 - round-robin scheduling is not currently enabled.
ESRCH
 - invalid task ID.

SEE ALSO schedPxLib

sched_setparam()

NAME sched_setparam() – set a task’s priority (POSIX)

SYNOPSIS int sched_setparam

(

pid_t tid, /* task ID */

const struct sched_param * param /* scheduling parameter */

)

DESCRIPTION This routine sets the priority of a specified task, tid. If tid is 0, it sets the priority of the
calling task. Valid priority numbers are 0 through 255.

The param argument is a structure whose member sched_priority is the integer priority
value. For example, the following program fragment sets the calling task’s priority to 13
using POSIX interfaces:

#include "sched.h"

...

2: Routines
sched_setscheduler()

1135

S

struct sched_param AppSchedPrio;

...

AppSchedPrio.sched_priority = 13;

if (sched_setparam (0, &AppSchedPrio) != OK)

{

... /* recovery attempt or abort message */

}

...

NOTE: If the global variable posixPriorityNumbering is FALSE, the VxWorks native
priority numbering scheme is used, in which higher priorities are indicated by smaller
numbers. This is different than the priority numbering scheme specified by POSIX, in
which higher priorities are indicated by larger numbers.

RETURNS 0 (OK) if successful, or -1 (ERROR) on error.

ERRNO EINVAL
 - scheduling priority is outside valid range.
ESRCH
 - task ID is invalid.

SEE ALSO schedPxLib

sched_setscheduler()

NAME sched_setscheduler() – set scheduling policy and scheduling parameters (POSIX)

SYNOPSIS int sched_setscheduler

(

pid_t tid, /* task ID */

int policy, /* scheduling policy requested */

const struct sched_param * param /* scheduling parameters requested */

)

DESCRIPTION This routine sets the scheduling policy and scheduling parameters for a specified task, tid.
If tid is 0, it sets the scheduling policy and scheduling parameters for the calling task.

Because VxWorks does not set scheduling policies (e.g., round-robin scheduling) on a
task-by-task basis, setting a scheduling policy that conflicts with the current system policy
simply fails and errno is set to EINVAL. If the requested scheduling policy is the same as
the current system policy, then this routine acts just like sched_setparam().

VxWorks OS Libraries API Reference, 5.5
sched_yield()

1136

NOTE: If the global variable posixPriorityNumbering is FALSE, the VxWorks native
priority numbering scheme is used, in which higher priorities are indicated by smaller
numbers. This is different than the priority numbering scheme specified by POSIX, in
which higher priorities are indicated by larger numbers.

RETURNS The previous scheduling policy (SCHED_FIFO or SCHED_RR), or -1 (ERROR) on error.

ERRNO EINVAL
 - scheduling priority is outside valid range, or it is impossible to set
 the specified scheduling policy.
ESRCH
 - invalid task ID.

SEE ALSO schedPxLib

sched_yield()

NAME sched_yield() – relinquish the CPU (POSIX)

SYNOPSIS int sched_yield (void)

DESCRIPTION This routine forces the running task to give up the CPU.

RETURNS 0 (OK) if successful, or -1 (ERROR) on error.

SEE ALSO schedPxLib

scsi2IfInit()

NAME scsi2IfInit() – initialize the SCSI-2 interface to scsiLib

SYNOPSIS void scsi2IfInit ()

DESCRIPTION This routine initializes the SCSI-2 function interface by adding all the routines in scsi2Lib
plus those in scsiDirectLib and scsiCommonLib. It is invoked by usrConfig.c if the
macro INCLUDE_SCSI2 is defined in config.h. The calling interface remains the same

2: Routines
scsiBlkDevCreate()

1137

S

between SCSI-1 and SCSI-2; this routine simply sets the calling interface function pointers
to the SCSI-2 functions.

RETURNS N/A

SEE ALSO scsi2Lib

scsiAutoConfig()

NAME scsiAutoConfig() – configure all devices connected to a SCSI controller

SYNOPSIS STATUS scsiAutoConfig

(

SCSI_CTRL * pScsiCtrl /* ptr to SCSI controller info */

)

DESCRIPTION This routine cycles through all valid SCSI bus IDs and logical unit numbers (LUNs),
attempting a scsiPhysDevCreate() with default parameters on each. All devices which
support the INQUIRY command are configured. The scsiShow() routine can be used to
find the system table of SCSI physical devices attached to a specified SCSI controller. In
addition, scsiPhysDevIdGet() can be used programmatically to get a pointer to the
SCSI_PHYS_DEV structure associated with the device at a specified SCSI bus ID and LUN.

RETURNS OK, or ERROR if pScsiCtrl and the global variable pSysScsiCtrlare both NULL.

SEE ALSO scsiLib

scsiBlkDevCreate()

NAME scsiBlkDevCreate() – define a logical partition on a SCSI block device

SYNOPSIS BLK_DEV * scsiBlkDevCreate
(
SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device info */
int numBlocks, /* number of blocks in block device */
int blockOffset /* address of first block in volume */
)

VxWorks OS Libraries API Reference, 5.5
scsiBlkDevInit()

1138

DESCRIPTION This routine creates and initializes a BLK_DEV structure, which describes a logical
partition on a SCSI physical-block device. A logical partition is an array of contiguously
addressed blocks; it can be completely described by the number of blocks and the address
of the first block in the partition. In normal configurations partitions do not overlap,
although such a condition is not an error.

NOTE: If numBlocks is 0, the rest of device is used.

RETURNS A pointer to the created BLK_DEV, or NULL if parameters exceed physical device
boundaries, if the physical device is not a block device, or if memory is insufficient for the
structures.

SEE ALSO scsiLib

scsiBlkDevInit()

NAME scsiBlkDevInit() – initialize fields in a SCSI logical partition

SYNOPSIS void scsiBlkDevInit
(
SCSI_BLK_DEV * pScsiBlkDev, /* ptr to SCSI block dev. struct */
int blksPerTrack, /* blocks per track */
int nHeads /* number of heads */
)

DESCRIPTION This routine specifies the disk-geometry parameters required by certain file systems (for
example, dosFs). It is called after a SCSI_BLK_DEV structure is created with
scsiBlkDevCreate(), but before calling a file system initialization routine. It is generally
required only for removable-media devices.

RETURNS N/A

SEE ALSO scsiLib

2: Routines
scsiBusReset()

1139

S

scsiBlkDevShow()

NAME scsiBlkDevShow() – show the BLK_DEV structures on a specified physical device

SYNOPSIS void scsiBlkDevShow

(

SCSI_PHYS_DEV * pScsiPhysDev /* ptr to SCSI physical device info */

)

DESCRIPTION This routine displays all of the BLK_DEV structures created on a specified physical device.
This routine is called by scsiShow() but may also be invoked directly, usually from the
shell.

RETURNS N/A

SEE ALSO scsiLib, scsiShow()

scsiBusReset()

NAME scsiBusReset() – pulse the reset signal on the SCSI bus

SYNOPSIS STATUS scsiBusReset

(

SCSI_CTRL * pScsiCtrl /* ptr to SCSI controller info */

)

DESCRIPTION This routine calls a controller-specific routine to reset a specified controller’s SCSI bus. If
no controller is specified (pScsiCtrl is 0), the value in the global variable pSysScsiCtrl is
used.

RETURNS OK, or ERROR if there is no controller or controller-specific routine.

SEE ALSO scsiLib

VxWorks OS Libraries API Reference, 5.5
scsiCacheSnoopDisable()

1140

scsiCacheSnoopDisable()

NAME scsiCacheSnoopDisable() – inform SCSI that hardware snooping of caches is disabled

SYNOPSIS void scsiCacheSnoopDisable

(

SCSI_CTRL * pScsiCtrl /* pointer to a SCSI_CTRL structure */

)

DESCRIPTION This routine informs the SCSI library that hardware snooping is disabled and that
scsi2Lib should execute any necessary cache coherency code. In order to make scsi2Lib
aware that hardware snooping is disabled, this routine should be called after all SCSI-2
initializations, especially after scsi2CtrlInit().

RETURNS N/A

SEE ALSO scsi2Lib

scsiCacheSnoopEnable()

NAME scsiCacheSnoopEnable() – inform SCSI that hardware snooping of caches is enabled

SYNOPSIS void scsiCacheSnoopEnable

(

SCSI_CTRL * pScsiCtrl /* pointer to a SCSI_CTRL structure */

)

DESCRIPTION This routine informs the SCSI library that hardware snooping is enabled and that scsi2Lib
need not execute any cache coherency code. In order to make scsi2Lib aware that
hardware snooping is enabled, this routine should be called after all SCSI-2 initializations,
especially after scsi2CtrlInit().

RETURNS N/A

SEE ALSO scsi2Lib

2: Routines
scsiCacheSynchronize()

1141

S

scsiCacheSynchronize()

NAME scsiCacheSynchronize() – synchronize the caches for data coherency

SYNOPSIS void scsiCacheSynchronize

(

SCSI_THREAD * pThread, /* ptr to thread info */

SCSI_CACHE_ACTION action /* cache action required */

)

DESCRIPTION This routine performs whatever cache action is necessary to ensure cache coherency with
respect to the various buffers involved in a SCSI command. The process is as follows:

The data buffer for a read command is cleared before the command rather than
invalidated after it because it may share dirty cache lines with data outside the read
buffer. DMA drivers for older versions of the SCSI library have flushed the first and last
bytes of the data buffer before the command. However, this approach is not sufficient
with the enhanced SCSI library because the amount of data transferred into the buffer
may not fill it, which would cause dirty cache lines which contain correct data for the
un-filled part of the buffer to be lost when the buffer is invalidated after the command.

To optimize the performance of the driver in supporting different caching policies, the
routine uses the CACHE_USER_FLUSH macro when flushing the cache. In the absence of a
CACHE_USER_CLEAR macro, the following steps are taken:

Finally, since flushing (clearing) cache line entries for a large data buffer can be
time-consuming, if the data buffer is larger than a preset (run-time configurable) size, the
entire cache is flushed.

RETURNS N/A

SEE ALSO scsi2Lib

1. The buffers for command, identification, and write data, which are simply written to
SCSI, are flushed before the command.

2. The status buffer, which is written and then read, is cleared (flushed and invalidated)
before the command.

3. The data buffer for a read command, which is only read, is cleared before the
command.

1. If there is a non-NULL flush routine in the cacheUserFuncs structure, the cache is
cleared.

2. If there is a non-NULL invalidate routine, the cache is invalidated.
3. Otherwise nothing is done; the cache is assumed to be coherent without any software

intervention.

VxWorks OS Libraries API Reference, 5.5
scsiErase()

1142

scsiErase()

NAME scsiErase() – issue an ERASE command to a SCSI device

SYNOPSIS STATUS scsiErase

(

SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device */

BOOL longErase /* TRUE for entire tape erase */

)

DESCRIPTION This routine issues an ERASE command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

SEE ALSO scsiSeqLib

scsiFormatUnit()

NAME scsiFormatUnit() – issue a FORMAT_UNIT command to a SCSI device

SYNOPSIS STATUS scsiFormatUnit

(

SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device */

BOOL cmpDefectList, /* whether defect list is complete */

int defListFormat, /* defect list format */

int vendorUnique, /* vendor unique byte */

int interleave, /* interleave factor */

char * buffer, /* ptr to input data buffer */

int bufLength /* length of buffer in bytes */

)

DESCRIPTION This routine issues a FORMAT_UNIT command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

SEE ALSO scsiLib

2: Routines
scsiIdentMsgParse()

1143

S

scsiIdentMsgBuild()

NAME scsiIdentMsgBuild() – build an identification message

SYNOPSIS int scsiIdentMsgBuild

(

UINT8 * msg,

SCSI_PHYS_DEV * pScsiPhysDev,

SCSI_TAG_TYPE tagType,

UINT tagNumber

)

DESCRIPTION This routine builds an identification message in the caller’s buffer, based on the specified
physical device, tag type, and tag number.

If the target device does not support messages, there is no identification message to build.

Otherwise, the identification message consists of an IDENTIFY byte plus an optional
QUEUE TAG message (two bytes), depending on the type of tag used.

NOTE: This function is not intended for use by application programs.

RETURNS The length of the resulting identification message in bytes or -1 for ERROR.

SEE ALSO scsi2Lib

scsiIdentMsgParse()

NAME scsiIdentMsgParse() – parse an identification message

SYNOPSIS SCSI_IDENT_STATUS scsiIdentMsgParse

(

SCSI_CTRL * pScsiCtrl,

UINT8 * msg,

int msgLength,

SCSI_PHYS_DEV * * ppScsiPhysDev,

SCSI_TAG * pTagNum

)

VxWorks OS Libraries API Reference, 5.5
scsiInquiry()

1144

DESCRIPTION This routine scans a (possibly incomplete) identification message, validating it in the
process. If there is an IDENTIFY message, it identifies the corresponding physical device.

If the physical device is currently processing an untagged (ITL) nexus, identification is
complete. Otherwise, the identification is complete only if there is a complete QUEUE
TAG message.

If there is no physical device corresponding to the IDENTIFY message, or if the device is
processing tagged (ITLQ) nexuses and the tag does not correspond to an active thread (it
may have been aborted by a timeout, for example), then the identification sequence fails.

The caller’s buffers for physical device and tag number (the results of the identification
process) are always updated. This is required by the thread event handler (see
scsiMgrThreadEvent().)

NOTE: This function is not intended for use by application programs.

RETURNS The identification status (incomplete, complete, or rejected).

SEE ALSO scsi2Lib

scsiInquiry()

NAME scsiInquiry() – issue an INQUIRY command to a SCSI device

SYNOPSIS STATUS scsiInquiry

(

SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device */

char * buffer, /* ptr to input data buffer */

int bufLength /* length of buffer in bytes */

)

DESCRIPTION This routine issues an INQUIRY command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

SEE ALSO scsiLib

2: Routines
scsiLoadUnit()

1145

S

scsiIoctl()

NAME scsiIoctl() – perform a device-specific I/O control function

SYNOPSIS STATUS scsiIoctl

(

SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI block device info */

int function, /* function code */

int arg /* argument to pass called function */

)

DESCRIPTION This routine performs a specified ioctl function using a specified SCSI block device.

RETURNS The status of the request, or ERROR if the request is unsupported.

SEE ALSO scsiLib

scsiLoadUnit()

NAME scsiLoadUnit() – issue a LOAD/UNLOAD command to a SCSI device

SYNOPSIS STATUS scsiLoadUnit

(

SCSI_SEQ_DEV * pScsiSeqDev, /* ptr to SCSI physical device */

BOOL load, /* TRUE=load, FALSE=unload */

BOOL reten, /* TRUE=retention and unload */

BOOL eot /* TRUE=end of tape and unload */

)

DESCRIPTION This routine issues a LOAD/UNLOAD command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

SEE ALSO scsiSeqLib

VxWorks OS Libraries API Reference, 5.5
scsiMgrBusReset()

1146

scsiMgrBusReset()

NAME scsiMgrBusReset() – handle a controller-bus reset event

SYNOPSIS void scsiMgrBusReset

(

SCSI_CTRL * pScsiCtrl /* SCSI ctrlr on which bus reset */

)

DESCRIPTION This routine resets in turn: each attached physical device, each target, and the
controller-finite-state machine. In practice, this routine implements the SCSI hard reset
option.

NOTE: This routine does not physically reset the SCSI bus; see scsiBusReset(). This
routine should not be called by application programs.

RETURNS N/A

SEE ALSO scsiMgrLib

scsiMgrCtrlEvent()

NAME scsiMgrCtrlEvent() – send an event to the SCSI controller state machine

SYNOPSIS void scsiMgrCtrlEvent

(

SCSI_CTRL * pScsiCtrl,

SCSI_EVENT_TYPE eventType

)

DESCRIPTION This routine is called by the thread driver whenever selection, re-selection, or
disconnection occurs or when a thread is activated. It manages a simple finite-state
machine for the SCSI controller.

NOTE: This function should not be called by application programs.

RETURNS N/A

SEE ALSO scsiMgrLib

2: Routines
scsiMgrShow()

1147

S

scsiMgrEventNotify()

NAME scsiMgrEventNotify() – notify the SCSI manager of a SCSI (controller) event

SYNOPSIS STATUS scsiMgrEventNotify

(

SCSI_CTRL * pScsiCtrl, /* pointer to SCSI controller structure */

SCSI_EVENT * pEvent, /* pointer to the SCSI event */

int eventSize /* size of the event information */

)

DESCRIPTION This routine posts an event message on the appropriate SCSI manager queue, then notifies
the SCSI manager that there is a message to be accepted.

NOTE: This routine should not be called by application programs.

No access serialization is required, because event messages are only posted by the SCSI
controller ISR. See the reference entry for scsiBusResetNotify().

RETURNS OK, or ERROR if the SCSI manager’s event queue is full.

SEE ALSO scsiMgrLib, scsiBusResetNotify()

scsiMgrShow()

NAME scsiMgrShow() – show status information for the SCSI manager

SYNOPSIS void scsiMgrShow

(

SCSI_CTRL * pScsiCtrl, /* SCSI controller to use */

BOOL showPhysDevs, /* TRUE => show phys dev details */

BOOL showThreads, /* TRUE => show thread details */

BOOL showFreeThreads /* TRUE => show free thread IDs */

)

DESCRIPTION This routine shows the current state of the SCSI manager for the specified controller,
including the total number of threads created and the number of threads currently free.

VxWorks OS Libraries API Reference, 5.5
scsiMgrThreadEvent()

1148

Optionally, this routine also shows details for all created physical devices on this
controller and all threads for which SCSI requests are outstanding. It also shows the IDs of
all free threads.

NOTE: The information displayed is volatile; this routine is best used when there is no
activity on the SCSI bus. Threads allocated by a client but for which there are no
outstanding SCSI requests are not shown.

RETURNS N/A

SEE ALSO scsiMgrLib

scsiMgrThreadEvent()

NAME scsiMgrThreadEvent() – send an event to the thread state machine

SYNOPSIS void scsiMgrThreadEvent

(

SCSI_THREAD * pThread,

SCSI_THREAD_EVENT_TYPE eventType

)

DESCRIPTION This routine forwards an event to the thread’s physical device. If the event is completion
or deferral, it frees up the tag which was allocated when the thread was activated and
either completes or defers the thread.

NOTE: This function should not be called by application programs.

The thread passed into this function does not have to be an active client thread (it may be
an identification thread).

If the thread has no corresponding physical device, this routine does nothing. (This
occasionally occurs if an unexpected disconnection or bus reset happens when an
identification thread has not yet identified which physical device it corresponds to.

RETURNS N/A

SEE ALSO scsiMgrLib

2: Routines
scsiModeSense()

1149

S

scsiModeSelect()

NAME scsiModeSelect() – issue a MODE_SELECT command to a SCSI device

SYNOPSIS STATUS scsiModeSelect

(

SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device */

int pageFormat, /* value of the page format bit (0-1) */

int saveParams, /* value of the save parameters bit (0-1) */

char * buffer, /* ptr to output data buffer */

int bufLength /* length of buffer in bytes */

)

DESCRIPTION This routine issues a MODE_SELECT command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

SEE ALSO scsiLib

scsiModeSense()

NAME scsiModeSense() – issue a MODE_SENSE command to a SCSI device

SYNOPSIS STATUS scsiModeSense

(

SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device */

int pageControl, /* value of the page control field (0-3) */

int pageCode, /* value of the page code field (0-0x3f) */

char * buffer, /* ptr to input data buffer */

int bufLength /* length of buffer in bytes */

)

DESCRIPTION This routine issues a MODE_SENSE command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

SEE ALSO scsiLib

VxWorks OS Libraries API Reference, 5.5
scsiMsgInComplete()

1150

scsiMsgInComplete()

NAME scsiMsgInComplete() – handle a complete SCSI message received from the target

SYNOPSIS STATUS scsiMsgInComplete

(

SCSI_CTRL * pScsiCtrl, /* ptr to SCSI controller info */

SCSI_THREAD * pThread /* ptr to thread info */

)

DESCRIPTION This routine parses the complete message and takes any necessary action, which may
include setting up an outgoing message in reply. If the message is not understood, the
routine rejects it and returns an ERROR status.

NOTE: This function is intended for use only by SCSI controller drivers.

RETURNS OK, or ERROR if the message is not supported.

SEE ALSO scsi2Lib

scsiMsgOutComplete()

NAME scsiMsgOutComplete() – perform post-processing after a SCSI message is sent

SYNOPSIS STATUS scsiMsgOutComplete

(

SCSI_CTRL * pScsiCtrl, /* ptr to SCSI controller info */

SCSI_THREAD * pThread /* ptr to thread info */

)

DESCRIPTION This routine parses the complete message and takes any necessary action.

NOTE: This function is intended for use only by SCSI controller drivers.

RETURNS OK, or ERROR if the message is not supported.

SEE ALSO scsi2Lib

2: Routines
scsiPhysDevCreate()

1151

S

scsiMsgOutReject()

NAME scsiMsgOutReject() – perform post-processing when an outgoing message is rejected

SYNOPSIS void scsiMsgOutReject

(

SCSI_CTRL * pScsiCtrl, /* ptr to SCSI controller info */

SCSI_THREAD * pThread /* ptr to thread info */

)

DESCRIPTION NOTE: This function is intended for use only by SCSI controller drivers.

RETURNS OK, or ERROR if the message is not supported.

SEE ALSO scsi2Lib

scsiPhysDevCreate()

NAME scsiPhysDevCreate() – create a SCSI physical device structure

SYNOPSIS SCSI_PHYS_DEV * scsiPhysDevCreate

(

SCSI_CTRL * pScsiCtrl, /* ptr to SCSI controller info */

int devBusId, /* device’s SCSI bus ID */

int devLUN, /* device’s logical unit number */

int reqSenseLength, /* length of REQUEST SENSE data dev returns */

int devType, /* type of SCSI device */

BOOL removable, /* whether medium is removable */

int numBlocks, /* number of blocks on device */

int blockSize /* size of a block in bytes */

)

DESCRIPTION This routine enables access to a SCSI device and must be the first routine invoked. It must
be called once for each physical device on the SCSI bus.

If reqSenseLength is NULL (0), one or more REQUEST_SENSE commands are issued to the
device to determine the number of bytes of sense data it typically returns. Note that if the
device returns variable amounts of sense data depending on its state, you must consult
the device manual to determine the maximum amount of sense data that can be returned.

VxWorks OS Libraries API Reference, 5.5
scsiPhysDevDelete()

1152

If devType is NONE (-1), an INQUIRY command is issued to determine the device type; as
an added benefit, it acquires the device’s make and model number. The scsiShow()
routine displays this information. Common values of devType can be found in scsiLib.h or
in the SCSI specification.

If numBlocks or blockSize are specified as NULL (0), a READ_CAPACITY command is issued
to determine those values. This occurs only for device types that support
READ_CAPACITY.

RETURNS A pointer to the created SCSI_PHYS_DEV structure, or NULL if the routine is unable to
create the physical-device structure.

SEE ALSO scsiLib

scsiPhysDevDelete()

NAME scsiPhysDevDelete() – delete a SCSI physical-device structure

SYNOPSIS STATUS scsiPhysDevDelete

(

SCSI_PHYS_DEV * pScsiPhysDev /* ptr to SCSI physical device info */

)

DESCRIPTION This routine deletes a specified SCSI physical-device structure.

RETURNS OK, or ERROR if pScsiPhysDev is NULL or SCSI_BLK_DEVs have been created on the
device.

SEE ALSO scsiLib

scsiPhysDevIdGet()

NAME scsiPhysDevIdGet() – return a pointer to a SCSI_PHYS_DEV structure

SYNOPSIS SCSI_PHYS_DEV * scsiPhysDevIdGet

(

SCSI_CTRL * pScsiCtrl, /* ptr to SCSI controller info */

int devBusId, /* device’s SCSI bus ID */

2: Routines
scsiPhysDevShow()

1153

S

int devLUN /* device’s logical unit number */

)

DESCRIPTION This routine returns a pointer to the SCSI_PHYS_DEV structure of the SCSI physical device
located at a specified bus ID (devBusId) and logical unit number (devLUN) and attached to
a specified SCSI controller (pScsiCtrl).

RETURNS A pointer to the specified SCSI_PHYS_DEV structure, or NULL if the structure does not
exist.

SEE ALSO scsiLib

scsiPhysDevShow()

NAME scsiPhysDevShow() – show status information for a physical device

SYNOPSIS void scsiPhysDevShow

(

SCSI_PHYS_DEV * pScsiPhysDev, /* physical device to be displayed */

BOOL showThreads, /* show IDs of associated threads */

BOOL noHeader /* do not print title line */

)

DESCRIPTION This routine shows the state, the current nexus type, the current tag number, the number
of tagged commands in progress, and the number of waiting and active threads for a SCSI
physical device. Optionally, it shows the IDs of waiting and active threads, if any. This
routine may be called at any time, but note that all of the information displayed is volatile.

RETURNS N/A

SEE ALSO scsi2Lib

VxWorks OS Libraries API Reference, 5.5
scsiRdSecs()

1154

scsiRdSecs()

NAME scsiRdSecs() – read sector(s) from a SCSI block device

SYNOPSIS STATUS scsiRdSecs

(

SCSI_BLK_DEV * pScsiBlkDev, /* ptr to SCSI block device info */

int sector, /* sector number to be read */

int numSecs, /* total sectors to be read */

char * buffer /* ptr to input data buffer */

)

DESCRIPTION This routine reads the specified physical sector(s) from a specified physical device.

RETURNS OK, or ERROR if the sector(s) cannot be read.

SEE ALSO scsiLib

scsiRdTape()

NAME scsiRdTape() – read bytes or blocks from a SCSI tape device

SYNOPSIS int scsiRdTape

(

SCSI_SEQ_DEV * pScsiSeqDev, /* ptr to SCSI sequential device info */

UINT count, /* total bytes or blocks to be read */

char * buffer, /* ptr to input data buffer */

BOOL fixedSize /* if variable size blocks */

)

DESCRIPTION This routine reads the specified number of bytes or blocks from a specified physical
device. If the boolean fixedSize is true, then numBytes represents the number of blocks of
size blockSize, defined in the pScsiPhysDev structure. If variable block sizes are used
(fixedSize = FALSE), then numBytes represents the actual number of bytes to be read.

RETURNS Number of bytes or blocks actually read, 0 if EOF, or ERROR.

SEE ALSO scsiSeqLib

2: Routines
scsiRelease()

1155

S

scsiReadCapacity()

NAME scsiReadCapacity() – issue a READ_CAPACITY command to a SCSI device

SYNOPSIS STATUS scsiReadCapacity

(

SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device */

int * pLastLBA, /* where to return last logical block */

/* address */

int * pBlkLength /* where to return block length */

)

DESCRIPTION This routine issues a READ_CAPACITY command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

SEE ALSO scsiLib

scsiRelease()

NAME scsiRelease() – issue a RELEASE command to a SCSI device

SYNOPSIS STATUS scsiRelease

(

SCSI_PHYS_DEV * pScsiPhysDev /* ptr to SCSI physical device */

)

DESCRIPTION This routine issues a RELEASE command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

SEE ALSO scsiDirectLib

VxWorks OS Libraries API Reference, 5.5
scsiReleaseUnit()

1156

scsiReleaseUnit()

NAME scsiReleaseUnit() – issue a RELEASE UNIT command to a SCSI device

SYNOPSIS STATUS scsiReleaseUnit

(

SCSI_SEQ_DEV * pScsiSeqDev /* ptr to SCSI sequential device */

)

DESCRIPTION This routine issues a RELEASE UNIT command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

SEE ALSO scsiSeqLib

scsiReqSense()

NAME scsiReqSense() – issue a REQUEST_SENSE command to a SCSI device and read results

SYNOPSIS STATUS scsiReqSense

(

SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device */

char * buffer, /* ptr to input data buffer */

int bufLength /* length of buffer in bytes */

)

DESCRIPTION This routine issues a REQUEST_SENSE command to a specified SCSI device and reads the
results.

RETURNS OK, or ERROR if the command fails.

SEE ALSO scsiLib

2: Routines
scsiReserveUnit()

1157

S

scsiReserve()

NAME scsiReserve() – issue a RESERVE command to a SCSI device

SYNOPSIS STATUS scsiReserve

(

SCSI_PHYS_DEV * pScsiPhysDev /* ptr to SCSI physical device */

)

DESCRIPTION This routine issues a RESERVE command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

SEE ALSO scsiDirectLib

scsiReserveUnit()

NAME scsiReserveUnit() – issue a RESERVE UNIT command to a SCSI device

SYNOPSIS STATUS scsiReserveUnit

(

SCSI_SEQ_DEV * pScsiSeqDev /* ptr to SCSI sequential device */

)

DESCRIPTION This routine issues a RESERVE UNIT command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

SEE ALSO scsiSeqLib

VxWorks OS Libraries API Reference, 5.5
scsiRewind()

1158

scsiRewind()

NAME scsiRewind() – issue a REWIND command to a SCSI device

SYNOPSIS STATUS scsiRewind

(

SCSI_SEQ_DEV * pScsiSeqDev /* ptr to SCSI Sequential device */

)

DESCRIPTION This routine issues a REWIND command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

SEE ALSO scsiSeqLib

scsiSeqDevCreate()

NAME scsiSeqDevCreate() – create a SCSI sequential device

SYNOPSIS SEQ_DEV *scsiSeqDevCreate

(

SCSI_PHYS_DEV * pScsiPhysDev /* ptr to SCSI physical device info */

)

DESCRIPTION This routine creates a SCSI sequential device and saves a pointer to this SEQ_DEV in the
SCSI physical device. The following functions are initialized in this structure:

sd_seqRd scsiRdTape()
sd_seqWrt scsiWrtTape()
sd_ioctl scsiIoctl() (in scsiLib)
sd_seqWrtFileMarks scsiWrtFileMarks()
sd_statusChk scsiSeqStatusCheck()
sd_reset (not used)
sd_rewind scsiRewind()
sd_reserve scsiReserve()
sd_release scsiRelease()
sd_readBlkLim scsiSeqReadBlockLimits()
sd_load scsiLoadUnit()
sd_space scsiSpace()
sd_erase scsiErase()

2: Routines
scsiSeqReadBlockLimits()

1159

S

Only one SEQ_DEV per SCSI_PHYS_DEV is allowed, unlike BLK_DEVs where an entire list
is maintained. Therefore, this routine can be called only once per creation of a sequential
device.

RETURNS A pointer to the SEQ_DEV structure, or NULL if the command fails.

SEE ALSO scsiSeqLib

scsiSeqIoctl()

NAME scsiSeqIoctl() – perform an I/O control function for sequential access devices

SYNOPSIS int scsiSeqIoctl

(

SCSI_SEQ_DEV * pScsiSeqDev, /* ptr to SCSI sequential device */

int function, /* ioctl function code */

int arg /* argument to pass to called function */

)

DESCRIPTION This routine issues scsiSeqLib commands to perform sequential device-specific I/O
control operations.

RETURNS OK or ERROR.

ERRNO S_scsiLib_INVALID_BLOCK_SIZE

SEE ALSO scsiSeqLib

scsiSeqReadBlockLimits()

NAME scsiSeqReadBlockLimits() – issue a READ_BLOCK_LIMITS command to a SCSI device

SYNOPSIS STATUS scsiSeqReadBlockLimits

(

SCSI_SEQ_DEV * pScsiSeqDev, /* ptr to SCSI sequential device */

int * pMaxBlockLength, /* where to return maximum block length */

UINT16 * pMinBlockLength /* where to return minimum block length */

)

VxWorks OS Libraries API Reference, 5.5
scsiSeqStatusCheck()

1160

DESCRIPTION This routine issues a READ_BLOCK_LIMITS command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

SEE ALSO scsiSeqLib

scsiSeqStatusCheck()

NAME scsiSeqStatusCheck() – detect a change in media

SYNOPSIS STATUS scsiSeqStatusCheck

(

SCSI_SEQ_DEV * pScsiSeqDev /* ptr to a sequential dev */

)

DESCRIPTION This routine issues a TEST_UNIT_READY command to a SCSI device to detect a change in
media. It is called by file systems before executing open() or creat().

RETURNS OK or ERROR.

SEE ALSO scsiSeqLib

scsiShow()

NAME scsiShow() – list the physical devices attached to a SCSI controller

SYNOPSIS STATUS scsiShow

(

SCSI_CTRL * pScsiCtrl /* ptr to SCSI controller info */

)

DESCRIPTION This routine displays the SCSI bus ID, logical unit number (LUN), vendor ID, product ID,
firmware revision (rev.), device type, number of blocks, block size in bytes, and a pointer
to the associated SCSI_PHYS_DEV structure for each physical SCSI device known to be
attached to a specified SCSI controller.

NOTE: If pScsiCtrl is NULL, the value of the global variable pSysScsiCtrl is used, unless it
is also NULL.

2: Routines
scsiSpace()

1161

S

RETURNS OK, or ERROR if both pScsiCtrl and pSysScsiCtrl are NULL.

SEE ALSO scsiLib

scsiSpace()

NAME scsiSpace() – move the tape on a specified physical SCSI device

SYNOPSIS STATUS scsiSpace

(

SCSI_SEQ_DEV * pScsiSeqDev, /* ptr to SCSI sequential device info */

int count, /* count for space command */

int spaceCode /* code for the type of space command */

)

DESCRIPTION This routine moves the tape on a specified SCSI physical device. There are two types of
space code that are mandatory in SCSI; currently these are the only two supported:

RETURNS OK, or ERROR if an error is returned by the device.

ERRNO S_scsiLib_ILLEGAL_REQUEST

SEE ALSO scsiSeqLib

Code Description Support

000 Blocks Yes
001 File marks Yes
010 Sequential file marks No
011 End-of-data No
100 Set marks No
101 Sequential set marks No

VxWorks OS Libraries API Reference, 5.5
scsiStartStopUnit()

1162

scsiStartStopUnit()

NAME scsiStartStopUnit() – issue a START_STOP_UNIT command to a SCSI device

SYNOPSIS STATUS scsiStartStopUnit

(

SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device */

BOOL start /* TRUE == start, FALSE == stop */

)

DESCRIPTION This routine issues a START_STOP_UNIT command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

SEE ALSO scsiDirectLib

scsiSyncXferNegotiate()

NAME scsiSyncXferNegotiate() – initiate or continue negotiating transfer parameters

SYNOPSIS void scsiSyncXferNegotiate

(

SCSI_CTRL * pScsiCtrl, /* ptr to SCSI controller info */

SCSI_TARGET * pScsiTarget, /* ptr to SCSI target info */

SCSI_SYNC_XFER_EVENT eventType /* tells what has just happened */

)

DESCRIPTION This routine manages negotiation by means of a finite-state machine which is driven by
“significant events” such as incoming and outgoing messages. Each SCSI target has its
own independent state machine.

NOTE: If the controller does not support synchronous transfer or if the target’s maximum
REQ/ACK offset is zero, attempts to initiate a round of negotiation are ignored.

This function is intended for use only by SCSI controller drivers.

RETURNS N/A

SEE ALSO scsi2Lib

2: Routines
scsiTapeModeSense()

1163

S

scsiTapeModeSelect()

NAME scsiTapeModeSelect() – issue a MODE_SELECT command to a SCSI tape device

SYNOPSIS STATUS scsiTapeModeSelect

(

SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device */

int pageFormat, /* value of the page format bit (0-1) */

int saveParams, /* value of the save parameters bit (0-1) */

char * buffer, /* ptr to output data buffer */

int bufLength /* length of buffer in bytes */

)

DESCRIPTION This routine issues a MODE_SELECT command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

SEE ALSO scsiSeqLib

scsiTapeModeSense()

NAME scsiTapeModeSense() – issue a MODE_SENSE command to a SCSI tape device

SYNOPSIS STATUS scsiTapeModeSense

(

SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device */

int pageControl, /* value of the page control field (0-3) */

int pageCode, /* value of the page code field (0-0x3f) */

char * buffer, /* ptr to input data buffer */

int bufLength /* length of buffer in bytes */

)

DESCRIPTION This routine issues a MODE_SENSE command to a specified SCSI tape device.

RETURNS OK, or ERROR if the command fails.

SEE ALSO scsiSeqLib

VxWorks OS Libraries API Reference, 5.5
scsiTargetOptionsGet()

1164

scsiTargetOptionsGet()

NAME scsiTargetOptionsGet() – get options for one or all SCSI targets

SYNOPSIS STATUS scsiTargetOptionsGet

(

SCSI_CTRL * pScsiCtrl, /* ptr to SCSI controller info */

int devBusId, /* target to interrogate */

SCSI_OPTIONS * pOptions /* buffer to return options */

)

DESCRIPTION This routine copies the current options for the specified target into the caller’s buffer.

RETURNS OK, or ERROR if the bus ID is invalid.

SEE ALSO scsi2Lib

scsiTargetOptionsSet()

NAME scsiTargetOptionsSet() – set options for one or all SCSI targets

SYNOPSIS STATUS scsiTargetOptionsSet

(

SCSI_CTRL * pScsiCtrl, /* ptr to SCSI controller info */

int devBusId, /* target to affect, or all */

SCSI_OPTIONS * pOptions, /* buffer containing new options */

UINT which /* which options to change */

)

DESCRIPTION This routine sets the options defined by the bit mask which for the specified target (or all
targets if devBusId is SCSI_SET_OPT_ALL_TARGETS).

The bit mask which can be any combination of the following, bitwise OR’d together
(corresponding fields in the SCSI_OPTIONS structure are shown in parentheses):

SCSI_SET_OPT_TIMEOUT selTimeOut select timeout period, microseconds
SCSI_SET_OPT_MESSAGES messages FALSE to disable SCSI messages
SCSI_SET_OPT_DISCONNECT disconnect FALSE to disable discon/recon
SCSI_SET_OPT_XFER_PARAMS maxOffset, max sync xfer offset, 0>async

minPeriod min sync xfer period, x 4 nsec.

2: Routines
scsiTargetOptionsShow()

1165

S

NOTE: This routine can be used after the target device has already been used; in this case,
however, it is not possible to change the tag parameters. This routine must not be used
while there is any SCSI activity on the specified target(s).

RETURNS OK, or ERROR if the bus ID or options are invalid.

SEE ALSO scsi2Lib

scsiTargetOptionsShow()

NAME scsiTargetOptionsShow() – display options for specified SCSI target

SYNOPSIS STATUS scsiTargetOptionsShow

(

SCSI_CTRL * pScsiCtrl, /* ptr to SCSI controller info */

int devBusId /* target to interrogate */

)

DESCRIPTION This routine displays the current target options for the specified target in the following
format:

Target Options (id scsi bus ID):
 selection TimeOut: timeout nano secs
 messages allowed: TRUE or FALSE
 disconnect allowed: TRUE or FALSE
 REQ/ACK offset: negotiated offset
 transfer period: negotiated period
 transfer width: 8 or 16 bits maximum transfer rate: peak transfer rate MB/sec
 tag type: tag type
 maximum tags: max tags

RETURNS OK, or ERROR if the bus ID is invalid.

SEE ALSO scsi2Lib

SCSI_SET_OPT_TAG_PARAMS tagType, default tag type (SCSI_TAG_*)
maxTags max cmd tags available

SCSI_SET_OPT_WIDE_PARAMS xferWidth data transfer width setting.

xferWidth = 0 ; 8 bits wide

xferWidth = 1 ; 16 bits wide

VxWorks OS Libraries API Reference, 5.5
scsiTestUnitRdy()

1166

scsiTestUnitRdy()

NAME scsiTestUnitRdy() – issue a TEST_UNIT_READY command to a SCSI device

SYNOPSIS STATUS scsiTestUnitRdy

(

SCSI_PHYS_DEV * pScsiPhysDev /* ptr to SCSI physical device */

)

DESCRIPTION This routine issues a TEST_UNIT_READY command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

SEE ALSO scsiLib

scsiThreadInit()

NAME scsiThreadInit() – perform generic SCSI thread initialization

SYNOPSIS STATUS scsiThreadInit

(

SCSI_THREAD * pThread

)

DESCRIPTION This routine initializes the controller-independent parts of a thread structure, which are
specific to the SCSI manager.

NOTE: This function should not be called by application programs. It is intended to be
used by SCSI controller drivers.

RETURNS OK, or ERROR if the thread cannot be initialized.

SEE ALSO scsi2Lib

2: Routines
scsiWrtFileMarks()

1167

S

scsiWideXferNegotiate()

NAME scsiWideXferNegotiate() – initiate or continue negotiating wide parameters

SYNOPSIS void scsiWideXferNegotiate

(

SCSI_CTRL * pScsiCtrl, /* ptr to SCSI controller info */

SCSI_TARGET * pScsiTarget, /* ptr to SCSI target info */

SCSI_WIDE_XFER_EVENT eventType /* tells what has just happened */

)

DESCRIPTION This routine manages negotiation means of a finite-state machine which is driven by
“significant events” such as incoming and outgoing messages. Each SCSI target has its
own independent state machine.

NOTE: If the controller does not support wide transfers or the target’s transfer width is
zero, attempts to initiate a round of negotiation are ignored; this is because zero is the
default narrow transfer.

This function is intended for use only by SCSI controller drivers.

RETURNS N/A

SEE ALSO scsi2Lib

scsiWrtFileMarks()

NAME scsiWrtFileMarks() – write file marks to a SCSI sequential device

SYNOPSIS STATUS scsiWrtFileMarks

(

SCSI_SEQ_DEV * pScsiSeqDev, /* ptr to SCSI sequential device info */

int numMarks, /* number of file marks to write */

BOOL shortMark /* TRUE to write short file mark */

)

DESCRIPTION This routine writes file marks to a specified physical device.

RETURNS OK, or ERROR if the file mark cannot be written.

SEE ALSO scsiSeqLib

VxWorks OS Libraries API Reference, 5.5
scsiWrtSecs()

1168

scsiWrtSecs()

NAME scsiWrtSecs() – write sector(s) to a SCSI block device

SYNOPSIS STATUS scsiWrtSecs

(

SCSI_BLK_DEV * pScsiBlkDev, /* ptr to SCSI block device info */

int sector, /* sector number to be written */

int numSecs, /* total sectors to be written */

char * buffer /* ptr to input data buffer */

)

DESCRIPTION This routine writes the specified physical sector(s) to a specified physical device.

RETURNS OK, or ERROR if the sector(s) cannot be written.

SEE ALSO scsiLib

scsiWrtTape()

NAME scsiWrtTape() – write data to a SCSI tape device

SYNOPSIS STATUS scsiWrtTape

(

SCSI_SEQ_DEV * pScsiSeqDev, /* ptr to SCSI sequential device info */

int numBytes, /* total bytes or blocks to be written */

char * buffer, /* ptr to input data buffer */

BOOL fixedSize /* if variable size blocks */

)

DESCRIPTION This routine writes data to the current block on a specified physical device. If the boolean
fixedSize is true, then numBytes represents the number of blocks of size blockSize, defined
in the pScsiPhysDev structure. If variable block sizes are used (fixedSize = FALSE), then
numBytes represents the actual number of bytes to be written. If numBytes is greater than
the maxBytesLimit field defined in the pScsiPhysDev structure, then more than one SCSI
transaction is used to transfer the data.

RETURNS OK, or ERROR if the data cannot be written or zero bytes are written.

SEE ALSO scsiSeqLib

2: Routines
select()

1169

S

select()

NAME select() – pend on a set of file descriptors

SYNOPSIS int select

(

int width, /* number of bits to examine from 0 */

fd_set * pReadFds, /* read fds */

fd_set * pWriteFds, /* write fds */

fd_set * pExceptFds, /* exception fds (unsupported) */

struct timeval * pTimeOut /* max time to wait, NULL = forever */

)

DESCRIPTION This routine permits a task to pend until one of a set of file descriptors becomes ready.
Three parameters -- pReadFds, pWriteFds, and pExceptFds -- point to file descriptor sets in
which each bit corresponds to a particular file descriptor. Bits set in the read file
descriptor set (pReadFds) will cause select() to pend until data is available on any of the
corresponding file descriptors, while bits set in the write file descriptor set (pWriteFds) will
cause select() to pend until any of the corresponding file descriptors become writable.
(The pExceptFds parameter is currently unused, but is provided for UNIX call
compatibility.)

The following macros are available for setting the appropriate bits in the file descriptor set
structure:

FD_SET(fd, &fdset)

FD_CLR(fd, &fdset)

FD_ZERO(&fdset)

If either pReadFds or pWriteFds is NULL, they are ignored. The width parameter defines
how many bits will be examined in the file descriptor sets, and should be set to either the
maximum file descriptor value in use plus one, or simply to FD_SETSIZE. When select()
returns, it zeros out the file descriptor sets, and sets only the bits that correspond to file
descriptors that are ready. The FD_ISSET macro may be used to determine which bits are
set.

If pTimeOut is NULL, select() will block indefinitely. If pTimeOut is not NULL, but points
to a timeval structure with an effective time of zero, the file descriptors in the file
descriptor sets will be polled and the results returned immediately. If the effective time
value is greater than zero, select() will return after the specified time has elapsed, even if
none of the file descriptors are ready.

Applications can use select() with pipes and serial devices, in addition to sockets. Also,
select() now examines write file descriptors in addition to read file descriptors; however,
exception file descriptors remain unsupported.

VxWorks OS Libraries API Reference, 5.5
selectInit()

1170

The value for the maximum number of file descriptors configured in the system
(NUM_FILES) should be less than or equal to the value of FD_SETSIZE (2048).

Driver developers should consult the VxWorks Programmer’s Guide: I/O System for details
on writing drivers that will use select().

RETURNS The number of file descriptors with activity, 0 if timed out, or ERROR if an error occurred
when the driver’s select() routine was invoked via ioctl().

ERRNOS Possible errnos generated by this routine include:

S_selectLib_NO_SELECT_SUPPORT_IN_DRIVER
A driver associated with one or more fds does not support select().

S_selectLib_NO_SELECT_CONTEXT
The task’s select context was not initialized at task creation time.

S_selectLib_WIDTH_OUT_OF_RANGE
The width parameter is greater than the maximum possible fd.

SEE ALSO selectLib, VxWorks Programmer’s Guide: I/O System

selectInit()

NAME selectInit() – initialize the select facility

SYNOPSIS void selectInit

(

int numFiles /* maximum number of open files */

)

DESCRIPTION This routine initializes the UNIX BSD 4.3 select facility. It should be called only once, and
typically is called from the root task, usrRoot(), in usrConfig.c. It installs a task create
hook such that a select context is initialized for each task.

RETURNS N/A

SEE ALSO selectLib

2: Routines
selNodeDelete()

1171

S

selNodeAdd()

NAME selNodeAdd() – add a wake-up node to a select() wake-up list

SYNOPSIS STATUS selNodeAdd

(

SEL_WAKEUP_LIST * pWakeupList, /* list of tasks to wake up */

SEL_WAKEUP_NODE * pWakeupNode /* node to add to list */

)

DESCRIPTION This routine adds a wake-up node to a device’s wake-up list. It is typically called from a
driver’s FIOSELECT function.

RETURNS OK, or ERROR if memory is insufficient.

SEE ALSO selectLib

selNodeDelete()

NAME selNodeDelete() – find and delete a node from a select() wake-up list

SYNOPSIS STATUS selNodeDelete

(

SEL_WAKEUP_LIST * pWakeupList, /* list of tasks to wake up */

SEL_WAKEUP_NODE * pWakeupNode /* node to delete from list */

)

DESCRIPTION This routine deletes a specified wake-up node from a specified wake-up list. Typically, it
is called by a driver’s FIOUNSELECT function.

RETURNS OK, or ERROR if the node is not found in the wake-up list.

SEE ALSO selectLib

VxWorks OS Libraries API Reference, 5.5
selWakeup()

1172

selWakeup()

NAME selWakeup() – wake up a task pended in select()

SYNOPSIS void selWakeup

(

SEL_WAKEUP_NODE * pWakeupNode /* node to wake up */

)

DESCRIPTION This routine wakes up a task pended in select(). Once a driver’s FIOSELECT function
installs a wake-up node in a device’s wake-up list (using selNodeAdd()) and checks to
make sure the device is ready, this routine ensures that the select() call does not pend.

RETURNS N/A

SEE ALSO selectLib

selWakeupAll()

NAME selWakeupAll() – wake up all tasks in a select() wake-up list

SYNOPSIS void selWakeupAll

(

SEL_WAKEUP_LIST * pWakeupList, /* list of tasks to wake up */

SELECT_TYPE type /* readers (SELREAD) or writers (SELWRITE)

*/

)

DESCRIPTION This routine wakes up all tasks pended in select() that are waiting for a device; it is called
by a driver when the device becomes ready. The type parameter specifies the task to be
awakened, either reader tasks (SELREAD) or writer tasks (SELWRITE).

RETURNS N/A

SEE ALSO selectLib

2: Routines
selWakeupListLen()

1173

S

selWakeupListInit()

NAME selWakeupListInit() – initialize a select() wake-up list

SYNOPSIS void selWakeupListInit

(

SEL_WAKEUP_LIST * pWakeupList /* wake-up list to initialize */

)

DESCRIPTION This routine should be called in a device’s create routine to initialize the
SEL_WAKEUP_LIST structure.

RETURNS N/A

SEE ALSO selectLib

selWakeupListLen()

NAME selWakeupListLen() – get the number of nodes in a select() wake-up list

SYNOPSIS int selWakeupListLen

(

SEL_WAKEUP_LIST * pWakeupList /* list of tasks to wake up */

)

DESCRIPTION This routine returns the number of nodes in a specified SEL_WAKEUP_LIST. It can be used
by a driver to determine if any tasks are currently pended in select() on this device, and
whether these tasks need to be activated with selWakeupAll().

RETURNS The number of nodes currently in a select() wake-up list, or ERROR.

SEE ALSO selectLib

VxWorks OS Libraries API Reference, 5.5
selWakeupListTerm()

1174

selWakeupListTerm()

NAME selWakeupListTerm() – terminate a select() wake-up list

SYNOPSIS void selWakeupListTerm

(

SEL_WAKEUP_LIST * pWakeupList /* wake-up list to terminate */

)

DESCRIPTION This routine should be called in a device’s terminate routine to terminate the
SEL_WAKEUP_LIST structure.

RETURNS N/A

SEE ALSO selectLib

selWakeupType()

NAME selWakeupType() – get the type of a select() wake-up node

SYNOPSIS SELECT_TYPE selWakeupType

(

SEL_WAKEUP_NODE * pWakeupNode /* node to get type of */

)

DESCRIPTION This routine returns the type of a specified SEL_WAKEUP_NODE. It is typically used in a
device’s FIOSELECT function to determine if the device is being selected for read or write
operations.

RETURNS SELREAD (read operation) or SELWRITE (write operation).

SEE ALSO selectLib

2: Routines
semBSmCreate()

1175

S

semBCreate()

NAME semBCreate() – create and initialize a binary semaphore

SYNOPSIS SEM_ID semBCreate

(

int options, /* semaphore options */

SEM_B_STATE initialState /* initial semaphore state */

)

DESCRIPTION This routine allocates and initializes a binary semaphore. The semaphore is initialized to
the initialState of either SEM_FULL (1) or SEM_EMPTY (0).

The options parameter specifies the queuing style for blocked tasks. Tasks can be queued
on a priority basis or a first-in-first-out basis. These options are SEM_Q_PRIORITY (0x1)
and SEM_Q_FIFO (0x0), respectively. That parameter also specifies if semGive() should
return ERROR when the semaphore fails to send events. This option is turned off by
default; it is activated by doing a bitwise-OR of SEM_EVENTSEND_ERR_NOTIFY (0x10)
with the queuing style of the semaphore.

RETURNS The semaphore ID, or NULL if memory cannot be allocated.

SEE ALSO semBLib

semBSmCreate()

NAME semBSmCreate() – create and initialize a shared memory binary semaphore (VxMP Opt.)

SYNOPSIS SEM_ID semBSmCreate

(

int options, /* semaphore options */

SEM_B_STATE initialState /* initial semaphore state */

)

DESCRIPTION This routine allocates and initializes a shared memory binary semaphore. The semaphore
is initialized to an initialState of either SEM_FULL (available) or SEM_EMPTY (not
available). The shared semaphore structure is allocated from the shared semaphore
dedicated memory partition.

VxWorks OS Libraries API Reference, 5.5
semCCreate()

1176

The semaphore ID returned by this routine can be used directly by the generic
semaphore-handling routines in semLib -- semGive(), semTake(), and semFlush() --
and the show routines, such as show() and semShow().

The queuing style for blocked tasks is set by options; the only supported queuing style for
shared memory semaphores is first-in-first-out, selected by SEM_Q_FIFO.

Before this routine can be called, the shared memory objects facility must be initialized
(see semSmLib).

The maximum number of shared memory semaphores (binary plus counting) that can be
created is SM_OBJ_MAX_SEM, a configurable parameter.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory support
option, VxMP.

RETURNS The semaphore ID, or NULL if memory cannot be allocated from the shared semaphore
dedicated memory partition.

ERRNO S_memLib_NOT_ENOUGH_MEMORY, S_semLib_INVALID_QUEUE_TYPE,
S_semLib_INVALID_STATE, S_smObjLib_LOCK_TIMEOUT

SEE ALSO semSmLib, semLib, semBLib, smObjLib, semShow, VxWorks Programmer’s Guide: Basic
OS

semCCreate()

NAME semCCreate() – create and initialize a counting semaphore

SYNOPSIS SEM_ID semCCreate
(
int options, /* semaphore option modes */
int initialCount /* initial count */
)

DESCRIPTION This routine allocates and initializes a counting semaphore. The semaphore is initialized
to the specified initial count.

The options parameter specifies the queuing style for blocked tasks. Tasks may be queued
on a priority basis or a first-in-first-out basis. These options are SEM_Q_PRIORITY (0x1)
and SEM_Q_FIFO (0x0), respectively. That parameter also specifies if semGive() should
return ERROR when the semaphore fails to send events. This option is turned off by
default; it is activated by doing a bitwise-OR of SEM_EVENTSEND_ERR_NOTIFY (0x10)
with the queuing style of the semaphore.

2: Routines
semCreate()

1177

S

RETURNS The semaphore ID, or NULL if memory cannot be allocated.

SEE ALSO semCLib

semClear()

NAME semClear() – take a release 4.x semaphore, if the semaphore is available

SYNOPSIS STATUS semClear

(

SEM_ID semId /* semaphore ID to empty */

)

DESCRIPTION This routine takes a VxWorks 4.x semaphore if it is available (full), otherwise no action is
taken except to return ERROR. This routine never preempts the caller.

RETURNS OK, or ERROR if the semaphore is unavailable.

SEE ALSO semOLib

semCreate()

NAME semCreate() – create and initialize a release 4.x binary semaphore

SYNOPSIS SEM_ID semCreate (void)

DESCRIPTION This routine allocates a VxWorks 4.x binary semaphore. The semaphore is initialized to
empty. After initialization, it must be given before it can be taken.

RETURNS The semaphore ID, or NULL if memory cannot be allocated.

SEE ALSO semOLib, semInit()

VxWorks OS Libraries API Reference, 5.5
semCSmCreate()

1178

semCSmCreate()

NAME semCSmCreate() – create and initialize a shared memory counting semaphore (VxMP
Opt.)

SYNOPSIS SEM_ID semCSmCreate

(

int options, /* semaphore options */

int initialCount /* initial semaphore count */

)

DESCRIPTION This routine allocates and initializes a shared memory counting semaphore. The initial
count value of the semaphore is specified by initialCount.

The semaphore ID returned by this routine can be used directly by the generic
semaphore-handling routines in semLib -- semGive(), semTake() and semFlush() -- and
the show routines, such as show() and semShow().

The queuing style for blocked tasks is set by options; the only supported queuing style for
shared memory semaphores is first-in-first-out, selected by SEM_Q_FIFO.

Before this routine can be called, the shared memory objects facility must be initialized
(see semSmLib).

The maximum number of shared memory semaphores (binary plus counting) that can be
created is SM_OBJ_MAX_SEM, a configurable parameter.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory support
option, VxMP.

RETURNS The semaphore ID, or NULL if memory cannot be allocated from the shared semaphore
dedicated memory partition.

ERRNO S_memLib_NOT_ENOUGH_MEMORY, S_semLib_INVALID_QUEUE_TYPE,
S_smObjLib_LOCK_TIMEOUT

SEE ALSO semSmLib, semLib, semCLib, smObjLib, semShow, VxWorks Programmer’s Guide: Basic
OS

2: Routines
semEvStart()

1179

S

semDelete()

NAME semDelete() – delete a semaphore

SYNOPSIS STATUS semDelete

(

SEM_ID semId /* semaphore ID to delete */

)

DESCRIPTION This routine terminates and deallocates any memory associated with a specified
semaphore. All tasks pending on the semaphore or pending for the reception of events
meant to be sent from the semaphore will unblock and return ERROR.

WARNING: Take care when deleting semaphores, particularly those used for mutual
exclusion, to avoid deleting a semaphore out from under a task that already has taken
(owns) that semaphore. Applications should adopt the protocol of only deleting
semaphores that the deleting task has successfully taken.

RETURNS OK, or ERROR if the semaphore ID is invalid.

ERRNO S_intLib_NOT_ISR_CALLABLE
Routine cannot be called from ISR.

S_objLib_OBJ_ID_ERROR
Semaphore ID is invalid.

S_smObjLib_NO_OBJECT_DESTROY
Deleting a shared semaphore is not permitted

SEE ALSO semLib, semBLib, semCLib, semMLib, semSmLib

semEvStart()

NAME semEvStart() – start event notification process for a semaphore

SYNOPSIS STATUS semEvStart

(

SEM_ID semId, /* semaphore on which to register events */

UINT32 events, /* 32 possible events to register */

UINT8 options /* event-related semaphore options */

)

VxWorks OS Libraries API Reference, 5.5
semEvStart()

1180

DESCRIPTION This routine turns on the event notification process for a given semaphore. When the
semaphore becomes available but no task is pending on it, the events specified will be sent
to the task registered by this function. A task can overwrite its own registration without
first invoking semEvStop() or specifying the ALLOW_OVERWRITE option.

The option parameter is used for 3 user options:

EVENTS_SEND_ONCE (0x1)
tells the semaphore to send the events one time only. Specify if the events are to be
sent only once or every time the semaphore is free until semEvStop() is called.

EVENTS_ALLOW_OVERWRITE (0x2)
allows subsequent registrations to overwrite the current one. Specify if another task
can register itself while the current task is still registered. If so, the current task
registration is overwritten without any warning.

EVENTS_SEND_IF_FREE (0x4)
tells the registration process to send events if the semaphore is free. Specify if events
are to be sent at the time of the registration in the case the semaphore is free.

If none of these options are to be used, the option

EVENTS_OPTIONS_NONE
has to be passed to the options parameter.

WARNING: This routine cannot be called from interrupt level.

RETURNS OK on success, or ERROR.

ERRNO S_objLib_OBJ_ID_ERROR
The semaphore ID is invalid.

S_eventLib_ALREADY_REGISTERED
A task is already registered on the semaphore.

S_intLib_NOT_ISR_CALLABLE
Routine has been called from interrupt level.

S_eventLib_EVENTSEND_FAILED
User chose to send events right away and that operation failed.

S_eventLib_ZERO_EVENTS
User passed in a value of zero to the events parameter.

SEE ALSO semEvLib, eventLib, semLib, semEvStop()

2: Routines
semFlush()

1181

S

semEvStop()

NAME semEvStop() – stop event notification process for a semaphore

SYNOPSIS STATUS semEvStop

(

SEM_ID semId

)

DESCRIPTION This routine turns off the event notification process for a given semaphore. It thus allows
another task to register itself for event notification on that particular semaphore.

RETURNS OK on success, or ERROR.

ERRNO S_objLib_OBJ_ID_ERROR
The semaphore ID is invalid.

S_intLib_NOT_ISR_CALLABLE
Routine has been called at interrupt level.

S_eventLib_TASK_NOT_REGISTERED
Routine has not been called by the registered task.

SEE ALSO semEvLib, eventLib, semLib, semEvStart()

semFlush()

NAME semFlush() – unblock every task pended on a semaphore

SYNOPSIS STATUS semFlush

(

SEM_ID semId /* semaphore ID to unblock everyone for */

)

DESCRIPTION This routine atomically unblocks all tasks pended on a specified semaphore, i.e., all tasks
will be unblocked before any is allowed to run. The state of the underlying semaphore is
unchanged. All pended tasks will enter the ready queue before having a chance to
execute.

The flush operation is useful as a means of broadcast in synchronization applications. Its
use is illegal for mutual-exclusion semaphores created with semMCreate().

VxWorks OS Libraries API Reference, 5.5
semGive()

1182

RETURNS OK, or ERROR if the semaphore ID is invalid or the operation is not supported.

ERRNO S_objLib_OBJ_ID_ERROR

SEE ALSO semLib, semBLib, semCLib, semMLib, semSmLib

semGive()

NAME semGive() – give a semaphore

SYNOPSIS STATUS semGive

(

SEM_ID semId /* semaphore ID to give */

)

DESCRIPTION This routine performs the give operation on a specified semaphore. Depending on the
type of semaphore, the state of the semaphore and of the pending tasks may be affected. If
no tasks are pending on the semaphore and a task has previously registered to receive
events from the semaphore, these events are sent in the context of this call. This may result
in the unpending of the task waiting for the events. If the semaphore fails to send events
and if it was created using the SEM_EVENTSEND_ERR_NOTIFY option, ERROR is returned
even though the give operation was successful. The behavior of semGive() is discussed
fully in the library description of the specific semaphore type being used.

RETURNS OK on success or ERROR otherwise

ERRNO S_intLib_NOT_ISR_CALLABLE
Routine was called from an ISR for a mutex semaphore.

S_objLib_OBJ_ID_ERROR
Semaphore ID is invalid.

S_semLib_INVALID_OPERATION
Current task not owner of mutex semaphore.

S_eventLib_EVENTSEND_FAILED
Semaphore failed to send events to the registered task. This errno value can only exist
if the semaphore was created with the SEM_EVENTSEND_ERR_NOTIFY option.

SEE ALSO semLib, semBLib, semCLib, semMLib, semSmLib, semEvStart()

2: Routines
semInit()

1183

S

semInfo()

NAME semInfo() – get a list of task IDs that are blocked on a semaphore

SYNOPSIS int semInfo

(

SEM_ID semId, /* semaphore ID to summarize */

int idList[], /* array of task IDs to be filled in */

int maxTasks /* max tasks idList can accommodate */

)

DESCRIPTION This routine reports the tasks blocked on a specified semaphore. Up to maxTasks task IDs
are copied to the array specified by idList. The array is unordered.

WARNING: There is no guarantee that all listed tasks are still valid or that new tasks have
not been blocked by the time semInfo() returns.

RETURNS The number of blocked tasks placed in idList.

SEE ALSO semShow

semInit()

NAME semInit() – initialize a static binary semaphore

SYNOPSIS STATUS semInit

(

SEMAPHORE * pSemaphore /* 4.x semaphore to initialize */

)

DESCRIPTION This routine initializes static VxWorks 4.x semaphores. In some instances, a semaphore
cannot be created with semCreate() but is a static object.

RETURNS OK, or ERROR if the semaphore cannot be initialized.

SEE ALSO semOLib, semCreate()

VxWorks OS Libraries API Reference, 5.5
semMCreate()

1184

semMCreate()

NAME semMCreate() – create and initialize a mutual-exclusion semaphore

SYNOPSIS SEM_ID semMCreate

(

int options /* mutex semaphore options */

)

DESCRIPTION This routine allocates and initializes a mutual-exclusion semaphore. The semaphore state
is initialized to full.

Semaphore options include the following:

SEM_Q_PRIORITY (0x1)
Queue pended tasks on the basis of their priority.

SEM_Q_FIFO (0x0)
Queue pended tasks on a first-in-first-out basis.

SEM_DELETE_SAFE (0x4)
Protect a task that owns the semaphore from unexpected deletion. This option
enables an implicit taskSafe() for each semTake(), and an implicit taskUnsafe() for
each semGive().

SEM_INVERSION_SAFE (0x8)
Protect the system from priority inversion. With this option, the task owning the
semaphore will execute at the highest priority of the tasks pended on the semaphore,
if it is higher than its current priority. This option must be accompanied by the
SEM_Q_PRIORITY queuing mode.

SEM_EVENTSEND_ERR_NOTIFY (0x10)
When the semaphore is given, if a task is registered for events and the actual sending
of events fails, a value of ERROR is returned and the errno is set accordingly. This
option is off by default.

RETURNS The semaphore ID, or NULL if the semaphore cannot be created.

ERRNO S_semLib_INVALID_OPTION
Invalid option was passed to semMCreate().

S_memLib_NOT_ENOUGH_MEMORY
Not enough memory available to create the semaphore.

SEE ALSO semMLib, semLib, semBLib, taskSafe(), taskUnsafe()

2: Routines
semPxLibInit()

1185

S

semMGiveForce()

NAME semMGiveForce() – give a mutual-exclusion semaphore without restrictions

SYNOPSIS STATUS semMGiveForce

(

SEM_ID semId /* semaphore ID to give */

)

DESCRIPTION This routine gives a mutual-exclusion semaphore, regardless of semaphore ownership. It
is intended as a debugging aid only.

The routine is particularly useful when a task dies while holding some mutual-exclusion
semaphore, because the semaphore can be resurrected. The routine will give the
semaphore to the next task in the pend queue or make the semaphore full if no tasks are
pending. In effect, execution will continue as if the task owning the semaphore had
actually given the semaphore.

WARNING: This routine should be used only as a debugging aid, when the condition of
the semaphore is known.

RETURNS OK, or ERROR if the semaphore ID is invalid.

SEE ALSO semMLib, semGive()

semPxLibInit()

NAME semPxLibInit() – initialize POSIX semaphore support

SYNOPSIS STATUS semPxLibInit (void)

DESCRIPTION This routine must be called before using POSIX semaphores.

RETURNS OK, or ERROR if there is an error installing the semaphore library.

SEE ALSO semPxLib

VxWorks OS Libraries API Reference, 5.5
semPxShowInit()

1186

semPxShowInit()

NAME semPxShowInit() – initialize the POSIX semaphore show facility

SYNOPSIS STATUS semPxShowInit (void)

DESCRIPTION This routine links the POSIX semaphore show routine into the VxWorks system. It is
called automatically when the this show facility is configured into VxWorks using either
of the following methods:

– If you use the configuration header files, define INCLUDE_SHOW_ROUTINES in
config.h.

– If you use the Tornado project facility, select INCLUDE_POSIX_SEM_SHOW.

RETURNS OK, or ERROR if an error occurs installing the file pointer show routine.

SEE ALSO semPxShow

semShow()

NAME semShow() – show information about a semaphore

SYNOPSIS STATUS semShow
(
SEM_ID semId, /* semaphore to display */
int level /* 0 = summary, 1 = details */
)

DESCRIPTION This routine displays the state and optionally the pended tasks of a semaphore.

A summary of the state of the semaphore is displayed as follows:

Semaphore Id : 0x585f2
Semaphore Type : BINARY
Task Queuing : PRIORITY
Pended Tasks : 1
State : EMPTY {Count if COUNTING, Owner if MUTEX}
Options : 0x1 SEM_Q_PRIORITY
VxWorks Events

Registered Task : 0x594f0 (t1)
Event(s) to Send : 0x1

2: Routines
semShowInit()

1187

S

Options : 0x7 EVENTS_SEND_ONCE
EVENTS_ALLOW_OVERWRITE
EVENTS_SEND_IF_FREE

If level is 1, then more detailed information will be displayed. If tasks are blocked on the
queue, they are displayed in the order in which they will unblock, as follows:

Pended Tasks

NAME TID PRI DELAY

---------- -------- --- -----

tExcTask 3fd678 0 21

tLogTask 3f8ac0 0 611

RETURNS OK or ERROR.

SEE ALSO semShow, VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s Guide: Shell

semShowInit()

NAME semShowInit() – initialize the semaphore show facility

SYNOPSIS void semShowInit (void)

DESCRIPTION This routine links the semaphore show facility into the VxWorks system. It is called
automatically when the semaphore show facility is configured into VxWorks using either
of the following methods:

– If you use the configuration header files, define INCLUDE_SHOW_ROUTINES in
config.h.

– If you use the Tornado project facility, select INCLUDE_SEM_SHOW.

RETURNS N/A

SEE ALSO semShow

VxWorks OS Libraries API Reference, 5.5
semTake()

1188

semTake()

NAME semTake() – take a semaphore

SYNOPSIS STATUS semTake

(

SEM_ID semId, /* semaphore ID to take */

int timeout /* timeout in ticks */

)

DESCRIPTION This routine performs the take operation on a specified semaphore. Depending on the
type of semaphore, the state of the semaphore and the calling task may be affected. The
behavior of semTake() is discussed fully in the library description of the specific
semaphore type being used.

A timeout in ticks may be specified. If a task times out, semTake() will return ERROR.
Timeouts of WAIT_FOREVER (-1) and NO_WAIT (0) indicate to wait indefinitely or not to
wait at all.

When semTake() returns due to timeout, it sets the errno to S_objLib_OBJ_TIMEOUT
(defined in objLib.h).

The semTake() routine is not callable from interrupt service routines.

RETURNS OK, or ERROR if the semaphore ID is invalid or the task timed out.

ERRNO S_intLib_NOT_ISR_CALLABLE, S_objLib_OBJ_ID_ERROR, S_objLib_OBJ_UNAVAILABLE

SEE ALSO semLib, semBLib, semCLib, semMLib, semSmLib

sem_close()

NAME sem_close() – close a named semaphore (POSIX)

SYNOPSIS int sem_close

(

sem_t * sem /* semaphore descriptor */

)

DESCRIPTION This routine is called to indicate that the calling task is finished with the specified named
semaphore, sem. Do not call this routine with an unnamed semaphore (i.e., one created by

2: Routines
sem_destroy()

1189

S

sem_init()); the effects are undefined. The sem_close() call deallocates any system
resources allocated by the system for use by this task for this semaphore.

If the semaphore has not been removed with a call to sem_unlink(), then sem_close() has
no effect on the state of the semaphore. However, if the semaphore has been unlinked, the
semaphore vanishes when the last task closes it.

WARNING: Take care to avoid risking the deletion of a semaphore that another task has
already locked. Applications should only close semaphores that the closing task has
opened.

RETURNS 0 (OK), or -1 (ERROR) if unsuccessful.

ERRNO EINVAL
 - invalid semaphore descriptor.

SEE ALSO semPxLib, sem_unlink(), sem_open(), sem_init()

sem_destroy()

NAME sem_destroy() – destroy an unnamed semaphore (POSIX)

SYNOPSIS int sem_destroy

(

sem_t * sem /* semaphore descriptor */

)

DESCRIPTION This routine is used to destroy the unnamed semaphore indicated by sem.

The sem_destroy() call can only destroy a semaphore created by sem_init(). Calling
sem_destroy() with a named semaphore will cause a EINVAL error. Subsequent use of the
sem semaphore will cause an EINVAL error in the calling function.

If one or more tasks is blocked on the semaphore, the semaphore is not destroyed.

WARNING: Take care when deleting semaphores, particularly those used for mutual
exclusion, to avoid deleting a semaphore out from under a task that has already locked
that semaphore. Applications should adopt the protocol of only deleting semaphores that
the deleting task has successfully locked.

RETURNS 0 (OK), or -1 (ERROR) if unsuccessful.

VxWorks OS Libraries API Reference, 5.5
sem_getvalue()

1190

ERRNO EINVAL
 - invalid semaphore descriptor.
EBUSY
 - one or more tasks is blocked on the semaphore.

SEE ALSO semPxLib, sem_init()

sem_getvalue()

NAME sem_getvalue() – get the value of a semaphore (POSIX)

SYNOPSIS int sem_getvalue

(

sem_t * sem, /* semaphore descriptor */

int * sval /* buffer by which the value is returned */

)

DESCRIPTION This routine updates the location referenced by the sval argument to have the value of the
semaphore referenced by sem without affecting the state of the semaphore. The updated
value represents an actual semaphore value that occurred at some unspecified time
during the call, but may not be the actual value of the semaphore when it is returned to
the calling task.

If sem is locked, the value returned by sem_getvalue() will either be zero or a negative
number whose absolute value represents the number of tasks waiting for the semaphore
at some unspecified time during the call.

RETURNS 0 (OK), or -1 (ERROR) if unsuccessful.

ERRNO EINVAL
 - invalid semaphore descriptor.

SEE ALSO semPxLib, sem_post(), sem_trywait(), sem_trywait()

2: Routines
sem_open()

1191

S

sem_init()

NAME sem_init() – initialize an unnamed semaphore (POSIX)

SYNOPSIS int sem_init

(

sem_t * sem, /* semaphore to be initialized */

int pshared, /* process sharing */

unsigned int value /* semaphore initialization value */

)

DESCRIPTION This routine is used to initialize the unnamed semaphore sem. The value of the initialized
semaphore is value. Following a successful call to sem_init() the semaphore may be used
in subsequent calls to sem_wait(), sem_trywait(), and sem_post(). This semaphore
remains usable until the semaphore is destroyed.

The pshared parameter currently has no effect.

Only sem itself may be used for synchronization.

RETURNS 0 (OK), or -1 (ERROR) if unsuccessful.

ERRNO EINVAL
 - value exceeds SEM_VALUE_MAX.
ENOSPC
 - unable to initialize semaphore due to resource constraints.

SEE ALSO semPxLib, sem_wait(), sem_trywait(), sem_post()

sem_open()

NAME sem_open() – initialize/open a named semaphore (POSIX)

SYNOPSIS sem_t * sem_open

(

const char * name, /* semaphore name */

int oflag, /* semaphore creation flags */

... /* extra optional parameters */

)

VxWorks OS Libraries API Reference, 5.5
sem_open()

1192

DESCRIPTION This routine establishes a connection between a named semaphore and a task. Following a
call to sem_open() with a semaphore name name, the task may reference the semaphore
associated with name using the address returned by this call. This semaphore may be used
in subsequent calls to sem_wait(), sem_trywait(), and sem_post(). The semaphore
remains usable until the semaphore is closed by a successful call to sem_close().

The oflag argument controls whether the semaphore is created or merely accessed by the
call to sem_open(). The following flag bits may be set in oflag:

O_CREAT
Use this flag to create a semaphore if it does not already exist. If O_CREAT is set and
the semaphore already exists, O_CREAT has no effect except as noted below under
O_EXCL. Otherwise, sem_open() creates a semaphore. O_CREAT requires a third and
fourth argument: mode, which is of type mode_t, and value, which is of type unsigned
int. mode has no effect in this implementation. The semaphore is created with an
initial value of value. Valid initial values for semaphores must be less than or equal to
SEM_VALUE_MAX.

O_EXCL
If O_EXCL and O_CREAT are set, sem_open() will fail if the semaphore name exists. If
O_EXCL is set and O_CREAT is not set, the named semaphore is not created.

To determine whether a named semaphore already exists in the system, call sem_open()
with the flags O_CREAT | O_EXCL. If the sem_open() call fails, the semaphore exists.

If a task makes multiple calls to sem_open() with the same value for name, then the same
semaphore address is returned for each such call, provided that there have been no calls
to sem_unlink() for this semaphore.

References to copies of the semaphore will produce undefined results.

NOTE The current implementation has the following limitations:

– A semaphore cannot be closed with calls to _exit() or exec().

– A semaphore cannot be implemented as a file.

– Semaphore names will not appear in the file system.

RETURNS A pointer to sem_t, or -1 (ERROR) if unsuccessful.

ERRNO EEXIST
 - O_CREAT | O_EXCL are set and the semaphore already exists.
EINVAL
 - value exceeds SEM_VALUE_MAX or the semaphore name is invalid.
ENAMETOOLONG
 - the semaphore name is too long.
ENOENT
 - the named semaphore does not exist and O_CREAT is not set.

2: Routines
sem_post()

1193

S

ENOSPC
 - the semaphore could not be initialized due to resource constraints.

SEE ALSO semPxLib, sem_unlink()

sem_post()

NAME sem_post() – unlock (give) a semaphore (POSIX)

SYNOPSIS int sem_post

(

sem_t * sem /* semaphore descriptor */

)

DESCRIPTION This routine unlocks the semaphore referenced by sem by performing the semaphore
unlock operation on that semaphore.

If the semaphore value resulting from the operation is positive, then no tasks were
blocked waiting for the semaphore to become unlocked; the semaphore value is simply
incremented.

If the value of the semaphore resulting from this semaphore is zero, then one of the tasks
blocked waiting for the semaphore will return successfully from its call to sem_wait().

NOTE: The _POSIX_PRIORITY_SCHEDULING functionality is not yet supported.

Note that the POSIX terms unlock and post correspond to the term give used in other
VxWorks semaphore documentation.

RETURNS 0 (OK), or -1 (ERROR) if unsuccessful.

ERRNO EINVAL
 - invalid semaphore descriptor.

SEE ALSO semPxLib, sem_wait(), sem_trywait()

VxWorks OS Libraries API Reference, 5.5
sem_trywait()

1194

sem_trywait()

NAME sem_trywait() – lock (take) a semaphore, returning error if unavailable (POSIX)

SYNOPSIS int sem_trywait

(

sem_t * sem /* semaphore descriptor */

)

DESCRIPTION This routine locks the semaphore referenced by sem only if the semaphore is currently not
locked; that is, if the semaphore value is currently positive. Otherwise, it does not lock the
semaphore. In either case, this call returns immediately without blocking.

Upon return, the state of the semaphore is always locked (either as a result of this call or
by a previous sem_wait() or sem_trywait()). The semaphore will remain locked until
sem_post() is executed and returns successfully.

Deadlock detection is not implemented.

Note that the POSIX term lock corresponds to the term take used in other VxWorks
semaphore documentation.

RETURNS 0 (OK), or -1 (ERROR) if unsuccessful.

ERRNO EAGAIN
 - semaphore is already locked.
EINVAL
 - invalid semaphore descriptor.

SEE ALSO semPxLib, sem_wait(), sem_post()

sem_unlink()

NAME sem_unlink() – remove a named semaphore (POSIX)

SYNOPSIS int sem_unlink

(

const char * name /* semaphore name */

)

2: Routines
sem_wait()

1195

S

DESCRIPTION This routine removes the string name from the semaphore name table, and marks the
corresponding semaphore for destruction. An unlinked semaphore is destroyed when the
last task closes it with sem_close(). After a particular name is removed from the table,
calls to sem_open() using the same name cannot connect to the same semaphore, even if
other tasks are still using it. Instead, such calls refer to a new semaphore with the same
name.

RETURNS 0 (OK), or -1 (ERROR) if unsuccessful.

ERRNO ENAMETOOLONG
 - semaphore name too long.
ENOENT
 - named semaphore does not exist.

SEE ALSO semPxLib, sem_open(), sem_close()

sem_wait()

NAME sem_wait() – lock (take) a semaphore, blocking if not available (POSIX)

SYNOPSIS int sem_wait

(

sem_t * sem /* semaphore descriptor */

)

DESCRIPTION This routine locks the semaphore referenced by sem by performing the semaphore lock
operation on that semaphore. If the semaphore value is currently zero, the calling task will
not return from the call to sem_wait() until it either locks the semaphore or the call is
interrupted by a signal.

On return, the state of the semaphore is locked and will remain locked until sem_post() is
executed and returns successfully.

Deadlock detection is not implemented.

Note that the POSIX term lock corresponds to the term take used in other VxWorks
documentation regarding semaphores.

RETURNS 0 (OK), or -1 (ERROR) if unsuccessful.

ERRNO EINVAL
 - invalid semaphore descriptor, or semaphore destroyed while task waiting.

SEE ALSO semPxLib, sem_trywait(), sem_post()

VxWorks OS Libraries API Reference, 5.5
send()

1196

send()

NAME send() – send data to a socket

SYNOPSIS int send

(

int s, /* socket to send to */

const char * buf, /* pointer to buffer to transmit */

int bufLen, /* length of buffer */

int flags /* flags to underlying protocols */

)

DESCRIPTION This routine transmits data to a previously established connection-based (stream) socket.

The maximum length of buf is subject to the limits on TCP buffer size; see the discussion of
SO_SNDBUF in the setsockopt() manual entry.

You may OR the following values into the flags parameter with this operation:

MSG_OOB (0x1)
Out-of-band data.

MSG_DONTROUTE (0x4)
Send without using routing tables.

RETURNS The number of bytes sent, or ERROR if the call fails.

SEE ALSO sockLib, setsockopt(), sendmsg()

sendAdvert()

NAME sendAdvert() – send an advertisement to one location

SYNOPSIS void sendAdvert

(

int index,

struct in_addr dstAddr

)

2: Routines
sendmsg()

1197

S

DESCRIPTION This routine sends a router advertisement using the data stored for its’ corresponding
interface. Only the primary network address of the interface is used as the advertised
router address.

RETURNS N/A

SEE ALSO rdiscLib

sendAdvertAll()

NAME sendAdvertAll() – send an advertisement to all active locations

SYNOPSIS void sendAdvertAll (void)

DESCRIPTION This routine sends a router advertisement using the data stored for each corresponding
interface. Only the primary network address of the interface is used as the advertised
router address.

RETURNS N/A

SEE ALSO rdiscLib

sendmsg()

NAME sendmsg() – send a message to a socket

SYNOPSIS int sendmsg

(

int sd, /* socket to send to */

struct msghdr * mp, /* scatter-gather message header */

int flags /* flags to underlying protocols */

)

DESCRIPTION This routine sends a message to a datagram socket. It may be used in place of sendto() to
decrease the overhead of reconstructing the message-header structure (msghdr) for each
message.

VxWorks OS Libraries API Reference, 5.5
sendto()

1198

For BSD 4.4 sockets a copy of the mp>msg_iov array will be made. This requires a cluster
from the network stack system pool of size mp>msg_iovlen * sizeof (struct iovec) or 8
bytes.

RETURNS The number of bytes sent, or ERROR if the call fails.

SEE ALSO sockLib, sendto()

sendto()

NAME sendto() – send a message to a socket

SYNOPSIS int sendto

(

int s, /* socket to send data to */

caddr_t buf, /* pointer to data buffer */

int bufLen, /* length of buffer */

int flags, /* flags to underlying protocols */

struct sockaddr * to, /* recipient’s address */

int tolen /* length of to sockaddr */

)

DESCRIPTION This routine sends a message to the datagram socket named by to. The socket s is received
by the receiver as the sending socket.

The maximum length of buf is subject to the limits on UDP buffer size. See the discussion
of SO_SNDBUF in the setsockopt() manual entry.

You can OR the following values into the flags parameter with this operation:

MSG_OOB (0x1)
Out-of-band data.

MSG_DONTROUTE (0x4)
Send without using routing tables.

RETURNS The number of bytes sent, or ERROR if the call fails.

SEE ALSO sockLib, setsockopt()

2: Routines
set_terminate()

1199

S

set_new_handler()

NAME set_new_handler() – set new_handler to user-defined function (C++)

SYNOPSIS extern void (*set_new_handler (void(* pNewNewHandler)())) ()

DESCRIPTION This function is used to define the function that will be called when operator new cannot
allocate memory.

The new_handler acts for all threads in the system; you cannot set a different handler for
different tasks.

RETURNS A pointer to the previous value of new_handler.

INCLUDE FILES new

SEE ALSO cplusLib

set_terminate()

NAME set_terminate() – set terminate to user-defined function (C++)

SYNOPSIS extern void (*set_terminate (void(* terminate_handler)())) ()

DESCRIPTION This function is used to define the terminate_handler which will be called when an
uncaught exception is raised.

The terminate_handler acts for all threads in the system; you cannot set a different
handler for different tasks.

RETURNS The previous terminate_handler.

INCLUDE FILES exception

SEE ALSO cplusLib

VxWorks OS Libraries API Reference, 5.5
setbuf()

1200

setbuf()

NAME setbuf() – specify the buffering for a stream (ANSI)

SYNOPSIS void setbuf
(
FILE * fp, /* stream to set buffering for */
char * buf /* buffer to use */
)

DESCRIPTION Except that it returns no value, this routine is equivalent to setvbuf() invoked with the
mode _IOFBF (full buffering) and size BUFSIZ, or (if buf is a null pointer), with the mode
_IONBF (no buffering).

INCLUDE FILES stdio.h

RETURNS N/A

SEE ALSO ansiStdio, setvbuf()

setbuffer()

NAME setbuffer() – specify buffering for a stream

SYNOPSIS void setbuffer

(

FILE * fp, /* stream to set buffering for */

char * buf, /* buffer to use */

int size /* buffer size */

)

DESCRIPTION This routine specifies a buffer buf to be used for a stream in place of the automatically
allocated buffer. If buf is NULL, the stream is unbuffered. This routine should be called
only after the stream has been associated with an open file and before any other operation
is performed on the stream.

This routine is provided for compatibility with earlier VxWorks releases.

INCLUDE FILES stdio.h

2: Routines
setjmp()

1201

S

RETURNS N/A

SEE ALSO ansiStdio, setvbuf()

sethostname()

NAME sethostname() – set the symbolic name of this machine

SYNOPSIS int sethostname

(

char * name, /* machine name */

int nameLen /* length of name */

)

DESCRIPTION This routine sets the target machine’s symbolic name, which can be used for identification.

RETURNS OK or ERROR.

SEE ALSO hostLib

setjmp()

NAME setjmp() – save the calling environment in a jmp_buf argument (ANSI)

SYNOPSIS int setjmp

(

jmp_buf env

)

DESCRIPTION This routine saves the calling environment in env, in order to permit a longjmp() call to
restore that environment (thus performing a non-local goto).

Constraints on Calling Environment

The setjmp() routine may only be used in the following contexts:

– as the entire controlling expression of a selection or iteration statement;

– as one operand of a relational or equality operator, in the controlling expression of a
selection or iteration statement;

VxWorks OS Libraries API Reference, 5.5
setlinebuf()

1202

– as the operand of a single-argument ! operator, in the controlling expression of a
selection or iteration statement; or

– as a complete C statement containing nothing other than the setjmp() call (though
the result may be cast to void)

RETURNS From a direct invocation, setjmp() returns zero. From a call to longjmp(), it returns a
non-zero value specified as an argument to longjmp().

SEE ALSO ansiSetjmp, longjmp()

setlinebuf()

NAME setlinebuf() – set line buffering for standard output or standard error

SYNOPSIS int setlinebuf

(

FILE * fp /* stream - stdout or stderr */

)

DESCRIPTION This routine changes stdout or stderr streams from block-buffered or unbuffered to
line-buffered. Unlike setbuf(), setbuffer(), or setvbuf(), it can be used at any time the
stream is active.

A stream can be changed from unbuffered or line-buffered to fully buffered using
freopen(). A stream can be changed from fully buffered or line-buffered to unbuffered
using freopen() followed by setbuf() with a buffer argument of NULL.

This routine is provided for compatibility with earlier VxWorks releases.

INCLUDE stdio.h

RETURNS OK, or ERROR if fp is not a valid stream.

SEE ALSO ansiStdio

2: Routines
setsockopt()

1203

S

setlocale()

NAME setlocale() – set the appropriate locale (ANSI)

SYNOPSIS char *setlocale

(

int category, /* category to change */

const char * localeName /* locale name */

)

DESCRIPTION This function is included for ANSI compatibility. Only the default is implemented. At
program start-up, the equivalent of the following is executed:

setlocale (LC_ALL, "C");

This specifies the program’s entire locale and the minimal environment for C translation.

INCLUDE FILES locale.h, string.h, stdlib.h

RETURNS A pointer to the string “C”.

SEE ALSO ansiLocale

setsockopt()

NAME setsockopt() – set socket options

SYNOPSIS STATUS setsockopt

(

int s, /* target socket */

int level, /* protocol level of option */

int optname, /* option name */

char * optval, /* pointer to option value */

int optlen /* option length */

)

DESCRIPTION This routine sets the options associated with a socket. To manipulate options at the
“socket” level, level should be SOL_SOCKET. Any other levels should use the appropriate
protocol number.

VxWorks OS Libraries API Reference, 5.5
setsockopt()

1204

OPTIONS FOR STREAM SOCKETS

The following sections discuss the socket options available for stream (TCP) sockets.

SO_KEEPALIVE -- Detecting a Dead Connection

Specify the SO_KEEPALIVE option to make the transport protocol (TCP) initiate a timer to
detect a dead connection:

setsockopt (sock, SOL_SOCKET, SO_KEEPALIVE, &optval, sizeof (optval));

This prevents an application from hanging on an invalid connection. The value at optval
for this option is an integer (type int), either 1 (on) or 0 (off).

The integrity of a connection is verified by transmitting zero-length TCP segments
triggered by a timer, to force a response from a peer node. If the peer does not respond
after repeated transmissions of the KEEPALIVE segments, the connection is dropped, all
protocol data structures are reclaimed, and processes sleeping on the connection are
awakened with an ETIMEDOUT error.

The ETIMEDOUT timeout can happen in two ways. If the connection is not yet established,
the KEEPALIVE timer expires after idling for TCPTV_KEEP_INIT. If the connection is
established, the KEEPALIVE timer starts up when there is no traffic for
TCPTV_KEEP_IDLE. If no response is received from the peer after sending the KEEPALIVE
segment TCPTV_KEEPCNT times with interval TCPTV_KEEPINTVL, TCP assumes that the
connection is invalid. The TCPTV_KEEP_INIT, TCPTV_KEEP_IDLE, TCPTV_KEEPCNT, and
TCPTV_KEEPINTVL parameters are defined in the file target/h/netinet/tcp_timer.h.

SO_LINGER -- Closing a Connection

Specify the SO_LINGER option to determine whether TCP should perform a “graceful”
close:

setsockopt (sock, SOL_SOCKET, SO_LINGER, &optval, sizeof (optval));

To achieve a “graceful” close in response to the shutdown of a connection, TCP puts itself
through an elaborate set of state transitions. The goal is to assure that all the
unacknowledged data in the transmission channel are acknowledged, and that the peer is
shut down properly.

The value at optval indicates the amount of time to linger if there is unacknowledged data,
using struct linger in target/h/sys/socket.h. The linger structure has two members:
l_onoff and l_linger. l_onoff can be set to 1 to turn on the SO_LINGER option, or set to 0
to turn off the SO_LINGER option. l_linger indicates the amount of time to linger. If
l_onoff is turned on and l_linger is set to 0, a default value TCP_LINGERTIME (specified
in netinet/tcp_timer.h) is used for incoming connections accepted on the socket.

When SO_LINGER is turned on and the l_linger field is set to 0, TCP simply drops the
connection by sending out an RST (if a connection is already established). This frees up
the space for the TCP protocol control block, and wakes up all tasks sleeping on the
socket.

2: Routines
setsockopt()

1205

S

For the client side socket, the value of l_linger is not changed if it is set to 0. To make sure
that the value of l_linger is 0 on a newly accepted socket connection, issue another
setsockopt() after the accept() call.

Currently the exact value of l_linger time is actually ignored (other than checking for 0);
that is, TCP performs the state transitions if l_linger is not 0, but does not explicitly use its
value.

TCP_NODELAY -- Delivering Messages Immediately

Specify the TCP_NODELAY option for real-time protocols, such as the X Window System
Protocol, that require immediate delivery of many small messages:

setsockopt (sock, IPPROTO_TCP, TCP_NODELAY, &optval, sizeof (optval));

The value at optval is an integer (type int) set to either 1 (on) or 0 (off).

By default, the VxWorks TCP implementation employs an algorithm that attempts to
avoid the congestion that can be produced by a large number of small TCP segments. This
typically arises with virtual terminal applications (such as telnet or rlogin) across
networks that have low bandwidth and long delays. The algorithm attempts to have no
more than one outstanding unacknowledged segment in the transmission channel while
queueing up the rest of the smaller segments for later transmission. Another segment is
sent only if enough new data is available to make up a maximum sized segment, or if the
outstanding data is acknowledged.

This congestion-avoidance algorithm works well for virtual terminal protocols and bulk
data transfer protocols such as FTP without any noticeable side effects. However,
real-time protocols that require immediate delivery of many small messages, such as the X
Window System Protocol, need to defeat this facility to guarantee proper responsiveness
in their operation.

TCP_NODELAY is a mechanism to turn off the use of this algorithm. If this option is turned
on and there is data to be sent out, TCP bypasses the congestion-avoidance algorithm: any
available data segments are sent out if there is enough space in the send window.

TCP_MAXSEG -- Changing TCP MSS for the connection

Specify the TCP_MAXSEG option to decrease the maximum allowable size of an outgoing
TCP segment. This option cannot be used to increase the MSS.

setsockopt (sock, IPPROTO_TCP, TCP_MAXSEG, &optval, sizeof (optval));

The value at optval is an integer set to the desired MSS (e.g., 1024).

When a TCP socket is created, the MSS is initialized to the default MSS value which is
determined by the configuration parameter TCP_MSS_DFLT (512 by default). When a
connection request is received from the other end with an MSS option, the MSS is
modified depending on the value of the received MSS and on the results of Path MTU
Discovery (which is enabled by default). The MSS may be set as high as the outgoing
interface MTU (1460 for an Ethernet). Therefore, after a call to socket but before a
connection is established, an application can only decrease the MSS from its default of 512.

VxWorks OS Libraries API Reference, 5.5
setsockopt()

1206

After a connection is established, the application can decrease the MSS from whatever
value was selected.

SO_DEBUG -- Debugging the underlying protocol

Specify the SO_DEBUG option to let the underlying protocol module record debug
information.

setsockopt (sock, SOL_SOCKET, SO_DEBUG, &optval, sizeof (optval));

The value at optval for this option is an integer (type int), either 1 (on) or 0 (off).

OPTION FOR DATAGRAM SOCKETS

The following section discusses an option for datagram (UDP) sockets.

SO_BROADCAST -- Sending to Multiple Destinations

Specify the SO_BROADCAST option when an application needs to send data to more than
one destination:

setsockopt (sock, SOL_SOCKET, SO_BROADCAST, &optval, sizeof (optval));

The value at optval is an integer (type int), either 1 (on) or 0 (off).

OPTIONS FOR DATAGRAM AND RAW SOCKETS

The following section discusses options for multicasting on UDP and RAW sockets.

IP_ADD_MEMBERSHIP -- Join a Multicast Group

Specify the IP_ADD_MEMBERSHIP option when a process needs to join multicast group:

setsockopt (sock, IPPROTO_IP, IP_ADD_MEMBERSHIP, (char *)&ipMreq,

sizeof (ipMreq));

The value of ipMreq is an ip_mreq structure. ipMreq.imr_multiaddr.s_addr is the
internet multicast address ipMreq.imr_interface.s_addr is the internet unicast address of
the interface through which the multicast packet needs to pass.

IP_DROP_MEMBERSHIP -- Leave a Multicast Group

Specify the IP_DROP_MEMBERSHIP option when a process needs to leave a previously
joined multicast group:

setsockopt (sock, IPPROTO_IP, IP_DROP_MEMBERSHIP, (char *)&ipMreq,

sizeof (ipMreq));

The value of ipMreq is an ip_mreq structure. ipMreq.imr_multiaddr.s_addr is the
internet multicast address. ipMreq.imr_interface.s_addr is the internet unicast address of
the interface to which the multicast address was bound.

IP_MULTICAST_IF -- Select a Default Interface for Outgoing Multicasts

Specify the IP_MULTICAST_IF option when an application needs to specify an outgoing
network interface through which all multicast packets are sent:

2: Routines
setsockopt()

1207

S

setsockopt (sock, IPPROTO_IP, IP_MULTICAST_IF, (char *)&ifAddr,

sizeof (mCastAddr));

The value of ifAddr is an in_addr structure. ifAddr.s_addr is the internet network
interface address.

IP_MULTICAST_TTL -- Select a Default TTL

Specify the IP_MULTICAST_TTL option when an application needs to select a default TTL
(time to live) for outgoing multicast packets:

setsockopt (sock, IPPROTO_IP, IP_MULTICAST_TTL, &optval, sizeof(optval));

The value at optval is an integer (type int), time to live value.

IP_MULTICAST_LOOP -- Enable or Disable Loopback

Enable or disable loopback of outgoing multicasts.

setsockopt (sock, IPPROTO_IP, IP_MULTICAST_LOOP, &optval, sizeof(optval));

The value at optval is an integer (type int), either 1(on) or 0 (off).

OPTIONS FOR DATAGRAM, STREAM AND RAW SOCKETS

The following section discusses options for RAW, DGRAM or STREAM sockets.

IP_OPTIONS -- set options to be included in outgoing datagrams

Sets the IP options sent from this socket with every packet.

setsockopt (sock, IPPROTO_IP, IP_OPTIONS, optbuf, optbuflen);

Here optbuf is a buffer containing the options.

optval(TTL) Application Scope

0 same interface
1 same subnet
31 local event video
32 same site
63 local event audio
64 same region
95 IETF channel 2 video
127 IETF channel 1 video
128 same continent
159 IETF channel 2 audio
191 IETF channel 1 audio
223 IETF channel 2 low-rate audio
255 IETF channel 1 low-rate audio

unrestricted in scope

VxWorks OS Libraries API Reference, 5.5
setsockopt()

1208

IP_TOS-- set options to be included in outgoing datagrams

Sets the Type-Of-Service field for each packet sent from this socket.

setsockopt (sock, IPPROTO_IP, IP_TOS, &optval, sizeof(optval));

Here optval is an integer (type int). This integer can be set to IPTOS_LOWDELAY,
IPTOS_THROUGHPUT, IPTOS_RELIABILITY, or IPTOS_MINCOST, to indicate how the
packets sent on this socket should be prioritized.

IP_TTL-- set the time-to-live field in outgoing datagrams

Sets the Time-To-Live field for each packet sent from this socket.

setsockopt (sock, IPPROTO_IP, IP_TTL, &optval, sizeof(optval));

Here optval is an integer (type int), indicating the number of hops a packet can take before
it is discarded.

IP_RECVRETOPTS -- [un-]set queueing of reversed source route

Sets whether or not reversed source route queueing will be enabled for incoming
datagrams. (Not implemented)

setsockopt (sock, IPPROTO_IP, IP_RECVRETOPTS, &optval, sizeof(optval));

Here optval is a boolean (type int). However, this option is currently not implemented, so
setting it will not change the behavior of the system.

IP_RECVDSTADDR -- [un-]set queueing of IP destination address

Sets whether or not the socket will receive the IP address of the destination of an incoming
datagram in control data.

setsockopt (sock, IPPROTO_IP, IP_RECVDSTADDR, &optval, sizeof(optval));

Here optval is a boolean (type int).

OPTIONS FOR BOTH STREAM AND DATAGRAM SOCKETS

The following sections describe options that can be used with either stream or datagram
sockets.

SO_REUSEADDR -- Reusing a Socket Address

Specify the SO_REUSEADDR option to bind a stream socket to a local port that may be still
bound to another stream socket:

setsockopt (sock, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof (optval));

The value at optval is an integer (type int), either 1 (on) or 0 (off).

When the SO_REUSEADDR option is turned on, applications may bind a stream socket to
a local port. This is possible even if the port is still bound to another stream socket. It is
even possible if that other socket is associated with a “zombie” protocol control block
context that has not yet freed from previous sessions. The uniqueness of port number

2: Routines
setsockopt()

1209

S

combinations for each connection is still preserved through sanity checks performed at
actual connection setup time. If this option is not turned on and an application attempts to
bind to a port that is being used by a zombie protocol control block, the bind() call fails.

SO_REUSEPORT -- Reusing a Socket address and port

This option is similar to the SO_REUSEADDR option but it allows binding to the same
local address and port combination.

setsockopt (sock, SOL_SOCKET, SO_REUSEPORT, &optval, sizeof (optval));

The value at optval is an integer (type int), either 1 (on) or 0 (off).

The SO_REUSEPORT option is mainly required by multicast applications where a number
of applications need to bind to the same multicast address and port to receive multicast
data. Unlike SO_REUSEADDR where only the later applications need to set this option,
with SO_REUSEPORT all applications including the first to bind to the port are required to
set this option. For multicast addresses SO_REUSEADDR and SO_REUSEPORT show the
same behavior so SO_REUSEADDR can be used instead.

SO_SNDBUF -- Specifying the Size of the Send Buffer

Specify the SO_SNDBUF option to adjust the maximum size of the socket-level send
buffer:

setsockopt (sock, SOL_SOCKET, SO_SNDBUF, &optval, sizeof (optval));

The value at optval is an integer (type int) that specifies the size of the socket-level send
buffer to be allocated.

When stream or datagram sockets are created, each transport protocol reserves a set
amount of space at the socket level for use when the sockets are attached to a protocol. For
TCP, the default size of the send buffer is 8192 bytes. For UDP, the default size of the send
buffer is 9216 bytes. Socket-level buffers are allocated dynamically from the mbuf pool.

The effect of setting the maximum size of buffers (for both SO_SNDBUF and SO_RCVBUF,
described below) is not actually to allocate the mbufs from the mbuf pool. Instead, the
effect is to set the high-water mark in the protocol data structure, which is used later to
limit the amount of mbuf allocation. Thus, the maximum size specified for the socket level
send and receive buffers can affect the performance of bulk data transfers. For example,
the size of the TCP receive windows is limited by the remaining socket-level buffer space.
These parameters must be adjusted to produce the optimal result for a given application.

SO_RCVBUF -- Specifying the Size of the Receive Buffer

Specify the SO_RCVBUF option to adjust the maximum size of the socket-level receive
buffer:

setsockopt (sock, SOL_SOCKET, SO_RCVBUF, &optval, sizeof (optval));

The value at optval is an integer (type int) that specifies the size of the socket-level receive
buffer to be allocated.

VxWorks OS Libraries API Reference, 5.5
setsockopt()

1210

When stream or datagram sockets are created, each transport protocol reserves a set
amount of space at the socket level for use when the sockets are attached to a protocol. For
TCP, the default size is 8192 bytes. UDP reserves 41600 bytes, enough space for up to forty
incoming datagrams (1 Kbyte each).

See the SO_SNDBUF discussion above for a discussion of the impact of buffer size on
application performance.

SO_OOBINLINE -- Placing Urgent Data in the Normal Data Stream

Specify the SO_OOBINLINE option to place urgent data within the normal receive data
stream:

setsockopt (sock, SOL_SOCKET, SO_OOBINLINE, &optval, sizeof (optval));

TCP provides an expedited data service that does not conform to the normal constraints of
sequencing and flow control of data streams. The expedited service delivers
“out-of-band” (urgent) data ahead of other “normal” data to provide interrupt-like
services (for example, when you hit a CTRL-C during telnet or rlogin session while data
is being displayed on the screen.)

TCP does not actually maintain a separate stream to support the urgent data. Instead,
urgent data delivery is implemented as a pointer (in the TCP header) which points to the
sequence number of the octet following the urgent data. If more than one transmission of
urgent data is received from the peer, they are all put into the normal stream. This is
intended for applications that cannot afford to miss out on any urgent data but are usually
too slow to respond to them promptly.

RETURNS OK, or ERROR if there is an invalid socket, an unknown option, an option length greater
than MLEN, insufficient mbufs, or the call is unable to set the specified option.

SEE ALSO sockLib

2: Routines
setvbuf()

1211

S

setvbuf()

NAME setvbuf() – specify buffering for a stream (ANSI)

SYNOPSIS int setvbuf

(

FILE * fp, /* stream to set buffering for */

char * buf, /* buffer to use (optional) */

int mode, /* _IOFBF = fully buffered _IOLBF = line */

/* buffered _IONBF = unbuffered */

size_t size /* buffer size */

)

DESCRIPTION This routine sets the buffer size and buffering mode for a specified stream. It should be
called only after the stream has been associated with an open file and before any other
operation is performed on the stream. The argument mode determines how the stream will
be buffered, as follows:

_IOFBF
input/output is to be fully buffered.

_IOLBF
input/output is to be line buffered.

_IONBF
input/output is to be unbuffered.

If buf is not a null pointer, the array it points to may be used instead of a buffer allocated
by setvbuf(). The argument size specifies the size of the array. The contents of the array at
any time are indeterminate.

INCLUDE FILES stdio.h

RETURNS Zero, or non-zero if mode is invalid or the request cannot be honored.

SEE ALSO ansiStdio

VxWorks OS Libraries API Reference, 5.5
shell()

1212

shell()

NAME shell() – the shell entry point

SYNOPSIS void shell

(

BOOL interactive /* should be TRUE, except for a script */

)

DESCRIPTION This routine is the shell task. It is started with a single parameter that indicates whether
this is an interactive shell to be used from a terminal or a socket, or a shell that executes a
script.

Normally, the shell is spawned in interactive mode by the root task, usrRoot(), when
VxWorks starts up. After that, shell() is called only to execute scripts, or when the shell is
restarted after an abort.

The shell gets its input from standard input and sends output to standard output. Both
standard input and standard output are initially assigned to the console, but are
redirected by telnetdTask() and rlogindTask().

The shell is not reentrant, since yacc does not generate a reentrant parser. Therefore, there
can be only a single shell executing at one time.

RETURNS N/A

SEE ALSO shellLib, VxWorks Programmer’s Guide: Target Shell

shellHistory()

NAME shellHistory() – display or set the size of shell history

SYNOPSIS void shellHistory

(

int size /* 0 = display, >0 = set history to new size */

)

DESCRIPTION This routine displays shell history, or resets the default number of commands displayed
by shell history to size. By default, history size is 20 commands. Shell history is actually
maintained by ledLib.

2: Routines
shellLock()

1213

S

RETURNS N/A

SEE ALSO shellLib, ledLib, h(), VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s
Guide: Shell

shellInit()

NAME shellInit() – start the shell

SYNOPSIS STATUS shellInit

(

int stackSize, /* shell stack (0 = previous/default value) */

int arg /* argument to shell task */

)

DESCRIPTION This routine starts the shell task. If the configuration macro INCLUDE_SHELLis defined,
shellInit() is called by the root task, usrRoot(), in usrConfig.c.

RETURNS OK or ERROR.

SEE ALSO shellLib, VxWorks Programmer’s Guide: Target Shell

shellLock()

NAME shellLock() – lock access to the shell

SYNOPSIS BOOL shellLock

(

BOOL request /* TRUE = lock, FALSE = unlock */

)

DESCRIPTION This routine locks or unlocks access to the shell. When locked, cooperating tasks, such as
telnetdTask() and rlogindTask(), will not take the shell.

RETURNS TRUE if request is "lock" and the routine successfully locks the shell, otherwise FALSE.
TRUE if request is "unlock" and the routine successfully unlocks the shell, otherwise FALSE.

SEE ALSO shellLib, VxWorks Programmer’s Guide: Target Shell

VxWorks OS Libraries API Reference, 5.5
shellOrigStdSet()

1214

shellOrigStdSet()

NAME shellOrigStdSet() – set the shell’s default input/output/error file descriptors

SYNOPSIS void shellOrigStdSet

(

int which, /* STD_IN, STD_OUT, STD_ERR */

int fd /* fd to be default */

)

DESCRIPTION This routine is called to change the shell’s default standard input/output/error file
descriptor. Normally, it is used only by the shell, rlogindTask(), and telnetdTask().
Values for which can be STD_IN, STD_OUT, or STD_ERR, as defined in vxWorks.h. Values
for fd can be the file descriptor for any file or device.

RETURNS N/A

SEE ALSO shellLib

shellPromptSet()

NAME shellPromptSet() – change the shell prompt

SYNOPSIS void shellPromptSet

(

char * newPrompt /* string to become new shell prompt */

)

DESCRIPTION This routine changes the shell prompt string to newPrompt.

RETURNS N/A

SEE ALSO shellLib, VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s Guide: Shell

2: Routines
show()

1215

S

shellScriptAbort()

NAME shellScriptAbort() – signal the shell to stop processing a script

SYNOPSIS void shellScriptAbort (void)

DESCRIPTION This routine signals the shell to abort processing a script file. It can be called from within a
script if an error is detected.

RETURNS N/A

SEE ALSO shellLib, VxWorks Programmer’s Guide: Target Shell

show()

NAME show() – print information on a specified object

SYNOPSIS void show

(

int objId, /* object ID */

int level /* information level */

)

DESCRIPTION This command prints information on the specified object. System objects include tasks,
local and shared semaphores, local and shared message queues, local and shared memory
partitions, watchdogs, and symbol tables. An information level is interpreted by the
objects show routine on a class by class basis. Refer to the object’s library manual page for
more information.

RETURNS N/A

SEE ALSO usrLib, i(), ti(), lkup(), VxWorks Programmer’s Guide: Target Shell, windsh, Tornado
User’s Guide: Shell

VxWorks OS Libraries API Reference, 5.5
shutdown()

1216

shutdown()

NAME shutdown() – shut down a network connection

SYNOPSIS STATUS shutdown

(

int s, /* socket to shut down */

int how /* 0 = receives disallowed */

/* 1 = sends disallowed */

/* 2 = sends and receives disallowed */

)

DESCRIPTION This routine shuts down all, or part, of a connection-based socket s. If the value of how is 0,
receives are disallowed. If how is 1, sends are disallowed. If how is 2, both sends and
receives are disallowed.

RETURNS ERROR if the socket is invalid or has no registered socket-specific routines; otherwise
shutdown() returns the return value from the socket-specific shutdown routine (typically
OK in the case of a successful shutdown or ERROR otherwise).

SEE ALSO sockLib

sigaction()

NAME sigaction() – examine and/or specify the action associated with a signal (POSIX)

SYNOPSIS int sigaction

(

int signo, /* signal of handler of interest */

const struct sigaction * pAct, /* location of new handler */

struct sigaction * pOact /* location to store old handler */

)

DESCRIPTION This routine allows the calling process to examine and/or specify the action to be
associated with a specific signal.

RETURNS OK (0), or ERROR (-1) if the signal number is invalid.

ERRNO EINVAL

SEE ALSO sigLib

2: Routines
sigblock()

1217

S

sigaddset()

NAME sigaddset() – add a signal to a signal set (POSIX)

SYNOPSIS int sigaddset

(

sigset_t * pSet, /* signal set to add signal to */

int signo /* signal to add */

)

DESCRIPTION This routine adds the signal specified by signo to the signal set specified by pSet.

RETURNS OK (0), or ERROR (-1) if the signal number is invalid.

ERRNO EINVAL

SEE ALSO sigLib

sigblock()

NAME sigblock() – add to a set of blocked signals

SYNOPSIS int sigblock

(

int mask /* mask of additional signals to be blocked */

)

DESCRIPTION This routine adds the signals in mask to the task’s set of blocked signals. A one (1) in the
bit mask indicates that the specified signal is blocked from delivery. Use the macro
SIGMASK to construct the mask for a specified signal number.

RETURNS The previous value of the signal mask.

SEE ALSO sigLib, sigprocmask()

VxWorks OS Libraries API Reference, 5.5
sigdelset()

1218

sigdelset()

NAME sigdelset() – delete a signal from a signal set (POSIX)

SYNOPSIS int sigdelset

(

sigset_t * pSet, /* signal set to delete signal from */

int signo /* signal to delete */

)

DESCRIPTION This routine deletes the signal specified by signo from the signal set specified by pSet.

RETURNS OK (0), or ERROR (-1) if the signal number is invalid.

ERRNO EINVAL

SEE ALSO sigLib

sigemptyset()

NAME sigemptyset() – initialize a signal set with no signals included (POSIX)

SYNOPSIS int sigemptyset

(

sigset_t * pSet /* signal set to initialize */

)

DESCRIPTION This routine initializes the signal set specified by pSet, such that all signals are excluded.

RETURNS OK (0), or ERROR (-1) if the signal set cannot be initialized.

ERRNO No errors are detectable.

SEE ALSO sigLib

2: Routines
sigInit()

1219

S

sigfillset()

NAME sigfillset() – initialize a signal set with all signals included (POSIX)

SYNOPSIS int sigfillset

(

sigset_t * pSet /* signal set to initialize */

)

DESCRIPTION This routine initializes the signal set specified by pSet, such that all signals are included.

RETURNS OK (0), or ERROR (-1) if the signal set cannot be initialized.

ERRNO No errors are detectable.

SEE ALSO sigLib

sigInit()

NAME sigInit() – initialize the signal facilities

SYNOPSIS int sigInit (void)

DESCRIPTION This routine initializes the signal facilities. It is usually called from the system start-up
routine usrInit() in usrConfig, before interrupts are enabled.

RETURNS OK, or ERROR if the delete hooks cannot be installed.

ERRNO S_taskLib_TASK_HOOK_TABLE_FULL

SEE ALSO sigLib

VxWorks OS Libraries API Reference, 5.5
sigismember()

1220

sigismember()

NAME sigismember() – test to see if a signal is in a signal set (POSIX)

SYNOPSIS int sigismember

(

const sigset_t * pSet, /* signal set to test */

int signo /* signal to test for */

)

DESCRIPTION This routine tests whether the signal specified by signo is a member of the set specified by
pSet.

RETURNS 1 if the specified signal is a member of the specified set, OK (0) if it is not, or ERROR (-1) if
the test fails.

ERRNO EINVAL

SEE ALSO sigLib

signal()

NAME signal() – specify the handler associated with a signal

SYNOPSIS void (*signal

(

intsigno,

void(*pHandler) ()

)) ()

DESCRIPTION This routine chooses one of three ways in which receipt of the signal number signo is to be
subsequently handled. If the value of pHandler is SIG_DFL, default handling for that signal
will occur. If the value of pHandler is SIG_IGN, the signal will be ignored. Otherwise,
pHandler must point to a function to be called when that signal occurs.

RETURNS The value of the previous signal handler, or SIG_ERR.

SEE ALSO sigLib

2: Routines
sigprocmask()

1221

S

sigpending()

NAME sigpending() – retrieve the set of pending signals blocked from delivery (POSIX)

SYNOPSIS int sigpending

(

sigset_t * pSet /* location to store pending signal set */

)

DESCRIPTION This routine stores the set of signals that are blocked from delivery and that are pending
for the calling process in the space pointed to by pSet.

RETURNS OK (0), or ERROR (-1) if the signal TCB cannot be allocated.

ERRNO ENOMEM

SEE ALSO sigLib

sigprocmask()

NAME sigprocmask() – examine and/or change the signal mask (POSIX)

SYNOPSIS int sigprocmask

(

int how, /* how signal mask will be changed */

const sigset_t * pSet, /* location of new signal mask */

sigset_t * pOset /* location to store old signal mask */

)

DESCRIPTION This routine allows the calling process to examine and/or change its signal mask. If the
value of pSet is not NULL, it points to a set of signals to be used to change the currently
blocked set.

The value of how indicates the manner in which the set is changed and consists of one of
the following, defined in signal.h:

SIG_BLOCK
the resulting set is the union of the current set and the signal set pointed to by pSet.

SIG_UNBLOCK
the resulting set is the intersection of the current set and the complement of the signal
set pointed to by pSet.

VxWorks OS Libraries API Reference, 5.5
sigqueue()

1222

SIG_SETMASK
the resulting set is the signal set pointed to by pSset.

RETURNS OK (0), or ERROR (-1) if how is invalid.

ERRNO EINVAL

SEE ALSO sigLib, sigsetmask(), sigblock()

sigqueue()

NAME sigqueue() – send a queued signal to a task

SYNOPSIS int sigqueue

(

int tid,

int signo,

const union sigval value

)

DESCRIPTION The function sigqueue() sends the signal specified by signo with the signal-parameter
value specified by value to the process specified by tid.

RETURNS OK (0), or ERROR (-1) if the task ID or signal number is invalid, or if there are no
queued-signal buffers available.

ERRNO EINVAL, EAGAIN

SEE ALSO sigLib

2: Routines
sigsetmask()

1223

S

sigqueueInit()

NAME sigqueueInit() – initialize the queued signal facilities

SYNOPSIS int sigqueueInit

(

int nQueues

)

DESCRIPTION This routine initializes the queued signal facilities. It must be called before any call to
sigqueue(). It is usually called from the system start-up routine usrInit() in usrConfig,
after sysInit() is called.

It allocates nQueues buffers to be used by sigqueue(). A buffer is used by each call to
sigqueue() and freed when the signal is delivered (thus if a signal is block, the buffer is
unavailable until the signal is unblocked.)

RETURNS OK, or ERROR if memory could not be allocated.

SEE ALSO sigLib

sigsetmask()

NAME sigsetmask() – set the signal mask

SYNOPSIS int sigsetmask

(

int mask /* new signal mask */

)

DESCRIPTION This routine sets the calling task’s signal mask to a specified value. A one (1) in the bit
mask indicates that the specified signal is blocked from delivery. Use the macro SIGMASK
to construct the mask for a specified signal number.

RETURNS The previous value of the signal mask.

SEE ALSO sigLib, sigprocmask()

VxWorks OS Libraries API Reference, 5.5
sigsuspend()

1224

sigsuspend()

NAME sigsuspend() – suspend the task until delivery of a signal (POSIX)

SYNOPSIS int sigsuspend

(

const sigset_t * pSet /* signal mask while suspended */

)

DESCRIPTION This routine suspends the task until delivery of a signal. While suspended, pSet is used as
the set of masked signals.

NOTE: Since the sigsuspend() function suspends thread execution indefinitely, there is no
successful completion return value.

RETURNS -1, always.

ERRNO EINTR

SEE ALSO sigLib

sigtimedwait()

NAME sigtimedwait() – wait for a signal

SYNOPSIS int sigtimedwait

(

const sigset_t * pSet, /* the signal mask while suspended */

struct siginfo * pInfo, /* return value */

const struct timespec * pTimeout

)

DESCRIPTION The function sigtimedwait() selects the pending signal from the set specified by pSet. If
multiple signals in pSet are pending, it will remove and return the lowest numbered one.
If no signal in pSet is pending at the time of the call, the task will be suspend until one of
the signals in pSet become pending, it is interrupted by an unblocked caught signal, or
until the time interval specified by pTimeout has expired. If pTimeout is NULL, then the
timeout interval is forever.

2: Routines
sigtimedwait()

1225

S

If the pInfo argument is non-NULL, the selected signal number is stored in the si_signo
member, and the cause of the signal is stored in the si_code member. If the signal is a
queued signal, the value is stored in the si_value member of pInfo; otherwise the content
of si_value is undefined.

The following values are defined in signal.h for si_code:

SI_USER
the signal was sent by the kill() function.

SI_QUEUE
the signal was sent by the sigqueue() function.

SI_TIMER
the signal was generated by the expiration of a timer set by timer_settime().

SI_ASYNCIO
the signal was generated by the completion of an asynchronous I/O request.

SI_MESGQ
the signal was generated by the arrival of a message on an empty message queue.

The function sigtimedwait() provides a synchronous mechanism for tasks to wait for
asynchronously generated signals. A task should use sigprocmask() to block any signals
it wants to handle synchronously and leave their signal handlers in the default state. The
task can then make repeated calls to sigtimedwait() to remove any signals that are sent to
it.

RETURNS Upon successful completion (that is, one of the signals specified by pSet is pending or is
generated) sigtimedwait() will return the selected signal number. Otherwise, a value of -1
is returned and errno is set to indicate the error.

ERRNO EINTR
The wait was interrupted by an unblocked, caught signal.

EAGAIN
No signal specified by pSet was delivered within the specified timeout period.

EINVAL
The pTimeout argument specified a tv_nsec value less than zero or greater than or
equal to 1000 million.

SEE ALSO sigLib, sigwait()

VxWorks OS Libraries API Reference, 5.5
sigvec()

1226

sigvec()

NAME sigvec() – install a signal handler

SYNOPSIS int sigvec

(

int sig, /* signal to attach handler to */

const struct sigvec * pVec, /* new handler information */

struct sigvec * pOvec /* previous handler information */

)

DESCRIPTION This routine binds a signal handler routine referenced by pVec to a specified signal sig. It
can also be used to determine which handler, if any, has been bound to a particular signal:
sigvec() copies current signal handler information for sig to pOvec and does not install a
signal handler if pVec is set to NULL (0).

Both pVec and pOvec are pointers to a structure of type struct sigvec. The information
passed includes not only the signal handler routine, but also the signal mask and
additional option bits. The structure sigvec and the available options are defined in
signal.h.

RETURNS OK (0), or ERROR (-1) if the signal number is invalid or the signal TCB cannot be allocated.

ERRNO EINVAL, ENOMEM

SEE ALSO sigLib

sigwait()

NAME sigwait() – wait for a signal to be delivered (POSIX)

SYNOPSIS int sigwait

(

const sigset_t * pSet,

int * pSig

)

DESCRIPTION This routine waits until one of the signals specified in pSet is delivered to the calling
thread. It then stores the number of the signal received in the location pointed to by pSig.

2: Routines
sigwaitinfo()

1227

S

The signals in pSet must not be ignored on entrance to sigwait(). If the delivered signal
has a signal handler function attached, that function is not called.

RETURNS OK, or ERROR on failure.

SEE ALSO sigLib, sigtimedwait()

sigwaitinfo()

NAME sigwaitinfo() – wait for real-time signals

SYNOPSIS int sigwaitinfo

(

const sigset_t * pSet, /* the signal mask while suspended */

struct siginfo * pInfo /* return value */

)

DESCRIPTION The function sigwaitinfo() is equivalent to calling sigtimedwait() with pTimeout equal to
NULL. See that manual entry for more information.

RETURNS Upon successful completion (that is, one of the signals specified by pSet is pending or is
generated) sigwaitinfo() returns the selected signal number. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

ERRNO EINTR
The wait was interrupted by an unblocked, caught signal.

SEE ALSO sigLib

VxWorks OS Libraries API Reference, 5.5
sin()

1228

sin()

NAME sin() – compute a sine (ANSI)

SYNOPSIS double sin

(

double x /* angle in radians */

)

DESCRIPTION This routine computes the sine of x in double precision. The angle x is expressed in
radians.

INCLUDE FILES math.h

RETURNS The double-precision sine of x.

SEE ALSO ansiMath, mathALib

sincos()

NAME sincos() – compute both a sine and cosine

SYNOPSIS void sincos

(

double x, /* angle in radians */

double *sinResult, /* sine result buffer */

double *cosResult /* cosine result buffer */

)

DESCRIPTION This routine computes both the sine and cosine of x in double precision. The sine is copied
to sinResult and the cosine is copied to cosResult.

INCLUDE FILES math.h

RETURNS N/A

SEE ALSO mathALib

2: Routines
sinf()

1229

S

sincosf()

NAME sincosf() – compute both a sine and cosine

SYNOPSIS void sincosf

(

float x, /* angle in radians */

float *sinResult, /* sine result buffer */

float *cosResult /* cosine result buffer */

)

DESCRIPTION This routine computes both the sine and cosine of x in single precision. The sine is copied
to sinResult and the cosine is copied to cosResult. The angle x is expressed in radians.

INCLUDE FILES math.h

RETURNS N/A

SEE ALSO mathALib

sinf()

NAME sinf() – compute a sine (ANSI)

SYNOPSIS float sinf

(

float x /* angle in radians */

)

DESCRIPTION This routine returns the sine of x in single precision. The angle x is expressed in radians.

INCLUDE FILES math.h

RETURNS The single-precision sine of x.

SEE ALSO mathALib

VxWorks OS Libraries API Reference, 5.5
sinh()

1230

sinh()

NAME sinh() – compute a hyperbolic sine (ANSI)

SYNOPSIS double sinh

(

double x /* number whose hyperbolic sine is required */

)

DESCRIPTION This routine returns the hyperbolic sine of x in double precision (IEEE double, 53 bits).

A range error occurs if x is too large.

INCLUDE FILES math.h

RETURNS The double-precision hyperbolic sine of x.

Special cases:
 If x is +INF, -INF, or NaN, sinh() returns x.

SEE ALSO ansiMath, mathALib

sinhf()

NAME sinhf() – compute a hyperbolic sine (ANSI)

SYNOPSIS float sinhf

(

float x /* number whose hyperbolic sine is required */

)

DESCRIPTION This routine returns the hyperbolic sine of x in single precision.

INCLUDE FILES math.h

RETURNS The single-precision hyperbolic sine of x.

SEE ALSO mathALib

2: Routines
smMemAddToPool()

1231

S

sleep()

NAME sleep() – delay for a specified amount of time

SYNOPSIS unsigned int sleep

(

unsigned int secs

)

DESCRIPTION This routine causes the calling task to be blocked for secs seconds.

The time the task is blocked for may be longer than requested due to the rounding up of
the request to the timer’s resolution or to other scheduling activities (e.g., a higher priority
task intervenes).

RETURNS Zero if the requested time has elapsed, or the number of seconds remaining if it was
interrupted.

ERRNO EINVAL, EINTR

SEE ALSO timerLib, nanosleep(), taskDelay()

smMemAddToPool()

NAME smMemAddToPool() – add memory to shared memory system partition (VxMP Opt.)

SYNOPSIS STATUS smMemAddToPool

(

char * pPool, /* pointer to memory pool */

unsigned poolSize /* block size in bytes */

)

DESCRIPTION This routine adds memory to the shared memory system partition after the initial
allocation of memory. The memory added need not be contiguous with memory
previously assigned, but it must be in the same address space.

pPool is the global address of shared memory added to the partition. The memory area
pointed to by pPool must be in the same address space as the shared memory anchor and
shared memory pool.

poolSize is the size in bytes of shared memory added to the partition.

VxWorks OS Libraries API Reference, 5.5
smMemCalloc()

1232

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects
support option, VxMP.

RETURNS OK, or ERROR if access to the shared memory system partition fails.

ERRNO S_smObjLib_LOCK_TIMEOUT

SEE ALSO smMemLib

smMemCalloc()

NAME smMemCalloc() – allocate memory for array from shared memory system partition (VxMP
Opt.)

SYNOPSIS void * smMemCalloc

(

int elemNum, /* number of elements */

int elemSize /* size of elements */

)

DESCRIPTION This routine allocates a block of memory for an array that contains elemNum elements of
size elemSize from the shared memory system partition. The return value is the local
address of the allocated shared memory block.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects
support option, VxMP.

RETURNS A pointer to the block, or NULL if the memory cannot be allocated.

ERRNO S_memLib_NOT_ENOUGH_MEMORY
S_smObjLib_LOCK_TIMEOUT

SEE ALSO smMemLib

2: Routines
smMemFree()

1233

S

smMemFindMax()

NAME smMemFindMax() – find largest free block in shared memory system partition (VxMP)

SYNOPSIS int smMemFindMax (void)

DESCRIPTION This routine searches for the largest block in the shared memory system partition free list
and returns its size.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects
support option, VxMP.

RETURNS The size (in bytes) of the largest available block, or ERROR if the attempt to access the
partition fails.

ERRNO S_smObjLib_LOCK_TIMEOUT

SEE ALSO smMemLib

smMemFree()

NAME smMemFree() – free a shared memory system partition block of memory (VxMP Opt.)

SYNOPSIS STATUS smMemFree

(

void * ptr /* pointer to block of memory to be freed */

)

DESCRIPTION This routine takes a block of memory previously allocated with smMemMalloc() or
smMemCalloc() and returns it to the free shared memory system pool.

It is an error to free a block of memory that was not previously allocated.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects
support option, VxMP.

RETURNS OK, or ERROR if the block is invalid.

ERRNO S_memLib_BLOCK_ERROR, S_smObjLib_LOCK_TIMEOUT

SEE ALSO smMemLib, smMemMalloc(), smMemCalloc()

VxWorks OS Libraries API Reference, 5.5
smMemMalloc()

1234

smMemMalloc()

NAME smMemMalloc() – allocate block of memory from shared memory system partition (VxMP
Opt.)

SYNOPSIS void * smMemMalloc

(

unsigned nBytes /* number of bytes to allocate */

)

DESCRIPTION This routine allocates a block of memory from the shared memory system partition whose
size is equal to or greater than nBytes. The return value is the local address of the allocated
shared memory block.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects
support option, VxMP.

RETURNS A pointer to the block, or NULL if the memory cannot be allocated.

ERRNO S_memLib_NOT_ENOUGH_MEMORY
S_smObjLib_LOCK_TIMEOUT

SEE ALSO smMemLib

smMemOptionsSet()

NAME smMemOptionsSet() – set debug options for shared memory system partition (VxMP
Opt.)

SYNOPSIS STATUS smMemOptionsSet

(

unsigned options /* options for system partition */

)

DESCRIPTION This routine sets the debug options for the shared system memory partition. Two kinds of
errors are detected: attempts to allocate more memory than is available, and bad blocks
found when memory is freed or reallocated. In both cases, the following options can be
selected for actions to be taken when an error is detected: (1) return the error status, (2) log
an error message and return the error status, or (3) log an error message and suspend the

2: Routines
smMemRealloc()

1235

S

calling task. These options are discussed in detail in the library manual entry for
smMemLib.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects
support option, VxMP.

RETURNS OK or ERROR.

ERRNO S_smObjLib_LOCK_TIMEOUT

SEE ALSO smMemLib

smMemRealloc()

NAME smMemRealloc() – reallocate block of memory from shared memory system partition
(VxMP Opt.)

SYNOPSIS void * smMemRealloc

(

void * pBlock, /* block to be reallocated */

unsigned newSize /* new block size */

)

DESCRIPTION This routine changes the size of a specified block and returns a pointer to the new block of
shared memory. The contents that fit inside the new size (or old size, if smaller) remain
unchanged. The return value is the local address of the reallocated shared memory block.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects
support option, VxMP.

RETURNS A pointer to the new block of memory, or NULL if the reallocation cannot be completed.

ERRNO S_memLib_NOT_ENOUGH_MEMORY
S_memLib_BLOCK_ERROR
S_smObjLib_LOCK_TIMEOUT

SEE ALSO smMemLib

VxWorks OS Libraries API Reference, 5.5
smMemShow()

1236

smMemShow()

NAME smMemShow() – show the shared memory system partition blocks and statistics (VxMP
Opt.)

SYNOPSIS void smMemShow

(

int type /* 0 = statistics, 1 = statistics & list */

)

DESCRIPTION This routine displays the total amount of free space in the shared memory system
partition, including number of blocks, average block size, and maximum block size. It also
shows the number of blocks currently allocated, and the average allocated block size.

If type is 1, it displays a list of all the blocks in the free list of the shared memory system
partition.

WARNING: This routine locks access to the shared memory system partition while
displaying the information. This can compromise the access time to the partition from
other CPUs in the system. Generally, this routine is used for debugging purposes only.

EXAMPLE -> smMemShow 1

FREE LIST:

num addr size

--- ---------- ----------

1 0x4ffef0 264

2 0x4fef18 1700

SUMMARY:

status bytes blocks ave block max block

--------------- --------- -------- ---------- ----------

current

free 1964 2 982 1700

alloc 2356 1 2356 -

cumulative

alloc 2620 2 1310 -

value = 0 = 0x0

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects
support option, VxMP.

RETURNS N/A

SEE ALSO smMemShow, windsh, VxWorks Programmer’s Guide: Target Shell, Tornado User’s Guide:
Shell

2: Routines
smNameAdd()

1237

S

smNameAdd()

NAME smNameAdd() – add a name to the shared memory name database (VxMP Opt.)

SYNOPSIS STATUS smNameAdd

(

char * name, /* name string to enter in database */

void * value, /* value associated with name */

int type /* type associated with name */

)

DESCRIPTION This routine adds a name of specified object type and value to the shared memory objects
name database.

The name parameter is an arbitrary null-terminated string with a maximum of 20
characters, including EOS.

By convention, type values of less than 0x1000 are reserved by VxWorks; all other values
are user definable. The following types are predefined in smNameLib.h:

A name can be entered only once in the database, but there can be more than one name
associated with an object ID.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects
support option, VxMP.

RETURNS OK, or ERROR if there is insufficient memory for name to be allocated, if name is already in
the database, or if the database is already full.

ERRNO S_smNameLib_NOT_INITIALIZED
S_smNameLib_NAME_TOO_LONG
S_smNameLib_NAME_ALREADY_EXIST
S_smNameLib_DATABASE_FULL
S_smObjLib_LOCK_TIMEOUT

SEE ALSO smNameLib, smNameShow

Name Value Type

T_SM_SEM_B = 0 shared binary semaphore
T_SM_SEM_C = 1 shared counting semaphore
T_SM_MSG_Q = 2 shared message queue
T_SM_PART_ID = 3 shared memory partition
T_SM_BLOCK = 4 shared memory allocated block

VxWorks OS Libraries API Reference, 5.5
smNameFind()

1238

smNameFind()

NAME smNameFind() – look up a shared memory object by name (VxMP Opt.)

SYNOPSIS STATUS smNameFind

(

char * name, /* name to search for */

void * * pValue, /* pointer where to return value */

int * pType, /* pointer where to return object type */

int waitType /* NO_WAIT or WAIT_FOREVER */

)

DESCRIPTION This routine searches the shared memory objects name database for an object matching a
specified name. If the object is found, its value and type are copied to the addresses
pointed to by pValue and pType. The value of waitType can be one of the following:

NO_WAIT (0)
The call returns immediately, even if name is not in the database.

WAIT_FOREVER (-1)
The call returns only when name is available in the database. If name is not already in,
the database is scanned periodically as the routine waits for name to be entered.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects
support option, VxMP.

RETURNS OK, or ERROR if the object is not found, if name is too long, or the wait type is invalid.

ERRNO S_smNameLib_NOT_INITIALIZED
S_smNameLib_NAME_TOO_LONG
S_smNameLib_NAME_NOT_FOUND
S_smNameLib_INVALID_WAIT_TYPE
S_smObjLib_LOCK_TIMEOUT

SEE ALSO smNameLib, smNameShow

2: Routines
smNameFindByValue()

1239

S

smNameFindByValue()

NAME smNameFindByValue() – look up a shared memory object by value (VxMP Opt.)

SYNOPSIS STATUS smNameFindByValue

(

void * value, /* value to search for */

char * name, /* pointer where to return name */

int * pType, /* pointer where to return object type */

int waitType /* NO_WAIT or WAIT_FOREVER */

)

DESCRIPTION This routine searches the shared memory name database for an object matching a
specified value. If the object is found, its name and type are copied to the addresses
pointed to by name and pType. The value of waitType can be one of the following:

NO_WAIT (0)
The call returns immediately, even if the object value is not in the database.

WAIT_FOREVER (-1)
The call returns only when the object value is available in the database.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects
support option, VxMP.

RETURNS OK, or ERROR if value is not found or if the wait type is invalid.

ERRNO S_smNameLib_NOT_INITIALIZED
S_smNameLib_VALUE_NOT_FOUND
S_smNameLib_INVALID_WAIT_TYPE
S_smObjLib_LOCK_TIMEOUT

SEE ALSO smNameLib, smNameShow

VxWorks OS Libraries API Reference, 5.5
smNameRemove()

1240

smNameRemove()

NAME smNameRemove() – remove an object from the shared memory objects name database
(VxMP Opt.)

SYNOPSIS STATUS smNameRemove

(

char * name /* name of object to remove */

)

DESCRIPTION This routine removes an object called name from the shared memory objects name
database.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects
support option, VxMP.

RETURNS OK, or ERROR if the object name is not in the database or if name is too long.

ERRNO S_smNameLib_NOT_INITIALIZED
S_smNameLib_NAME_TOO_LONG
S_smNameLib_NAME_NOT_FOUND
S_smObjLib_LOCK_TIMEOUT

SEE ALSO smNameLib, smNameShow

smNameShow()

NAME smNameShow() – show the contents of the shared memory objects name database (VxMP
Opt.)

SYNOPSIS STATUS smNameShow

(

int level /* information level */

)

DESCRIPTION This routine displays the names, values, and types of objects stored in the shared memory
objects name database. Predefined types are shown, using their ASCII representations; all
other types are printed in hexadecimal.

2: Routines
smNetShow()

1241

S

The level parameter defines the level of database information displayed. If level is 0, only
statistics on the database contents are displayed. If level is greater than 0, then both
statistics and database contents are displayed.

WARNING: This routine locks access to the shared memory objects name database while
displaying its contents. This can compromise the access time to the name database from
other CPUs in the system. Generally, this routine is used for debugging purposes only.

EXAMPLE -> smNameShow

Names in Database Max : 30 Current : 6 Free : 24

-> smNameShow 1

Names in Database Max : 30 Current : 6 Free : 24

Name Value Type

---------------- ----------- -------------

inputImage 0x802340 SM_MEM_BLOCK

ouputImage 0x806340 SM_MEM_BLOCK

imagePool 0x802001 SM_MEM_PART

imageInSem 0x8e0001 SM_SEM_B

imageOutSem 0x8e0101 SM_SEM_C

actionQ 0x8e0201 SM_MSG_Q

userObject 0x8e0400 0x1b0

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects
support option, VxMP.

RETURNS OK, or ERROR if the name facility is not initialized.

ERRNO S_smNameLib_NOT_INITIALIZED
S_smObjLib_LOCK_TIMEOUT

SEE ALSO smNameShow, smNameLib

smNetShow()

NAME smNetShow() – show information about a shared memory network

SYNOPSIS STATUS smNetShow

(

char * ifName, /* backplane interface name (NULL == "sm0") */

BOOL zero /* TRUE = zap totals */

)

VxWorks OS Libraries API Reference, 5.5
smObjAttach()

1242

DESCRIPTION This routine displays information about the different CPUs configured in a shared
memory network specified by ifName. It prints error statistics and zeros these fields if zero
is set to TRUE.

EXAMPLE -> smNetShow

Anchor at 0x800000

heartbeat = 705, header at 0x800010, free pkts = 237.

cpu int type arg1 arg2 arg3 queued pkts

--- -------- ---------- ---------- ---------- -----------

0 poll 0x0 0x0 0x0 0

1 poll 0x0 0x0 0x0 0

2 bus-int 0x3 0xc9 0x0 0

3 mbox-2 0x2d 0x8000 0x0 0

input packets = 192 output packets = 164

output errors = 0 collisions = 0

value = 1 = 0x1

RETURNS OK, or ERROR if there is a hardware setup problem or the routine cannot be initialized.

SEE ALSO smNetShow, smNetLib

smObjAttach()

NAME smObjAttach() – attach the calling CPU to the shared memory objects facility (VxMP Opt.)

SYNOPSIS STATUS smObjAttach

(

SM_OBJ_DESC * pSmObjDesc /* pointer to shared memory descriptor */

)

DESCRIPTION This routine “attaches” the calling CPU to the shared memory objects facility. The shared
memory area is identified by the shared memory descriptor with an address specified by
pSmObjDesc. The descriptor must already have been initialized by calling smObjInit().

This routine is called automatically when the component INCLUDE_SM_OBJ is included.

This routine will complete the attach process only if and when the shared memory has
been initialized by the master CPU. If the shared memory is not recognized as active
within the timeout period (10 minutes), this routine returns ERROR.

The smObjAttach() routine connects the shared memory objects handler to the shared
memory interrupt. Note that this interrupt may be shared between the shared memory

2: Routines
smObjGlobalToLocal()

1243

S

network driver and the shared memory objects facility when both are used at the same
time.

WARNING: Once a CPU has attached itself to the shared memory objects facility, it cannot
be detached. Since the shared memory network driver and the shared memory objects
facility use the same low-level attaching mechanism, a CPU cannot be detached from a
shared memory network driver if the CPU also uses shared memory objects.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects
support option, VxMP.

RETURNS OK, or ERROR if the shared memory objects facility is not active or the number of CPUs
exceeds the maximum.

ERRNO S_smLib_INVALID_CPU_NUMBER

SEE ALSO smObjLib, smObjSetup(), smObjInit()

smObjGlobalToLocal()

NAME smObjGlobalToLocal() – convert a global address to a local address (VxMP Opt.)

SYNOPSIS void * smObjGlobalToLocal

(

void * globalAdrs /* global address to convert */

)

DESCRIPTION This routine converts a global shared memory address globalAdrs to its corresponding
local value. This routine does not verify that globalAdrsis really a valid global shared
memory address.

All addresses stored in shared memory are global. Any access made to shared memory by
the local CPU must be done using local addresses. This routine and
smObjLocalToGlobal() are used to convert between these address types.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects
support option, VxMP.

RETURNS The local shared memory address pointed to by globalAdrs.

SEE ALSO smObjLib, smObjLocalToGlobal()

VxWorks OS Libraries API Reference, 5.5
smObjInit()

1244

smObjInit()

NAME smObjInit() – initialize a shared memory objects descriptor (VxMP Opt.)

SYNOPSIS void smObjInit

(

SM_OBJ_DESC * pSmObjDesc, /* ptr to shared memory descriptor */

SM_ANCHOR * anchorLocalAdrs, /* shared memory anchor local adrs */

int ticksPerBeat, /* cpu ticks per heartbeat */

int smObjMaxTries, /* max no. of tries to obtain spinLock */

int intType, /* interrupt method */

int intArg1, /* interrupt argument #1 */

int intArg2, /* interrupt argument #2 */

int intArg3 /* interrupt argument #3 */

)

DESCRIPTION This routine initializes a shared memory descriptor. The descriptor must already be
allocated in the CPU’s local memory. Once the descriptor has been initialized by this
routine, the CPU may attach itself to the shared memory area by calling smObjAttach().

Only the shared memory descriptor itself is modified by this routine. No structures in
shared memory are affected.

Parameters:

pSmObjDesc
The address of the shared memory descriptor to be initialized; this structure must be
allocated before smObjInit() is called.

anchorLocalAdrs
The memory address by which the local CPU may access the shared memory anchor.
This address may vary among CPUs in the system because of address offsets
(particularly if the anchor is located in one CPU’s dual-ported memory).

ticksPerBeat
Specifies the frequency of the shared memory anchor’s heartbeat. The frequency is
expressed in terms of how many CPU ticks on the local CPU correspond to one
heartbeat period.

smObjMaxTries
Specifies the maximum number of tries to obtain access to an internal mutually
exclusive data structure.

intType, intArg1, intArg2, intArg3
Allow a CPU to announce the method by which it is to be notified of shared memory
events. See the manual entry for if_sm for a discussion about interrupt types and
their associated parameters.

2: Routines
smObjLocalToGlobal()

1245

S

This routine is called automatically when the component INCLUDE_SM_OBJ is included.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects
support option, VxMP.

RETURNS N/A

SEE ALSO smObjLib, smObjSetup(), smObjAttach()

smObjLibInit()

NAME smObjLibInit() – install the shared memory objects facility (VxMP Opt.)

SYNOPSIS STATUS smObjLibInit (void)

DESCRIPTION This routine installs the shared memory objects facility. It is called automatically when the
component INCLUDE_SM_OBJ is included.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects
support option, VxMP.

RETURNS OK, or ERROR if the shared memory objects facility has already been installed.

SEE ALSO smObjLib

smObjLocalToGlobal()

NAME smObjLocalToGlobal() – convert a local address to a global address (VxMP Opt.)

SYNOPSIS void * smObjLocalToGlobal

(

void * localAdrs /* local address to convert */

)

DESCRIPTION This routine converts a local shared memory address localAdrs to its corresponding global
value. This routine does not verify that localAdrs is really a valid local shared memory
address.

VxWorks OS Libraries API Reference, 5.5
smObjSetup()

1246

All addresses stored in shared memory are global. Any access made to shared memory by
the local CPU must be done using local addresses. This routine and
smObjGlobalToLocal() are used to convert between these address types.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects
support option, VxMP.

RETURNS The global shared memory address pointed to by localAdrs.

SEE ALSO smObjLib, smObjGlobalToLocal()

smObjSetup()

NAME smObjSetup() – initialize the shared memory objects facility (VxMP Opt.)

SYNOPSIS STATUS smObjSetup

(

SM_OBJ_PARAMS * smObjParams /* setup parameters */

)

DESCRIPTION This routine initializes the shared memory objects facility by filling the shared memory
header. It must be called only once by the shared memory master CPU. It is called
automatically only by the master CPU, when the component INCLUDE_SM_OBJ is
included.

Any CPU on the system backplane can use the shared memory objects facility; however,
the facility must first be initialized on the master CPU. Then before other CPUs are
attached to the shared memory area by smObjAttach(), each must initialize its own
shared memory objects descriptor using smObjInit(). This mechanism is similar to the
one used by the shared memory network driver.

The smObjParams parameter is a pointer to a structure containing the values used to
describe the shared memory objects setup. This structure is defined as follows in
smObjLib.h:

typedef struct sm_obj_params /* setup parameters */

{

BOOL allocatedPool; /* TRUE if shared memory pool is malloced */

SM_ANCHOR * pAnchor; /* shared memory anchor */

char * smObjFreeAdrs; /* start address of shared memory pool */

int smObjMemSize; /* memory size reserved for shared memory */

int maxCpus; /* max number of CPUs in the system */

int maxTasks; /* max number of tasks using smObj */

2: Routines
smObjShow()

1247

S

int maxSems; /* max number of shared semaphores */

int maxMsgQueues; /* max number of shared message queues */

int maxMemParts; /* max number of shared memory partitions */

int maxNames; /* max number of names of shared objects */

} SM_OBJ_PARAMS;

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects
support option, VxMP.

RETURNS OK, or ERROR if the shared memory pool cannot hold all the requested objects or the
number of CPUs exceeds the maximum.

ERRNO S_smObjLib_TOO_MANY_CPU
S_smObjLib_SHARED_MEM_TOO_SMALL

SEE ALSO smObjLib, smObjInit(), smObjAttach()

smObjShow()

NAME smObjShow() – display the current status of shared memory objects (VxMP Opt.)

SYNOPSIS STATUS smObjShow (void)

DESCRIPTION This routine displays useful information about the current status of shared memory
objects facilities.

WARNING: The information returned by this routine is not static and may be obsolete by
the time it is examined. This information is generally used for debugging purposes only.

EXAMPLE -> smObjShow
Shared Mem Anchor Local Addr: 0x600.
Shared Mem Hdr Local Addr: 0xb1514.
Attached CPU : 5
Max Tries to Take Lock: 1
Shared Object Type Current Maximum Available
-------------------- ---------- --------- ----------
Tasks 1 20 19
Binary Semaphores 8 30 20
Counting Semaphores 2 30 20
Messages Queues 3 10 7
Memory Partitions 1 4 3
Names in Database 16 100 84

VxWorks OS Libraries API Reference, 5.5
smObjTimeoutLogEnable()

1248

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects
support option, VxMP.

RETURNS OK, or ERROR if no shared memory objects are initialized.

ERRNO S_smObjLib_NOT_INITIALIZED

SEE ALSO smObjShow, smObjLib

smObjTimeoutLogEnable()

NAME smObjTimeoutLogEnable() – control logging of failed attempts to take a spin-lock (VxMP
Opt.)

SYNOPSIS void smObjTimeoutLogEnable

(

BOOL timeoutLogEnable /* TRUE to enable, FALSE to disable */

)

DESCRIPTION This routine enables or disables the printing of a message when an attempt to take a
shared memory spin-lock fails.

By default, message logging is enabled.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects
support option, VxMP.

RETURNS N/A

SEE ALSO smObjLib

2: Routines
sntpcTimeGet()

1249

S

sntpcTimeGet()

NAME sntpcTimeGet() – retrieve the current time from a remote source

SYNOPSIS STATUS sntpcTimeGet

(

char * pServerAddr, /* server IP address or hostname */

u_int timeout, /* timeout interval in ticks */

struct timespec * pCurrTime /* storage for retrieved time value */

)

DESCRIPTION This routine stores the current time as reported by an SNTP/NTP server in the location
indicated by pCurrTime. The reported time is first converted to the elapsed time since
January 1, 1970, 00:00, GMT, which is the base value used by UNIX systems. If
pServerAddr is NULL, the routine listens for messages sent by an SNTP/NTP server in
broadcast mode. Otherwise, this routine sends a request to the specified SNTP/NTP
server and extracts the reported time from the reply. In either case, an error is returned if
no message is received within the interval specified by timeout. Typically, SNTP/NTP
servers operating in broadcast mode send update messages every 64 to 1024 seconds. An
infinite timeout value is specified by WAIT_FOREVER.

RETURNS OK, or ERROR if unsuccessful.

ERRNO S_sntpcLib_INVALID_PARAMETER, S_sntpcLib_INVALID_ADDRESS, S_sntpcLib_TIMEOUT,
S_sntpcLib_SERVER_UNSYNC, S_sntpcLib_VERSION_UNSUPPORTED

SEE ALSO sntpcLib

VxWorks OS Libraries API Reference, 5.5
sntpsClockSet()

1250

sntpsClockSet()

NAME sntpsClockSet() – assign a routine to access the reference clock

SYNOPSIS STATUS sntpsClockSet

(

FUNCPTR pClockHookRtn /* new interface to reference clock */

)

DESCRIPTION This routine installs a hook routine that is called to access the reference clock used by the
SNTP server. This hook routine must use the following interface:

STATUS sntpsClockHook (int request, void *pBuffer);

The hook routine should copy one of three settings used by the server to construct
outgoing NTP messages into pBuffer according to the value of the request parameter. If the
requested setting is available, the installed routine should return OK (or ERROR
otherwise).

This routine calls the given hook routine with the request parameter set to SNTPS_ID to get
the 32-bit reference identifier in the format specified in RFC 1769. It also calls the hook
routine with request set to SNTPS_RESOLUTION to retrieve a 32-bit value containing the
clock resolution in nanoseconds. That value will be used to determine the 8-bit signed
integer indicating the clock precision (according to the format specified in RFC 1769).
Other library routines will set the request parameter to SNTPS_TIME to retrieve the current
64-bit NTP timestamp from pBuffer in host byte order. The routine sntpsNsecToFraction()
will convert a value in nanoseconds to the format required for the NTP fractional part.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

RETURNS OK or ERROR.

ERRNO N/A

SEE ALSO sntpsLib

2: Routines
sntpsNsecToFraction()

1251

S

sntpsConfigSet()

NAME sntpsConfigSet() – change SNTP server broadcast settings

SYNOPSIS STATUS sntpsConfigSet

(

int setting, /* configuration option to change */

void * pValue /* new value for parameter */

)

DESCRIPTION This routine alters the configuration of the SNTP server when operating in broadcast
mode. A setting value of SNTPS_DELAY interprets the contents of pValue as the new 16-bit
broadcast interval. When setting equals SNTPS_ADDRESS, pValue should provide the
string representation of an IP broadcast or multicast address (for example, “224.0.1.1”).
Any changed settings will take effect after the current broadcast interval is completed and
the corresponding NTP message is sent.

RETURNS OK or ERROR.

ERRNO S_sntpsLib_INVALID_PARAMETER

SEE ALSO sntpsLib

sntpsNsecToFraction()

NAME sntpsNsecToFraction() – convert portions of a second to NTP format

SYNOPSIS ULONG sntpsNsecToFraction

(

ULONG nsecs /* nanoseconds to convert to binary fraction */

)

DESCRIPTION This routine is provided for convenience in fulfilling an SNTPS_TIME request to the clock
hook. It converts a value in nanoseconds to the fractional part of the NTP timestamp
format. The routine is not designed to convert non-normalized values greater than or
equal to one second. Although the NTP time format provides a precision of about 200
pico-seconds, rounding errors in the conversion process decrease the accuracy as the input
value increases. In the worst case, only the 24 most significant bits are valid, which
reduces the precision to tenths of a micro-second.

VxWorks OS Libraries API Reference, 5.5
so()

1252

RETURNS Value for NTP fractional part in host-byte order.

ERRNO N/A

SEE ALSO sntpsLib

so()

NAME so() – single-step, but step over a subroutine

SYNOPSIS STATUS so

(

int task /* task to step; 0 = use default */

)

DESCRIPTION This routine single-steps a task that is stopped at a breakpoint. However, if the next
instruction is a JSR or BSR, so() breaks at the instruction following the subroutine call
instead.

To execute, enter:

-> so [task]

If task is omitted or zero, the last task referenced is assumed.

SEE ALSO dbgLib, VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s Guide: Shell

socket()

NAME socket() – open a socket

SYNOPSIS int socket

(

int domain, /* address family (for example, AF_INET) */

int type, /* SOCK_STREAM, SOCK_DGRAM, or SOCK_RAW */

int protocol /* socket protocol (usually 0) */

)

2: Routines
sockUploadPathClose()

1253

S

DESCRIPTION This routine opens a socket and returns a socket descriptor. The socket descriptor is
passed to the other socket routines to identify the socket. The socket descriptor is a
standard I/O system file descriptor (fd) and can be used with the close(), read(), write(),
and ioctl() routines.

Available socket types include:

SOCK_STREAM
Specifies a connection-based (stream) socket.

SOCK_DGRAM
Specifies a datagram (UDP) socket.

SOCK_RAW
Specifies a raw socket.

RETURNS A socket descriptor, or ERROR.

SEE ALSO sockLib

sockUploadPathClose()

NAME sockUploadPathClose() – close the socket upload path (Windview)

SYNOPSIS void sockUploadPathClose

(

UPLOAD_ID upId /* generic upload-path descriptor */

)

DESCRIPTION This routine closes the socket connection to the event receiver on the host.

RETURNS N/A

SEE ALSO wvSockUploadPathLib, sockUploadPathCreate()

VxWorks OS Libraries API Reference, 5.5
sockUploadPathCreate()

1254

sockUploadPathCreate()

NAME sockUploadPathCreate() – establish an upload path to the host using a socket (Windview)

SYNOPSIS UPLOAD_ID sockUploadPathCreate

(

char * ipAddress, /* server’s hostname or IP address in */

/* .-notation */

short port /* port number to bind to */

)

DESCRIPTION This routine initializes the TCP/IP connection to the host process that receives uploaded
events. It can be retried if the connection attempt fails.

RETURNS The UPLOAD_ID, or NULL if the connection cannot be completed or memory for the ID is
not available.

SEE ALSO wvSockUploadPathLib, sockUploadPathClose()

sockUploadPathLibInit()

NAME sockUploadPathLibInit() – initialize wvSockUploadPathLib library (Windview)

SYNOPSIS STATUS sockUploadPathLibInit (void)

DESCRIPTION This routine initializes wvSockUploadPathLib by pulling in the routines in this file for
use with WindView. It is called during system configuration from usrWindview.c.

RETURN OK.

SEE ALSO wvSockUploadPathLib

2: Routines
sp()

1255

S

sockUploadPathWrite()

NAME sockUploadPathWrite() – write to the socket upload path (Windview)

SYNOPSIS int sockUploadPathWrite

(

UPLOAD_ID upId, /* generic upload-path descriptor */

char * pStart, /* address of data to write */

size_t size /* number of bytes of data at pStart */

)

DESCRIPTION This routine writes size bytes of data beginning at pStart to the upload path between the
target and the event receiver on the host.

RETURNS The number of bytes written, or ERROR.

SEE ALSO wvSockUploadPathLib, sockUploadPathCreate()

sp()

NAME sp() – spawn a task with default parameters

SYNOPSIS int sp

(

FUNCPTR func, /* function to call */

int arg1, /* first of nine args to pass to spawned task */

int arg2,

int arg3,

int arg4,

int arg5,

int arg6,

int arg7,

int arg8,

int arg9

)

DESCRIPTION This command spawns a specified function as a task with the following defaults:

priority:
100

VxWorks OS Libraries API Reference, 5.5
sprintf()

1256

stack size:
20,000 bytes

task ID:
highest not currently used

task options:
VX_FP_TASK - execute with floating-point coprocessor support.

task name:
A name of the form tN where N is an integer which increments as new tasks are
spawned, e.g., t1, t2, t3, etc.

The task ID is displayed after the task is spawned.

This command is a short form of the underlying taskSpawn() routine, convenient for
spawning tasks in which the default parameters are satisfactory. If the default parameters
are unacceptable, taskSpawn() should be called directly.

RETURNS A task ID, or ERROR if the task cannot be spawned.

SEE ALSO usrLib, taskLib, taskSpawn(), VxWorks Programmer’s Guide: Target Shell, windsh,
Tornado User’s Guide: Shell

sprintf()

NAME sprintf() – write a formatted string to a buffer (ANSI)

SYNOPSIS int sprintf

(

char * buffer, /* buffer to write to */

const char * fmt, /* format string */

... /* optional arguments to format */

)

DESCRIPTION This routine copies a formatted string to a specified buffer, which is null-terminated. Its
function and syntax are otherwise identical to printf().

RETURNS The number of characters copied to buffer, not including the NULL terminator.

SEE ALSO fioLib, printf(), American National Standard for Information Systems -Programming
Language - C, ANSI X3.159-1989: Input/Output (stdio.h)

2: Routines
spyClkStart()

1257

S

spy()

NAME spy() – begin periodic task activity reports

SYNOPSIS void spy

(

int freq, /* reporting freq in sec, 0 = default of 5 */

int ticksPerSec /* interrupt clock freq, 0 = default of 100 */

)

DESCRIPTION This routine collects task activity data and periodically runs spyReport(). Data is
gathered ticksPerSec times per second, and a report is made every freq seconds. If freq is
zero, it defaults to 5 seconds. If ticksPerSec is omitted or zero, it defaults to 100.

This routine spawns spyTask() to do the actual reporting.

It is not necessary to call spyClkStart() before running spy().

RETURNS N/A

SEE ALSO usrLib, spyLib, spyClkStart(), spyTask(), VxWorks Programmer’s Guide: Target Shell

spyClkStart()

NAME spyClkStart() – start collecting task activity data

SYNOPSIS STATUS spyClkStart

(

int intsPerSec /* timer interrupt freq, 0 = default of 100 */

)

DESCRIPTION This routine begins data collection by enabling the auxiliary clock interrupts at a
frequency of intsPerSec interrupts per second. If intsPerSec is omitted or zero, the
frequency will be 100. Data from previous collections is cleared.

RETURNS OK, or ERROR if the CPU has no auxiliary clock, or if task create and delete hooks cannot
be installed.

SEE ALSO usrLib, spyLib, sysAuxClkConnect(), VxWorks Programmer’s Guide: Target Shell

VxWorks OS Libraries API Reference, 5.5
spyClkStop()

1258

spyClkStop()

NAME spyClkStop() – stop collecting task activity data

SYNOPSIS void spyClkStop (void)

DESCRIPTION This routine disables the auxiliary clock interrupts. Data collected remains valid until the
next spyClkStart() call.

RETURNS N/A

SEE ALSO usrLib, spyLib, spyClkStart(), VxWorks Programmer’s Guide: Target Shell

spyHelp()

NAME spyHelp() – display task monitoring help menu

SYNOPSIS void spyHelp (void)

DESCRIPTION This routine displays a summary of spyLib utilities:

spyHelp Print this list

spyClkStart [ticksPerSec] Start task activity monitor running

at ticksPerSec ticks per second

spyClkStop Stop collecting data

spyReport Prints display of task activity

statistics

spyStop Stop collecting data and reports

spy [freq[,ticksPerSec]] Start spyClkStart and do a report

every freq seconds

ticksPerSec defaults to 100. freq defaults to 5 seconds.

RETURNS N/A

SEE ALSO usrLib, spyLib, VxWorks Programmer’s Guide: Target Shell

2: Routines
spyReport()

1259

S

spyLibInit()

NAME spyLibInit() – initialize task CPU utilization tool package

SYNOPSIS void spyLibInit (void)

DESCRIPTION This routine initializes the task CPU utilization tool package. If the configuration macro
INCLUDE_SPY is defined, it is called by the root task, usrRoot(), in usrConfig.c.

RETURNS N/A

SEE ALSO spyLib, usrLib

spyReport()

NAME spyReport() – display task activity data

SYNOPSIS void spyReport (void)

DESCRIPTION This routine reports on data gathered at interrupt level for the amount of CPU time
utilized by each task, the amount of time spent at interrupt level, the amount of time spent
in the kernel, and the amount of idle time. Time is displayed in ticks and as a percentage,
and the data is shown since both the last call to spyClkStart() and the last spyReport(). If
no interrupts have occurred since the last spyReport(), nothing is displayed.

RETURNS N/A

SEE ALSO usrLib, spyLib, spyClkStart(), VxWorks Programmer’s Guide: Target Shell

VxWorks OS Libraries API Reference, 5.5
spyStop()

1260

spyStop()

NAME spyStop() – stop spying and reporting

SYNOPSIS void spyStop (void)

DESCRIPTION This routine calls spyClkStop(). Any periodic reporting by spyTask() is terminated.

RETURNS N/A

SEE ALSO usrLib, spyLib, spyClkStop(), spyTask(), VxWorks Programmer’s Guide: Target Shell

spyTask()

NAME spyTask() – run periodic task activity reports

SYNOPSIS void spyTask

(

int freq /* reporting frequency, in seconds */

)

DESCRIPTION This routine is spawned as a task by spy() to provide periodic task activity reports. It
prints a report, delays for the specified number of seconds, and repeats.

RETURNS N/A

SEE ALSO usrLib, spyLib, spy(), VxWorks Programmer’s Guide: Target Shell

2: Routines
sqrtf()

1261

S

sqrt()

NAME sqrt() – compute a non-negative square root (ANSI)

SYNOPSIS double sqrt

(

double x /* value to compute the square root of */

)

DESCRIPTION This routine computes the non-negative square root of x in double precision. A domain
error occurs if the argument is negative.

INCLUDE FILES math.h

RETURNS The double-precision square root of x or 0 if x is negative.

ERRNO EDOM

SEE ALSO ansiMath, mathALib

sqrtf()

NAME sqrtf() – compute a non-negative square root (ANSI)

SYNOPSIS float sqrtf

(

float x /* value to compute the square root of */

)

DESCRIPTION This routine returns the non-negative square root of x in single precision.

INCLUDE FILES math.h

RETURNS The single-precision square root of x.

SEE ALSO mathALib

VxWorks OS Libraries API Reference, 5.5
sr()

1262

sr()

NAME sr() – return the contents of the status register (68K, SH)

SYNOPSIS int sr

(

int taskId /* task ID, 0 means default task */

)

DESCRIPTION This command extracts the contents of the status register from the TCB of a specified task.
If taskId is omitted or zero, the last task referenced is assumed.

For SH, similar routines are provided for all control registers (gbr, vbr): gbr(), vbr().

RETURNS The contents of the status register (or the requested control register).

SEE ALSO dbgArchLib, VxWorks Programmer’s Guide: Target Shell

srand()

NAME srand() – reset the value of the seed used to generate random numbers (ANSI)

SYNOPSIS void * srand

(

uint_t seed /* random number seed */

)

DESCRIPTION This routine resets the seed value used by rand(). If srand() is then called with the same
seed value, the sequence of pseudo-random numbers is repeated. If rand() is called before
any calls to srand() have been made, the same sequence shall be generated as when
srand() is first called with the seed value of 1.

INCLUDE FILES stdlib.h

RETURNS N/A

SEE ALSO ansiStdlib, rand()

2: Routines
sscanf()

1263

S

sscanf()

NAME sscanf() – read and convert characters from an ASCII string (ANSI)

SYNOPSIS int sscanf

(

const char * str, /* string to scan */

const char * fmt, /* format string */

... /* optional arguments to format string */

)

DESCRIPTION This routine reads characters from the string str, interprets them according to format
specifications in the string fmt, which specifies the admissible input sequences and how
they are to be converted for assignment, using subsequent arguments as pointers to the
objects to receive the converted input.

If there are insufficient arguments for the format, the behavior is undefined. If the format
is exhausted while arguments remain, the excess arguments are evaluated but are
otherwise ignored.

The format is a multibyte character sequence, beginning and ending in its initial shift
state. The format is composed of zero or more directives: one or more white-space
characters; an ordinary multibyte character (neither % nor a white-space character); or a
conversion specification. Each conversion specification is introduced by the % character.
After the %, the following appear in sequence:

– An optional assignment-suppressing character *.

– An optional non-zero decimal integer that specifies the maximum field width.

– An optional h, l (ell) or ll (ell-ell) indicating the size of the

receiving object. The conversion specifiers d, i, and n should be preceded by h if the
corresponding argument is a pointer to short int rather than a pointer to int, or by l if it is
a pointer to long int, or by ll if it is a pointer to long long int. Similarly, the conversion
specifiers o, u, and x shall be preceded by h if the corresponding argument is a pointer to
unsigned short int rather than a pointer to unsigned int, or by l if it is a pointer to
unsigned long int, or by ll if it is a pointer to unsigned long long int. Finally, the
conversion specifiers e, f, and g shall be preceded by l if the corresponding argument is a
pointer to double rather than a pointer to float. If a h, l or ll appears with any other
conversion specifier, the behavior is undefined.

WARNING: ANSI C also specifies an optional L in some of the same contexts as l above,
corresponding to a long double * argument. However, the current release of the VxWorks
libraries does not support long double data; using the optional L gives unpredictable
results.

VxWorks OS Libraries API Reference, 5.5
sscanf()

1264

– A character that specifies the type of conversion to be applied. The

valid conversion specifiers are described below.

The sscanf() routine executes each directive of the format in turn. If a directive fails, as
detailed below, sscanf() returns. Failures are described as input failures (due to the
unavailability of input characters), or matching failures (due to inappropriate input).

A directive composed of white-space character(s) is executed by reading input up to the
first non-white-space character (which remains unread), or until no more characters can
be read.

A directive that is an ordinary multibyte character is executed by reading the next
characters of the stream. If one of the characters differs from one comprising the directive,
the directive fails, and the differing and subsequent characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each specifier. A conversion specification is executed in the following
steps:

Input white-space characters (as specified by the isspace() function) are skipped, unless
the specification includes a [, c, or n specifier.

An input item is read from the stream, unless the specification includes an n specifier. An
input item is defined as the longest matching sequence of input characters, unless that
exceeds a specified field width, in which case it is the initial subsequence of that length in
the sequence. The first character, if any, after the input item remains unread. If the length
of the input item is zero, the execution of the directive fails: this condition is a matching
failure, unless an error prevented input from the stream, in which case it is an input
failure.

Except in the case of a % specifier, the input item is converted to a type appropriate to the
conversion specifier. If the input item is not a matching sequence, the execution of the
directive fails: this condition is a matching failure. Unless assignment suppression was
indicated by a *, the result of the conversion is placed in the object pointed to by the first
argument following the fmt argument that has not already received a conversion result. If
this object does not have an appropriate type, or if the result of the conversion cannot be
represented in the space provided, the behavior is undefined.

The following conversion specifiers are valid:

d
Matches an optionally signed decimal integer whose format is the same as expected
for the subject sequence of the strtol() function with the value 10 for the base
argument. The corresponding argument should be a pointer to int.

i
Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of the strtol() function with the value 0 for the base argument. The
corresponding argument should be a pointer to int.

2: Routines
sscanf()

1265

S

o
Matches an optionally signed octal integer, whose format is the same as expected for
the subject sequence of the strtoul() function with the value 8 for the base argument.
The corresponding argument should be a pointer to unsigned int.

u
Matches an optionally signed decimal integer, whose format is the same as expected
for the subject sequence of the strtoul() function with the value 10 for the base
argument. The corresponding argument should be a pointer to unsigned int.

x
Matches an optionally signed hexadecimal integer, whose format is the same as
expected for the subject sequence of the strtoul() function with the value 16 for the
base argument. The corresponding argument should be a pointer to unsigned int.

e, f, g
Match an optionally signed floating-point number, whose format is the same as
expected for the subject string of the strtod() function. The corresponding argument
should be a pointer to float.

s
Matches a sequence of non-white-space characters. The corresponding argument
should be a pointer to the initial character of an array large enough to accept the
sequence and a terminating null character, which will be added automatically.

[
Matches a non-empty sequence of characters from a set of expected characters (the
scanset). The corresponding argument should be a pointer to the initial character of
an array large enough to accept the sequence and a terminating null character, which
is added automatically. The conversion specifier includes all subsequent character in
the format string, up to and including the matching right bracket (]). The characters
between the brackets (the scanlist) comprise the scanset, unless the character after the
left bracket is a circumflex (^) in which case the scanset contains all characters that do
not appear in the scanlist between the circumflex and the right bracket. If the
conversion specifier begins with “[]” or “[^]”, the right bracket character is in the
scanlist and the next right bracket character is the matching right bracket that ends
the specification; otherwise the first right bracket character is the one that ends the
specification.

c
Matches a sequence of characters of the number specified by the field width (1 if no
field width is present in the directive). The corresponding argument should be a
pointer to the initial character of an array large enough to accept the sequence. No
null character is added.

p
Matches an implementation-defined set of sequences, which should be the same as
the set of sequences that may be produced by the %p conversion of the fprintf()
function. The corresponding argument should be a pointer to a pointer to void.

VxWorks OS Libraries API Reference, 5.5
sscanf()

1266

VxWorks defines its pointer input field to be consistent with pointers written by the
fprintf() function (“0x” hexadecimal notation). If the input item is a value converted
earlier during the same program execution, the pointer that results should compare
equal to that value; otherwise the behavior of the %p conversion is undefined.

n
No input is consumed. The corresponding argument should be a pointer to int into
which the number of characters read from the input stream so far by this call to
sscanf() is written. Execution of a %n directive does not increment the assignment
count returned when sscanf() completes execution.

%
Matches a single %; no conversion or assignment occurs. The complete conversion
specification is %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion specifiers E, G, and X are also valid and behave the same as e, g, and x,
respectively.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any characters matching the current directive have been read (other than leading
white space, where permitted), execution of the current directive terminates with an input
failure; otherwise, unless execution of the current directive is terminated with a matching
failure, execution of the following directive (if any) is terminated with an input failure.

If conversion terminates on a conflicting input character, the offending input character is
left unread in the input stream. Trailing white space (including new-line characters) is left
unread unless matched by a directive. The success of literal matches and suppressed
assignments is not directly determinable other than via the %n directive.

INCLUDE FILES fioLib.h

RETURNS The number of input items assigned, which can be fewer than provided for, or even zero,
in the event of an early matching failure; or EOF if an input failure occurs before any
conversion.

SEE ALSO fioLib, fscanf(), scanf(), American National Standard for Information Systems -Programming
Language - C, ANSI X3.159-1989: Input/Output (stdio.h)

2: Routines
stackEntryIsTop()

1267

S

stackEntryIsBottom()

NAME stackEntryIsBottom() – test if an interface has no layers beneath it

SYNOPSIS BOOL stackEntryIsBottom

(

int index /* interface to examine */

)

DESCRIPTION This routine returns TRUE if an interface has no layers beneath it. This helper function is
not exported.

RETURNS TRUE if the interface is the bottom-most layer in a stack
FALSE otherwise or on error

SEE ALSO m2IfLib

stackEntryIsTop()

NAME stackEntryIsTop() – test if an ifStackTable interface has no layers above

SYNOPSIS BOOL stackEntryIsTop
(
int index /* the interface to examine */
)

DESCRIPTION This routine returns TRUE if an interface is not below any other interface. That is, it
returns TRUE if the given interface is topmost on a stack. This helper function is not
exported.

RETURNS TRUE is interface is topmost
FALSE otherwise or for errors

SEE ALSO m2IfLib

VxWorks OS Libraries API Reference, 5.5
stat()

1268

stat()

NAME stat() – get file status information using a pathname (POSIX)

SYNOPSIS STATUS stat
(
char * name, /* name of file to check */
struct stat * pStat /* pointer to stat structure */
)

DESCRIPTION This routine obtains various characteristics of a file (or directory). This routine is
equivalent to fstat(), except that the name of the file is specified, rather than an open file
descriptor.

The pStat parameter is a pointer to a stat structure (defined in stat.h). This structure must
have already been allocated before this routine is called.

NOTE: When used with netDrv devices (FTP or RSH), stat() returns the size of the file
and always sets the mode to regular; stat() does not distinguish between files, directories,
links, etc.

On return, the fields in the stat structure are updated to reflect the characteristics of the
file.

RETURNS OK or ERROR.

SEE ALSO dirLib, fstat(), ls()

statfs()

NAME statfs() – get file status information using a pathname (POSIX)

SYNOPSIS STATUS statfs

(

char * name, /* name of file to check */

struct statfs * pStat /* pointer to statfs structure */

)

DESCRIPTION This routine obtains various characteristics of a file system. This routine is equivalent to
fstatfs(), except that the name of the file is specified, rather than an open file descriptor.

2: Routines
stdioInit()

1269

S

The pStat parameter is a pointer to a statfs structure (defined in stat.h). This structure
must have already been allocated before this routine is called.

Upon return, the fields in the statfs structure are updated to reflect the characteristics of
the file.

RETURNS OK or ERROR.

SEE ALSO dirLib, fstatfs(), ls()

stdioFp()

NAME stdioFp() – return the standard input/output/error FILE of the current task

SYNOPSIS FILE * stdioFp

(

int stdFd /* fd of standard FILE to return (0,1,2) */

)

DESCRIPTION This routine returns the specified standard FILE structure address of the current task. It is
provided primarily to give access to standard input, standard output, and standard error
from the shell, where the usual stdin, stdout, stderr macros cannot be used.

INCLUDE FILES stdio.h

RETURNS The standard FILE structure address of the specified file descriptor, for the current task.

SEE ALSO ansiStdio

stdioInit()

NAME stdioInit() – initialize standard I/O support

SYNOPSIS STATUS stdioInit (void)

DESCRIPTION This routine installs standard I/O support. It must be called before using stdio buffering.
If INCLUDE_STDIO is defined in configAll.h, it is called automatically by the root task
usrRoot() in usrConfig.c.

VxWorks OS Libraries API Reference, 5.5
stdioShow()

1270

RETURNS OK, or ERROR if the standard I/O facilities cannot be installed.

SEE ALSO ansiStdio

stdioShow()

NAME stdioShow() – display file pointer internals

SYNOPSIS STATUS stdioShow

(

FILE * fp, /* stream */

int level /* level */

)

DESCRIPTION This routine displays information about a specified stream.

RETURNS OK, or ERROR if the file pointer is invalid.

SEE ALSO ansiStdio

stdioShowInit()

NAME stdioShowInit() – initialize the standard I/O show facility

SYNOPSIS STATUS stdioShowInit (void)

DESCRIPTION This routine links the file pointer show routine into the VxWorks system. It is called
automatically when this show facility is configured into VxWorks using either of the
following methods:

– If you use the configuration header files, define INCLUDE_SHOW_ROUTINES in
config.h.

– If you use the Tornado project facility, select INCLUDE_STDIO_SHOW.

RETURNS OK, or ERROR if an error occurs installing the file pointer show routine.

SEE ALSO ansiStdio

2: Routines
strchr()

1271

S

strcat()

NAME strcat() – concatenate one string to another (ANSI)

SYNOPSIS char * strcat

(

char * destination, /* string to be appended to */

const char * append /* string to append to destination */

)

DESCRIPTION This routine appends a copy of string append to the end of string destination. The resulting
string is null-terminated.

INCLUDE FILES string.h

RETURNS A pointer to destination.

SEE ALSO ansiString

strchr()

NAME strchr() – find the first occurrence of a character in a string (ANSI)

SYNOPSIS char * strchr

(

const char * s, /* string in which to search */

int c /* character to find in string */

)

DESCRIPTION This routine finds the first occurrence of character c in string s. The terminating null is
considered to be part of the string.

INCLUDE FILES string.h

RETURNS The address of the located character, or NULL if the character is not found.

SEE ALSO ansiString

VxWorks OS Libraries API Reference, 5.5
strcmp()

1272

strcmp()

NAME strcmp() – compare two strings lexicographically (ANSI)

SYNOPSIS int strcmp

(

const char * s1, /* string to compare */

const char * s2 /* string to compare s1 to */

)

DESCRIPTION This routine compares string s1 to string s2 lexicographically.

INCLUDE FILES string.h

RETURNS An integer greater than, equal to, or less than 0, according to whether s1 is
lexicographically greater than, equal to, or less than s2, respectively.

SEE ALSO ansiString

strcoll()

NAME strcoll() – compare two strings as appropriate to LC_COLLATE (ANSI)

SYNOPSIS int strcoll

(

const char * s1, /* string 1 */

const char * s2 /* string 2 */

)

DESCRIPTION This routine compares two strings, both interpreted as appropriate to the LC_COLLATE
category of the current locale.

INCLUDE FILES string.h

RETURNS An integer greater than, equal to, or less than zero, according to whether string s1 is
greater than, equal to, or less than string s2 when both are interpreted as appropriate to
the current locale.

SEE ALSO ansiString

2: Routines
strcspn()

1273

S

strcpy()

NAME strcpy() – copy one string to another (ANSI)

SYNOPSIS char * strcpy

(

char * s1, /* string to copy to */

const char * s2 /* string to copy from */

)

DESCRIPTION This routine copies string s2 (including EOS) to string s1.

INCLUDE FILES string.h

RETURNS A pointer to s1.

SEE ALSO ansiString

strcspn()

NAME strcspn() – return the string length up to the first character from a given set (ANSI)

SYNOPSIS size_t strcspn

(

const char * s1, /* string to search */

const char * s2 /* set of characters to look for in s1 */

)

DESCRIPTION This routine computes the length of the maximum initial segment of string s1 that consists
entirely of characters not included in string s2.

INCLUDE FILES string.h

RETURNS The length of the string segment.

SEE ALSO ansiString, strpbrk(), strspn()

VxWorks OS Libraries API Reference, 5.5
strerror()

1274

strerror()

NAME strerror() – map an error number to an error string (ANSI)

SYNOPSIS char * strerror

(

int errcode /* error code */

)

DESCRIPTION This routine maps the error number in errcode to an error message string. It returns a
pointer to a static buffer that holds the error string.

This routine is not reentrant. For a reentrant version, see strerror_r().

INCLUDE string.h

RETURNS A pointer to the buffer that holds the error string.

SEE ALSO ansiString, strerror_r()

strerror_r()

NAME strerror_r() – map an error number to an error string (POSIX)

SYNOPSIS STATUS strerror_r

(

int errcode, /* error number */

char * buffer /* string buffer */

)

DESCRIPTION This call maps the error code in errcode to an error message string which it stores in buffer.

This routine is the POSIX reentrant version of strerror().

INCLUDE FILES string.h

RETURNS OK or ERROR.

SEE ALSO ansiString, strerror()

2: Routines
strftime()

1275

S

strftime()

NAME strftime() – convert broken-down time into a formatted string (ANSI)

SYNOPSIS size_t strftime

(

char * s, /* string array */

size_t n, /* maximum size of array */

const char * format, /* format of output string */

const struct tm * tptr /* broken-down time */

)

DESCRIPTION This routine formats the broken-down time in tptr based on the conversion specified in the
string format, and places the result in the string s.

The format is a multibyte character sequence, beginning and ending in its initial state. The
format string consists of zero or more conversion specifiers and ordinary multibyte
characters. A conversion specifier consists of a % character followed by a character that
determines the behavior of the conversion. All ordinary multibyte characters (including
the terminating NULL character) are copied unchanged to the array. If copying takes place
between objects that overlap, the behavior is undefined. No more than n characters are
placed into the array.

Each conversion specifier is replaced by appropriate characters as described in the
following list. The appropriate characters are determined by the LC_TIME category of the
current locale and by the values contained in the structure pointed to by tptr.

%a
the locale’s abbreviated weekday name.

%A
the locale’s full weekday name.

%b
the locale’s abbreviated month name.

%B
the locale’s full month name.

%c
the locale’s appropriate date and time representation.

%d
the day of the month as decimal number (01-31).

%H
the hour (24-hour clock) as a decimal number (00-23).

VxWorks OS Libraries API Reference, 5.5
strftime()

1276

%I
the hour (12-hour clock) as a decimal number (01-12).

%j
the day of the year as decimal number (001-366).

%m
the month as a decimal number (01-12).

%M
the minute as a decimal number (00-59).

%P
the locale’s equivalent of the AM/PM designations associated with a 12-hour clock.

%S
the second as a decimal number (00-59).

%U
the week number of the year (first Sunday as first day of week 1) as a decimal number
(00-53).

%w
the weekday as a decimal number (0-6), where Sunday is 0.

%W
the week number of the year (the first Monday as the first day of week 1) as a decimal
number (00-53).

%x
the locale’s appropriate date representation.

%X
the locale’s appropriate time representation.

%y
the year without century as a decimal number (00-99).

%Y
the year with century as a decimal number.

%Z
the time zone name or abbreviation, or by no characters if no time zone is
determinable.

%%
%.

For any other conversion specifier, the behavior is undefined.

INCLUDE FILES time.h

2: Routines
strncat()

1277

S

RETURNS The number of characters in s, not including the terminating null character -- or zero if the
number of characters in s, including the null character, is more than n (in which case the
contents of s are indeterminate).

SEE ALSO ansiTime

strlen()

NAME strlen() – determine the length of a string (ANSI)

SYNOPSIS size_t strlen

(

const char * s /* string */

)

DESCRIPTION This routine returns the number of characters in s, not including EOS.

INCLUDE FILES string.h

RETURNS The number of non-null characters in the string.

SEE ALSO ansiString

strncat()

NAME strncat() – concatenate characters from one string to another (ANSI)

SYNOPSIS char * strncat

(

char * dst, /* string to append to */

const char * src, /* string to append */

size_t n /* max no. of characters to append */

)

DESCRIPTION This routine appends up to n characters from string src to the end of string dst.

INCLUDE FILES string.h

VxWorks OS Libraries API Reference, 5.5
strncmp()

1278

RETURNS A pointer to the null-terminated string s1.

SEE ALSO ansiString

strncmp()

NAME strncmp() – compare the first n characters of two strings (ANSI)

SYNOPSIS int strncmp

(

const char * s1, /* string to compare */

const char * s2, /* string to compare s1 to */

size_t n /* max no. of characters to compare */

)

DESCRIPTION This routine compares up to n characters of string s1 to string s2lexicographically.

INCLUDE FILES string.h

RETURNS An integer greater than, equal to, or less than 0, according to whether s1 is
lexicographically greater than, equal to, or less than s2, respectively.

SEE ALSO ansiString

strncpy()

NAME strncpy() – copy characters from one string to another (ANSI)

SYNOPSIS char *strncpy

(

char * s1, /* string to copy to */

const char * s2, /* string to copy from */

size_t n /* max no. of characters to copy */

)

2: Routines
strrchr()

1279

S

DESCRIPTION This routine copies n characters from string s2 to string s1. If n is greater than the length of
s2, nulls are added to s1. If n is less than or equal to the length of s2, the target string will
not be null-terminated.

INCLUDE FILES string.h

RETURNS A pointer to s1.

SEE ALSO ansiString

strpbrk()

NAME strpbrk() – find the first occurrence in a string of a character from a given set (ANSI)

SYNOPSIS char * strpbrk

(

const char * s1, /* string to search */

const char * s2 /* set of characters to look for in s1 */

)

DESCRIPTION This routine locates the first occurrence in string s1 of any character from string s2.

INCLUDE FILES string.h

RETURNS A pointer to the character found in s1, or NULL if no character from s2 occurs in s1.

SEE ALSO ansiString, strcspn()

strrchr()

NAME strrchr() – find the last occurrence of a character in a string (ANSI)

SYNOPSIS char * strrchr

(

const char * s, /* string to search */

int c /* character to look for */

)

VxWorks OS Libraries API Reference, 5.5
strspn()

1280

DESCRIPTION This routine locates the last occurrence of c in the string pointed to by s. The terminating
null is considered to be part of the string.

INCLUDE FILES string.h

RETURNS A pointer to the last occurrence of the character, or NULL if the character is not found.

SEE ALSO ansiString

strspn()

NAME strspn() – return the string length up to the first character not in a given set (ANSI)

SYNOPSIS size_t strspn

(

const char * s, /* string to search */

const char * sep /* set of characters to look for in s */

)

DESCRIPTION This routine computes the length of the maximum initial segment of string s that consists
entirely of characters from the string sep.

INCLUDE FILES string.h

RETURNS The length of the string segment.

SEE ALSO ansiString, strcspn()

strstr()

NAME strstr() – find the first occurrence of a substring in a string (ANSI)

SYNOPSIS char * strstr

(

const char * s, /* string to search */

const char * find /* substring to look for */

)

2: Routines
strtod()

1281

S

DESCRIPTION This routine locates the first occurrence in string s of the sequence of characters (excluding
the terminating null character) in the string find.

INCLUDE FILES string.h

RETURNS A pointer to the located substring, or s if find points to a zero-length string, or NULL if the
string is not found.

SEE ALSO ansiString

strtod()

NAME strtod() – convert the initial portion of a string to a double (ANSI)

SYNOPSIS double strtod

(

const char * s, /* string to convert */

char * * endptr /* ptr to final string */

)

DESCRIPTION This routine converts the initial portion of a specified string s to a double. First, it
decomposes the input string into three parts: an initial, possibly empty, sequence of
white-space characters (as specified by the isspace() function); a subject sequence
resembling a floating-point constant; and a final string of one or more unrecognized
characters, including the terminating null character of the input string. Then, it attempts
to convert the subject sequence to a floating-point number, and returns the result.

The expected form of the subject sequence is an optional plus or minus decimal-point
character, then an optional exponent part but no floating suffix. The subject sequence is
defined as the longest initial subsequence of the input string, starting with the first
non-white-space character, that is of the expected form. The subject sequence contains no
characters if the input string is empty or consists entirely of white space, or if the first
non-white-space character is other than a sign, a digit, or a decimal-point character.

If the subject sequence has the expected form, the sequence of characters starting with the
first digit or the decimal-point character (whichever occurs first) is interpreted as a
floating constant, except that the decimal-point character is used in place of a period, and
that if neither an exponent part nor a decimal-point character appears, a decimal point is
assumed to follow the last digit in the string. If the subject sequence begins with a minus
sign, the value resulting form the conversion is negated. A pointer to the final string is
stored in the object pointed to by endptr, provided that endptr is not a null pointer.

VxWorks OS Libraries API Reference, 5.5
strtok()

1282

In other than the “C” locale, additional implementation-defined subject sequence forms
may be accepted. VxWorks supports only the “C” locale.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of s is stored in the object pointed to by endptr, provided that endptr
is not a null pointer.

INCLUDE FILES stdlib.h

RETURNS The converted value, if any. If no conversion could be performed, it returns zero. If the
correct value is outside the range of representable values, it returns plus or minus
HUGE_VAL (according to the sign of the value), and stores the value of the macro ERANGE
in errno. If the correct value would cause underflow, it returns zero and stores the value
of the macro ERANGE in errno.

SEE ALSO ansiStdlib

strtok()

NAME strtok() – break down a string into tokens (ANSI)

SYNOPSIS char * strtok

(

char * string, /* string */

const char * separator /* separator indicator */

)

DESCRIPTION A sequence of calls to this routine breaks the string string into a sequence of tokens, each
of which is delimited by a character from the string separator. The first call in the sequence
has string as its first argument, and is followed by calls with a null pointer as their first
argument. The separator string may be different from call to call.

The first call in the sequence searches string for the first character that is not contained in
the current separator string. If the character is not found, there are no tokens in string and
strtok() returns a null pointer. If the character is found, it is the start of the first token.

strtok() then searches from there for a character that is contained in the current separator
string. If the character is not found, the current token expands to the end of the string
pointed to by string, and subsequent searches for a token will return a null pointer. If the
character is found, it is overwritten by a null character, which terminates the current
token. strtok() saves a pointer to the following character, from which the next search for a
token will start. (Note that because the separator character is overwritten by a null
character, the input string is modified as a result of this call.)

2: Routines
strtok_r()

1283

S

Each subsequent call, with a null pointer as the value of the first argument, starts
searching from the saved pointer and behaves as described above.

The implementation behaves as if strtok() is called by no library functions.

REENTRANCY This routine is not reentrant; the reentrant form is strtok_r().

INCLUDE FILES string.h

RETURNS A pointer to the first character of a token, or a NULL pointer if there is no token.

SEE ALSO ansiString, strtok_r()

strtok_r()

NAME strtok_r() – break down a string into tokens (reentrant) (POSIX)

SYNOPSIS char * strtok_r

(

char * string, /* string to break into tokens */

const char * separators, /* the separators */

char * * ppLast /* pointer to serve as string index */

)

DESCRIPTION This routine considers the null-terminated string string as a sequence of zero or more text
tokens separated by spans of one or more characters from the separator string separators.
The argument ppLast points to a user-provided pointer which in turn points to the
position within stringat which scanning should begin.

In the first call to this routine, string points to a null-terminated string; separators points to
a null-terminated string of separator characters; and ppLast points to a NULL pointer. The
function returns a pointer to the first character of the first token, writes a null character
into string immediately following the returned token, and updates the pointer to which
ppLast points so that it points to the first character following the null written into string.
(Note that because the separator character is overwritten by a null character, the input
string is modified as a result of this call.)

In subsequent calls string must be a NULL pointer and ppLast must be unchanged so that
subsequent calls will move through the string string, returning successive tokens until no
tokens remain. The separator string separators may be different from call to call. When no
token remains in string, a NULL pointer is returned.

INCLUDE FILES string.h

VxWorks OS Libraries API Reference, 5.5
strtol()

1284

RETURNS A pointer to the first character of a token, or a NULL pointer if there is no token.

SEE ALSO ansiString, strtok()

strtol()

NAME strtol() – convert a string to a long integer (ANSI)

SYNOPSIS long strtol

(

const char * nptr, /* string to convert */

char * * endptr, /* ptr to final string */

int base /* radix */

)

DESCRIPTION This routine converts the initial portion of a string nptr to long int representation. First, it
decomposes the input string into three parts: an initial, possibly empty, sequence of
white-space characters (as specified by isspace()); a subject sequence resembling an
integer represented in some radix determined by the value of base; and a final string of
one or more unrecognized characters, including the terminating NULL character of the
input string. Then, it attempts to convert the subject sequence to an integer number, and
returns the result.

If the value of base is zero, the expected form of the subject sequence is that of an integer
constant, optionally preceded by a plus or minus sign, but not including an integer suffix.
If the value of base is between 2 and 36, the expected form of the subject sequence is a
sequence of letters and digits representing an integer with the radix specified by base
optionally preceded by a plus or minus sign, but not including an integer suffix. The
letters from a (or A) through to z (or Z) are ascribed the values 10 to 35; only letters whose
ascribed values are less than base are permitted. If the value of base is 16, the characters 0x
or 0X may optionally precede the sequence of letters and digits, following the sign if
present.

The subject sequence is defined as the longest initial subsequence of the input string,
starting with the first non-white-space character, that is of the expected form. The subject
sequence contains no characters if the input string is empty or consists entirely of white
space, or if the first non-white-space character is other than a sign or a permissible letter or
digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of
characters starting with the first digit is interpreted as an integer constant. If the subject
sequence has the expected form and the value of base is between 2 and 36, it is used as the
base for conversion, ascribing to each latter its value as given above. If the subject sequence

2: Routines
strtoul()

1285

S

begins with a minus sign, the value resulting from the conversion is negated. A pointer to
the final string is stored in the object pointed to by endptr, provided that endptr is not a
NULL pointer.

In other than the “C” locale, additional implementation-defined subject sequence forms
may be accepted. VxWorks supports only the “C” locale; it assumes that the upper- and
lower-case alphabets and digits are each contiguous.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that
endptr is not a NULL pointer.

INCLUDE FILES stdlib.h

RETURNS The converted value, if any. If no conversion could be performed, it returns zero. If the
correct value is outside the range of representable values, it returns LONG_MAX or
LONG_MIN (according to the sign of the value), and stores the value of the macro
ERANGE in errno.

SEE ALSO ansiStdlib

strtoul()

NAME strtoul() – convert a string to an unsigned long integer (ANSI)

SYNOPSIS ulong_t strtoul

(

const char * nptr, /* string to convert */

char * * endptr, /* ptr to final string */

int base /* radix */

)

DESCRIPTION This routine converts the initial portion of a string nptr to unsigned long int
representation. First, it decomposes the input string into three parts: an initial, possibly
empty, sequence of white-space characters (as specified by isspace()); a subject sequence
resembling an unsigned integer represented in some radix determined by the value base;
and a final string of one or more unrecognized characters, including the terminating null
character of the input string. Then, it attempts to convert the subject sequence to an
unsigned integer, and returns the result.

If the value of base is zero, the expected form of the subject sequence is that of an integer
constant, optionally preceded by a plus or minus sign, but not including an integer suffix.
If the value of base is between 2 and 36, the expected form of the subject sequence is a

VxWorks OS Libraries API Reference, 5.5
strtoul()

1286

sequence of letters and digits representing an integer with the radix specified by letters
from a (or A) through z (or Z) which are ascribed the values 10 to 35; only letters whose
ascribed values are less than base are permitted. If the value of base is 16, the characters 0x
or 0X may optionally precede the sequence of letters and digits, following the sign if
present.

The subject sequence is defined as the longest initial subsequence of the input string,
starting with the first non-white-space character, that is of the expected form. The subject
sequence contains no characters if the input string is empty or consists entirely of white
space, or if the first non-white-space character is other than a sign or a permissible letter or
digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of
characters starting with the first digit is interpreted as an integer constant. If the subject
sequence has the expected form and the value of base is between 2 and 36, it is used as the
base for conversion, ascribing to each letter its value as given above. If the subject sequence
begins with a minus sign, the value resulting from the conversion is negated. A pointer to
the final string is stored in the object pointed to by endptr, provided that endptr is not a
null pointer.

In other than the “C” locale, additional implementation-defined subject sequence forms
may be accepted. VxWorks supports only the “C” locale; it assumes that the upper- and
lower-case alphabets and digits are each contiguous.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

INCLUDE FILES stdlib.h

RETURNS The converted value, if any. If no conversion could be performed it returns zero. If the
correct value is outside the range of representable values, it returns ULONG_MAX, and
stores the value of the macro ERANGE in errno.

SEE ALSO ansiStdlib

2: Routines
swab()

1287

S

strxfrm()

NAME strxfrm() – transform up to n characters of s2 into s1 (ANSI)

SYNOPSIS size_t strxfrm

(

char * s1, /* string out */

const char * s2, /* string in */

size_t n /* size of buffer */

)

DESCRIPTION This routine transforms string s2 and places the resulting string in s1. The transformation
is such that if strcmp() is applied to two transformed strings, it returns a value greater
than, equal to, or less than zero, corresponding to the result of the strcoll() function
applied to the same two original strings. No more than n characters are placed into the
resulting s1, including the terminating null character. If n is zero, s1 is permitted to be a
NULL pointer. If copying takes place between objects that overlap, the behavior is
undefined.

INCLUDE FILES string.h

RETURNS The length of the transformed string, not including the terminating null character. If the
value is n or more, the contents of s1 are indeterminate.

SEE ALSO ansiString, strcmp(), strcoll()

swab()

NAME swab() – swap bytes

SYNOPSIS void swab

(

char * source, /* pointer to source buffer */

char * destination, /* pointer to destination buffer */

int nbytes /* number of bytes to exchange */

)

VxWorks OS Libraries API Reference, 5.5
symAdd()

1288

DESCRIPTION This routine gets the specified number of bytes from source, exchanges the adjacent even
and odd bytes, and puts them in destination. The buffers source and destination should not
overlap.

NOTE: On some CPUs, swab() will cause an exception if the buffers are unaligned. In
such cases, use uswab() for unaligned swaps. On ARM family CPUs, swab() may reorder
the bytes incorrectly without causing an exception if the buffers are unaligned. Again, use
uswab() for unaligned swaps.

It is an error for nbytes to be odd.

RETURNS N/A

SEE ALSO bLib, uswab()

symAdd()

NAME symAdd() – create and add a symbol to a symbol table, including a group number

SYNOPSIS STATUS symAdd

(

SYMTAB_ID symTblId, /* symbol table to add symbol to */

char * name, /* pointer to symbol name string */

char * value, /* symbol address */

SYM_TYPE type, /* symbol type */

UINT16 group /* symbol group */

)

DESCRIPTION This routine allocates a symbol name and adds it to a specified symbol table symTblId with
the specified parameters value, type, and group. The group parameter specifies the group
number assigned to a module when it is loaded; see the manual entry for moduleLib.

RETURNS OK, or ERROR if the symbol table is invalid or there is insufficient memory for the symbol
to be allocated.

SEE ALSO symLib, moduleLib

2: Routines
symByValueAndTypeFind()

1289

S

symByValueAndTypeFind()

NAME symByValueAndTypeFind() – look up a symbol by value and type

SYNOPSIS STATUS symByValueAndTypeFind

(

SYMTAB_ID symTblId, /* ID of symbol table to look in */

UINT value, /* value of symbol to find */

char * * pName, /* where to return symbol name string */

int * pValue, /* where to put symbol value */

SYM_TYPE * pType, /* where to put symbol type */

SYM_TYPE sType, /* symbol type to look for */

SYM_TYPE mask /* bits in sType to pay attention to */

)

DESCRIPTION This routine searches a symbol table for a symbol matching both value and type (value and
sType). If there is no matching entry, it chooses the table entry with the next lower value
(among entries with the same type). A pointer to the symbol name string (with
terminating EOS) is returned into pName. The actual value and the type are copied to
pValue and pType. The mask parameter can be used to match sub-classes of type.

pName is a pointer to memory allocated by symByValueAndTypeFind(); the memory
must be freed by the caller after the use of pName.

To search the global VxWorks symbol table, specify sysSymTbl as symTblId.

RETURNS OK or ERROR if symTblId is invalid, pName is NULL, or value is less than the lowest value
in the table.

SEE ALSO symLib

VxWorks OS Libraries API Reference, 5.5
symByValueFind()

1290

symByValueFind()

NAME symByValueFind() – look up a symbol by value

SYNOPSIS STATUS symByValueFind

(

SYMTAB_ID symTblId, /* ID of symbol table to look in */

UINT value, /* value of symbol to find */

char * * pName, /* where return symbol name string */

int * pValue, /* where to put symbol value */

SYM_TYPE * pType /* where to put symbol type */

)

DESCRIPTION This routine searches a symbol table for a symbol matching a specified value. If there is no
matching entry, it chooses the table entry with the next lower value. A pointer to a copy of
the symbol name string (with terminating EOS) is returned into pName. The actual value
and the type are copied to pValue and pType.

pName is a pointer to memory allocated by symByValueFind; the memory must be freed
by the caller after the use of pName.

To search the global VxWorks symbol table, specify sysSymTbl as symTblId.

RETURNS OK or ERROR if symTblId is invalid, pName is NULL, or value is less than the lowest value
in the table.

SEE ALSO symLib

symEach()

NAME symEach() – call a routine to examine each entry in a symbol table

SYNOPSIS SYMBOL *symEach

(

SYMTAB_ID symTblId, /* pointer to symbol table */

FUNCPTR routine, /* func to call for each tbl entry */

int routineArg /* arbitrary user-supplied arg */

)

2: Routines
symFindByName()

1291

S

DESCRIPTION This routine calls a user-supplied routine to examine each entry in the symbol table; it
calls the specified routine once for each entry. The routine should be declared as follows:

BOOL routine

(

char *name, /* entry name */

int val, /* value associated with entry */

SYM_TYPE type, /* entry type */

int arg, /* arbitrary user-supplied arg */

UINT16 group /* group number */

)

The user-supplied routine should return TRUE if symEach() is to continue calling it for
each entry, or FALSE if it is done and symEach() can exit.

RETURNS A pointer to the last symbol reached, or NULL if all symbols are reached.

SEE ALSO symLib

symFindByName()

NAME symFindByName() – look up a symbol by name

SYNOPSIS STATUS symFindByName

(

SYMTAB_ID symTblId, /* ID of symbol table to look in */

char * name, /* symbol name to look for */

char * *pValue, /* where to put symbol value */

SYM_TYPE * pType /* where to put symbol type */

)

DESCRIPTION This routine searches a symbol table for a symbol matching a specified name. If the
symbol is found, its value and type are copied to pValue and pType. If multiple symbols
have the same name but differ in type, the routine chooses the matching symbol most
recently added to the symbol table.

To search the global VxWorks symbol table, specify sysSymTbl as symTblId.

RETURNS OK, or ERROR if the symbol table ID is invalid or the symbol cannot be found.

SEE ALSO symLib

VxWorks OS Libraries API Reference, 5.5
symFindByNameAndType()

1292

symFindByNameAndType()

NAME symFindByNameAndType() – look up a symbol by name and type

SYNOPSIS STATUS symFindByNameAndType

(

SYMTAB_ID symTblId, /* ID of symbol table to look in */

char * name, /* symbol name to look for */

char * *pValue, /* where to put symbol value */

SYM_TYPE * pType, /* where to put symbol type */

SYM_TYPE sType, /* symbol type to look for */

SYM_TYPE mask /* bits in sType to pay attention to */

)

DESCRIPTION This routine searches a symbol table for a symbol matching both name and type (name
and sType). If the symbol is found, its value and type are copied to pValue and pType. The
mask parameter can be used to match sub-classes of type.

To search the global VxWorks symbol table, specify sysSymTbl as symTblId.

RETURNS OK, or ERROR if the symbol table ID is invalid or the symbol is not found.

SEE ALSO symLib

symFindByValue()

NAME symFindByValue() – look up a symbol by value

SYNOPSIS STATUS symFindByValue

(

SYMTAB_ID symTblId, /* ID of symbol table to look in */

UINT value, /* value of symbol to find */

char * name, /* where to put symbol name string */

int * pValue, /* where to put symbol value */

SYM_TYPE * pType /* where to put symbol type */

)

DESCRIPTION This routine is obsolete. It is replaced by symByValueFind().

2: Routines
symFindByValueAndType()

1293

S

This routine searches a symbol table for a symbol matching a specified value. If there is no
matching entry, it chooses the table entry with the next lower value. The symbol name
(with terminating EOS), the actual value, and the type are copied to name, pValue, and
pType.

For the name buffer, allocate MAX_SYS_SYM_LEN + 1 bytes. The value
MAX_SYS_SYM_LEN is defined in sysSymTbl.h. If the name of the symbol is longer than
MAX_SYS_SYM_LEN bytes, it will be truncated to fit into the buffer. Whether or not the
name was truncated, the string returned in the buffer will be null-terminated.

To search the global VxWorks symbol table, specify sysSymTbl as symTblId.

RETURNS OK, or ERROR if symTblId is invalid or value is less than the lowest value in the table.

SEE ALSO symLib

symFindByValueAndType()

NAME symFindByValueAndType() – look up a symbol by value and type

SYNOPSIS STATUS symFindByValueAndType

(

SYMTAB_ID symTblId, /* ID of symbol table to look in */

UINT value, /* value of symbol to find */

char * name, /* where to put symbol name string */

int * pValue, /* where to put symbol value */

SYM_TYPE * pType, /* where to put symbol type */

SYM_TYPE sType, /* symbol type to look for */

SYM_TYPE mask /* bits in sType to pay attention to */

)

DESCRIPTION This routine is obsolete. It is replaced by the routine symByValueAndTypeFind().

This routine searches a symbol table for a symbol matching both value and type (value and
sType). If there is no matching entry, it chooses the table entry with the next lower value.
The symbol name (with terminating EOS), the actual value, and the type are copied to
name, pValue, and pType. The mask parameter can be used to match sub-classes of type.

For the name buffer, allocate MAX_SYS_SYM_LEN + 1 bytes. The value
MAX_SYS_SYM_LEN is defined in sysSymTbl.h. If the name of the symbol is longer than
MAX_SYS_SYM_LEN bytes, it will be truncated to fit into the buffer. Whether or not the
name was truncated, the string returned in the buffer will be null-terminated.

To search the global VxWorks symbol table, specify sysSymTbl as symTblId.

VxWorks OS Libraries API Reference, 5.5
symLibInit()

1294

RETURNS OK, or ERROR if symTblId is invalid or value is less than the lowest value in the table. *

SEE ALSO symLib

symLibInit()

NAME symLibInit() – initialize the symbol table library

SYNOPSIS STATUS symLibInit (void)

DESCRIPTION This routine initializes the symbol table package. If the configuration macro
INCLUDE_SYM_TBL is defined, symLibInit() is called by the root task, usrRoot(), in
usrConfig.c.

RETURNS OK, or ERROR if the library could not be initialized.

SEE ALSO symLib

symRemove()

NAME symRemove() – remove a symbol from a symbol table

SYNOPSIS STATUS symRemove

(

SYMTAB_ID symTblId, /* symbol tbl to remove symbol from */

char * name, /* name of symbol to remove */

SYM_TYPE type /* type of symbol to remove */

)

DESCRIPTION This routine removes a symbol of matching name and type from a specified symbol table.
The symbol is deallocated if found. Note that VxWorks symbols in a standalone VxWorks
image (where the symbol table is linked in) cannot be removed.

RETURNS OK, or ERROR if the symbol is not found or could not be deallocated.

SEE ALSO symLib

2: Routines
symSyncTimeoutSet()

1295

S

symSyncLibInit()

NAME symSyncLibInit() – initialize host/target symbol table synchronization

SYNOPSIS void symSyncLibInit ()

DESCRIPTION This routine initializes host/target symbol table synchronization. To enable
synchronization, it must be called before a target server is started. It is called
automatically if the configuration macro INCLUDE_SYM_TBL_SYNC is defined.

RETURNS N/A

SEE ALSO symSyncLib

symSyncTimeoutSet()

NAME symSyncTimeoutSet() – set WTX timeout

SYNOPSIS UINT32 symSyncTimeoutSet

(

UINT32 timeout /* WTX timeout in milliseconds */

)

DESCRIPTION This routine sets the WTX timeout between target server and synchronization task.

RETURNS If timeout is 0, the current timeout, otherwise the new timeout value in milliseconds.

SEE ALSO symSyncLib

VxWorks OS Libraries API Reference, 5.5
symTblCreate()

1296

symTblCreate()

NAME symTblCreate() – create a symbol table

SYNOPSIS SYMTAB_ID symTblCreate

(

int hashSizeLog2, /* size of hash table as a power of 2 */

BOOL sameNameOk, /* allow 2 symbols of same name & type */

PART_ID symPartId /* memory part ID for symbol allocation */

)

DESCRIPTION This routine creates and initializes a symbol table with a hash table of a specified size. The
size of the hash table is specified as a power of two. For example, if hashSizeLog2 is 6, a
64-entry hash table is created.

If sameNameOk is FALSE, attempting to add a symbol with the same name and type as an
already-existing symbol results in an error.

Memory for storing symbols as they are added to the symbol table will be allocated from
the memory partition symPartId. The ID of the system memory partition is stored in the
global variable memSysPartId, which is declared in memLib.h.

RETURNS Symbol table ID, or NULL if memory is insufficient.

SEE ALSO symLib

symTblDelete()

NAME symTblDelete() – delete a symbol table

SYNOPSIS STATUS symTblDelete

(

SYMTAB_ID symTblId /* ID of symbol table to delete */

)

DESCRIPTION This routine deletes a specified symbol table. It deallocates all associated memory,
including the hash table, and marks the table as invalid.

Deletion of a table that still contains symbols results in ERROR. Successful deletion
includes the deletion of the internal hash table and the deallocation of memory associated
with the table. The table is marked invalid to prohibit any future references.

2: Routines
sysAuxClkDisable()

1297

S

RETURNS OK, or ERROR if the symbol table ID is invalid.

SEE ALSO symLib

sysAuxClkConnect()

NAME sysAuxClkConnect() – connect a routine to the auxiliary clock interrupt

SYNOPSIS STATUS sysAuxClkConnect

(

FUNCPTR routine, /* routine called at each aux clock interrupt */

int arg /* argument to auxiliary clock interrupt routine */

)

DESCRIPTION This routine specifies the interrupt service routine to be called at each auxiliary clock
interrupt. It does not enable auxiliary clock interrupts.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS OK, or ERROR if the routine cannot be connected to the interrupt.

SEE ALSO sysLib, intConnect(), sysAuxClkEnable(), and BSP-specific reference pages for this
routine.

sysAuxClkDisable()

NAME sysAuxClkDisable() – turn off auxiliary clock interrupts

SYNOPSIS void sysAuxClkDisable (void)

DESCRIPTION This routine disables auxiliary clock interrupts.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

VxWorks OS Libraries API Reference, 5.5
sysAuxClkEnable()

1298

RETURNS N/A

SEE ALSO sysLib, sysAuxClkEnable(), and BSP-specific reference pages for this routine.

sysAuxClkEnable()

NAME sysAuxClkEnable() – turn on auxiliary clock interrupts

SYNOPSIS void sysAuxClkEnable (void)

DESCRIPTION This routine enables auxiliary clock interrupts.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS N/A

SEE ALSO sysLib, sysAuxClkConnect(), sysAuxClkDisable(), sysAuxClkRateSet(), and
BSP-specific reference pages for this routine.

sysAuxClkRateGet()

NAME sysAuxClkRateGet() – get the auxiliary clock rate

SYNOPSIS int sysAuxClkRateGet (void)

DESCRIPTION This routine returns the interrupt rate of the auxiliary clock.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS The number of ticks per second of the auxiliary clock.

SEE ALSO sysLib, sysAuxClkEnable(), sysAuxClkRateSet(), and BSP-specific reference pages for
this routine.

2: Routines
sysBspRev()

1299

S

sysAuxClkRateSet()

NAME sysAuxClkRateSet() – set the auxiliary clock rate

SYNOPSIS STATUS sysAuxClkRateSet

(

int ticksPerSecond /* number of clock interrupts per second */

)

DESCRIPTION This routine sets the interrupt rate of the auxiliary clock. It does not enable auxiliary clock
interrupts.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS OK, or ERROR if the tick rate is invalid or the timer cannot be set.

SEE ALSO sysLib, sysAuxClkEnable(), sysAuxClkRateGet(), and BSP-specific reference pages for
this routine.

sysBspRev()

NAME sysBspRev() – return the BSP version and revision number

SYNOPSIS char * sysBspRev (void)

DESCRIPTION This routine returns a pointer to a BSP version and revision number, for example, 1.0/1.
BSP_REV is concatenated to BSP_VERSION and returned.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS A pointer to the BSP version/revision string.

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

VxWorks OS Libraries API Reference, 5.5
sysBusIntAck()

1300

sysBusIntAck()

NAME sysBusIntAck() – acknowledge a bus interrupt

SYNOPSIS int sysBusIntAck

(

int intLevel /* interrupt level to acknowledge */

)

DESCRIPTION This routine acknowledges a specified VME bus interrupt level.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS NULL.

SEE ALSO sysLib, sysBusIntGen(), and BSP-specific reference pages for this routine.

sysBusIntGen()

NAME sysBusIntGen() – generate a bus interrupt

SYNOPSIS STATUS sysBusIntGen

(

int intLevel, /* bus interrupt level to generate */

int vector /* interrupt vector to generate (0-255) */

)

DESCRIPTION This routine generates a bus interrupt for a specified level with a specified vector.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS OK, or ERROR if intLevel is out of range or the board cannot generate a bus interrupt.

SEE ALSO sysLib, sysBusIntAck(), and BSP-specific reference pages for this routine.

2: Routines
sysBusToLocalAdrs()

1301

S

sysBusTas()

NAME sysBusTas() – test and set a location across the bus

SYNOPSIS BOOL sysBusTas

(

char * adrs /* address to be tested and set */

)

DESCRIPTION This routine performs a test-and-set instruction across the backplane.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

NOTE: This routine is equivalent to vxTas().

RETURNS TRUE if the value had not been set but is now, or FALSE if the value was set already.

SEE ALSO sysLib, vxTas(), and BSP-specific reference pages for this routine.

sysBusToLocalAdrs()

NAME sysBusToLocalAdrs() – convert a bus address to a local address

SYNOPSIS STATUS sysBusToLocalAdrs

(

int adrsSpace, /* bus address space in which busAdrs resides */

char * busAdrs, /* bus address to convert */

char * *pLocalAdrs /* where to return local address */

)

DESCRIPTION This routine gets the local address that accesses a specified bus memory address.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS OK, or ERROR if the address space is unknown or the mapping is not possible.

VxWorks OS Libraries API Reference, 5.5
sysClkConnect()

1302

SEE ALSO sysLib, sysLocalToBusAdrs(), and BSP-specific reference pages for this routine.

sysClkConnect()

NAME sysClkConnect() – connect a routine to the system clock interrupt

SYNOPSIS STATUS sysClkConnect

(

FUNCPTR routine, /* routine called at each system clock */

/* interrupt */

int arg /* argument with which to call routine */

)

DESCRIPTION This routine specifies the interrupt service routine to be called at each clock interrupt.
Normally, it is called from usrRoot() in usrConfig.c to connect usrClock() to the system
clock interrupt.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference entries for your BSP.

RETURN OK, or ERROR if the routine cannot be connected to the interrupt.

SEE ALSO sysLib, intConnect(), usrClock(), sysClkEnable(), and BSP-specific reference pages for
this routine.

sysClkDisable()

NAME sysClkDisable() – turn off system clock interrupts

SYNOPSIS void sysClkDisable (void)

DESCRIPTION This routine disables system clock interrupts.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

2: Routines
sysClkRateGet()

1303

S

RETURNS N/A

SEE ALSO sysLib, sysClkEnable(), and BSP-specific reference pages for this routine.

sysClkEnable()

NAME sysClkEnable() – turn on system clock interrupts

SYNOPSIS void sysClkEnable (void)

DESCRIPTION This routine enables system clock interrupts.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS N/A

SEE ALSO sysLib, sysClkConnect(), sysClkDisable(), sysClkRateSet(), and BSP-specific reference
pages for this routine.

sysClkRateGet()

NAME sysClkRateGet() – get the system clock rate

SYNOPSIS int sysClkRateGet (void)

DESCRIPTION This routine returns the system clock rate.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS The number of ticks per second of the system clock.

SEE ALSO sysLib, sysClkEnable(), sysClkRateSet(), and BSP-specific reference pages for this
routine.

VxWorks OS Libraries API Reference, 5.5
sysClkRateSet()

1304

sysClkRateSet()

NAME sysClkRateSet() – set the system clock rate

SYNOPSIS STATUS sysClkRateSet

(

int ticksPerSecond /* number of clock interrupts per second */

)

DESCRIPTION This routine sets the interrupt rate of the system clock. It is called by usrRoot() in
usrConfig.c.

There may be interactions between this routine and the POSIX clockLib routines. Refer to
the clockLib reference entry.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS OK, or ERROR if the tick rate is invalid or the timer cannot be set.

SEE ALSO sysLib, sysClkEnable(), sysClkRateGet(), clockLib, and BSP-specific reference pages for
this routine.

sysHwInit()

NAME sysHwInit() – initialize the system hardware

SYNOPSIS void sysHwInit (void)

DESCRIPTION This routine initializes various features of the board. It is called from usrInit() in
usrConfig.c.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

NOTE: This routine should not be called directly by the user application.

2: Routines
sysIntEnable()

1305

S

RETURNS N/A

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

sysIntDisable()

NAME sysIntDisable() – disable a bus interrupt level

SYNOPSIS STATUS sysIntDisable

(

int intLevel /* interrupt level to disable */

)

DESCRIPTION This routine disables a specified bus interrupt level.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS OK, or ERROR if intLevel is out of range.

SEE ALSO sysLib, sysIntEnable(), and BSP-specific reference pages for this routine.

sysIntEnable()

NAME sysIntEnable() – enable a bus interrupt level

SYNOPSIS STATUS sysIntEnable

(

int intLevel /* interrupt level to enable (1-7) */

)

DESCRIPTION This routine enables a specified bus interrupt level.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

VxWorks OS Libraries API Reference, 5.5
sysLocalToBusAdrs()

1306

RETURNS OK, or ERROR if intLevel is out of range.

SEE ALSO sysLib, sysIntDisable(), and BSP-specific reference pages for this routine.

sysLocalToBusAdrs()

NAME sysLocalToBusAdrs() – convert a local address to a bus address

SYNOPSIS STATUS sysLocalToBusAdrs

(

int adrsSpace, /* bus address space in which busAdrs resides */

char * localAdrs, /* local address to convert */

char * *pBusAdrs /* where to return bus address */

)

DESCRIPTION This routine gets the bus address that accesses a specified local memory address.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS OK, or ERROR if the address space is unknown or not mapped.

SEE ALSO sysLib, sysBusToLocalAdrs(), and BSP-specific reference pages for this routine.

sysMailboxConnect()

NAME sysMailboxConnect() – connect a routine to the mailbox interrupt

SYNOPSIS STATUS sysMailboxConnect

(

FUNCPTR routine, /* routine called at each mailbox interrupt */

int arg /* argument with which to call routine */

)

DESCRIPTION This routine specifies the interrupt service routine to be called at each mailbox interrupt.

2: Routines
sysMemTop()

1307

S

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS OK, or ERROR if the routine cannot be connected to the interrupt.

SEE ALSO sysLib, intConnect(), sysMailboxEnable(), and BSP-specific reference pages for this
routine.

sysMailboxEnable()

NAME sysMailboxEnable() – enable the mailbox interrupt

SYNOPSIS STATUS sysMailboxEnable

(

char * mailboxAdrs /* address of mailbox (ignored) */

)

DESCRIPTION This routine enables the mailbox interrupt.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS OK, always.

SEE ALSO sysLib, sysMailboxConnect(), and BSP-specific reference pages for this routine.

sysMemTop()

NAME sysMemTop() – get the address of the top of logical memory

SYNOPSIS char *sysMemTop (void)

DESCRIPTION This routine returns the address of the top of memory.

VxWorks OS Libraries API Reference, 5.5
sysModel()

1308

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS The address of the top of memory.

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

sysModel()

NAME sysModel() – return the model name of the CPU board

SYNOPSIS char *sysModel (void)

DESCRIPTION This routine returns the model name of the CPU board.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS A pointer to a string containing the board name.

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

sysNanoDelay()

NAME sysNanoDelay() – delay for specified number of nanoseconds

SYNOPSIS void sysNanoDelay

(

UINT32 nanoseconds /* nanoseconds to delay */

)

DESCRIPTION This is an optional API for BSPs to provide. Some, but not all, drivers do require the BSP
to implement this function.

2: Routines
sysNvRamGet()

1309

S

When implemented, this function implements a spin loop type delay for at least the
specified number of nanoseconds. This is not a task delay, control of the processor is not
given up to another task. The actual delay must be equal to or greater than the requested
number of nanoseconds.

The purpose of this function is to provide a reasonably accurate time delay of very short
duration. It should not be used for any delays that are much greater than two system
clock ticks in length. For delays of a full clock tick, or more, the use of taskDelay() is
recommended.

This routine should be implemented as interrupt safe.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS N/A.

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

sysNvRamGet()

NAME sysNvRamGet() – get the contents of non-volatile RAM

SYNOPSIS STATUS sysNvRamGet

(

char * string, /* where to copy non-volatile RAM */

int strLen, /* maximum number of bytes to copy */

int offset /* byte offset into non-volatile RAM */

)

DESCRIPTION This routine copies the contents of non-volatile memory into a specified string. The string
will be terminated with an EOS.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS OK, or ERROR if access is outside the non-volatile RAM address range.

SEE ALSO sysLib, sysNvRamSet(), and BSP-specific reference pages for this routine.

VxWorks OS Libraries API Reference, 5.5
sysNvRamSet()

1310

sysNvRamSet()

NAME sysNvRamSet() – write to non-volatile RAM

SYNOPSIS STATUS sysNvRamSet

(

char * string, /* string to be copied into non-volatile RAM */

int strLen, /* maximum number of bytes to copy */

int offset /* byte offset into non-volatile RAM */

)

DESCRIPTION This routine copies a specified string into non-volatile RAM.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS OK, or ERROR if access is outside the non-volatile RAM address range.

SEE ALSO sysLib, sysNvRamGet(), and BSP-specific reference pages for this routine.

sysPhysMemTop()

NAME sysPhysMemTop() – get the address of the top of memory

SYNOPSIS char * sysPhysMemTop (void)

DESCRIPTION This routine returns the address of the first missing byte of memory, which indicates the
top of memory.

Normally, the amount of physical memory is specified with the macro LOCAL_MEM_SIZE.
BSPs that support run-time memory sizing do so only if the macro
LOCAL_MEM_AUTOSIZE is defined. If not defined, then LOCAL_MEM_SIZE is assumed to
be, and must be, the true size of physical memory.

NOTE: Do no adjust LOCAL_MEM_SIZE to reserve memory for application use. See
sysMemTop() for more information on reserving memory.

2: Routines
sysProcNumSet()

1311

S

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS The address of the top of physical memory.

SEE ALSO sysLib, sysMemTop(), and BSP-specific reference pages for this routine.

sysProcNumGet()

NAME sysProcNumGet() – get the processor number

SYNOPSIS int sysProcNumGet (void)

DESCRIPTION This routine returns the processor number for the CPU board, which is set with
sysProcNumSet().

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS The processor number for the CPU board.

SEE ALSO sysLib, sysProcNumSet(), and BSP-specific reference pages for this routine.

sysProcNumSet()

NAME sysProcNumSet() – set the processor number

SYNOPSIS void sysProcNumSet

(

int procNum /* processor number */

)

DESCRIPTION This routine sets the processor number for the CPU board. Processor numbers should be
unique on a single backplane.

VxWorks OS Libraries API Reference, 5.5
sysScsiBusReset()

1312

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS N/A

SEE ALSO sysLib, sysProcNumGet(), and BSP-specific reference pages for this routine.

sysScsiBusReset()

NAME sysScsiBusReset() – assert the RST line on the SCSI bus (Western Digital WD33C93 only)

SYNOPSIS void sysScsiBusReset

(

WD_33C93_SCSI_CTRL * pSbic /* ptr to SBIC info */

)

DESCRIPTION This routine asserts the RST line on the SCSI bus, which causes all connected devices to
return to a quiescent state.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS N/A

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

2: Routines
sysScsiConfig()

1313

S

sysScsiConfig()

NAME sysScsiConfig() – system SCSI configuration

SYNOPSIS STATUS sysScsiConfig (void)

DESCRIPTION This is an example SCSI configuration routine.

Most of the code found here is an example of how to declare a SCSI peripheral
configuration. You must edit this routine to reflect the actual configuration of your SCSI
bus. This example can also be found in src/config/usrScsi.c.

If you are just getting started, you can test your hardware configuration by defining
SCSI_AUTO_CONFIG, which will probe the bus and display all devices found. No device
should have the same SCSI bus ID as your VxWorks SCSI port (default = 7), or the same as
any other device. Check for proper bus termination.

There are three configuration examples here. They demonstrate configuration of a SCSI
hard disk (any type), an OMTI 3500 floppy disk, and a tape drive (any type).

Hard Disk The hard disk is divided into two 32-Mbyte partitions and a third partition with the
remainder of the disk. The first partition is initialized as a dosFs device. The second and
third partitions are initialized as rt11Fs devices, each with 256 directory entries.

It is recommended that the first partition (BLK_DEV) on a block device be a dosFs device,
if the intention is eventually to boot VxWorks from the device. This will simplify the task
considerably.

Floppy Disk The floppy, since it is a removable medium device, is allowed to have only a single
partition, and dosFs is the file system of choice for this device, since it facilitates media
compatibility with IBM PC machines.

In contrast to the hard disk configuration, the floppy setup in this example is more
intricate. Note that the scsiPhysDevCreate() call is issued twice. The first time is merely
to get a “handle” to pass to scsiModeSelect(), since the default media type is sometimes
inappropriate (in the case of generic SCSI-to-floppy cards). After the hardware is correctly
configured, the handle is discarded via scsiPhysDevDelete(), after which the peripheral
is correctly configured by a second call to scsiPhysDevCreate(). (Before the
scsiModeSelect() call, the configuration information was incorrect.) Note that after the
scsiBlkDevCreate() call, the correct values for sectorsPerTrack and nHeads must be set via
scsiBlkDevInit(). This is necessary for IBM PC compatibility.

Tape Drive The tape configuration is also somewhat complex because certain device parameters need
to turned off within VxWorks and the fixed-block size needs to be defined, assuming that
the tape supports fixed blocks.

VxWorks OS Libraries API Reference, 5.5
sysScsiInit()

1314

The last parameter to the dosFsDevInit() call is a pointer to a DOS_VOL_CONFIG
structure. By specifying NULL, you are asking dosFsDevInit() to read this information off
the disk in the drive. This may fail if no disk is present or if the disk has no valid dosFs
directory. Should this be the case, you can use the dosFsMkfs() command to create a new
directory on a disk. This routine uses default parameters (see dosFsLib) that may not be
suitable for your application, in which case you should use dosFsDevInit() with a pointer
to a valid DOS_VOL_CONFIG structure that you have created and initialized. If
dosFsDevInit() is used, a diskInit() call should be made to write a new directory on the
disk, if the disk is blank or disposable.

NOTE The variable pSbdFloppy is global to allow the above calls to be made from the VxWorks
shell, for example:

-> dosFsMkfs "/fd0/", pSbdFloppy

If a disk is new, use diskFormat() to format it.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS OK or ERROR.

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

sysScsiInit()

NAME sysScsiInit() – initialize an on-board SCSI port

SYNOPSIS STATUS sysScsiInit (void)

DESCRIPTION This routine creates and initializes a SCSI control structure, enabling use of the on-board
SCSI port. It also connects the proper interrupt service routine to the desired vector, and
enables the interrupt at the desired level.

If SCSI DMA is supported by the board and INCLUDE_SCSI_DMA is defined, the DMA is
also initialized.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

2: Routines
sysSerialHwInit()

1315

S

RETURNS OK, or ERROR if the control structure cannot be connected, the controller cannot be
initialized, or the DMA’s interrupt cannot be connected.

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

sysSerialChanGet()

NAME sysSerialChanGet() – get the SIO_CHAN device associated with a serial channel

SYNOPSIS SIO_CHAN * sysSerialChanGet

(

int channel /* serial channel */

)

DESCRIPTION This routine gets the SIO_CHAN device associated with a specified serial channel.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS A pointer to the SIO_CHAN structure for the channel, or ERROR if the channel is invalid.

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

sysSerialHwInit()

NAME sysSerialHwInit() – initialize the BSP serial devices to a quiescent state

SYNOPSIS void sysSerialHwInit (void)

DESCRIPTION This routine initializes the BSP serial device descriptors and puts the devices in a
quiescent state. It is called from sysHwInit() with interrupts locked.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

VxWorks OS Libraries API Reference, 5.5
sysSerialHwInit2()

1316

RETURNS N/A

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

sysSerialHwInit2()

NAME sysSerialHwInit2() – connect BSP serial device interrupts

SYNOPSIS void sysSerialHwInit2 (void)

DESCRIPTION This routine connects the BSP serial device interrupts. It is called from sysHwInit2().
Serial device interrupts could not be connected in sysSerialHwInit() because the kernel
memory allocator was not initialized at that point, and intConnect() calls malloc().

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS N/A

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

sysSerialReset()

NAME sysSerialReset() – reset all SIO devices to a quiet state

SYNOPSIS void sysSerialReset (void)

DESCRIPTION This routine is called from sysToMonitor() to reset all SIO device and prevent them from
generating interrupts or performing DMA cycles.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS N/A

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

2: Routines
sysToMonitor()

1317

S

system()

NAME system() – pass a string to a command processor (Unimplemented) (ANSI)

SYNOPSIS int system

(

const char * string /* pointer to string */

)

DESCRIPTION This function is not applicable to VxWorks.

INCLUDE FILES stdlib.h

RETURNS OK, always.

SEE ALSO ansiStdlib

sysToMonitor()

NAME sysToMonitor() – transfer control to the ROM monitor

SYNOPSIS STATUS sysToMonitor

(

int startType /* parameter passed to ROM to tell it how */

/* to boot */

)

DESCRIPTION This routine transfers control to the ROM monitor. Normally, it is called only by
reboot()--which services CTRL+X--and by bus errors at interrupt level. However, in some
circumstances, the user may wish to introduce a startType to enable special boot ROM
facilities.

NOTE: This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this call is supported by your BSP, or for information
specific to your BSP’s version of this routine, see the reference pages for your BSP.

RETURNS Does not return.

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

VxWorks OS Libraries API Reference, 5.5
tan()

1318

tan()

NAME tan() – compute a tangent (ANSI)

SYNOPSIS double tan

(

double x /* angle in radians */

)

DESCRIPTION This routine computes the tangent of x in double precision. The angle x is expressed in
radians.

INCLUDE FILES math.h

RETURNS The double-precision tangent of x.

SEE ALSO ansiMath, mathALib

tanf()

NAME tanf() – compute a tangent (ANSI)

SYNOPSIS float tanf

(

float x /* angle in radians */

)

DESCRIPTION This routine returns the tangent of x in single precision. The angle x is expressed in
radians.

INCLUDE FILES math.h

RETURNS The single-precision tangent of x.

SEE ALSO mathALib

2: Routines
tanhf()

1319

T

tanh()

NAME tanh() – compute a hyperbolic tangent (ANSI)

SYNOPSIS double tanh

(

double x /* number whose hyperbolic tangent is required */

)

DESCRIPTION This routine returns the hyperbolic tangent of x in double precision (IEEE double, 53 bits).

INCLUDE FILES math.h

RETURNS The double-precision hyperbolic tangent of x.

Special cases:
 If x is NaN, tanh() returns NaN.

SEE ALSO ansiMath, mathALib

tanhf()

NAME tanhf() – compute a hyperbolic tangent (ANSI)

SYNOPSIS float tanhf

(

float x /* number whose hyperbolic tangent is required */

)

DESCRIPTION This routine returns the hyperbolic tangent of x in single precision.

INCLUDE FILES math.h

RETURNS The single-precision hyperbolic tangent of x.

SEE ALSO mathALib

VxWorks OS Libraries API Reference, 5.5
tapeFsDevInit()

1320

tapeFsDevInit()

NAME tapeFsDevInit() – associate a sequential device with tape volume functions

SYNOPSIS TAPE_VOL_DESC *tapeFsDevInit

(

char * volName, /* volume name */

SEQ_DEV * pSeqDev, /* pointer to sequential device info */

TAPE_CONFIG * pTapeConfig /* pointer to tape config info */

)

DESCRIPTION This routine takes a sequential device created by a device driver and defines it as a tape
file system volume. As a result, when high-level I/O operations, such as open() and
write(), are performed on the device, the calls will be routed through tapeFsLib.

This routine associates volName with a device and installs it in the VxWorks I/O
system-device table. The driver number used when the device is added to the table is that
which was assigned to the tape library during tapeFsInit(). (The driver number is kept in
the global variable tapeFsDrvNum.)

The SEQ_DEV structure specified by pSeqDev contains configuration data describing the
device and the addresses of the routines which are called to read blocks, write blocks,
write file marks, reset the device, check device status, perform other I/O control functions
(ioctl()), reserve and release devices, load and unload devices, and rewind devices. These
routines are not called until they are required by subsequent I/O operations. The
TAPE_CONFIG structure is used to define configuration parameters for the
TAPE_VOL_DESC. The configuration parameters are defined and described in
tapeFsLib.h.

RETURNS A pointer to the volume descriptor (TAPE_VOL_DESC), or NULL if there is an error.

ERRNO S_tapeFsLib_NO_SEQ_DEV, S_tapeFsLib_ILLEGAL_TAPE_CONFIG_PARM

SEE ALSO tapeFsLib

2: Routines
tapeFsReadyChange()

1321

T

tapeFsInit()

NAME tapeFsInit() – initialize the tape volume library

SYNOPSIS STATUS tapeFsInit ()

DESCRIPTION This routine initializes the tape volume library. It must be called exactly once, before any
other routine in the library. Only one file descriptor per volume is assumed.

This routine also installs tape volume library routines in the VxWorks I/O system driver
table. The driver number assigned to tapeFsLib is placed in the global variable
tapeFsDrvNum. This number is later associated with system file descriptors opened to
tapeFs devices.

To enable this initialization, simply call the routine tapeFsDevInit(), which automatically
calls tapeFsInit() in order to initialize the tape file system.

RETURNS OK or ERROR.

SEE ALSO tapeFsLib

tapeFsReadyChange()

NAME tapeFsReadyChange() – notify tapeFsLib of a change in ready status

SYNOPSIS STATUS tapeFsReadyChange

(

TAPE_VOL_DESC * pTapeVol /* pointer to volume descriptor */

)

DESCRIPTION This routine sets the volume descriptor state to TAPE_VD_READY_CHANGED. It should be
called whenever a driver senses that a device has come on-line or gone off-line (for
example, that a tape has been inserted or removed).

After this routine has been called, the next attempt to use the volume results in an
attempted remount.

RETURNS OK if the read change status is set, or ERROR if the file descriptor is in use.

ERRNO S_tapeFsLib_FILE_DESCRIPTOR_BUSY

SEE ALSO tapeFsLib

VxWorks OS Libraries API Reference, 5.5
tapeFsVolUnmount()

1322

tapeFsVolUnmount()

NAME tapeFsVolUnmount() – disable a tape device volume

SYNOPSIS STATUS tapeFsVolUnmount

(

TAPE_VOL_DESC * pTapeVol /* pointer to volume descriptor */

)

DESCRIPTION This routine is called when I/O operations on a volume are to be discontinued. This is
commonly done before changing removable tape. All buffered data for the volume is
written to the device (if possible), any open file descriptors are marked obsolete, and the
volume is marked not mounted.

Because this routine flushes data from memory to the physical device, it should not be
used in situations where the tape-change is not recognized until after a new tape has been
inserted. In these circumstances, use the ready-change mechanism. (See the manual entry
for tapeFsReadyChange().)

This routine may also be called by issuing an ioctl() call using the FIOUNMOUNT function
code.

RETURNS OK, or ERROR if the routine cannot access the volume.

ERRNO S_tapeFsLib_VOLUME_NOT_AVAILABLE, S_tapeFsLib_FILE_DESCRIPTOR_BUSY,
S_tapeFsLib_SERVICE_NOT_AVAILABLE

SEE ALSO tapeFsLib, tapeFsReadyChange()

tarArchive()

NAME tarArchive() – archive named file/dir onto tape in tar format

SYNOPSIS STATUS tarArchive

(

char * pTape, /* tape device name */

int bfactor, /* requested blocking factor */

BOOL verbose, /* if TRUE print progress info */

char * pName /* file/dir name to archive */

)

2: Routines
tarExtract()

1323

T

DESCRIPTION This function creates a UNIX compatible tar formatted archives which contain entire file
hierarchies from disk file systems. Files and directories are archived with mode and time
information as returned by stat().

The tape argument can be any tape drive device name or a name of any file that will be
created if necessary, and will contain the archive. If tape is set to “-”, standard output will
be used. If tape is NULL (unspecified from Shell), the default archive file name stored in
global variable TAPE will be used.

Each write() of the archive file will be exactly bfactor*512 bytes long, hence on tapes in
variable mode, this will be the physical block size on the tape. With Fixed Mode tapes this
is only a performance matter. If bfactor is 0, or unspecified from Shell, it will be set to the
default value of 20.

The verbose argument is a boolean, if set to 1, will cause informative messages to be
printed to standard error whenever an action is taken, otherwise, only errors are reported.

The name argument is the path of the hierarchy to be archived. if NULL (or unspecified
from the Shell), the current directory path “.” will be used. This is the path as seen from
the target, not from the Tornado host.

All informative and error message are printed to standard error.

NOTE: Refrain from specifying absolute path names in path, such archives tend to be
either difficult to extract or can cause unexpected damage to existing files if such exist
under the same absolute name.

There is no way of specifying a number of hierarchies to dump.

SEE ALSO tarLib

tarExtract()

NAME tarExtract() – extract all files from a tar formatted tape

SYNOPSIS STATUS tarExtract

(

char * pTape, /* tape device name */

int bfactor, /* requested blocking factor */

BOOL verbose /* if TRUE print progress info */

)

DESCRIPTION This is a UNIX-tar compatible utility that extracts entire file hierarchies from tar-formatted
archive. The files are extracted with their original names and modes. In some cases a file

VxWorks OS Libraries API Reference, 5.5
tarToc()

1324

cannot be created on disk, for example if the name is too long for regular DOS file name
conventions, in such cases entire files are skipped, and this program will continue with
the next file. Directories are created in order to be able to create all files on tape.

The tape argument may be any tape device name or file name that contains a tar formatted
archive. If tape is equal “-”, standard input is used. If tape is NULL (or unspecified from
Shell) the default archive file name stored in global variable TAPE is used.

The bfactor dictates the blocking factor the tape was written with. If 0, or unspecified from
the shell, a default of 20 is used.

The verbose argument is a boolean, if set to 1, will cause informative messages to be
printed to standard error whenever an action is taken, otherwise, only errors are reported.

All informative and error message are printed to standard error.

There is no way to selectively extract tar archives with this utility. It extracts entire
archives.

SEE ALSO tarLib

tarToc()

NAME tarToc() – display all contents of a tar formatted tape

SYNOPSIS STATUS tarToc

(

char * tape, /* tape device name */

int bfactor /* requested blocking factor */

)

DESCRIPTION This is a UNIX-tar compatible utility that displays entire file hierarchies from
tar-formatted media, e.g. tape.

The tape argument may be any tape device name or file name that contains a tar formatted
archive. If tape is equal “-”, standard input is used. If tape is NULL (or unspecified from
Shell) the default archive file name stored in global variable TAPE is used.

The bfactor dictates the blocking factor the tape was written with. If 0, or unspecified from
Shell, default of 20 is used.

Archive contents are displayed on standard output, while all informative and error
message are printed to standard error.

SEE ALSO tarLib

2: Routines
taskCreateHookAdd()

1325

T

taskActivate()

NAME taskActivate() – activate a task that has been initialized

SYNOPSIS STATUS taskActivate

(

int tid /* task ID of task to activate */

)

DESCRIPTION This routine activates tasks created by taskInit(). Without activation, a task is ineligible
for CPU allocation by the scheduler.

The tid (task ID) argument is simply the address of the WIND_TCB for the task (the
taskInit() pTcb argument), cast to an integer:

tid = (int) pTcb;

The taskSpawn() routine is built from taskActivate() and taskInit(). Tasks created by
taskSpawn() do not require explicit task activation.

RETURNS OK, or ERROR if the task cannot be activated.

SEE ALSO taskLib, taskInit()

taskCreateHookAdd()

NAME taskCreateHookAdd() – add a routine to be called at every task create

SYNOPSIS STATUS taskCreateHookAdd

(

FUNCPTR createHook /* routine to be called when a task is created */

)

DESCRIPTION This routine adds a specified routine to a list of routines that will be called whenever a
task is created. The routine should be declared as follows:

void createHook

(

WIND_TCB *pNewTcb /* pointer to new task’s TCB */

)

VxWorks OS Libraries API Reference, 5.5
taskCreateHookDelete()

1326

RETURNS OK, or ERROR if the table of task create routines is full.

SEE ALSO taskHookLib, taskCreateHookDelete()

taskCreateHookDelete()

NAME taskCreateHookDelete() – delete a previously added task create routine

SYNOPSIS STATUS taskCreateHookDelete

(

FUNCPTR createHook /* routine to be deleted from list */

)

DESCRIPTION This routine removes a specified routine from the list of routines to be called at each task
create.

RETURNS OK, or ERROR if the routine is not in the table of task create routines.

SEE ALSO taskHookLib, taskCreateHookAdd()

taskCreateHookShow()

NAME taskCreateHookShow() – show the list of task create routines

SYNOPSIS void taskCreateHookShow (void)

DESCRIPTION This routine shows all the task create routines installed in the task create hook table, in the
order in which they were installed.

RETURNS N/A

SEE ALSO taskHookShow, taskCreateHookAdd()

2: Routines
taskDelete()

1327

T

taskDelay()

NAME taskDelay() – delay a task from executing

SYNOPSIS STATUS taskDelay

(

int ticks /* number of ticks to delay task */

)

DESCRIPTION This routine causes the calling task to relinquish the CPU for the duration specified (in
ticks). This is commonly referred to as manual rescheduling, but it is also useful when
waiting for some external condition that does not have an interrupt associated with it.

If the calling task receives a signal that is not being blocked or ignored, taskDelay()
returns ERROR and sets errno to EINTR after the signal handler is run.

RETURNS OK, or ERROR if called from interrupt level or if the calling task receives a signal that is
not blocked or ignored.

ERRNO S_intLib_NOT_ISR_CALLABLE, EINTR

SEE ALSO taskLib

taskDelete()

NAME taskDelete() – delete a task

SYNOPSIS STATUS taskDelete

(

int tid /* task ID of task to delete */

)

DESCRIPTION This routine causes a specified task to cease to exist and deallocates the stack and
WIND_TCB memory resources. Upon deletion, all routines specified by
taskDeleteHookAdd() will be called in the context of the deleting task. This routine is the
companion routine to taskSpawn().

RETURNS OK, or ERROR if the task cannot be deleted.

VxWorks OS Libraries API Reference, 5.5
taskDeleteForce()

1328

ERRNO S_intLib_NOT_ISR_CALLABLE, S_objLib_OBJ_DELETED, S_objLib_OBJ_UNAVAILABLE,
S_objLib_OBJ_ID_ERROR

SEE ALSO taskLib, excLib, taskDeleteHookAdd(), taskSpawn(), VxWorks Programmer’s Guide:
Basic OS

taskDeleteForce()

NAME taskDeleteForce() – delete a task without restriction

SYNOPSIS STATUS taskDeleteForce

(

int tid /* task ID of task to delete */

)

DESCRIPTION This routine deletes a task even if the task is protected from deletion. It is similar to
taskDelete(). Upon deletion, all routines specified by taskDeleteHookAdd() will be
called in the context of the deleting task.

WARNING: This routine is intended as a debugging aid, and is generally inappropriate for
applications. Disregarding a task’s deletion protection could leave the system in an
unstable state or lead to system deadlock.

The system does not protect against simultaneous taskDeleteForce() calls. Such a
situation could leave the system in an unstable state.

RETURNS OK, or ERROR if the task cannot be deleted.

ERRNO S_intLib_NOT_ISR_CALLABLE, S_objLib_OBJ_DELETED, S_objLib_OBJ_UNAVAILABLE,
S_objLib_OBJ_ID_ERROR

SEE ALSO taskLib, taskDeleteHookAdd(), taskDelete()

2: Routines
taskDeleteHookDelete()

1329

T

taskDeleteHookAdd()

NAME taskDeleteHookAdd() – add a routine to be called at every task delete

SYNOPSIS STATUS taskDeleteHookAdd

(

FUNCPTR deleteHook /* routine to be called when a task is deleted */

)

DESCRIPTION This routine adds a specified routine to a list of routines that will be called whenever a
task is deleted. The routine should be declared as follows:

void deleteHook

(

WIND_TCB *pTcb /* pointer to deleted task’s WIND_TCB */

)

RETURNS OK, or ERROR if the table of task delete routines is full.

SEE ALSO taskHookLib, taskDeleteHookDelete()

taskDeleteHookDelete()

NAME taskDeleteHookDelete() – delete a previously added task delete routine

SYNOPSIS STATUS taskDeleteHookDelete

(

FUNCPTR deleteHook /* routine to be deleted from list */

)

DESCRIPTION This routine removes a specified routine from the list of routines to be called at each task
delete.

RETURNS OK, or ERROR if the routine is not in the table of task delete routines.

SEE ALSO taskHookLib, taskDeleteHookAdd()

VxWorks OS Libraries API Reference, 5.5
taskDeleteHookShow()

1330

taskDeleteHookShow()

NAME taskDeleteHookShow() – show the list of task delete routines

SYNOPSIS void taskDeleteHookShow (void)

DESCRIPTION This routine shows all the delete routines installed in the task delete hook table, in the
order in which they were installed. Note that the delete routines will be run in reverse of
the order in which they were installed.

RETURNS N/A

SEE ALSO taskHookShow, taskDeleteHookAdd()

taskHookInit()

NAME taskHookInit() – initialize task hook facilities

SYNOPSIS void taskHookInit (void)

DESCRIPTION This routine is a NULL routine called to configure the task hook package into the system.
It is called automatically if the configuration macro INCLUDE_TASK_HOOKS is defined.

RETURNS N/A

SEE ALSO taskHookLib

2: Routines
taskIdDefault()

1331

T

taskHookShowInit()

NAME taskHookShowInit() – initialize the task hook show facility

SYNOPSIS void taskHookShowInit (void)

DESCRIPTION This routine links the task hook show facility into the VxWorks system. It is called
automatically when the task hook show facility is configured into VxWorks using either of
the following methods:

– If you use the configuration header files, define INCLUDE_SHOW_ROUTINES in
config.h.

– If you use the Tornado project facility, select INCLUDE_TASK_HOOK_SHOW.

RETURNS N/A

SEE ALSO taskHookShow

taskIdDefault()

NAME taskIdDefault() – set the default task ID

SYNOPSIS int taskIdDefault

(

int tid /* user supplied task ID; if 0, return default */

)

DESCRIPTION This routine maintains a global default task ID. This ID is used by libraries that want to
allow a task ID argument to take on a default value if the user did not explicitly supply
one.

If tid is not zero (i.e., the user did specify a task ID), the default ID is set to that value, and
that value is returned. If tid is zero (i.e., the user did not specify a task ID), the default ID is
not changed and its value is returned. Thus the value returned is always the last task ID
the user specified.

RETURNS The most recent non-zero task ID.

SEE ALSO taskInfo, dbgLib, VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s
Guide: Shell

VxWorks OS Libraries API Reference, 5.5
taskIdListGet()

1332

taskIdListGet()

NAME taskIdListGet() – get a list of active task IDs

SYNOPSIS int taskIdListGet

(

int idList[], /* array of task IDs to be filled in */

int maxTasks /* max tasks idList can accommodate */

)

DESCRIPTION This routine provides the calling task with a list of all active tasks. An unsorted list of task
IDs for no more than maxTasks tasks is put into idList.

WARNING: Kernel rescheduling is disabled with taskLock() while tasks are filled into the
idList. There is no guarantee that all the tasks are valid or that new tasks have not been
created by the time this routine returns.

RETURNS The number of tasks put into the ID list.

SEE ALSO taskInfo

taskIdSelf()

NAME taskIdSelf() – get the task ID of a running task

SYNOPSIS int taskIdSelf (void)

DESCRIPTION This routine gets the task ID of the calling task. The task ID will be invalid if called at
interrupt level.

RETURNS The task ID of the calling task.

SEE ALSO taskLib

2: Routines
taskInfoGet()

1333

T

taskIdVerify()

NAME taskIdVerify() – verify the existence of a task

SYNOPSIS STATUS taskIdVerify

(

int tid /* task ID */

)

DESCRIPTION This routine verifies the existence of a specified task by validating the specified ID as a
task ID. Note that an exception occurs if the task ID parameter points to an address not
located in physical memory.

RETURNS OK, or ERROR if the task ID is invalid.

ERRNO S_objLib_OBJ_ID_ERROR

SEE ALSO taskLib

taskInfoGet()

NAME taskInfoGet() – get information about a task

SYNOPSIS STATUS taskInfoGet

(

int tid, /* ID of task for which to get info */

TASK_DESC * pTaskDesc /* task descriptor to be filled in */

)

DESCRIPTION This routine fills in a specified task descriptor (TASK_DESC) for a specified task. The
information in the task descriptor is, for the most part, a copy of information kept in the
task control block (WIND_TCB). The TASK_DESC structure is useful for common
information and avoids dealing directly with the unwieldy WIND_TCB.

NOTE: Examination of WIND_TCBs should be restricted to debugging aids.

RETURNS OK, or ERROR if the task ID is invalid.

SEE ALSO taskShow

VxWorks OS Libraries API Reference, 5.5
taskInit()

1334

taskInit()

NAME taskInit() – initialize a task with a stack at a specified address

SYNOPSIS STATUS taskInit
(
WIND_TCB * pTcb, /* address of new task’s TCB */
char * name, /* name of new task (stored at pStackBase) */
int priority, /* priority of new task */
int options, /* task option word */
char * pStackBase, /* base of new task’s stack */
int stackSize, /* size (bytes) of stack needed */
FUNCPTR entryPt, /* entry point of new task */
int arg1, /* first of ten task args to pass to func */
int arg2,
int arg3,
int arg4,
int arg5,
int arg6,
int arg7,
int arg8,
int arg9,
int arg10
)

DESCRIPTION This routine initializes user-specified regions of memory for a task stack and control block
instead of allocating them from memory as taskSpawn() does. This routine will utilize
the specified pointers to the WIND_TCB and stack as the components of the task. This
allows, for example, the initialization of a static WIND_TCB variable. It also allows for
special stack positioning as a debugging aid.

As in taskSpawn(), a task may be given a name. While taskSpawn() automatically
names unnamed tasks, taskInit() permits the existence of tasks without names. The task
ID required by other task routines is simply the address pTcb, cast to an integer.

Note that the task stack may grow up or down from pStackBase, depending on the target
architecture.

Other arguments are the same as in taskSpawn(). Unlike taskSpawn(), taskInit() does
not activate the task. This must be done by calling taskActivate() after calling taskInit().

Normally, tasks should be started using taskSpawn() rather than taskInit(), except when
additional control is required for task memory allocation or a separate task activation is
desired.

RETURNS OK, or ERROR if the task cannot be initialized.

2: Routines
taskIsSuspended()

1335

T

ERRNO S_intLib_NOT_ISR_CALLABLE, S_objLib_OBJ_ID_ERROR, S_taskLib_ILLEGAL_PRIORITY

SEE ALSO taskLib, taskActivate(), taskSpawn()

taskIsReady()

NAME taskIsReady() – check if a task is ready to run

SYNOPSIS BOOL taskIsReady

(

int tid /* task ID */

)

DESCRIPTION This routine tests the status field of a task to determine if it is ready to run.

RETURNS TRUE if the task is ready, otherwise FALSE.

SEE ALSO taskInfo

taskIsSuspended()

NAME taskIsSuspended() – check if a task is suspended

SYNOPSIS BOOL taskIsSuspended

(

int tid /* task ID */

)

DESCRIPTION This routine tests the status field of a task to determine if it is suspended.

RETURNS TRUE if the task is suspended, otherwise FALSE.

SEE ALSO taskInfo

VxWorks OS Libraries API Reference, 5.5
taskLock()

1336

taskLock()

NAME taskLock() – disable task rescheduling

SYNOPSIS STATUS taskLock (void)

DESCRIPTION This routine disables task context switching. The task that calls this routine will be the
only task that is allowed to execute, unless the task explicitly gives up the CPU by making
itself no longer ready. Typically this call is paired with taskUnlock(); together they
surround a critical section of code. These preemption locks are implemented with a
counting variable that allows nested preemption locks. Preemption will not be unlocked
until taskUnlock() has been called as many times as taskLock().

This routine does not lock out interrupts; use intLock() to lock out interrupts.

A taskLock() is preferable to intLock() as a means of mutual exclusion, because interrupt
lock-outs add interrupt latency to the system.

A semTake() is preferable to taskLock() as a means of mutual exclusion, because
preemption lock-outs add preemptive latency to the system.

The taskLock() routine is not callable from interrupt service routines.

RETURNS OK or ERROR.

ERRNO S_objLib_OBJ_ID_ERROR, S_intLib_NOT_ISR_CALLABLE

SEE ALSO taskLib, taskUnlock(), intLock(), taskSafe(), semTake()

taskName()

NAME taskName() – get the name associated with a task ID

SYNOPSIS char *taskName

(

int tid /* ID of task whose name is to be found */

)

DESCRIPTION This routine returns a pointer to the name of a task of a specified ID, if the task has a
name. If the task has no name, it returns an empty string.

2: Routines
taskOptionsGet()

1337

T

RETURNS A pointer to the task name, or NULL if the task ID is invalid.

SEE ALSO taskInfo

taskNameToId()

NAME taskNameToId() – look up the task ID associated with a task name

SYNOPSIS int taskNameToId

(

char * name /* task name to look up */

)

DESCRIPTION This routine returns the ID of the task matching a specified name. Referencing a task in
this way is inefficient, since it involves a search of the task list.

RETURNS The task ID, or ERROR if the task is not found.

ERRNO S_taskLib_NAME_NOT_FOUND

SEE ALSO taskInfo

taskOptionsGet()

NAME taskOptionsGet() – examine task options

SYNOPSIS STATUS taskOptionsGet

(

int tid, /* task ID */

int * pOptions /* task’s options */

)

DESCRIPTION This routine gets the current execution options of the specified task. The option bits
returned by this routine indicate the following modes:

VX_FP_TASK
execute with floating-point coprocessor support.

VxWorks OS Libraries API Reference, 5.5
taskOptionsSet()

1338

VX_PRIVATE_ENV
include private environment support (see envLib).

VX_NO_STACK_FILL
do not fill the stack for use by checkstack().

VX_UNBREAKABLE
do not allow breakpoint debugging.

For definitions, see taskLib.h.

RETURNS OK, or ERROR if the task ID is invalid.

SEE ALSO taskInfo, taskOptionsSet()

taskOptionsSet()

NAME taskOptionsSet() – change task options

SYNOPSIS STATUS taskOptionsSet

(

int tid, /* task ID */

int mask, /* bit mask of option bits to unset */

int newOptions /* bit mask of option bits to set */

)

DESCRIPTION This routine changes the execution options of a task. The only option that can be changed
after a task has been created is:

VX_UNBREAKABLE
do not allow breakpoint debugging.

For definitions, see taskLib.h.

RETURNS OK, or ERROR if the task ID is invalid.

SEE ALSO taskInfo, taskOptionsGet()

2: Routines
taskPrioritySet()

1339

T

taskPriorityGet()

NAME taskPriorityGet() – examine the priority of a task

SYNOPSIS STATUS taskPriorityGet

(

int tid, /* task ID */

int * pPriority /* return priority here */

)

DESCRIPTION This routine determines the current priority of a specified task. The current priority is
copied to the integer pointed to by pPriority.

RETURNS OK, or ERROR if the task ID is invalid.

ERRNO S_objLib_OBJ_ID_ERROR

SEE ALSO taskLib, taskPrioritySet()

taskPrioritySet()

NAME taskPrioritySet() – change the priority of a task

SYNOPSIS STATUS taskPrioritySet

(

int tid, /* task ID */

int newPriority /* new priority */

)

DESCRIPTION This routine changes a task’s priority to a specified priority. Priorities range from 0, the
highest priority, to 255, the lowest priority.

RETURNS OK, or ERROR if the task ID is invalid.

ERRNO S_taskLib_ILLEGAL_PRIORITY, S_objLib_OBJ_ID_ERROR

SEE ALSO taskLib, taskPriorityGet()

VxWorks OS Libraries API Reference, 5.5
taskRegsGet()

1340

taskRegsGet()

NAME taskRegsGet() – get a task’s registers from the TCB

SYNOPSIS STATUS taskRegsGet

(

int tid, /* task ID */

REG_SET * pRegs /* put register contents here */

)

DESCRIPTION This routine gathers task information kept in the TCB. It copies the contents of the task’s
registers to the register structure pRegs.

NOTE: This routine only works well if the task is known to be in a stable, non-executing
state. Self-examination, for instance, is not advisable, as results are unpredictable.

RETURNS OK, or ERROR if the task ID is invalid.

SEE ALSO taskInfo, taskSuspend(), taskRegsSet()

taskRegsSet()

NAME taskRegsSet() – set a task’s registers

SYNOPSIS STATUS taskRegsSet

(

int tid, /* task ID */

REG_SET * pRegs /* get register contents from here */

)

DESCRIPTION This routine loads a specified register set pRegs into a specified task’s TCB.

NOTE: This routine only works well if the task is known not to be in the ready state.
Suspending the task before changing the register set is recommended.

RETURNS OK, or ERROR if the task ID is invalid.

SEE ALSO taskInfo, taskSuspend(), taskRegsGet()

2: Routines
taskRestart()

1341

T

taskRegsShow()

NAME taskRegsShow() – display the contents of a task’s registers

SYNOPSIS void taskRegsShow

(

int tid /* task ID */

)

DESCRIPTION This routine displays the register contents of a specified task on standard output.

EXAMPLE The following example displays the register of the shell task (68000 family):

-> taskRegsShow (taskNameToId ("tShell"))
d0 = 0 d1 = 0 d2 = 578fe d3 = 1
d4 = 3e84e1 d5 = 3e8568 d6 = 0 d7 = ffffffff
a0 = 0 a1 = 0 a2 = 4f06c a3 = 578d0
a4 = 3fffc4 a5 = 0 fp = 3e844c sp = 3e842c
sr = 3000 pc = 4f0f2
value = 0 = 0x0

RETURNS N/A

SEE ALSO taskShow

taskRestart()

NAME taskRestart() – restart a task

SYNOPSIS STATUS taskRestart

(

int tid /* task ID of task to restart */

)

DESCRIPTION This routine “restarts” a task. The task is first terminated, and then re-initialized with the
same ID, priority, options, original entry point, stack size, and parameters it had when it
was terminated. Self-restarting of a calling task is performed by the exception task. The
shell utilizes this routine to restart itself when aborted.

VxWorks OS Libraries API Reference, 5.5
taskResume()

1342

NOTE: If the task has modified any of its start-up parameters, the restarted task will start
with the changed values.

RETURNS OK, or ERROR if the task ID is invalid or the task could not be restarted.

ERRNO S_intLib_NOT_ISR_CALLABLE, S_objLib_OBJ_DELETED, S_objLib_OBJ_UNAVAILABLE,
S_objLib_OBJ_ID_ERROR, S_smObjLib_NOT_INITIALIZED,
S_memLib_NOT_ENOUGH_MEMORY, S_memLib_BLOCK_ERROR,
S_taskLib_ILLEGAL_PRIORITY

SEE ALSO taskLib

taskResume()

NAME taskResume() – resume a task

SYNOPSIS STATUS taskResume

(

int tid /* task ID of task to resume */

)

DESCRIPTION This routine resumes a specified task. Suspension is cleared, and the task operates in the
remaining state.

RETURNS OK, or ERROR if the task cannot be resumed.

ERRNO S_objLib_OBJ_ID_ERROR

SEE ALSO taskLib

taskSafe()

NAME taskSafe() – make the calling task safe from deletion

SYNOPSIS STATUS taskSafe (void)

2: Routines
taskShow()

1343

T

DESCRIPTION This routine protects the calling task from deletion. Tasks that attempt to delete a
protected task will block until the task is made unsafe, using taskUnsafe(). When a task
becomes unsafe, the deleter will be unblocked and allowed to delete the task.

The taskSafe() primitive utilizes a count to keep track of nested calls for task protection.
When nesting occurs, the task becomes unsafe only after the outermost taskUnsafe() is
executed.

RETURNS OK.

SEE ALSO taskLib, taskUnsafe(), VxWorks Programmer’s Guide: Basic OS

taskShow()

NAME taskShow() – display task information from TCBs

SYNOPSIS STATUS taskShow

(

int tid, /* task ID */

int level /* 0 = summary, 1 = details, 2 = all tasks */

)

DESCRIPTION This routine displays the contents of a task control block (TCB) for a specified task. If level
is 1, it also displays task options and registers. If level is 2, it displays all tasks.

The TCB display contains the following fields:

EXAMPLE The following example shows the TCB contents for the shell task:

-> taskShow tShell, 1

Field Meaning

NAME Task name
ENTRY Symbol name or address where task began execution
TID Task ID
PRI Priority
STATUS Task status, as formatted by taskStatusString()
PC Program counter
SP Stack pointer
ERRNO Most recent error code for this task
DELAY If task is delayed, number of clock ticks remaining in delay (0 otherwise)

VxWorks OS Libraries API Reference, 5.5
taskShowInit()

1344

NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY

---------- --------- -------- --- --------- -------- -------- ------ -----

tShell _shell 20efcac 1 READY 201dc90 20ef980 0 0

stack: base 0x20efcac end 0x20ed59c size 9532 high 1452 margin 8080

options: 0x1e

VX_UNBREAKABLE VX_DEALLOC_STACK VX_FP_TASK VX_STDIO

VxWorks Events

Events Pended on : Not Pended

Received Events : 0x0

Options : N/A

D0 = 0 D4 = 0 A0 = 0 A4 = 0

D1 = 0 D5 = 0 A1 = 0 A5 = 203a084 SR = 3000

D2 = 0 D6 = 0 A2 = 0 A6 = 20ef9a0 PC = 2038614

D3 = 0 D7 = 0 A3 = 0 A7 = 20ef980

value = 34536868 = 0x20efda4

RETURNS N/A

SEE ALSO taskShow, taskStatusString(), VxWorks Programmer’s Guide: Target Shell, windsh,
Tornado User’s Guide: Shell

taskShowInit()

NAME taskShowInit() – initialize the task show routine facility

SYNOPSIS void taskShowInit (void)

DESCRIPTION This routine links the task show routines into the VxWorks system. It is called
automatically when the task show facility is configured into VxWorks using either of the
following methods:

– If you use the configuration header files, define INCLUDE_SHOW_ROUTINES in
config.h.

– If you use the Tornado project facility, select INCLUDE_TASK_SHOW.

RETURNS N/A

SEE ALSO taskShow

2: Routines
taskSpawn()

1345

T

taskSpawn()

NAME taskSpawn() – spawn a task

SYNOPSIS int taskSpawn

(

char * name, /* name of new task (stored at pStackBase) */

int priority, /* priority of new task */

int options, /* task option word */

int stackSize, /* size (bytes) of stack needed plus name */

FUNCPTR entryPt, /* entry point of new task */

int arg1, /* 1st of 10 req’d task args to pass to func */

int arg2,

int arg3,

int arg4,

int arg5,

int arg6,

int arg7,

int arg8,

int arg9,

int arg10

)

DESCRIPTION This routine creates and activates a new task with a specified priority and options and
returns a system-assigned ID. See taskInit() and taskActivate() for the building blocks of
this routine.

A task may be assigned a name as a debugging aid. This name will appear in displays
generated by various system information facilities such as i(). The name may be of
arbitrary length and content, but the current VxWorks convention is to limit task names to
ten characters and prefix them with a “t”. If name is specified as NULL, an ASCII name will
be assigned to the task of the form “tn” where n is an integer which increments as new
tasks are spawned.

The only resource allocated to a spawned task is a stack of a specified size stackSize, which
is allocated from the system memory partition. Stack size should be an even integer. A
task control block (TCB) is carved from the stack, as well as any memory required by the
task name. The remaining memory is the task’s stack and every byte is filled with the
value 0xEE for the checkStack() facility. See the manual entry for checkStack() for
stack-size checking aids.

The entry address entryPt is the address of the “main” routine of the task. The routine will
be called once the C environment has been set up. The specified routine will be called
with the ten given arguments. Should the specified main routine return, a call to exit()
will automatically be made.

VxWorks OS Libraries API Reference, 5.5
taskSRInit()

1346

Note that ten (and only ten) arguments must be passed for the spawned function.

Bits in the options argument may be set to run with the following modes:

VX_FP_TASK (0x0008)
execute with floating-point coprocessor support. A task which performs floating
point operations or calls any functions which either return or take a floating point
value as arguments must be created with this option. Some routines perform floating
point operations internally. The VxWorks documentation for these clearly state the
need to use the VX_FP_TASK option.

VX_PRIVATE_ENV (0x0080)
include private environment support (see envLib).

VX_NO_STACK_FILL (0x0100)
do not fill the stack for use by checkStack().

VX_UNBREAKABLE (0x0002)
do not allow breakpoint debugging.

See the definitions in taskLib.h.

RETURNS The task ID, or ERROR if memory is insufficient or the task cannot be created.

ERRNO S_intLib_NOT_ISR_CALLABLE, S_objLib_OBJ_ID_ERROR, S_smObjLib_NOT_INITIALIZED,
S_memLib_NOT_ENOUGH_MEMORY, S_memLib_BLOCK_ERROR,
S_taskLib_ILLEGAL_PRIORITY

SEE ALSO taskLib, taskInit(), taskActivate(), sp(), VxWorks Programmer’s Guide: Basic OS

taskSRInit()

NAME taskSRInit() – initialize the default task status register (MIPS)

SYNOPSIS ULONG taskSRInit

(

ULONG newSRValue /* new default task status register */

)

DESCRIPTION This routine sets the default status register for system-wide tasks. All tasks are spawned
with the status register set to this value; thus, it must be called before kernelInit().

RETURNS The previous value of the default status register.

SEE ALSO taskArchLib

2: Routines
taskStatusString()

1347

T

taskSRSet()

NAME taskSRSet() – set the task status register (68K, MIPS, x86)

SYNOPSIS STATUS taskSRSet

(

int tid, /* task ID */

UINT16 sr /* new SR */

)

DESCRIPTION This routine sets the status register of a task that is not running (i.e., the TCB must not be
that of the calling task). Debugging facilities use this routine to set the trace bit in the
status register of a task that is being single-stepped.

x86:
The second parameter represents EFLAGS register and the size is 32 bit.

RETURNS OK, or ERROR if the task ID is invalid.

SEE ALSO taskArchLib

taskStatusString()

NAME taskStatusString() – get a task’s status as a string

SYNOPSIS STATUS taskStatusString

(

int tid, /* task to get string for */

char * pString /* where to return string */

)

DESCRIPTION This routine deciphers the WIND task status word in the TCB for a specified task, and
copies the appropriate string to pString.

The formatted string is one of the following:

String Meaning

READY Task is not waiting for any resource other than the CPU.
PEND Task is blocked due to the unavailability of some resource.
DELAY Task is asleep for some duration.
SUSPEND Task is unavailable for execution (but not suspended, delayed, or pended).

VxWorks OS Libraries API Reference, 5.5
taskSuspend()

1348

EXAMPLE -> taskStatusString (taskNameToId ("tShell"), xx=malloc (10))

new symbol "xx" added to symbol table.

value = 0 = 0x0

-> printf ("shell status = <%s>\n", xx)

shell status = <READY>

value = 2 = 0x2

RETURNS OK, or ERROR if the task ID is invalid.

SEE ALSO taskShow

taskSuspend()

NAME taskSuspend() – suspend a task

SYNOPSIS STATUS taskSuspend

(

int tid /* task ID of task to suspend */

)

DESCRIPTION This routine suspends a specified task. A task ID of zero results in the suspension of the
calling task. Suspension is additive, thus tasks can be delayed and suspended, or pended
and suspended. Suspended, delayed tasks whose delays expire remain suspended.
Likewise, suspended, pended tasks that unblock remain suspended only.

Care should be taken with asynchronous use of this facility. The specified task is
suspended regardless of its current state. The task could, for instance, have mutual
exclusion to some system resource, such as the network * or system memory partition. If
suspended during such a time, the facilities engaged are unavailable, and the situation
often ends in deadlock.

This routine is the basis of the debugging and exception handling packages. However, as
a synchronization mechanism, this facility should be rejected in favor of the more general
semaphore facility.

DELAY+S Task is both delayed and suspended.
PEND+S Task is both pended and suspended.
PEND+T Task is pended with a timeout.
PEND+S+T Task is pended with a timeout, and also suspended.
...+I Task has inherited priority (+I may be appended to any string above).
DEAD Task no longer exists.

String Meaning

2: Routines
taskSwitchHookAdd()

1349

T

RETURNS OK, or ERROR if the task cannot be suspended.

ERRNO S_objLib_OBJ_ID_ERROR

SEE ALSO taskLib

taskSwitchHookAdd()

NAME taskSwitchHookAdd() – add a routine to be called at every task switch

SYNOPSIS STATUS taskSwitchHookAdd

(

FUNCPTR switchHook /* routine to be called at every task switch */

)

DESCRIPTION This routine adds a specified routine to a list of routines that will be called at every task
switch. The routine should be declared as follows:

void switchHook

(

WIND_TCB *pOldTcb, /* pointer to old task’s WIND_TCB */

WIND_TCB *pNewTcb /* pointer to new task’s WIND_TCB */

)

NOTE User-installed switch hooks are called within the kernel context. Therefore, switch hooks
do not have access to all VxWorks facilities. The following routines can be called from
within a task switch hook:

RETURNS OK, or ERROR if the table of task switch routines is full.

SEE ALSO taskHookLib, taskSwitchHookDelete()

Library Routines

bLib All routines
fppArchLib fppSave(), fppRestore()
intLib intContext(), intCount(), intVecSet(), intVecGet()
lstLib All routines
mathALib All routines, if fppSave()/fppRestore() are used
rngLib All routines except rngCreate()
taskLib taskIdVerify(), taskIdDefault(), taskIsReady(), taskIsSuspended(),

taskTcb()
vxLib vxTas()

VxWorks OS Libraries API Reference, 5.5
taskSwitchHookDelete()

1350

taskSwitchHookDelete()

NAME taskSwitchHookDelete() – delete a previously added task switch routine

SYNOPSIS STATUS taskSwitchHookDelete

(

FUNCPTR switchHook /* routine to be deleted from list */

)

DESCRIPTION This routine removes the specified routine from the list of routines to be called at each
task switch.

RETURNS OK, or ERROR if the routine is not in the table of task switch routines.

SEE ALSO taskHookLib, taskSwitchHookAdd()

taskSwitchHookShow()

NAME taskSwitchHookShow() – show the list of task switch routines

SYNOPSIS void taskSwitchHookShow (void)

DESCRIPTION This routine shows all the switch routines installed in the task switch hook table, in the
order in which they were installed.

RETURNS N/A

SEE ALSO taskHookShow, taskSwitchHookAdd()

2: Routines
taskUnlock()

1351

T

taskTcb()

NAME taskTcb() – get the task control block for a task ID

SYNOPSIS WIND_TCB *taskTcb

(

int tid /* task ID */

)

DESCRIPTION This routine returns a pointer to the task control block (WIND_TCB) for a specified task.
Although all task state information is contained in the TCB, users must not modify it
directly. To change registers, for instance, use taskRegsSet() and taskRegsGet().

RETURNS A pointer to a WIND_TCB, or NULL if the task ID is invalid.

ERRNO S_objLib_OBJ_ID_ERROR

SEE ALSO taskLib

taskUnlock()

NAME taskUnlock() – enable task rescheduling

SYNOPSIS STATUS taskUnlock (void)

DESCRIPTION This routine decrements the preemption lock count. Typically this call is paired with
taskLock() and concludes a critical section of code. Preemption will not be unlocked until
taskUnlock() has been called as many times as taskLock(). When the lock count is
decremented to zero, any tasks that were eligible to preempt the current task will execute.

The taskUnlock() routine is not callable from interrupt service routines.

RETURNS OK or ERROR.

ERRNO S_intLib_NOT_ISR_CALLABLE

SEE ALSO taskLib, taskLock()

VxWorks OS Libraries API Reference, 5.5
taskUnsafe()

1352

taskUnsafe()

NAME taskUnsafe() – make the calling task unsafe from deletion

SYNOPSIS STATUS taskUnsafe (void)

DESCRIPTION This routine removes the calling task’s protection from deletion. Tasks that attempt to
delete a protected task will block until the task is unsafe. When a task becomes unsafe, the
deleter will be unblocked and allowed to delete the task.

The taskUnsafe() primitive utilizes a count to keep track of nested calls for task
protection. When nesting occurs, the task becomes unsafe only after the outermost
taskUnsafe() is executed.

RETURNS OK.

SEE ALSO taskLib, taskSafe(), VxWorks Programmer’s Guide: Basic OS

taskVarAdd()

NAME taskVarAdd() – add a task variable to a task

SYNOPSIS STATUS taskVarAdd

(

int tid, /* ID of task to have new variable */

int * pVar /* pointer to variable to be switched for task */

)

DESCRIPTION This routine adds a specified variable pVar (4-byte memory location) to a specified task’s
context. After calling this routine, the variable will be private to the task. The task can
access and modify the variable, but the modifications will not appear to other tasks, and
other tasks’ modifications to that variable will not affect the value seen by the task. This is
accomplished by saving and restoring the variable’s initial value each time a task switch
occurs to or from the calling task.

This facility can be used when a routine is to be spawned repeatedly as several
independent tasks. Although each task will have its own stack, and thus separate stack
variables, they will all share the same static and global variables. To make a variable not
shareable, the routine can call taskVarAdd() to make a separate copy of the variable for
each task, but all at the same physical address.

2: Routines
taskVarAdd()

1353

T

Note that task variables increase the task switch time to and from the tasks that own them.
Therefore, it is desirable to limit the number of task variables that a task uses. One
efficient way to use task variables is to have a single task variable that is a pointer to a
dynamically allocated structure containing the task’s private data.

EXAMPLE Assume that three identical tasks were spawned with a routine called operator(). All
three use the structure OP_GLOBAL for all variables that are specific to a particular
incarnation of the task. The following code fragment shows how this is set up:

OP_GLOBAL *opGlobal; /* ptr to operator task’s global variables */

void operator

(

int opNum /* number of this operator task */

)

{

if (taskVarAdd (0, (int *)&opGlobal) != OK)

{

printErr ("operator%d: can’t taskVarAdd opGlobal\n", opNum);

taskSuspend (0);

}

if ((opGlobal = (OP_GLOBAL *) malloc (sizeof (OP_GLOBAL))) == NULL)

{

printErr ("operator%d: can’t malloc opGlobal\n", opNum);

taskSuspend (0);

}

...

}

RETURNS OK, or ERROR if memory is insufficient for the task variable descriptor.

SEE ALSO taskVarLib, taskVarDelete(), taskVarGet(), taskVarSet()

VxWorks OS Libraries API Reference, 5.5
taskVarDelete()

1354

taskVarDelete()

NAME taskVarDelete() – remove a task variable from a task

SYNOPSIS STATUS taskVarDelete

(

int tid, /* ID of task whose variable is to be removed */

int * pVar /* pointer to task variable to be removed */

)

DESCRIPTION This routine removes a specified task variable, pVar, from the specified task’s context. The
private value of that variable is lost.

RETURNS OK, or ERROR if the task variable does not exist for the specified task.

SEE ALSO taskVarLib, taskVarAdd(), taskVarGet(), taskVarSet()

taskVarGet()

NAME taskVarGet() – get the value of a task variable

SYNOPSIS int taskVarGet

(

int tid, /* ID of task whose task variable is to be retrieved */

int * pVar /* pointer to task variable */

)

DESCRIPTION This routine returns the private value of a task variable for a specified task. The specified
task is usually not the calling task, which can get its private value by directly accessing the
variable. This routine is provided primarily for debugging purposes.

RETURNS The private value of the task variable, or ERROR if the task is not found or it does not own
the task variable.

SEE ALSO taskVarLib, taskVarAdd(), taskVarDelete(), taskVarSet()

2: Routines
taskVarInit()

1355

T

taskVarInfo()

NAME taskVarInfo() – get a list of task variables of a task

SYNOPSIS int taskVarInfo

(

int tid, /* ID of task whose task variable is to be set */

TASK_VAR varList[], /* array to hold task variable addresses */

int maxVars /* maximum variables varList can accommodate */

)

DESCRIPTION This routine provides the calling task with a list of all of the task variables of a specified
task. The unsorted array of task variables is copied to varList.

WARNING: Kernel rescheduling is disabled with taskLock() while task variables are
looked up. There is no guarantee that all the task variables are still valid or that new task
variables have not been created by the time this routine returns.

RETURNS The number of task variables in the list.

SEE ALSO taskVarLib

taskVarInit()

NAME taskVarInit() – initialize the task variables facility

SYNOPSIS STATUS taskVarInit (void)

DESCRIPTION This routine initializes the task variables facility. It installs task switch and delete hooks
used for implementing task variables. If taskVarInit() is not called explicitly,
taskVarAdd() will call it automatically when the first task variable is added.

After the first invocation of this routine, subsequent invocations have no effect.

WARNING: Order dependencies in task delete hooks often involve task variables. If a
facility uses task variables and has a task delete hook that expects to use those task
variables, the facility’s delete hook must run before the task variables’ delete hook.
Otherwise, the task variables will be deleted by the time the facility’s delete hook runs.

VxWorks OS Libraries API Reference, 5.5
taskVarSet()

1356

VxWorks is careful to run the delete hooks in reverse of the order in which they were
installed. Any facility that has a delete hook that will use task variables can guarantee
proper ordering by calling taskVarInit() before adding its own delete hook.

Note that this is not an issue in normal use of task variables. The issue only arises when
adding another task delete hook that uses task variables.

Caution should also be taken when adding task variables from within create hooks. If the
task variable package has not been installed via taskVarInit(), the create hook attempts to
create a create hook, and that may cause system failure. To avoid this situation,
taskVarInit() should be called during system initialization from the root task, usrRoot(),
in usrConfig.c.

RETURNS OK, or ERROR if the task switch/delete hooks could not be installed.

SEE ALSO taskVarLib

taskVarSet()

NAME taskVarSet() – set the value of a task variable

SYNOPSIS STATUS taskVarSet

(

int tid, /* ID of task whose task variable is to be set */

int * pVar, /* pointer to task variable to be set for this task */

int value /* new value of task variable */

)

DESCRIPTION This routine sets the private value of the task variable for a specified task. The specified
task is usually not the calling task, which can set its private value by directly modifying
the variable. This routine is provided primarily for debugging purposes.

RETURNS OK, or ERROR if the task is not found or it does not own the task variable.

SEE ALSO taskVarLib, taskVarAdd(), taskVarDelete(), taskVarGet()

2: Routines
tcpShowInit()

1357

T

tcpDebugShow()

NAME tcpDebugShow() – display debugging information for the TCP protocol

SYNOPSIS void tcpDebugShow

(

int numPrint, /* no. of entries to print, default (0) = 20 */

int verbose /* 1 = verbose */

)

DESCRIPTION This routine displays debugging information for the TCP protocol. To include TCP
debugging facilities, define INCLUDE_TCP_DEBUG when building the system image. To
enable information gathering, turn on the SO_DEBUG option for the relevant socket(s).

RETURNS N/A

SEE ALSO tcpShow

tcpShowInit()

NAME tcpShowInit() – initialize TCP show routines

SYNOPSIS void tcpShowInit (void)

DESCRIPTION This routine links the TCP show facility into the VxWorks system. These routines are
included automatically if INCLUDE_TCP_SHOW is defined.

RETURNS N/A

SEE ALSO tcpShow

VxWorks OS Libraries API Reference, 5.5
tcpstatShow()

1358

tcpstatShow()

NAME tcpstatShow() – display all statistics for the TCP protocol

SYNOPSIS void tcpstatShow (void)

DESCRIPTION This routine displays detailed statistics for the TCP protocol.

RETURNS N/A

SEE ALSO tcpShow

td()

NAME td() – delete a task

SYNOPSIS void td

(

int taskNameOrId /* task name or task ID */

)

DESCRIPTION This command deletes a specified task. It simply calls taskDelete().

RETURNS N/A

SEE ALSO usrLib, taskDelete(), VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s
Guide: Shell

2: Routines
telnetdInit()

1359

T

telnetdExit()

NAME telnetdExit() – close an active telnet session

SYNOPSIS void telnetdExit

(

UINT32 sessionId /* identifies the session to be deleted */

)

DESCRIPTION This routine supports the session exit command for a command interpreter (such as
logout() for the VxWorks shell). Depending on the TELNETD_TASKFLAG setting, it
causes the associated input and output tasks to restart or exit. sessionId must match a value
provided to the command interpreter with the REMOTE_START option.

RETURNS N/A.

SEE ALSO telnetdLib

telnetdInit()

NAME telnetdInit() – initialize the telnet services

SYNOPSIS STATUS telnetdInit

(

int numClients, /* maximum number of simultaneous sessions */

BOOL staticFlag /* TRUE: create all tasks in advance of any clients */

)

DESCRIPTION This routine initializes the telnet server, which supports remote login to VxWorks via the
telnet protocol. It is called automatically when the configuration macro INCLUDE_TELNET
is defined. The telnet server supports simultaneous client sessions up to the limit specified
by the TELNETD_MAX_CLIENTS setting provided in the numClients argument. The
staticFlag argument is equal to the TELNETD_TASKFLAG setting. It allows the server to
create all of the secondary input and output tasks and allocate all required resources in
advance of any connection. The default value of FALSE causes the server to spawn a task
pair and create the associated data structures after each new connection.

RETURNS OK, or ERROR if initialization fails

SEE ALSO telnetdLib

VxWorks OS Libraries API Reference, 5.5
telnetdParserSet()

1360

telnetdParserSet()

NAME telnetdParserSet() – specify a command interpreter for telnet sessions

SYNOPSIS STATUS telnetdParserSet

(

FUNCPTR pParserCtrlRtn /* provides parser’s file descriptors */

)

DESCRIPTION This routine provides the ability to handle telnet connections using a custom command
interpreter or the default VxWorks shell. It is called automatically during system startup
(when the configuration macro INCLUDE_TELNET is defined) to connect clients to the
command interpreter specified in the TELNETD_PARSER_HOOK parameter. The
command interpreter in use when the telnet server start scan never be changed.

The pParserCtrlRtn argument provides a routine using the following interface:

STATUS parserControlRtn

(

int telnetdEvent,/* start or stop a telnet session */

UINT32 sessionId,/* a unique session identifier */

int ioFd /* file descriptor for character i/o */

)

The telnet server calls the control routine with a telnetdEvent parameter of REMOTE_INIT
during initialization. The telnet server then calls the control routine with a telnetdEvent
parameter of REMOTE_START when a client establishes a new connection. The sessionId
parameter provides a unique identifier for the session.

In the default configuration, the telnet server calls the control routine with a telnetdEvent
parameter of REMOTE_STOP when a session ends.

The telnet server does not call the control routine when a session ends if it is configured to
spawn all tasks and allocate all resources in advance of any connections. The associated
file descriptors will be reused by later clients and cannot be released. In that case, the
REMOTE_STOP operation only occurs to allow the command interpreter to close those
files when the server encounters a fatal error.

RETURNS OK if parser control routine installed, or ERROR otherwise.

SEE ALSO telnetdLib

2: Routines
telnetdStart()

1361

T

telnetdStart()

NAME telnetdStart() – initialize the telnet services

SYNOPSIS STATUS telnetdStart

(

int port /* target port for accepting connections */

)

DESCRIPTION Following the telnet server initialization, this routine creates a socket for accepting remote
connections and spawns the primary telnet server task. It executes automatically during
system startup when the INCLUDE_TELNET configuration macro is defined since a parser
control routine is available. The server will not accept connections otherwise.

By default, the server will spawn a pair of secondary input and output tasks after each
client connection. Changing the TELNETD_TASKFLAG setting to TRUE causes this routine
to create all of those tasks in advance of any connection. In that case, it calls the current
parser control routine repeatedly to obtain file descriptors for each possible client based
on the numClients argument to the initialization routine. The server will not start if the
parser control routine returns ERROR.

The TELNETD_PORT constant provides the port argument, which assigns the port where
the server accepts connections. The default value is the standard setting of 23.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. This restriction does not apply under non-AE versions of VxWorks.

RETURNS OK, or ERROR if startup fails

SEE ALSO telnetdLib

VxWorks OS Libraries API Reference, 5.5
telnetdStaticTaskInitializationGet()

1362

telnetdStaticTaskInitializationGet()

NAME telnetdStaticTaskInitializationGet() – report whether tasks were pre-started by telnetd

SYNOPSIS BOOL telnetdStaticTaskInitializationGet ()

DESCRIPTION This routine is called by a custom shell partser library to determine whether a shell is to be
spawned at the time a connection is requested.

RETURNS TRUE, if all tasks are pre-spawned; FALSE, if tasks are spawned at the time a connection is
requested.

SEE ALSO telnetdLib, telnetdInit(), telnetdParserSet()

tffsBootImagePut()

NAME tffsBootImagePut() – write to the boot-image region of the flash device

SYNOPSIS STATUS tffsBootImagePut

(

int driveNo, /* TFFS drive number */

int offset, /* offset in the flash chip/card */

char * filename /* binary format of the bootimage */

)

DESCRIPTION This routine writes an input stream to the boot-image region (if any) of a flash memory
device. Typically, the input stream contains a boot image, such as the VxWorks boot
image, but you are free to use this function to write any data needed. The size of the
boot-image region is set by the tffsDevFormat() call (or the sysTffsFormat() call, a
BSP-specific helper function that calls tffsDevFormat() internally) that formats the flash
device for use with TrueFFS.

If tffsBootImagePut() is used to put a VxWorks boot image in flash, you should not use
the s-record version of the boot image typically produced by make. Instead, you should
take the pre s-record version (usually called bootrom instead of bootrom.hex), and filter
out its loader header information using an xxxToBin utility. For example:

elfToBin < bootrom > bootrom.bin

Use the resulting bootrom.bin as input to tffsBootImagePut().

2: Routines
tffsDevCreate()

1363

T

The discussion above assumes that you want only to use the flash device to store a
VxWorks image that is retrieved from the flash device and then run out of RAM.
However, because it is possible to map many flash devices directly into the target’s
memory, it is also possible run the VxWorks image from flash memory, although there are
some restrictions:

– The flash device must be non-NAND.

– Only the text segment of the VxWorks image (vxWorks.res_rom) may run out

of flash memory. The data segment of the image must reside in standard RAM.

– No part of the flash device may be erased while the VxWorks image is running

from flash memory.

Because TrueFFS garbage collection triggers an erase, this last restriction means that you
cannot run a VxWorks boot image out of a flash device that must also support a writable
file system (although a read-only file system is OK).

This last restriction arises from the way in which flash devices are constructed. The
current physical construction of flash memory devices does not allow access to the device
while an erase is in progress anywhere on the flash device. As a result, if TrueFFS tries to
erase a portion of the flash device, the entire device becomes inaccessible to all other
users. If that other user happens to be the VxWorks image looking for its next instruction,
the VxWorks image crashes.

RETURNS OK or ERROR

SEE ALSO tffsConfig

tffsDevCreate()

NAME tffsDevCreate() – create a TrueFFS block device suitable for use with dosFs

SYNOPSIS BLK_DEV * tffsDevCreate

(

int tffsDriveNo, /* TFFS drive number (0 - DRIVES-1) */

int removableMediaFlag /* 0 - nonremovable flash media */

)

DESCRIPTION This routine creates a TFFS block device on top of a flash device. It takes as arguments a
drive number, determined from the order in which the socket components were
registered, and a flag integer that indicates whether the medium is removable or not. A
zero indicates a non removable medium. A one indicates a removable medium. If you

VxWorks OS Libraries API Reference, 5.5
tffsDevFormat()

1364

intend to mount dosFs on this block device, you probably do not want to call
tffsDevCreate(), but should call usrTffsConfig() instead. Internally, usrTffsConfig()
calls tffsDevCreate() for you. It then does everything necessary (such as calling the
dosFsDevInit() routine) to mount dosFs on the just created block device.

RETURNS BLK_DEV pointer, or NULL if it failed.

SEE ALSO tffsDrv

tffsDevFormat()

NAME tffsDevFormat() – format a flash device for use with TrueFFS

SYNOPSIS STATUS tffsDevFormat

(

int tffsDriveNo, /* TrueFFS drive number (0 - DRIVES-1) */

int arg /* pointer to tffsDevFormatParams structure */

)

DESCRIPTION This routine formats a flash device for use with TrueFFS. It takes two parameters, a drive
number and a pointer to a device format structure. This structure describes how the
volume should be formatted. The structure is defined in dosformt.h. The drive number is
assigned in the order that the socket component for the device was registered.

The format process marks each erase unit with an Erase Unit Header (EUH) and creates
the physical and virtual Block Allocation Maps (BAM) for the device. The erase units
reserved for the “boot-image” are skipped and the first EUH is placed at number
(boot-image length - 1). To write to the boot-image region, call tffsBootImagePut().

WARNING: If any of the erase units in the boot-image region contains an erase unit header
from a previous format call (this can happen if you reformat a flash device specifying a
larger boot region) TrueFFS fails to mount the device. To fix this problem, use tffsRawio()
to erase the problem erase units (thus removing the outdated EUH).

The macro TFFS_STD_FORMAT_PARAMS defines the default values used for formatting a
flask disk device. If the second argument to this routine is zero, tffsDevFormat() uses
these default values.

RETURNS OK, or ERROR if it failed.

SEE ALSO tffsDrv

2: Routines
tffsDrv()

1365

T

tffsDevOptionsSet()

NAME tffsDevOptionsSet() – set TrueFFS volume options

SYNOPSIS STATUS tffsDevOptionsSet

(

TFFS_DEV * pTffsDev /* pointer to device descriptor */

)

DESCRIPTION This routine is intended to set various TrueFFS volume options. At present it only disables
FAT monitoring. If VxWorks long file names are to be used with TrueFFS, FAT
monitoring must be turned off.

RETURNS OK, or ERROR if it failed.

SEE ALSO tffsDrv

tffsDrv()

NAME tffsDrv() – initialize the TrueFFS system

SYNOPSIS STATUS tffsDrv (void)

DESCRIPTION This routine sets up the structures, the global variables, and the mutual exclusion
semaphore needed to manage TrueFFS. This call also registers socket component drivers
for all the flash devices attached to your target.

Because tffsDrv() is the call that initializes the TrueFFS system, this function must be
called (exactly once) before calling any other TrueFFS utilities, such as tffsDevFormat() or
tffsDevCreate(). Typically, the call to tffsDrv() is handled for you automatically. If you
defined INCLUDE_TFFS in your BSP’s config.h, the call to tffsDrv() is made from
usrRoot(). If your BSP’s config.h defines INCLUDE_PCMCIA, the call to tffsDrv() is made
from pccardTffsEnabler().

RETURNS OK, or ERROR if it fails.

SEE ALSO tffsDrv

VxWorks OS Libraries API Reference, 5.5
tffsRawio()

1366

tffsRawio()

NAME tffsRawio() – low level I/O access to flash components

SYNOPSIS STATUS tffsRawio

(

int tffsDriveNo, /* TrueFFS drive number (0 - DRIVES-1) */

int functionNo, /* TrueFFS function code */

int arg0, /* argument 0 */

int arg1, /* argument 1 */

int arg2 /* argument 2 */

)

DESCRIPTION Use the utilities provided by this routine with the utmost care. If you use these routines
carelessly, you risk data loss as well as permanent physical damage to the flash device.

This routine is a gateway to a series of utilities (listed below). Functions such as
mkbootTffs() and tffsBootImagePut() use these tffsRawio() utilities to write boot sector
information. The functions for physical read, write, and erase are made available with the
intention that they be used on erase units allocated to the boot-image region by
tffsDevFormat(). Using these functions elsewhere could be dangerous.

The arg0, arg1, and arg2 parameters to tffsRawio() are interpreted differently depending
on the function number you specify for functionNo. The drive number is determined by
the order in which the socket components were registered.

TFFS_GET_PHYSICAL_INFO writes the flash type, erasable block size, and media size to
the user buffer specified in arg0.

TFFS_PHYSICAL_READ reads arg1 bytes from arg0 and writes them to the buffer specified
by arg2.

TFFS_PHYSICAL_WRITE copies arg1 bytes from the arg2 buffer and writes them to the
flash memory location specified by arg0. This aborts if the volume is already mounted to

Function Name arg0 arg1 arg2

TFFS_GET_PHYSICAL_INFO user buffer address N/A N/A
TFFS_PHYSICAL_READ address to read byte count user buffer address
TFFS_PHYSICAL_WRITE address to write byte count user buffer address
TFFS_PHYSICAL_ERASE first unit number of units N/A
TFFS_ABS_READ sector number number of sectors user buffer address
TFFS_ABS_WRITE sector number number of sectors user buffer address
TFFS_ABS_DELETE sector number number of sectors N/A
TFFS_DEFRAGMENT_VOLUME number of sectors user buffer address N/A

2: Routines
tffsShow()

1367

T

prevent the versions of translation data in memory and in flash from going out of
synchronization.

TFFS_PHYSICAL_ERASE erases arg1 erase units, starting at the erase unit specified in arg0.
This aborts if the volume is already mounted to prevent the versions of translation data in
memory and in flash from going out of synchronization.

TFFS_ABS_READ reads arg1 sectors, starting at sector arg0, and writes them to the user
buffer specified in arg2.

TFFS_ABS_WRITE takes data from the arg2 user buffer and writes arg1 sectors of it to the
flash location starting at sector arg0.

TFFS_ABS_DELETE deletes arg1 sectors of data starting at sector arg0.

TFFS_DEFRAGMENT_VOLUME calls the defragmentation routine with the minimum
number of sectors to be reclaimed, arg0, and writes the actual number reclaimed in the
user buffer by arg1. Calling this function through some low priority task will make writes
more deterministic. No validation is done of the user specified address fields, so the
functions assume they are writable. If the address is invalid, you could see bus errors or
segmentation faults.

RETURNS OK, or ERROR if it failed.

SEE ALSO tffsDrv

tffsShow()

NAME tffsShow() – show device information on a specific socket interface

SYNOPSIS void tffsShow

(

int driveNo /* TFFS drive number */

)

DESCRIPTION This routine prints device information on the specified socket interface. This information
is particularly useful when trying to determine the number of Erase Units required to
contain a boot image. The field called unitSize reports the size of an Erase Unit.

If the process of getting physical information fails, an error code is printed. The error
codes can be found in flbase.h.

RETURNS N/A

SEE ALSO tffsConfig

VxWorks OS Libraries API Reference, 5.5
tffsShowAll()

1368

tffsShowAll()

NAME tffsShowAll() – show device information on all socket interfaces

SYNOPSIS void tffsShowAll (void)

DESCRIPTION This routine prints device information on all socket interfaces.

RETURNS N/A

SEE ALSO tffsConfig

tftpCopy()

NAME tftpCopy() – transfer a file via TFTP

SYNOPSIS STATUS tftpCopy

(

char * pHost, /* host name or address */

int port, /* optional port number */

char * pFilename, /* remote filename */

char * pCommand, /* TFTP command */

char * pMode, /* TFTP transfer mode */

int fd /* fd to put/get data */

)

DESCRIPTION This routine transfers a file using the TFTP protocol to or from a remote system. pHost is
the remote server name or Internet address. A non-zero value for port specifies an
alternate TFTP server port (zero means use default TFTP port number (69)). pFilename is
the remote file name. pCommand specifies the TFTP command, which can be either “put”
or “get”. pMode specifies the mode of transfer, which can be “ascii”, “netascii”, “binary”,
“image”, or “octet”.

fd is a file descriptor from which to read/write the data from or to the remote system. For
example, if the command is “get”, the remote data will be written to fd. If the command is
“put”, the data to be sent is read from fd. The caller is responsible for managing fd. That is,
fd must be opened prior to calling tftpCopy() and closed up on completion.

2: Routines
tftpdDirectoryRemove()

1369

T

EXAMPLE The following sequence gets an ASCII file /folk/vw/xx.yy on host “congo” and stores it to
a local file called localfile:

-> fd = open ("localfile", 0x201, 0644)

-> tftpCopy ("congo", 0, "/folk/vw/xx.yy", "get", "ascii", fd)

-> close (fd)

RETURNS OK, or ERROR if unsuccessful.

ERRNO S_tftpLib_INVALID_COMMAND

SEE ALSO tftpLib, ftpLib

tftpdDirectoryAdd()

NAME tftpdDirectoryAdd() – add a directory to the access list

SYNOPSIS STATUS tftpdDirectoryAdd

(

char * fileName /* name of directory to add to access list */

)

DESCRIPTION This routine adds the specified directory name to the access list for the TFTP server.

RETURNS N/A

SEE ALSO tftpdLib

tftpdDirectoryRemove()

NAME tftpdDirectoryRemove() – delete a directory from the access list

SYNOPSIS STATUS tftpdDirectoryRemove

(

char * fileName /* name of directory to add to access list */

)

DESCRIPTION This routine deletes the specified directory name from the access list for the TFTP server.

VxWorks OS Libraries API Reference, 5.5
tftpdInit()

1370

RETURNS N/A

SEE ALSO tftpdLib

tftpdInit()

NAME tftpdInit() – initialize the TFTP server task

SYNOPSIS STATUS tftpdInit

(

int stackSize, /* stack size for the tftpdTask */

int nDirectories, /* number of directories allowed read */

char * *directoryNames, /* array of dir names */

BOOL noControl, /* TRUE if no access control required */

int maxConnections

)

DESCRIPTION This routine will spawn a new TFTP server task, if one does not already exist. If a TFTP
server task is running already, tftpdInit() will simply return an ERROR value without
creating a new task.

To change the default stack size for the TFTP server task, use the stackSize parameter. The
task stack size should be set to a large enough value for the needs of your application - use
checkStack() to evaluate your stack usage. The default size is set in the global variable
tftpdTaskStackSize. Setting stackSize to zero will result in the stack size being set to this
default.

To set the maximum number of simultaneous TFTP connections (each with its own
transfer identifier or TID), set the maxConnections parameter. More information on this is
found in RFC 1350 (“The TFTP Protocol (Revision 2)”). Setting maxConnections to zero will
result in the maximum number of connections being set to the default, which is 10.

If noControl is TRUE, the server will be set up to transfer any file in any location.
Otherwise, it will only transfer files in the directories in /tftpboot or the nDirectories
directories in the directoryNames list, and will send an access violation error to clients that
attempt to access files outside of these directories.

By default, noControl is FALSE, directoryNames is empty, nDirectories is zero, and access is
restricted to the /tftpboot directory.

Directories can be added to the access list after initialization by using the
tftpdDirectoryAdd() routine.

2: Routines
tftpdTask()

1371

T

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

RETURNS OK, or ERROR if a new TFTP task cannot be created.

SEE ALSO tftpdLib

tftpdTask()

NAME tftpdTask() – TFTP server daemon task

SYNOPSIS STATUS tftpdTask

(

int nDirectories, /* number of dirs allowed access */

char * *directoryNames, /* array of directory names */

int maxConnections /* max number of simultan. connects */

)

DESCRIPTION This routine processes incoming TFTP client requests by spawning a new task for each
connection that is set up. This routine is called by tftpdInit().

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

RETURNS OK, or ERROR if the task returns unexpectedly.

SEE ALSO tftpdLib

VxWorks OS Libraries API Reference, 5.5
tftpGet()

1372

tftpGet()

NAME tftpGet() – get a file from a remote system

SYNOPSIS STATUS tftpGet
(
TFTP_DESC * pTftpDesc, /* TFTP descriptor */
char * pFilename, /* remote filename */
int fd, /* file descriptor */
int clientOrServer /* which side is calling */
)

DESCRIPTION This routine gets a file from a remote system via TFTP. pFilename is the filename. fd is the
file descriptor to which the data is written. pTftpDesc is a pointer to the TFTP descriptor.
The tftpPeerSet() routine must be called prior to calling this routine.

RETURNS OK, or ERROR if unsuccessful.

ERRNO S_tftpLib_INVALID_DESCRIPTOR
S_tftpLib_INVALID_ARGUMENT
S_tftpLib_NOT_CONNECTED

SEE ALSO tftpLib

tftpInfoShow()

NAME tftpInfoShow() – get TFTP status information

SYNOPSIS STATUS tftpInfoShow

(

TFTP_DESC * pTftpDesc /* TFTP descriptor */

)

DESCRIPTION This routine prints information associated with TFTP descriptor pTftpDesc.

EXAMPLE A call to tftpInfoShow() might look like:

-> tftpInfoShow (tftpDesc)
Connected to yuba [69]
Mode: netascii Verbose: off Tracing: off
Rexmt-interval: 5 seconds, Max-timeout: 25 seconds

2: Routines
tftpModeSet()

1373

T

RETURNS OK, or ERROR if unsuccessful.

ERRNO S_tftpLib_INVALID_DESCRIPTOR

SEE ALSO tftpLib

tftpInit()

NAME tftpInit() – initialize a TFTP session

SYNOPSIS TFTP_DESC * tftpInit (void)

DESCRIPTION This routine initializes a TFTP session by allocating and initializing a TFTP descriptor. It
sets the default transfer mode to “netascii”.

RETURNS A pointer to a TFTP descriptor if successful, otherwise NULL.

SEE ALSO tftpLib

tftpModeSet()

NAME tftpModeSet() – set the TFTP transfer mode

SYNOPSIS STATUS tftpModeSet

(

TFTP_DESC * pTftpDesc, /* TFTP descriptor */

char * pMode /* TFTP transfer mode */

)

DESCRIPTION This routine sets the transfer mode associated with the TFTP descriptor pTftpDesc. pMode
specifies the transfer mode, which can be “netascii”, “binary”, “image”, or “octet”.
Although recognized, these modes actually translate into either octet or netascii.

RETURNS OK, or ERROR if unsuccessful.

ERRNO S_tftpLib_INVALID_DESCRIPTOR, S_tftpLib_INVALID_ARGUMENT,
S_tftpLib_INVALID_MODE

SEE ALSO tftpLib

VxWorks OS Libraries API Reference, 5.5
tftpPeerSet()

1374

tftpPeerSet()

NAME tftpPeerSet() – set the TFTP server address

SYNOPSIS STATUS tftpPeerSet

(

TFTP_DESC * pTftpDesc, /* TFTP descriptor */

char * pHostname, /* server name/address */

int port /* port number */

)

DESCRIPTION This routine sets the TFTP server (peer) address associated with the TFTP descriptor
pTftpDesc. pHostname is either the TFTP server name (e.g., “congo”) or the server Internet
address (e.g., “90.3”). A non-zero value for port specifies the server port number (zero
means use the default TFTP server port number (69)).

RETURNS OK, or ERROR if unsuccessful.

ERRNO S_tftpLib_INVALID_DESCRIPTOR
S_tftpLib_INVALID_ARGUMENT
S_tftpLib_UNKNOWN_HOST

SEE ALSO tftpLib

tftpPut()

NAME tftpPut() – put a file to a remote system

SYNOPSIS STATUS tftpPut

(

TFTP_DESC * pTftpDesc, /* TFTP descriptor */

char * pFilename, /* remote filename */

int fd, /* file descriptor */

int clientOrServer /* which side is calling */

)

DESCRIPTION This routine puts data from a local file (descriptor) to a file on the remote system.
pTftpDesc is a pointer to the TFTP descriptor. pFilename is the remote filename. fd is the file
descriptor from which it gets the data. A call to tftpPeerSet() must be made prior to
calling this routine.

2: Routines
tftpSend()

1375

T

RETURNS OK, or ERROR if unsuccessful.

ERRNO S_tftpLib_INVALID_DESCRIPTOR
S_tftpLib_INVALID_ARGUMENT
S_tftpLib_NOT_CONNECTED

SEE ALSO tftpLib

tftpQuit()

NAME tftpQuit() – quit a TFTP session

SYNOPSIS STATUS tftpQuit

(

TFTP_DESC * pTftpDesc /* TFTP descriptor */

)

DESCRIPTION This routine closes a TFTP session associated with the TFTP descriptor pTftpDesc.

RETURNS OK, or ERROR if unsuccessful.

ERRNO S_tftpLib_INVALID_DESCRIPTOR

SEE ALSO tftpLib

tftpSend()

NAME tftpSend() – send a TFTP message to the remote system

SYNOPSIS int tftpSend

(

TFTP_DESC * pTftpDesc, /* TFTP descriptor */

TFTP_MSG * pTftpMsg, /* TFTP send message */

int sizeMsg, /* send message size */

TFTP_MSG * pTftpReply, /* TFTP reply message */

int opReply, /* reply opcode */

int blockReply, /* reply block number */

int * pPort /* return port number */

)

VxWorks OS Libraries API Reference, 5.5
tftpXfer()

1376

DESCRIPTION This routine sends sizeMsg bytes of the passed message pTftpMsg to the remote system
associated with the TFTP descriptor pTftpDesc. If pTftpReply is not NULL, tftpSend() tries
to get a reply message with a block number blockReply and an opcode opReply. If pPort is
NULL, the reply message must come from the same port to which the message was sent. If
pPort is not NULL, the port number from which the reply message comes is copied to this
variable.

RETURNS The size of the reply message, or ERROR.

ERRNO S_tftpLib_TIMED_OUT
S_tftpLib_TFTP_ERROR

SEE ALSO tftpLib

tftpXfer()

NAME tftpXfer() – transfer a file via TFTP using a stream interface

SYNOPSIS STATUS tftpXfer

(

char * pHost, /* host name or address */

int port, /* port number */

char * pFilename, /* remote filename */

char * pCommand, /* TFTP command */

char * pMode, /* TFTP transfer mode */

int * pDataDesc, /* return data desc. */

int * pErrorDesc /* return error desc. */

)

DESCRIPTION This routine initiates a transfer to or from a remote file via TFTP. It spawns a task to
perform the TFTP transfer and returns a descriptor from which the data can be read (for
“get”) or to which it can be written (for “put”) interactively. The interface for this routine
is similar to ftpXfer() in ftpLib.

pHost is the server name or Internet address. A non-zero value for port specifies an
alternate TFTP server port number (zero means use default TFTP port number (69)).
pFilename is the remote filename. pCommand specifies the TFTP command. The command
can be either “put” or “get”.

The tftpXfer() routine returns a data descriptor, in pDataDesc, from which the TFTP data
is read (for “get”) or to which is it is written (for “put”). An error status descriptor is
returned in the variable pErrorDesc. If an error occurs during the TFTP transfer, an error

2: Routines
tftpXfer()

1377

T

string can be read from this descriptor. After returning successfully from tftpXfer(), the
calling application is responsible for closing both descriptors.

If there are delays in reading or writing the data descriptor, it is possible for the TFTP
transfer to time out.

EXAMPLE The following code demonstrates how tftpXfer() may be used:

#include "tftpLib.h"

#define BUFFERSIZE 512

int dataFd;

int errorFd;

int num;

char buf [BUFFERSIZE + 1];

if (tftpXfer ("congo", 0, "/usr/fred", "get", "ascii", &dataFd,

&errorFd) == ERROR)

return (ERROR);

while ((num = read (dataFd, buf, sizeof (buf))) > 0)

{

....

}

close (dataFd);

num = read (errorFd, buf, BUFFERSIZE);

if (num > 0)

{

buf [num] = ’\0’;

printf ("YIKES! An error occurred!:%s\n", buf);

.....

}

close (errorFd);

RETURNS OK, or ERROR if unsuccessful.

ERRNO S_tftpLib_INVALID_ARGUMENT

SEE ALSO tftpLib, ftpLib

VxWorks OS Libraries API Reference, 5.5
ti()

1378

ti()

NAME ti() – print complete information from a task’s TCB

SYNOPSIS void ti

(

int taskNameOrId /* task name or task ID; 0 = use default */

)

DESCRIPTION This command prints the task control block (TCB) contents, including registers, for a
specified task. If taskNameOrId is omitted or zero, the last task referenced is assumed.

The ti() routine uses taskShow(); see the documentation for taskShow() for a
description of the output format.

EXAMPLE The following shows the TCB contents for the shell task:

-> ti

NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY

---------- --------- -------- --- --------- -------- -------- ------ -----

tShell _shell 20efcac 1 READY 201dc90 20ef980 0 0

stack: base 0x20efcac end 0x20ed59c size 9532 high 1452 margin 8080

options: 0x1e

VX_UNBREAKABLE VX_DEALLOC_STACK VX_FP_TASK VX_STDIO

D0 = 0 D4 = 0 A0 = 0 A4 = 0

D1 = 0 D5 = 0 A1 = 0 A5 = 203a084 SR = 3000

D2 = 0 D6 = 0 A2 = 0 A6 = 20ef9a0 PC = 2038614

D3 = 0 D7 = 0 A3 = 0 A7 = 20ef980

value = 34536868 = 0x20efda4

RETURNS N/A

SEE ALSO usrLib, taskShow(), VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s
Guide: Shell

2: Routines
tickGet()

1379

T

tickAnnounce()

NAME tickAnnounce() – announce a clock tick to the kernel

SYNOPSIS void tickAnnounce (void)

DESCRIPTION This routine informs the kernel of the passing of time. It should be called from an
interrupt service routine that is connected to the system clock. The most common
frequencies are 60Hz or 100Hz. Frequencies in excess of 600Hz are an inefficient use of
processor power because the system will spend most of its time advancing the clock. By
default, this routine is called by usrClock() in usrConfig.c.

RETURNS N/A

SEE ALSO tickLib, kernelLib, taskLib, semLib, wdLib, VxWorks Programmer’s Guide: Basic OS

tickGet()

NAME tickGet() – get the value of the kernel’s tick counter

SYNOPSIS ULONG tickGet (void)

DESCRIPTION This routine returns the current value of the tick counter. This value is set to zero at
startup, incremented by tickAnnounce(), and can be changed using tickSet().

RETURNS The most recent tickSet() value, plus all tickAnnounce() calls since.

SEE ALSO tickLib, tickSet(), tickAnnounce()

VxWorks OS Libraries API Reference, 5.5
tickSet()

1380

tickSet()

NAME tickSet() – set the value of the kernel’s tick counter

SYNOPSIS void tickSet

(

ULONG ticks /* new time in ticks */

)

DESCRIPTION This routine sets the internal tick counter to a specified value in ticks. The new count will
be reflected by tickGet(), but will not change any delay fields or timeouts selected for any
tasks. For example, if a task is delayed for ten ticks, and this routine is called to advance
time, the delayed task will still be delayed until ten tickAnnounce() calls have been
made.

RETURNS N/A

SEE ALSO tickLib, tickGet(), tickAnnounce()

time()

NAME time() – determine the current calendar time (ANSI)

SYNOPSIS time_t time

(

time_t * timer /* calendar time in seconds */

)

DESCRIPTION This routine returns the implementation’s best approximation of current calendar time in
seconds. If timer is non-NULL, the return value is also copied to the location to which timer
points.

INCLUDE FILES time.h

RETURNS The current calendar time in seconds, or ERROR (-1) if the calendar time is not available.

SEE ALSO ansiTime, clock_gettime()

2: Routines
timer_connect()

1381

T

timer_cancel()

NAME timer_cancel() – cancel a timer

SYNOPSIS int timer_cancel

(

timer_t timerid /* timer ID */

)

DESCRIPTION This routine is a shorthand method of invoking timer_settime(), which stops a timer.

NOTE: Non-POSIX.

RETURNS 0 (OK), or -1 (ERROR) if timerid is invalid.

ERRNO EINVAL

SEE ALSO timerLib

timer_connect()

NAME timer_connect() – connect a user routine to the timer signal

SYNOPSIS int timer_connect

(

timer_t timerid, /* timer ID */

VOIDFUNCPTR routine, /* user routine */

int arg /* user argument */

)

DESCRIPTION This routine sets the specified routine to be invoked with arg when fielding a signal
indicated by the timer’s evp signal number, or if evp is NULL, when fielding the default
signal (SIGALRM).

The signal handling routine should be declared as:

void my_handler

(

timer_t timerid, /* expired timer ID */

int arg /* user argument */

)

VxWorks OS Libraries API Reference, 5.5
timer_create()

1382

NOTE: Non-POSIX.

RETURNS 0 (OK), or -1 (ERROR) if the timer is invalid or cannot bind the signal handler.

ERRNO EINVAL

SEE ALSO timerLib

timer_create()

NAME timer_create() – allocate a timer using the specified clock for a timing base (POSIX)

SYNOPSIS int timer_create

(

clockid_t clock_id, /* clock ID (always CLOCK_REALTIME) */

struct sigevent * evp, /* user event handler */

timer_t * pTimer /* ptr to return value */

)

DESCRIPTION This routine returns a value in pTimer that identifies the timer in subsequent timer
requests. The evp argument, if non-NULL, points to a sigevent structure, which is allocated
by the application and defines the signal number and application-specific data to be sent
to the task when the timer expires. If evp is NULL, a default signal (SIGALRM) is queued to
the task, and the signal data is set to the timer ID. Initially, the timer is disarmed.

RETURNS 0 (OK), or -1 (ERROR) if too many timers already are allocated or the signal number is
invalid.

ERRNO EMTIMERS, EINVAL, ENOSYS, EAGAIN, S_memLib_NOT_ENOUGH_MEMORY

SEE ALSO timerLib, timer_delete()

2: Routines
timer_getoverrun()

1383

T

timer_delete()

NAME timer_delete() – remove a previously created timer (POSIX)

SYNOPSIS int timer_delete

(

timer_t timerid /* timer ID */

)

DESCRIPTION This routine removes a timer.

RETURNS 0 (OK), or -1 (ERROR) if timerid is invalid.

ERRNO EINVAL

SEE ALSO timerLib, timer_create()

timer_getoverrun()

NAME timer_getoverrun() – return the timer expiration overrun (POSIX)

SYNOPSIS int timer_getoverrun

(

timer_t timerid /* timer ID */

)

DESCRIPTION This routine returns the timer expiration overrun count for timerid, when called from a
timer expiration signal catcher. The overrun count is the number of extra timer expirations
that have occurred, up to the implementation-defined maximum
_POSIX_DELAYTIMER_MAX. If the count is greater than the maximum, it returns the
maximum.

RETURNS The number of overruns, or _POSIX_DELAYTIMER_MAX if the count equals or is greater
than _POSIX_DELAYTIMER_MAX, or -1 (ERROR) if timerid is invalid.

ERRNO EINVAL, ENOSYS

SEE ALSO timerLib

VxWorks OS Libraries API Reference, 5.5
timer_gettime()

1384

timer_gettime()

NAME timer_gettime() – get the remaining time before expiration and the reload value (POSIX)

SYNOPSIS int timer_gettime

(

timer_t timerid, /* timer ID */

struct itimerspec * value /* where to return remaining time */

)

DESCRIPTION This routine gets the remaining time and reload value of a specified timer. Both values are
copied to the value structure.

RETURNS 0 (OK), or -1 (ERROR) if timerid is invalid.

ERRNO EINVAL

SEE ALSO timerLib

timer_settime()

NAME timer_settime() – set the time until the next expiration and arm timer (POSIX)

SYNOPSIS int timer_settime

(

timer_t timerid, /* timer ID */

int flags, /* absolute or relative */

const struct itimerspec * value, /* time to be set */

struct itimerspec * ovalue /* previous time set (NULL=no result) */

)

DESCRIPTION This routine sets the next expiration of the timer, using the .it_value of value, thus arming
the timer. If the timer is already armed, this call resets the time until the next expiration. If
.it_value is zero, the timer is disarmed.

If flags is not equal to TIMER_ABSTIME, the interval is relative to the current time, the
interval being the .it_value of the value parameter. If flags is equal to TIMER_ABSTIME, the
expiration is set to the difference between the absolute time of .it_value and the current
value of the clock associated with timerid. If the time has already passed, then the timer
expiration notification is made immediately. The task that sets the timer receives the

2: Routines
timex()

1385

T

signal; in other words, the taskId is noted. If a timer is set by an ISR, the signal is delivered
to the task that created the timer.

The reload value of the timer is set to the value specified by the .it_interval field of value.
When a timer is armed with a nonzero .it_interval a periodic timer is set up.

Time values that are between two consecutive non-negative integer multiples of the
resolution of the specified timer are rounded up to the larger multiple of the resolution.

If ovalue is non-NULL, the routine stores a value representing the previous amount of time
before the timer would have expired. Or if the timer is disarmed, the routine stores zero,
together with the previous timer reload value. The ovalue parameter is the same value as
that returned by timer_gettime() and is subject to the timer resolution.

WARNING: If clock_settime() is called to reset the absolute clock time after a timer has
been set with timer_settime(), and if flags is equal to TIMER_ABSTIME, then the timer will
behave unpredictably. If you must reset the absolute clock time after setting a timer, do
not use flags equal to TIMER_ABSTIME.

RETURNS 0 (OK), or -1 (ERROR) if timerid is invalid, the number of nanoseconds specified by value is
less than 0 or greater than or equal to 1,000,000,000, or the time specified by value exceeds
the maximum allowed by the timer.

ERRNO EINVAL

SEE ALSO timerLib

timex()

NAME timex() – time a single execution of a function or functions

SYNOPSIS void timex
(
FUNCPTR func, /* function to time (optional) */
int arg1, /* first of up to 8 args to call function */

/* with (optional) */
int arg2,
int arg3,
int arg4,
int arg5,
int arg6,
int arg7,
int arg8
)

VxWorks OS Libraries API Reference, 5.5
timexClear()

1386

DESCRIPTION This routine times a single execution of a specified function with up to eight of the
function’s arguments. If no function is specified, it times the execution of the current list of
functions to be timed, which is created using timexFunc(), timexPre(), and timexPost().
If timex() is executed with a function argument, the entire current list is replaced with the
single specified function.

When execution is complete, timex() displays the execution time. If the execution was so
fast relative to the clock rate that the time is meaningless (error> 50%), a warning message
is printed instead. In such cases, use timexN().

RETURNS N/A

SEE ALSO timexLib, timexFunc(), timexPre(), timexPost(), timexN()

timexClear()

NAME timexClear() – clear the list of function calls to be timed

SYNOPSIS void timexClear (void)

DESCRIPTION This routine clears the current list of functions to be timed.

RETURNS N/A

SEE ALSO timexLib

timexFunc()

NAME timexFunc() – specify functions to be timed

SYNOPSIS void timexFunc

(

int i, /* function number in list (0..3) */

FUNCPTR func, /* function to be added (NULL if to be deleted) */

int arg1, /* first of up to 8 args to call function with */

int arg2,

int arg3,

int arg4,

2: Routines
timexHelp()

1387

T

int arg5,

int arg6,

int arg7,

int arg8

)

DESCRIPTION This routine adds or deletes functions in the list of functions to be timed as a group by
calls to timex() or timexN(). Up to four functions can be included in the list. The
argument i specifies the function’s position in the sequence of execution (0, 1, 2, or 3). A
function is deleted by specifying its sequence number i and NULL for the function
argument func.

RETURNS N/A

SEE ALSO timexLib, timex(), timexN()

timexHelp()

NAME timexHelp() – display synopsis of execution timer facilities

SYNOPSIS void timexHelp (void)

DESCRIPTION This routine displays the following summary of the available execution timer functions:

timexHelp Print this list.

timex [func,[args...]] Time a single execution.

timexN [func,[args...]] Time repeated executions.

timexClear Clear all functions.

timexFunc i,func,[args...] Add timed function number i (0,1,2,3).

timexPre i,func,[args...] Add pre-timing function number i.

timexPost i,func,[args...] Add post-timing function number i.

timexShow Show all functions to be called.

Notes:

1) timexN() will repeat calls enough times to get

timing accuracy to approximately 2%.

2) A single function can be specified with timex() and timexN();

or, multiple functions can be pre-set with timexFunc().

3) Up to 4 functions can be pre-set with timexFunc(),

timexPre(), and timexPost(), i.e., i in the range 0 - 3.

4) timexPre() and timexPost() allow locking/unlocking, or

raising/lowering priority before/after timing.

VxWorks OS Libraries API Reference, 5.5
timexInit()

1388

RETURNS N/A

SEE ALSO timexLib

timexInit()

NAME timexInit() – include the execution timer library

SYNOPSIS void timexInit (void)

DESCRIPTION This null routine is provided so that timexLib can be linked into the system. If the
configuration macro INCLUDE_TIMEX is defined, it is called by the root task, usrRoot(), in
usrConfig.c.

RETURNS N/A

SEE ALSO timexLib

timexN()

NAME timexN() – time repeated executions of a function or group of functions

SYNOPSIS void timexN

(

FUNCPTR func, /* function to time (optional) */

int arg1, /* first of up to 8 args to call function with */

int arg2,

int arg3,

int arg4,

int arg5,

int arg6,

int arg7,

int arg8

)

DESCRIPTION This routine times the execution of the current list of functions to be timed in the same
manner as timex(); however, the list of functions is called a variable number of times until

2: Routines
timexPost()

1389

T

sufficient resolution is achieved to establish the time with an error less than 2%. (Since
each iteration of the list may be measured to a resolution of +/- 1 clock tick, repetitive
timings decrease this error to 1/N ticks, where N is the number of repetitions.)

RETURNS N/A

SEE ALSO timexLib, timexFunc(), timex()

timexPost()

NAME timexPost() – specify functions to be called after timing

SYNOPSIS void timexPost

(

int i, /* function number in list (0..3) */

FUNCPTR func, /* function to be added (NULL if to be deleted) */

int arg1, /* first of up to 8 args to call function with */

int arg2,

int arg3,

int arg4,

int arg5,

int arg6,

int arg7,

int arg8

)

DESCRIPTION This routine adds or deletes functions in the list of functions to be called immediately
following the timed functions. A maximum of four functions may be included. Up to eight
arguments may be passed to each function.

RETURNS N/A

SEE ALSO timexLib

VxWorks OS Libraries API Reference, 5.5
timexPre()

1390

timexPre()

NAME timexPre() – specify functions to be called prior to timing

SYNOPSIS void timexPre

(

int i, /* function number in list (0..3) */

FUNCPTR func, /* function to be added (NULL if to be deleted) */

int arg1, /* first of up to 8 args to call function with */

int arg2,

int arg3,

int arg4,

int arg5,

int arg6,

int arg7,

int arg8

)

DESCRIPTION This routine adds or deletes functions in the list of functions to be called immediately
prior to the timed functions. A maximum of four functions may be included. Up to eight
arguments may be passed to each function.

RETURNS N/A

SEE ALSO timexLib

timexShow()

NAME timexShow() – display the list of function calls to be timed

SYNOPSIS void timexShow (void)

DESCRIPTION This routine displays the current list of function calls to be timed. These lists are created
by calls to timexPre(), timexFunc(), and timexPost().

RETURNS N/A

SEE ALSO timexLib, timexPre(), timexFunc(), timexPost()

2: Routines
tmpnam()

1391

T

tmpfile()

NAME tmpfile() – create a temporary binary file (Unimplemented) (ANSI)

SYNOPSIS FILE * tmpfile (void)

DESCRIPTION This routine is not be implemented because VxWorks does not close all open files at task
exit.

INCLUDE FILES stdio.h

RETURNS NULL

SEE ALSO ansiStdio

tmpnam()

NAME tmpnam() – generate a temporary file name (ANSI)

SYNOPSIS char * tmpnam

(

char * s /* name buffer */

)

DESCRIPTION This routine generates a string that is a valid file name and not the same as the name of an
existing file. It generates a different string each time it is called, up to TMP_MAX times.

If the argument is a null pointer, tmpnam() leaves its result in an internal static object and
returns a pointer to that object. Subsequent calls to tmpnam() may modify the same
object. If the argument is not a null pointer, it is assumed to point to an array of at least
L_tmpnam chars; tmpnam() writes its result in that array and returns the argument as its
value.

INCLUDE FILES stdio.h

RETURNS A pointer to the file name.

SEE ALSO ansiStdio

VxWorks OS Libraries API Reference, 5.5
tolower()

1392

tolower()

NAME tolower() – convert an upper-case letter to its lower-case equivalent (ANSI)

SYNOPSIS int tolower

(

int c /* character to convert */

)

DESCRIPTION This routine converts an upper-case letter to the corresponding lower-case letter.

INCLUDE FILES ctype.h

RETURNS If c is an upper-case letter, it returns the lower-case equivalent; otherwise, it returns the
argument unchanged.

SEE ALSO ansiCtype

toupper()

NAME toupper() – convert a lower-case letter to its upper-case equivalent (ANSI)

SYNOPSIS int toupper

(

int c /* character to convert */

)

DESCRIPTION This routine converts a lower-case letter to the corresponding upper-case letter.

INCLUDE FILES ctype.h

RETURNS If c is a lower-case letter, it returns the upper-case equivalent; otherwise, it returns the
argument unchanged.

SEE ALSO ansiCtype

2: Routines
trgAdd()

1393

T

tr()

NAME tr() – resume a task

SYNOPSIS void tr

(

int taskNameOrId /* task name or task ID */

)

DESCRIPTION This command resumes the execution of a suspended task. It simply calls taskResume().

RETURNS N/A

SEE ALSO usrLib, ts(), taskResume(), VxWorks Programmer’s Guide: Target Shell, windsh, Tornado
User’s Guide: Shell

trgAdd()

NAME trgAdd() – add a new trigger to the trigger list

SYNOPSIS TRIGGER_ID trgAdd

(

event_t event,

int status,

int contextType,

UINT32 contextId,

OBJ_ID objId,

int conditional,

int condType,

int * condEx1,

int condOp,

int condEx2,

BOOL disable,

TRIGGER * chain,

int actionType,

FUNCPTR actionFunc,

BOOL actionDef,

int actionArg

)

VxWorks OS Libraries API Reference, 5.5
trgAdd()

1394

DESCRIPTION This routine creates a new trigger and adds it to the proper trigger list. Parameters:

event
as defined in eventP.h for WindView, if given.

status
the initial status of the trigger (enabled or disabled).

contextType
the type of context where the event occurs.

contextId
the ID (if any) of the context where the event occurs.

objectId
if given and applicable.

conditional
the indicator that there is a condition on the trigger.

condType
the indicator that the condition is either a variable or a function.

condEx1
the first element in the comparison.

condOp
the type of operator (==, !=, <, <=, <, <=, |, &).

condEx2
the second element in the comparison (a constant).

disable
the indicator of whether the trigger must be disabled once it is hit.

chain
a pointer to another trigger associated to this one (if any).

actionType
the type of action associated with the trigger (none, func, lib).

actionFunc
the action associated with the trigger (the function).

actionDef
the indicator of whether the action can be deferred (deferred is the default).

actionArg
the argument passed to the function, if any.

Calling trgAdd() while triggering is enabled is not allowed and will return NULL.

RETURNS TRIGGER_ID, or NULL if either the trigger ID can not be allocated, or if called whilst
triggering is enabled.

2: Routines
trgDelete()

1395

T

SEE ALSO trgLib, trgDelete()

trgChainSet()

NAME trgChainSet() – chains two triggers

SYNOPSIS STATUS trgChainSet

(

TRIGGER_ID fromId,

TRIGGER_ID toId

)

DESCRIPTION This routine chains two triggers together. When the first trigger fires, it calls trgEnable()
for the second trigger. The second trigger must be created disabled in order to maintain
the correct sequence.

RETURNS OK or ERROR.

SEE ALSO trgLib, trgEnable()

trgDelete()

NAME trgDelete() – delete a trigger from the trigger list

SYNOPSIS STATUS trgDelete

(

TRIGGER_ID trgId

)

DESCRIPTION This routine deletes a trigger by removing it from the trigger list. It also checks that no
other triggers are still active. If there are no active triggers and triggering is still on, it
turns triggering off.

RETURNS OK, or ERROR if the trigger is not found.

SEE ALSO trgLib, trgAdd()

VxWorks OS Libraries API Reference, 5.5
trgDisable()

1396

trgDisable()

NAME trgDisable() – turn a trigger off

SYNOPSIS STATUS trgDisable

(

TRIGGER_ID trgId

)

DESCRIPTION This routine disables a trigger. It also checks to see if there are triggers still active. If this is
the last active trigger it sets triggering off.

RETURNS OK, or ERROR if the trigger ID is not found.

SEE ALSO trgLib, trgEnable()

trgEnable()

NAME trgEnable() – enable a trigger

SYNOPSIS STATUS trgEnable

(

TRIGGER_ID trgId

)

DESCRIPTION This routine enables a trigger that has been created with trgAdd(). A counter is
incremented to keep track of the total number of enabled triggers so that trgDisable()
knows when to set triggering off. If the maximum number of enabled triggers is reached,
an error is returned.

RETURNS OK, or ERROR if the trigger ID is not found or if the maximum number of triggers has
already been enabled.

SEE ALSO trgLib, trgDisable()

2: Routines
trgLibInit()

1397

T

trgEvent()

NAME trgEvent() – trigger a user-defined event

SYNOPSIS void trgEvent

(

event_t evtId /* event */

)

DESCRIPTION This routine triggers a user event. A trigger must exist and triggering must have been
started with trgOn() or from the triggering GUI to use this routine. The evtId should be
in the range 40000-65535.

RETURNS N/A

SEE ALSO trgLib, dbgLib, e()

trgLibInit()

NAME trgLibInit() – initialize the triggering library

SYNOPSIS STATUS trgLibInit (void)

DESCRIPTION This routine initializes the trigger class. Triggers are VxWorks objects and therefore
require a class to be initialized.

RETURNS OK or ERROR.

SEE ALSO trgLib

VxWorks OS Libraries API Reference, 5.5
trgOff()

1398

trgOff()

NAME trgOff() – set triggering off

SYNOPSIS void trgOff (void)

DESCRIPTION This routine turns triggering off. From this time on, when an event point is hit, no search
on triggers is performed.

RETURNS N/A

SEE ALSO trgLib, trgOn()

trgOn()

NAME trgOn() – set triggering on

SYNOPSIS STATUS trgOn (void)

DESCRIPTION This routine activates triggering. From this time on, any time an event point is hit, a check
for the presence of possible triggers is performed. Start triggering only when needed since
some overhead is introduced.

NOTE: If trgOn() is called when there are no triggers in the trigger list, it immediately sets
triggering off again. If trgOn() is called with at least one trigger in the list, triggering
begins. Triggers should not be added to the list while triggering is on since this can create
instability.

RETURNS OK or ERROR.

SEE ALSO trgLib, trgOff()

2: Routines
trgShowInit()

1399

T

trgShow()

NAME trgShow() – show trigger information

SYNOPSIS STATUS trgShow

(

TRIGGER_ID trgId,

int level

)

DESCRIPTION This routine displays trigger information. If trgId is passed, only the summary for that
trigger is displayed. If no parameter is passed, the list of existing triggers is displayed
with a summary of their state. For example:

trgID Status EvtID ActType Action Dis Chain

0xffedfc disabled 101 3 0x14e7a4 Y 0xffe088

0xffe088 enabled 55 1 0x10db58 Y 0x0

If level is 1, then more detailed information is displayed.

EXAMPLE -> trgShow trgId, 1

RETURNS OK.

SEE ALSO trgShow, trgLib

trgShowInit()

NAME trgShowInit() – initialize the trigger show facility

SYNOPSIS void trgShowInit (void)

DESCRIPTION This routine links the trigger show facility into the VxWorks system. These routines are
included automatically when INCLUDE_TRIGGER_SHOW is defined.

RETURNS N/A

SEE ALSO trgShow

VxWorks OS Libraries API Reference, 5.5
trgWorkQReset()

1400

trgWorkQReset()

NAME trgWorkQReset() – reset the trigger work queue task and queue

SYNOPSIS STATUS trgWorkQReset (void)

DESCRIPTION When a trigger fires, if the associated action requires a function to be called in “safe”
mode, a pointer to the required function will be placed on a queue known as the
“triggering work queue”. A system task “tActDef” is spawned to action these requests at
task level. Should the user have need to reset this work queue (e.g., if a called task causes
an exception which causes the trgActDef task to be SUSPENDED, or if the queue gets out
of sync and becomes unresponsive), trgWorkQReset() may be called.

Its effect is to delete the trigger work queue task and its associated resources and then
recreate them. Any entries pending on the triggering work queue will be lost. Calling this
function with triggering on will result in triggering being turned off before the queue reset
takes place. It is the responsibility of the user to turn triggering back on.

RETURNS OK, or ERROR if the triggering task and its associated resources cannot be deleted and
recreated.

SEE ALSO trgLib

trunc()

NAME trunc() – truncate to integer

SYNOPSIS double trunc

(

double x /* value to truncate */

)

DESCRIPTION This routine discards the fractional part of a double-precision value x.

INCLUDE FILES math.h

RETURNS The integer portion of x, represented in double-precision.

SEE ALSO mathALib

2: Routines
ts()

1401

T

truncf()

NAME truncf() – truncate to integer

SYNOPSIS float truncf

(

float x /* value to truncate */

)

DESCRIPTION This routine discards the fractional part of a single-precision value x.

INCLUDE FILES math.h

RETURNS The integer portion of x, represented in single precision.

SEE ALSO mathALib

ts()

NAME ts() – suspend a task

SYNOPSIS void ts

(

int taskNameOrId /* task name or task ID */

)

DESCRIPTION This command suspends the execution of a specified task. It simply calls taskSuspend().

RETURNS N/A

SEE ALSO usrLib, tr(), taskSuspend(), VxWorks Programmer’s Guide: Target Shell, windsh, Tornado
User’s Guide: Shell

VxWorks OS Libraries API Reference, 5.5
tsfsUploadPathClose()

1402

tsfsUploadPathClose()

NAME tsfsUploadPathClose() – close the TSFS-socket upload path (Windview)

SYNOPSIS void tsfsUploadPathClose

(

UPLOAD_ID upId /* generic upload-path descriptor */

)

DESCRIPTION This routine closes the TSFS-socket connection to the event receiver on the host.

RETURNS N/A

SEE ALSO wvTsfsUploadPathLib, tsfsUploadPathCreate()

tsfsUploadPathCreate()

NAME tsfsUploadPathCreate() – open an upload path to the host using a TSFS socket (Windview)

SYNOPSIS UPLOAD_ID tsfsUploadPathCreate

(

char * ipAddress, /* server’s IP address in .-notation */

short port /* port number to bind to */

)

DESCRIPTION This routine opens a TSFS socket to the host to be used for uploading event data. After
successfully establishing this connection, an UPLOAD_ID is returned which points to the
TSFS_UPLOAD_DESC that is passed to open(), close(), read(), etc. for future operations.

RETURNS The UPLOAD_ID, or NULL if the connection cannot be completed or not enough memory
is available.

SEE ALSO wvTsfsUploadPathLib, tsfsUploadPathClose()

2: Routines
tsfsUploadPathWrite()

1403

T

tsfsUploadPathLibInit()

NAME tsfsUploadPathLibInit() – initialize wvTsfsUploadPathLib library (Windview)

SYNOPSIS STATUS tsfsUploadPathLibInit (void)

DESCRIPTION This routine initializes wvTsfsUploadPathLib by pulling in the routines in this file for use
with WindView. It is called during system configuration from usrWindview.c.

RETURNS OK.

SEE ALSO wvTsfsUploadPathLib

tsfsUploadPathWrite()

NAME tsfsUploadPathWrite() – write to the TSFS upload path (Windview)

SYNOPSIS int tsfsUploadPathWrite

(

UPLOAD_ID upId, /* generic upload-path descriptor */

char * pStart, /* address of data to write */

size_t size /* number of bytes of data at pStart */

)

DESCRIPTION This routine writes size bytes of data beginning at pStart to the upload path connecting the
target with the host receiver.

RETURNS The number of bytes written, or ERROR.

SEE ALSO wvTsfsUploadPathLib, tsfsUploadPathCreate()

VxWorks OS Libraries API Reference, 5.5
tt()

1404

tt()

NAME tt() – display a stack trace of a task

SYNOPSIS STATUS tt

(

int taskNameOrId /* task name or task ID */

)

DESCRIPTION This routine displays a list of the nested routine calls that the specified task is in. Each
routine call and its parameters are shown.

If taskNameOrId is not specified or zero, the last task referenced is assumed. The tt()
routine can only trace the stack of a task other than itself. For instance, when tt() is called
from the shell, it cannot trace the shell’s stack.

EXAMPLE -> tt "logTask"
3ab92 _vxTaskEntry +10 : _logTask (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
ee6e _logTask +12 : _read (5, 3f8a10, 20)
d460 _read +10 : _iosRead (5, 3f8a10, 20)
e234 _iosRead +9c : _pipeRead (3fce1c, 3f8a10, 20)
23978 _pipeRead +24 : _semTake (3f8b78)
value = 0 = 0x0

This indicates that logTask() is currently in semTake() (with one parameter) and was
called by pipeRead() (with three parameters), which was called by iosRead() (with three
parameters), and so on.

WARNING: In order to do the trace, some assumptions are made. In general, the trace will
work for all C language routines and for assembly language routines that start with a
LINK instruction. Some C compilers require specific flags to generate the LINK first. Most
VxWorks assembly language routines include LINK instructions for this reason. The trace
facility may produce inaccurate results or fail completely if the routine is written in a
language other than C, the routine’s entry point is non-standard, or the task’s stack is
corrupted. Also, all parameters are assumed to be 32-bit quantities, so structures passed as
parameters will be displayed as long integers.

RETURNS OK, or ERROR if the task does not exist.

SEE ALSO dbgLib, VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s Guide: Shell

2: Routines
ttyDrv()

1405

T

ttyDevCreate()

NAME ttyDevCreate() – create a VxWorks device for a serial channel

SYNOPSIS STATUS ttyDevCreate

(

char * name, /* name to use for this device */

SIO_CHAN * pSioChan, /* pointer to core driver structure */

int rdBufSize, /* read buffer size, in bytes */

int wrtBufSize /* write buffer size, in bytes */

)

DESCRIPTION This routine creates a device on a specified serial channel. Each channel to be used should
have exactly one device associated with it by calling this routine.

For instance, to create the device /tyCo/0, with buffer sizes of 512 bytes, the proper call
would be:

ttyDevCreate ("/tyCo/0", pSioChan, 512, 512);

Where pSioChan is the address of the underlying SIO_CHAN serial channel descriptor
(defined in sioLib.h). This routine is typically called by usrRoot() in usrConfig.c

RETURNS OK, or ERROR if the driver is not installed, or the device already exists.

SEE ALSO ttyDrv

ttyDrv()

NAME ttyDrv() – initialize the tty driver

SYNOPSIS STATUS ttyDrv (void)

DESCRIPTION This routine initializes the tty driver, which is the OS interface to core serial channel(s).
Normally, it is called by usrRoot() in usrConfig.c.

After this routine is called, ttyDevCreate() is typically called to bind serial channels to
VxWorks devices.

RETURNS OK, or ERROR if the driver cannot be installed.

SEE ALSO ttyDrv

VxWorks OS Libraries API Reference, 5.5
tyAbortFuncSet()

1406

tyAbortFuncSet()

NAME tyAbortFuncSet() – set the abort function

SYNOPSIS void tyAbortFuncSet

(

FUNCPTR func /* routine to call when abort char received */

)

DESCRIPTION This routine sets the function that will be called when the abort character is received on a
tty. There is only one global abort function, used for any tty on which OPT_ABORT is
enabled. When the abort character is received from a tty with OPT_ABORT set, the
function specified in func will be called, with no parameters, from interrupt level.

Setting an abort function of NULL will disable the abort function.

RETURNS N/A

SEE ALSO tyLib, tyAbortSet()

tyAbortSet()

NAME tyAbortSet() – change the abort character

SYNOPSIS void tyAbortSet

(

char ch /* char to be abort */

)

DESCRIPTION This routine sets the abort character to ch. The default abort character is CTRL-C.

Typing the abort character to any device whose OPT_ABORT option is set will cause the
shell task to be killed and restarted. Note that the character set by this routine applies to
all devices whose handlers use the standard tty package tyLib.

RETURNS N/A

SEE ALSO tyLib, tyAbortFuncSet()

2: Routines
tyDeleteLineSet()

1407

T

tyBackspaceSet()

NAME tyBackspaceSet() – change the backspace character

SYNOPSIS void tyBackspaceSet

(

char ch /* char to be backspace */

)

DESCRIPTION This routine sets the backspace character to ch. The default backspace character is
CTRL-H.

Typing the backspace character to any device operating in line protocol mode (OPT_LINE
set) will cause the previous character typed to be deleted, up to the beginning of the
current line. Note that the character set by this routine applies to all devices whose
handlers use the standard tty package tyLib.

RETURNS N/A

SEE ALSO tyLib

tyDeleteLineSet()

NAME tyDeleteLineSet() – change the line-delete character

SYNOPSIS void tyDeleteLineSet

(

char ch /* char to be line-delete */

)

DESCRIPTION This routine sets the line-delete character to ch. The default line-delete character is
CTRL-U.

Typing the delete character to any device operating in line protocol mode (OPT_LINE set)
will cause all characters in the current line to be deleted. Note that the character set by this
routine applies to all devices whose handlers use the standard tty package tyLib.

RETURNS N/A

SEE ALSO tyLib

VxWorks OS Libraries API Reference, 5.5
tyDevInit()

1408

tyDevInit()

NAME tyDevInit() – initialize the tty device descriptor

SYNOPSIS STATUS tyDevInit

(

TY_DEV_ID pTyDev, /* ptr to tty dev descriptor to init */

int rdBufSize, /* size of read buffer in bytes */

int wrtBufSize, /* size of write buffer in bytes */

FUNCPTR txStartup /* device transmit start-up routine */

)

DESCRIPTION This routine initializes a tty device descriptor according to the specified parameters. The
initialization includes allocating read and write buffers of the specified sizes from the
memory pool, and initializing their respective buffer descriptors. The semaphores are
initialized and the write semaphore is given to enable writers. Also, the transmitter
start-up routine pointer is set to the specified routine. All other fields in the descriptor are
zeroed.

This routine should be called only by serial drivers.

RETURNS OK, or ERROR if there is not enough memory to allocate data structures.

SEE ALSO tyLib

tyDevRemove()

NAME tyDevRemove() – remove the tty device descriptor

SYNOPSIS STATUS tyDevRemove

(

TY_DEV_ID pTyDev /* ptr to tty dev descriptor to remove */

)

DESCRIPTION This routine removes an existing tty device descriptor. It releases the read and write
buffers and the descriptor data structure.

RETURNS OK, or ERROR if expected data structures are not found

SEE ALSO tyLib

2: Routines
tyIoctl()

1409

T

tyEOFSet()

NAME tyEOFSet() – change the end-of-file character

SYNOPSIS void tyEOFSet

(

char ch /* char to be EOF */

)

DESCRIPTION This routine sets the EOF character to ch. The default EOF character is CTRL-D.

Typing the EOF character to any device operating in line protocol mode (OPT_LINE set)
will cause no character to be entered in the current line, but will cause the current line to
be terminated (thus without a newline character). The line is made available to reading
tasks. Thus, if the EOF character is the first character input on a line, a line length of zero
characters is returned to the reader. This is the standard end-of-file indication on a read
call. Note that the EOF character set by this routine will apply to all devices whose
handlers use the standard tty package tyLib.

RETURNS N/A

SEE ALSO tyLib

tyIoctl()

NAME tyIoctl() – handle device control requests

SYNOPSIS STATUS tyIoctl

(

TY_DEV_ID pTyDev, /* ptr to device to control */

int request, /* request code */

int arg /* some argument */

)

DESCRIPTION This routine handles ioctl() requests for tty devices. The I/O control functions for tty
devices are described in the manual entry for tyLib.

BUGS In line protocol mode (OPT_LINE option set), the FIONREAD function actually returns the
number of characters available plus the number of lines in the buffer. Thus, if five lines
consisting of just NEWLINEs were in the input buffer, the FIONREAD function would
return the value ten (five characters + five lines).

VxWorks OS Libraries API Reference, 5.5
tyIRd()

1410

RETURNS OK or ERROR.

SEE ALSO tyLib

tyIRd()

NAME tyIRd() – interrupt-level input

SYNOPSIS STATUS tyIRd

(

TY_DEV_ID pTyDev, /* ptr to tty device descriptor */

char inchar /* character read */

)

DESCRIPTION This routine handles interrupt-level character input for tty devices. A device driver calls
this routine when it has received a character. This routine adds the character to the ring
buffer for the specified device, and gives a semaphore if a task is waiting for it.

This routine also handles all the special characters, as specified in the option word for the
device, such as X-on, X-off, NEWLINE, or backspace.

RETURNS OK, or ERROR if the ring buffer is full.

SEE ALSO tyLib

tyITx()

NAME tyITx() – interrupt-level output

SYNOPSIS STATUS tyITx

(

TY_DEV_ID pTyDev, /* pointer to tty device descriptor */

char * pChar /* where to put character to be output */

)

DESCRIPTION This routine gets a single character to be output to a device. It looks at the ring buffer for
pTyDev and gives the caller the next available character, if there is one. The character to be
output is copied to pChar.

2: Routines
tyRead()

1411

T

RETURNS OK if there are more characters to send, or ERROR if there are no more characters.

SEE ALSO tyLib

tyMonitorTrapSet()

NAME tyMonitorTrapSet() – change the trap-to-monitor character

SYNOPSIS void tyMonitorTrapSet

(

char ch /* char to be monitor trap */

)

DESCRIPTION This routine sets the trap-to-monitor character to ch. The default trap-to-monitor character
is CTRL-X.

Typing the trap-to-monitor character to any device whose OPT_MON_TRAP option is set
will cause the resident ROM monitor to be entered, if one is present. Once the ROM
monitor is entered, the normal multitasking system is halted.

Note that the trap-to-monitor character set by this routine will apply to all devices whose
handlers use the standard tty package tyLib. Also note that not all systems have a monitor
trap available.

RETURNS N/A

SEE ALSO tyLib

tyRead()

NAME tyRead() – do a task-level read for a tty device

SYNOPSIS int tyRead

(

TY_DEV_ID pTyDev, /* device to read */

char * buffer, /* buffer to read into */

int maxbytes /* maximum length of read */

)

VxWorks OS Libraries API Reference, 5.5
tyWrite()

1412

DESCRIPTION This routine handles the task-level portion of the tty handler’s read function. It reads into
the buffer up to maxbytes available bytes.

This routine should only be called from serial device drivers.

RETURNS The number of bytes actually read into the buffer.

SEE ALSO tyLib

tyWrite()

NAME tyWrite() – do a task-level write for a tty device

SYNOPSIS int tyWrite

(

TY_DEV_ID pTyDev, /* ptr to device structure */

char * buffer, /* buffer of data to write */

int nbytes /* number of bytes in buffer */

)

DESCRIPTION This routine handles the task-level portion of the tty handler’s write function.

RETURNS The number of bytes actually written to the device.

SEE ALSO tyLib

2: Routines
ungetc()

1413

U

udpShowInit()

NAME udpShowInit() – initialize UDP show routines

SYNOPSIS void udpShowInit (void)

DESCRIPTION This routine links the UDP show facility into the VxWorks system. These routines are
included automatically if INCLUDE_NET_SHOW and INCLUDE_UDP are defined.

RETURNS N/A

SEE ALSO udpShow

udpstatShow()

NAME udpstatShow() – display statistics for the UDP protocol

SYNOPSIS void udpstatShow (void)

DESCRIPTION This routine displays statistics for the UDP protocol.

RETURNS N/A

SEE ALSO udpShow

ungetc()

NAME ungetc() – push a character back into an input stream (ANSI)

SYNOPSIS int ungetc

(

int c, /* character to push */

FILE * fp /* input stream */

)

DESCRIPTION This routine pushes a character c (converted to an unsigned char) back into the specified
input stream. The pushed-back characters will be returned by subsequent reads on that

VxWorks OS Libraries API Reference, 5.5
unixDiskDevCreate()

1414

stream in the reverse order of their pushing. A successful intervening call on the stream to
a file positioning function (fseek(), fsetpos(), or rewind()) discards any pushed-back
characters for the stream. The external storage corresponding to the stream is unchanged.

One character of push-back is guaranteed. If ungetc() is called too many times on the
same stream without an intervening read or file positioning operation, the operation may
fail.

If the value of c equals EOF, the operation fails and the input stream is unchanged.

A successful call to ungetc() clears the end-of-file indicator for the stream. The value of
the file position indicator for the stream after reading or discarding all pushed-back
characters is the same as it was before the character were pushed back. For a text stream,
the value of its file position indicator after a successful call to ungetc() is unspecified until
all pushed-back characters are read or discarded. For a binary stream, the file position
indicator is decremented by each successful call to ungetc(); if its value was zero before a
call, it is indeterminate after the call.

INCLUDE stdio.h

RETURNS The pushed-back character after conversion, or EOF if the operation fails.

SEE ALSO ansiStdio, getc(), fgetc()

unixDiskDevCreate()

NAME unixDiskDevCreate() – create a UNIX disk device

SYNOPSIS BLK_DEV *unixDiskDevCreate

(

char * unixFile, /* name of the UNIX file */

int bytesPerBlk, /* number of bytes per block */

int blksPerTrack, /* number of blocks per track */

int nBlocks /* number of blocks on this device */

)

DESCRIPTION This routine creates a UNIX disk device.

The unixFile parameter specifies the name of the UNIX file to use for the disk device.

The bytesPerBlk parameter specifies the size of each logical block on the disk. If bytesPerBlk
is zero, 512 is the default.

2: Routines
unixDiskInit()

1415

U

The blksPerTrack parameter specifies the number of blocks on each logical track of the
disk. If blksPerTrack is zero, the count of blocks per track is set to nBlocks (i.e., the disk is
defined as having only one track).

The nBlocks parameter specifies the size of the disk, in blocks. If nBlocks is zero, a default
size is used. The default is calculated as the size of the UNIX disk divided by the number
of bytes per block.

This routine is only applicable to VxSim for Solaris and VxSim for HP.

RETURNS A pointer to block device (BLK_DEV) structure, or NULL, if unable to open the UNIX disk.

SEE ALSO unixDrv

unixDiskInit()

NAME unixDiskInit() – initialize a dosFs disk on top of UNIX

SYNOPSIS void unixDiskInit

(

char * unixFile, /* UNIX file name */

char * volName, /* dosFs name */

int diskSize /* number of bytes */

)

DESCRIPTION This routine provides some convenience for a user wanting to create a UNIX disk-based
dosFs file system under VxWorks. The user only specifies the UNIX file to use, the dosFs
volume name, and the size of the volume in bytes, if the UNIX file needs to be created.

This routine is only applicable to VxSim for Solaris and VxSim for HP.

RETURNS N/A

SEE ALSO unixDrv

VxWorks OS Libraries API Reference, 5.5
unixDrv()

1416

unixDrv()

NAME unixDrv() – install UNIX disk driver

SYNOPSIS STATUS unixDrv (void)

DESCRIPTION Used in usrConfig.c to cause the UNIX disk driver to be linked in when building
VxWorks. Otherwise, it is not necessary to call this routine before using the UNIX disk
driver.

This routine is only applicable to VxSim for Solaris and VxSim for HP.

RETURNS OK (always).

SEE ALSO unixDrv

unld()

NAME unld() – unload an object module by specifying a file name or module ID

SYNOPSIS STATUS unld

(

void * nameOrId, /* name or ID of the object module file */

int options

)

DESCRIPTION This routine unloads the specified object module from the system. The module can be
specified by name or by module ID. For a.out and ECOFF format modules, unloading
does the following:

For other modules of other formats, unloading has similar effects.

Before any modules are unloaded, all breakpoints in the system are deleted. If you need to
keep breakpoints, set the options parameter to UNLD_KEEP_BREAKPOINTS. No
breakpoints can be set in code that is unloaded.

(1) It frees the space allocated for text, data, and BSS segments, unless loadModuleAt()
was called with specific addresses, in which case the user is responsible for freeing the
space.

(2) It removes all symbols associated with the object module from the system symbol
table.

(3) It removes the module descriptor from the module list.

2: Routines
unldByModuleId()

1417

U

This routine is a shell command. That is, it is designed to be used only in the shell, and
not in code running on the target. In future releases, calling unld() directly from code
may not be supported.

RETURNS OK or ERROR.

SEE ALSO unldLib, VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s Guide: Shell

unldByGroup()

NAME unldByGroup() – unload an object module by specifying a group number

SYNOPSIS STATUS unldByGroup

(

UINT16 group, /* group number to unload */

int options /* options, currently unused */

)

DESCRIPTION This routine unloads an object module that has a group number matching group.

See the manual entries for unld() or unldLib for more information on module unloading.

RETURNS OK or ERROR.

SEE ALSO unldLib, unld()

unldByModuleId()

NAME unldByModuleId() – unload an object module by specifying a module ID

SYNOPSIS STATUS unldByModuleId

(

MODULE_ID moduleId, /* module ID to unload */

int options

)

DESCRIPTION This routine unloads an object module that has a module ID matching moduleId.

See the manual entries for unld() or unldLib for more information on module unloading.

RETURNS OK or ERROR.

SEE ALSO unldLib, unld()

VxWorks OS Libraries API Reference, 5.5
unldByNameAndPath()

1418

unldByNameAndPath()

NAME unldByNameAndPath() – unload an object module by specifying a name and path

SYNOPSIS STATUS unldByNameAndPath

(

char * name, /* name of the object module to unload */

char * path, /* path to the object module to unload */

int options /* options, currently unused */

)

DESCRIPTION This routine unloads an object module specified by name and path.

See the manual entries for unld() or unldLib for more information on module unloading.

RETURNS OK or ERROR.

SEE ALSO unldLib, unld()

unlink()

NAME unlink() – delete a file (POSIX)

SYNOPSIS STATUS unlink

(

char * name /* name of the file to remove */

)

DESCRIPTION This routine deletes a specified file. It performs the same function as remove() and is
provided for POSIX compatibility.

RETURNS OK if there is no delete routine for the device or the driver returns OK; ERROR if there is
no such device or the driver returns ERROR.

SEE ALSO ioLib, remove()

2: Routines
usrAtaConfig()

1419

U

usrAtaConfig()

NAME usrAtaConfig() – mount a DOS file system from an ATA hard disk or a CDROM

SYNOPSIS STATUS usrAtaConfig

(

int ctrl, /* 0: primary address, 1: secondary address */

int drive, /* drive number of hard disk (0 or 1) */

char * devNames /* mount points for each partition */

)

DESCRIPTION file system from an ATAPI CDROM drive

This routine mounts a DOS file system from an ATA hard disk. Parameters:

drive
the drive number of the hard disk; 0 is C: and 1 is D:.

devName
the mount point for all partitions which are expected to be present on the disk,
separated with commas, for example “/ata0,/ata1” or “C:,D:”. Blanks are not allowed
in this string. If the drive is an ATAPI CDROM drive, then the CDROM file system is
specified by appending “(cdrom)” after the mount point name. For example, a
CDROM drive could be specified as “/cd(cdrom)”.

NOTE: Because VxWorks does not support creation of partition tables, hard disks
formatted and initialized on VxWorks are not compatible with DOS machines. This
routine does not refuse to mount a hard disk that was initialized on VxWorks. Up to 8
disk partitions are supported.

RETURNS OK or ERROR.

SEE ALSO usrAta, src/config/usrAta.c, VxWorks Programmer’s Guide: I/O System, Local File Systems,
Intel i386/i486/Pentium

VxWorks OS Libraries API Reference, 5.5
usrAtaInit()

1420

usrAtaInit()

NAME usrAtaInit() – initialize the hard disk driver

SYNOPSIS void usrAtaInit (void)

DESCRIPTION This routine is called from usrConfig.c to initialize the hard drive.

SEE ALSO usrAta

usrClock()

NAME usrClock() – user-defined system clock interrupt routine

SYNOPSIS void usrClock ()

DESCRIPTION This routine is called at interrupt level on each clock interrupt. It is installed by usrRoot()
with a sysClkConnect() call. It calls all the other packages that need to know about clock
ticks, including the kernel itself.

If the application needs anything to happen at the system clock interrupt level, it can be
added to this routine.

RETURNS N/A

SEE ALSO usrConfig

usrFdConfig()

NAME usrFdConfig() – mount a DOS file system from a floppy disk

SYNOPSIS STATUS usrFdConfig

(

int drive, /* drive number of floppy disk (0 - 3) */

int type, /* type of floppy disk */

char * fileName /* mount point */

)

2: Routines
usrFdiskPartCreate()

1421

U

DESCRIPTION This routine mounts a DOS file system from a floppy disk device.

The drive parameter is the drive number of the floppy disk; valid values are 0 to 3.

The type parameter specifies the type of diskette, which is described in the structure table
fdTypes[] in sysLib.c. type is an index to the table. Currently the table contains two
diskette types:

– A type of 0 indicates the first entry in the table (3.5" 2HD, 1.44MB);

– A type of 1 indicates the second entry in the table (5.25" 2HD, 1.2MB).

The fileName parameter is the mount point, e.g., /fd0/.

RETURNS OK or ERROR.

SEE ALSO usrFd, VxWorks Programmer’s Guide: I/O System, Local File Systems, Intel i386/i486 Appendix

usrFdiskPartCreate()

NAME usrFdiskPartCreate() – create an FDISK-like partition table on a disk

SYNOPSIS STATUS usrFdiskPartCreate

(

CBIO_DEV_ID cDev, /* device representing the entire disk */

int nPart, /* how many partitions needed, default=1, max=4 */

int size1, /* space percentage for second partition */

int size2, /* space percentage for third partition */

int size3 /* space percentage for fourth partition */

)

DESCRIPTION This function may be used to create a basic PC partition table. Such partition table
however is not intended to be compatible with other operating systems, it is intended for
disks connected to a VxWorks target, but without the access to a PC which may be used to
create the partition table.

This function is capable of creating only one partition table - the MBR, and will not create
any Bootable or Extended partitions. Therefore, 4 partitions are supported.

dev is a CBIO device handle for an entire disk, e.g., a handle returned by
dcacheDevCreate(), or if dpartCbio is used, it can be either the Master partition manager
handle, or the one of the 0th partition if the disk does not contain a partition table at all.

The nPart argument contains the number of partitions to create. If nPart is 0 or 1, then a
single partition covering the entire disk is created. If nPart is between 2 and 4, then the
arguments size1, size2and size3 contain the percentage of disk space to be assigned to the

VxWorks OS Libraries API Reference, 5.5
usrFdiskPartRead()

1422

2nd, 3rd, and 4th partitions respectively. The first partition (partition 0) will be assigned
the remainder of space left (space hog).

Partition sizes will be round down to be multiple of whole tracks so that partition
Cylinder/Head/Track fields will be initialized as well as the LBA fields. Although the
CHS fields are written they are not used in VxWorks, and can not be guaranteed to work
correctly on other systems.

RETURNS OK or ERROR writing a partition table to disk

SEE ALSO usrFdiskPartLib

usrFdiskPartRead()

NAME usrFdiskPartRead() – read an FDISK-style partition table

SYNOPSIS STATUS usrFdiskPartRead

(

CBIO_DEV_ID cDev, /* device from which to read blocks */

PART_TABLE_ENTRY * pPartTab, /* table where to fill results */

int nPart /* # of entries in pPartTable */

)

DESCRIPTION This function will read and decode a PC formatted partition table on a disk, and fill the
appropriate partition table array with the resulting geometry, which should be used by
the dpartCbio partition manager to access a partitioned disk with a shared disk cache.

EXAMPLE The following example shows how a hard disk which is expected to have up to two
partitions might be configured, assuming the physical level initialization resulted in the
blkIoDevId handle:

devCbio = dcacheDevCreate(blkIoDevId, 0, 0x20000, "Hard Disk");

mainDevId = dpartDevCreate(devCbio, 2, usrFdiskPartRead)

dosFsDevCreate("/disk0a", dpartPartGet (mainDevId, 0), 0,0,0);

dosFsDevCreate("/disk0b", dpartPartGet (mainDevId, 1), 0,0,0);

RETURNS OK or ERROR if partition table is corrupt

SEE ALSO usrFdiskPartLib

2: Routines
usrFdiskPartShow()

1423

U

usrFdiskPartShow()

NAME usrFdiskPartShow() – parse and display partition data

SYNOPSIS STATUS usrFdiskPartShow

(

CBIO_DEV_ID cbio, /* device CBIO handle */

block_t extPartOffset, /* user should pass zero */

block_t currentOffset, /* user should pass zero */

int extPartLevel /* user should pass zero */

)

DESCRIPTION This routine is intended to be user callable.

A device dependent partition table show routine. This routine outputs formatted data for
all partition table fields for every partition table found on a given disk, starting with the
MBR sectors partition table. This code can be removed to reduce code size by undefining:
INCLUDE_PART_SHOW and rebuilding this library and linking to the new library.

This routine takes three arguments. First, a CBIO pointer (assigned for the entire physical
disk) usually obtained from dcacheDevCreate(). It also takes two block_t type arguments
and one signed int, the user shall pass zero in these parameters.

For example:

sp usrFdiskPartShow (pCbio,0,0,0)

Developers may use sizearch to view code size.

RETURNS OK or ERROR

SEE ALSO usrFdiskPartLib

VxWorks OS Libraries API Reference, 5.5
usrIdeConfig()

1424

usrIdeConfig()

NAME usrIdeConfig() – mount a DOS file system from an IDE hard disk

SYNOPSIS STATUS usrIdeConfig

(

int drive, /* drive number of hard disk (0 or 1) */

char * fileName /* mount point */

)

DESCRIPTION This routine mounts a DOS file system from an IDE hard disk.

The drive parameter is the drive number of the hard disk; 0 is C: and 1 is D:.

The fileName parameter is the mount point, e.g., /ide0/.

NOTE: Because VxWorks does not support partitioning, hard disks formatted and
initialized on VxWorks are not compatible with DOS machines. This routine does not
refuse to mount a hard disk that was initialized on VxWorks. The hard disk is assumed to
have only one partition with a partition record in sector 0.

RETURNS OK or ERROR.

SEE ALSO usrIde, VxWorks Programmer’s Guide: I/O System, Local File Systems, Intel i386/i486 Appendix

usrInit()

NAME usrInit() – user-defined system initialization routine

SYNOPSIS void usrInit

(

int startType

)

DESCRIPTION This is the first C code executed after the system boots. This routine is called by the
assembly language start-up routine sysInit() which is in the sysALib module of the
target-specific directory. It is called with interrupts locked out. The kernel is not
multitasking at this point.

This routine starts by clearing BSS; thus all variables are initialized to 0, as per the C
specification. It then initializes the hardware by calling sysHwInit(), sets up the

2: Routines
usrScsiConfig()

1425

U

interrupt/exception vectors, and starts kernel multitasking with usrRoot() as the root
task.

RETURNS N/A

SEE ALSO usrConfig, kernelLib

usrRoot()

NAME usrRoot() – the root task

SYNOPSIS void usrRoot

(

char * pMemPoolStart, /* start of system memory partition */

unsigned memPoolSize /* initial size of mem pool */

)

DESCRIPTION This is the first task to run under the multitasking kernel. It performs all final initialization
and then starts other tasks.

It initializes the I/O system, installs drivers, creates devices, and sets up the network, etc.,
as necessary for a particular configuration. It may also create and load the system symbol
table, if one is to be included. It may then load and spawn additional tasks as needed. In
the default configuration, it simply initializes the VxWorks shell.

RETURNS N/A

SEE ALSO usrConfig

usrScsiConfig()

NAME usrScsiConfig() – configure SCSI peripherals

SYNOPSIS STATUS usrScsiConfig (void)

DESCRIPTION This code configures the SCSI disks and other peripherals on a SCSI controller chain.

The macro SCSI_AUTO_CONFIG will include code to scan all possible device/lun id’s and
to configure a scsiPhysDev structure for each device found. Of course this doesn’t include
final configuration for disk partitions, floppy configuration parameters, or tape system

VxWorks OS Libraries API Reference, 5.5
uswab()

1426

setup. All of these actions must be performed by user code, either through
sysScsiConfig(), the startup script, or by the application program.

The user may customize this code on a per BSP basis using the SYS_SCSI_CONFIG macro.
If defined, then this routine will call the routine sysScsiConfig(). That routine is to be
provided by the BSP, either in sysLib.c or sysScsi.c. If SYS_SCSI_CONFIG is not defined,
then sysScsiConfig() will not be called as part of this routine.

An example sysScsiConfig() routine can be found in target/src/config/usrScsi.c. The
example code contains sample configurations for a hard disk, a floppy disk and a tape
unit.

RETURNS OK or ERROR.

SEE ALSO usrScsi, VxWorks Programmer’s Guide: I/O System, Local File Systems

uswab()

NAME uswab() – swap bytes with buffers that are not necessarily aligned

SYNOPSIS void uswab

(

char * source, /* pointer to source buffer */

char * destination, /* pointer to destination buffer */

int nbytes /* number of bytes to exchange */

)

DESCRIPTION This routine gets the specified number of bytes from source, exchanges the adjacent even
and odd bytes, and puts them in destination.

NOTE: Due to speed considerations, this routine should only be used when absolutely
necessary. Use swab() for aligned swaps.

It is an error for nbytes to be odd.

RETURNS N/A

SEE ALSO bLib, swab()

2: Routines
utime()

1427

U

utime()

NAME utime() – update time on a file

SYNOPSIS int utime

(

char * file,

struct utimbuf * newTimes

)

DESCRIPTION

RETURNS OK or ERROR.

SEE ALSO dirLib, stat(), fstat(), ls()

VxWorks OS Libraries API Reference, 5.5
va_arg()

1428

va_arg()

NAME va_arg() – expand to an expression having the type and value of the call’s next argument

SYNOPSIS void va_arg

(

ap, /* list of type va_list */

type /* type */

)

DESCRIPTION Each invocation of this macro modifies an object of type va_list (ap) so that the values of
successive arguments are returned in turn. The parameter type is a type name specified
such that the type of a pointer to an object that has the specified type can be obtained
simply by postfixing a * to type. If there is no actual next argument, or if type is not
compatible with the type of the actual next argument (as promoted according to the
default argument promotions), the behavior is undefined.

RETURNS The first invocation of va_arg() after va_start() returns the value of the argument after
that specified by parmN (the rightmost parameter). Successive invocations return the
value of the remaining arguments in succession.

SEE ALSO ansiStdarg

va_end()

NAME va_end() – facilitate a normal return from a routine using a va_list object

SYNOPSIS void va_end

(

ap /* list of type va_list */

)

DESCRIPTION This macro facilitates a normal return from the function whose variable argument list was
referred to by the expansion of va_start() that initialized the va_list object.

va_end() may modify the va_list object so that it is no longer usable (without an
intervening invocation of va_start()). If there is no corresponding invocation of the
va_start() macro, or if the va_end() macro is not invoked before the return, the behavior
is undefined.

RETURNS N/A

SEE ALSO ansiStdarg

2: Routines
valloc()

1429

V

va_start()

NAME va_start() – initialize a va_list object for use by va_arg() and va_end()

SYNOPSIS void va_start

(

ap, /* list of type va_list */

parmN /* rightmost parameter */

)

DESCRIPTION This macro initializes an object of type va_list (ap) for subsequent use by va_arg() and
va_end(). The parameter parmN is the identifier of the rightmost parameter in the variable
parameter list in the function definition (the one just before the, ...). If parmN is declared
with the register storage class with a function or array type, or with a type that is not
compatible with the type that results after application of the default argument
promotions, the behavior is undefined.

RETURNS N/A

SEE ALSO ansiStdarg

valloc()

NAME valloc() – allocate memory on a page boundary

SYNOPSIS void * valloc

(

unsigned size /* number of bytes to allocate */

)

DESCRIPTION This routine allocates a buffer of size bytes from the system memory partition.
Additionally, it insures that the allocated buffer begins on a page boundary. Page sizes are
architecture-dependent.

RETURNS A pointer to the newly allocated block, or NULL if the buffer could not be allocated or the
memory management unit (MMU) support library has not been initialized.

ERRNO S_memLib_PAGE_SIZE_UNAVAILABLE

SEE ALSO memLib

VxWorks OS Libraries API Reference, 5.5
version()

1430

version()

NAME version() – print VxWorks version information

SYNOPSIS void version (void)

DESCRIPTION This command prints the VxWorks version number, the date this copy of VxWorks was
made, and other pertinent information.

EXAMPLE -> version

VxWorks (for Mizar 7170) version 5.1

Kernel: WIND version 2.1.

Made on Tue Jul 27 20:26:23 CDT 1997.

Boot line:

enp(0,0)host:/usr/wpwr/target/config/mz7170/vxWorks e=90.0.0.50 h=90.0.0.4

u=target

value = 1 = 0x1

RETURNS N/A

SEE ALSO usrLib, VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s Guide: Shell

vfdprintf()

NAME vfdprintf() – write a string formatted with a variable argument list to a file descriptor

SYNOPSIS int vfdprintf

(

int fd, /* file descriptor to print to */

const char * fmt, /* format string for print */

va_list vaList /* optional arguments to format */

)

DESCRIPTION This routine prints a string formatted with a variable argument list to a specified file
descriptor. It is identical to fdprintf(), except that it takes the variable arguments to be
formatted as a list vaList of type va_list rather than as in-line arguments.

RETURNS The number of characters output, or ERROR if there is an error during output.

SEE ALSO fioLib, fdprintf()

2: Routines
vmBaseGlobalMapInit()

1431

V

vfprintf()

NAME vfprintf() – write a formatted string to a stream (ANSI)

SYNOPSIS int vfprintf

(

FILE * fp, /* stream to write to */

const char * fmt, /* format string */

va_list vaList /* arguments to format string */

)

DESCRIPTION This routine is equivalent to fprintf(), except that it takes the variable arguments to be
formatted from a list vaList of type va_list rather than from in-line arguments.

INCLUDE FILES stdio.h

RETURNS The number of characters written, or a negative value if an output error occurs.

SEE ALSO ansiStdio, fprintf()

vmBaseGlobalMapInit()

NAME vmBaseGlobalMapInit() – initialize global mapping

SYNOPSIS VM_CONTEXT_ID vmBaseGlobalMapInit

(

PHYS_MEM_DESC * pMemDescArray, /* pointer to array of mem descs */

int numDescArrayElements, /* no. of elements in pMemDescArray */

BOOL enable /* enable virtual memory */

)

DESCRIPTION This routine creates and installs a virtual memory context with mappings defined for each
contiguous memory segment defined in pMemDescArray. In the standard VxWorks
configuration, an instance of PHYS_MEM_DESC (called sysPhysMemDesc) is defined in
sysLib.c; the variable is passed to vmBaseGlobalMapInit() by the system configuration
mechanism.

The physical memory descriptor also contains state information used to initialize the state
information in the MMU’s translation table for that memory segment. The following state
bits may be or’ed together:

VxWorks OS Libraries API Reference, 5.5
vmBaseLibInit()

1432

Additionally, mask bits are or’ed together in the initialStateMask structure element to
describe which state bits are being specified in the initialState structure element:

VM_STATE_MASK_VALID
VM_STATE_MASK_WRITABLE
VM_STATE_MASK_CACHEABLE

If enable is TRUE, the MMU is enabled upon return.

RETURNS A pointer to a newly created virtual memory context, or NULL if memory cannot be
mapped.

SEE ALSO vmBaseLib, vmBaseLibInit()

vmBaseLibInit()

NAME vmBaseLibInit() – initialize base virtual memory support

SYNOPSIS STATUS vmBaseLibInit

(

int pageSize /* size of page */

)

DESCRIPTION This routine initializes the virtual memory context class and module-specific data
structures. It is called only once during system initialization, and should be followed with
a call to vmBaseGlobalMapInit(), which initializes and enables the MMU.

RETURNS OK.

SEE ALSO vmBaseLib, vmBaseGlobalMapInit()

VM_STATE_VALID VM_STATE_VALID_NOT valid/invalid
VM_STATE_WRITABLE VM_STATE_WRITABLE_NOT writable/write-protected
VM_STATE_CACHEABLE VM_STATE_CACHEABLE_NOT cacheable/not-cacheable

2: Routines
vmBaseStateSet()

1433

V

vmBasePageSizeGet()

NAME vmBasePageSizeGet() – return the page size

SYNOPSIS int vmBasePageSizeGet (void)

DESCRIPTION This routine returns the architecture-dependent page size.

This routine is callable from interrupt level.

RETURNS The page size of the current architecture.

SEE ALSO vmBaseLib

vmBaseStateSet()

NAME vmBaseStateSet() – change the state of a block of virtual memory

SYNOPSIS STATUS vmBaseStateSet

(

VM_CONTEXT_ID context, /* context - NULL == currentContext */

void * pVirtual, /* virtual address to modify state of */

int len, /* len of virtual space to modify state of */

UINT stateMask, /* state mask */

UINT state /* state */

)

DESCRIPTION This routine changes the state of a block of virtual memory. Each page of virtual memory
has at least three elements of state information: validity, writability, and cacheability.
Specific architectures may define additional state information; see vmLib.h for additional
architecture-specific states. Memory accesses to a page marked as invalid will result in an
exception. Pages may be invalidated to prevent them from being corrupted by invalid
references. Pages may be defined as read-only or writable, depending on the state of the
writable bits. Memory accesses to pages marked as not-cacheable will always result in a
memory cycle, bypassing the cache. This is useful for multiprocessing, multiple bus
masters, and hardware control registers.

The following states are provided and may be or’ed together in the state parameter:

VM_STATE_VALID VM_STATE_VALID_NOT valid/invalid
VM_STATE_WRITABLE VM_STATE_WRITABLE_NOT writable/write-protected
VM_STATE_CACHEABLE VM_STATE_CACHEABLE_NOT cacheable/not-cacheable

VxWorks OS Libraries API Reference, 5.5
vmContextCreate()

1434

Additionally, the following masks are provided so that only specific states may be set.
These may be or’ed together in the stateMask parameter.

VM_STATE_MASK_VALID
VM_STATE_MASK_WRITABLE
VM_STATE_MASK_CACHEABLE

If context is specified as NULL, the current context is used.

This routine is callable from interrupt level.

RETURNS OK, or ERROR if the validation fails, pVirtual is not on a page boundary, len is not a
multiple of the page size, or the architecture-dependent state set fails for the specified
virtual address.

ERRNO S_vmLib_NOT_PAGE_ALIGNED, S_vmLib_BAD_STATE_PARAM,
S_vmLib_BAD_MASK_PARAM

SEE ALSO vmBaseLib

vmContextCreate()

NAME vmContextCreate() – create a new virtual memory context (VxVMI Opt.)

SYNOPSIS VM_CONTEXT_ID vmContextCreate (void)

DESCRIPTION This routine creates a new virtual memory context. The newly created context does not
become the current context until explicitly installed by a call to vmCurrentSet().
Modifications to the context state (mappings, state changes, etc.) may be performed on
any virtual memory context, even if it is not the current context.

This routine should not be called from interrupt level.

AVAILABILITY This routine is distributed as a component of the unbundled virtual memory support
option, VxVMI.

RETURNS A pointer to a new virtual memory context, or NULL if the allocation or initialization fails.

SEE ALSO vmLib

2: Routines
vmContextShow()

1435

V

vmContextDelete()

NAME vmContextDelete() – delete a virtual memory context (VxVMI Opt.)

SYNOPSIS STATUS vmContextDelete

(

VM_CONTEXT_ID context

)

DESCRIPTION This routine deallocates the underlying translation table associated with a virtual memory
context. It does not free the physical memory already mapped into the virtual memory
space.

This routine should not be called from interrupt level.

AVAILABILITY This routine is distributed as a component of the unbundled virtual memory support
option, VxVMI.

RETURNS OK, or ERROR if context is not a valid context descriptor or if an error occurs deleting the
translation table.

SEE ALSO vmLib

vmContextShow()

NAME vmContextShow() – display the translation table for a context (VxVMI Opt.)

SYNOPSIS STATUS vmContextShow

(

VM_CONTEXT_ID context /* context - NULL == currentContext */

)

DESCRIPTION This routine displays the translation table for a specified context. If context is specified as
NULL, the current context is displayed. Output is formatted to show blocks of virtual
memory with consecutive physical addresses and the same state. State information shows
the writable and cacheable states. If the block is in global virtual memory, the word
“global” is appended to the line. Only virtual memory that has its valid state bit set is
displayed.

This routine should be used for debugging purposes only.

Note that this routine cannot report non-standard architecture-dependent states.

VxWorks OS Libraries API Reference, 5.5
vmCurrentGet()

1436

AVAILABILITY This routine is distributed as a component of the unbundled virtual memory support
option, VxVMI.

RETURNS OK, or ERROR if the virtual memory context is invalid.

SEE ALSO vmShow

vmCurrentGet()

NAME vmCurrentGet() – get the current virtual memory context (VxVMI Opt.)

SYNOPSIS VM_CONTEXT_ID vmCurrentGet (void)

DESCRIPTION This routine returns the current virtual memory context.

This routine is callable from interrupt level.

AVAILABILITY This routine is distributed as a component of the unbundled virtual memory support
option, VxVMI.

RETURNS The current virtual memory context, or NULL if no virtual memory context is installed.

SEE ALSO vmLib

vmCurrentSet()

NAME vmCurrentSet() – set the current virtual memory context (VxVMI Opt.)

SYNOPSIS STATUS vmCurrentSet

(

VM_CONTEXT_ID context /* context to install */

)

DESCRIPTION This routine installs a specified virtual memory context.

This routine is callable from interrupt level.

AVAILABILITY This routine is distributed as a component of the unbundled virtual memory support
option, VxVMI.

RETURNS OK, or ERROR if the validation or context switch fails.

SEE ALSO vmLib

2: Routines
vmGlobalInfoGet()

1437

V

vmEnable()

NAME vmEnable() – enable or disable virtual memory (VxVMI Opt.)

SYNOPSIS STATUS vmEnable

(

BOOL enable /* TRUE == enable MMU, FALSE == disable MMU */

)

DESCRIPTION This routine turns virtual memory on and off. Memory management should not be turned
off once it is turned on except in the case of system shutdown.

This routine is callable from interrupt level.

AVAILABILITY This routine is distributed as a component of the unbundled virtual memory support
option, VxVMI.

RETURNS OK, or ERROR if the validation or architecture-dependent code fails.

SEE ALSO vmLib

vmGlobalInfoGet()

NAME vmGlobalInfoGet() – get global virtual memory information (VxVMI Opt.)

SYNOPSIS UINT8 *vmGlobalInfoGet (void)

DESCRIPTION This routine provides a description of those parts of the virtual memory space dedicated
to global memory. The routine returns a pointer to an array of UINT8. Each element of the
array corresponds to a block of virtual memory, the size of which is
architecture-dependent and can be obtained with a call to vmPageBlockSizeGet(). To
determine if a particular address is in global virtual memory, use the following code:

UINT8 *globalPageBlockArray = vmGlobalInfoGet ();

int pageBlockSize = vmPageBlockSizeGet ();

if (globalPageBlockArray[addr/pageBlockSize])

...

The array pointed to by the returned pointer is guaranteed to be static as long as no calls
are made to vmGlobalMap() while the array is being examined. The information in the

VxWorks OS Libraries API Reference, 5.5
vmGlobalMap()

1438

array can be used to determine what portions of the virtual memory space are available
for use as private virtual memory within a virtual memory context.

This routine is callable from interrupt level.

AVAILABILITY This routine is distributed as a component of the unbundled virtual memory support
option, VxVMI.

RETURNS A pointer to an array of UINT8.

SEE ALSO vmLib, vmPageBlockSizeGet()

vmGlobalMap()

NAME vmGlobalMap() – map physical pages to virtual space in shared global virtual memory
(VxVMI Opt.)

SYNOPSIS STATUS vmGlobalMap

(

void * virtualAddr, /* virtual address */

void * physicalAddr, /* physical address */

UINT len /* len of virtual and physical spaces */

)

DESCRIPTION This routine maps physical pages to virtual space that is shared by all virtual memory
contexts. Calls to vmGlobalMap() should be made before any virtual memory contexts
are created to insure that the shared global mappings are included in all virtual memory
contexts. Mappings created with vmGlobalMap() after virtual memory contexts are
created are not guaranteed to appear in all virtual memory contexts. After the call to
vmGlobalMap(), the state of all pages in the newly mapped virtual memory is
unspecified and must be set with a call to vmStateSet(), once the initial virtual memory
context is created.

This routine should not be called from interrupt level.

AVAILABILITY This routine is distributed as a component of the unbundled virtual memory support
option, VxVMI.

RETURNS OK, or ERROR if virtualAddr or physicalAddr are not on page boundaries, len is not a
multiple of the page size, or the mapping fails.

ERRNO S_vmLib_NOT_PAGE_ALIGNED

SEE ALSO vmLib

2: Routines
vmGlobalMapInit()

1439

V

vmGlobalMapInit()

NAME vmGlobalMapInit() – initialize global mapping (VxVMI Opt.)

SYNOPSIS VM_CONTEXT_ID vmGlobalMapInit

(

PHYS_MEM_DESC * pMemDescArray, /* pointer to array of mem descs */

int numDescArrayElements, /* num of elements in pMemDescArray */

BOOL enable /* enable virtual memory */

)

DESCRIPTION This routine is a convenience routine that creates and installs a virtual memory context
with global mappings defined for each contiguous memory segment defined in the
physical memory descriptor array passed as an argument. The context ID returned
becomes the current virtual memory context.

The physical memory descriptor also contains state information used to initialize the state
information in the MMU’s translation table for that memory segment. The following state
bits may be or’ed together:

Additionally, mask bits are or’ed together in the initialStateMask structure element to
describe which state bits are being specified in the initialState structure element:

VM_STATE_MASK_VALID
VM_STATE_MASK_WRITABLE
VM_STATE_MASK_CACHEABLE

If the enable parameter is TRUE, the MMU is enabled upon return. The
vmGlobalMapInit() routine should be called only after vmLibInit() has been called.

AVAILABILITY This routine is distributed as a component of the unbundled virtual memory support
option, VxVMI.

RETURNS A pointer to a newly created virtual memory context, or NULL if the memory cannot be
mapped.

SEE ALSO vmLib

VM_STATE_VALID VM_STATE_VALID_NOT valid/invalid
VM_STATE_WRITABLE VM_STATE_WRITABLE_NOT writable/write-protected
VM_STATE_CACHEABLE VM_STATE_CACHEABLE_NOT cacheable/not-cacheable

VxWorks OS Libraries API Reference, 5.5
vmLibInit()

1440

vmLibInit()

NAME vmLibInit() – initialize the virtual memory support module (VxVMI Opt.)

SYNOPSIS STATUS vmLibInit

(

int pageSize /* size of page */

)

DESCRIPTION This routine initializes the virtual memory context class. It is called only once during
system initialization.

AVAILABILITY This routine is distributed as a component of the unbundled virtual memory support
option, VxVMI.

RETURNS OK.

SEE ALSO vmLib

vmMap()

NAME vmMap() – map physical space into virtual space (VxVMI Opt.)

SYNOPSIS STATUS vmMap

(

VM_CONTEXT_ID context, /* context - NULL == currentContext */

void * virtualAddr, /* virtual address */

void * physicalAddr, /* physical address */

UINT len /* len of virtual and physical spaces */

)

DESCRIPTION This routine maps physical pages into a contiguous block of virtual memory. virtualAddr
and physicalAddr must be on page boundaries, and len must be evenly divisible by the
page size. After the call to vmMap(), the state of all pages in the newly mapped virtual
memory is valid, writable, and cacheable.

The vmMap() routine can fail if the specified virtual address space conflicts with the
translation tables of the global virtual memory space. The global virtual address space is
architecture-dependent and is initialized at boot time with calls to vmGlobalMap() by
vmGlobalMapInit(). If a conflict results, errno is set to

2: Routines
vmPageBlockSizeGet()

1441

V

S_vmLib_ADDR_IN_GLOBAL_SPACE. To avoid this conflict, use vmGlobalInfoGet() to
ascertain which portions of the virtual address space are reserved for the global virtual
address space. If context is specified as NULL, the current virtual memory context is used.

This routine should not be called from interrupt level.

AVAILABILITY This routine is distributed as a component of the unbundled virtual memory support
option, VxVMI.

RETURNS OK, or ERROR if virtualAddr or physicalAddr are not on page boundaries, len is not a
multiple of the page size, the validation fails, or the mapping fails.

ERRNO S_vmLib_NOT_PAGE_ALIGNED, S_vmLib_ADDR_IN_GLOBAL_SPACE

SEE ALSO vmLib

vmPageBlockSizeGet()

NAME vmPageBlockSizeGet() – get the architecture-dependent page block size (VxVMI Opt.)

SYNOPSIS int vmPageBlockSizeGet (void)

DESCRIPTION This routine returns the size of a page block for the current architecture. Each MMU
architecture constructs translation tables such that a minimum number of pages are
pre-defined when a new section of the translation table is built. This minimal group of
pages is referred to as a “page block.” This routine may be used in conjunction with
vmGlobalInfoGet() to examine the layout of global virtual memory.

This routine is callable from interrupt level.

AVAILABILITY This routine is distributed as a component of the unbundled virtual memory support
option, VxVMI.

RETURNS The page block size of the current architecture.

SEE ALSO vmLib, vmGlobalInfoGet()

VxWorks OS Libraries API Reference, 5.5
vmPageSizeGet()

1442

vmPageSizeGet()

NAME vmPageSizeGet() – return the page size (VxVMI Opt.)

SYNOPSIS int vmPageSizeGet (void)

DESCRIPTION This routine returns the architecture-dependent page size.

This routine is callable from interrupt level.

AVAILABILITY This routine is distributed as a component of the unbundled virtual memory support
option, VxVMI.

RETURNS The page size of the current architecture.

SEE ALSO vmLib

vmShowInit()

NAME vmShowInit() – include virtual memory show facility (VxVMI Opt.)

SYNOPSIS void vmShowInit (void)

DESCRIPTION This routine acts as a hook to include vmContextShow(). It is called automatically when
the virtual memory show facility is configured into VxWorks using either of the following
methods:

– If you use the configuration header files, define both INCLUDE_MMU_FULL

and INCLUDE_SHOW_ROUTINES in config.h.

– If you use the Tornado project facility, select INCLUDE_MMU_FULL_SHOW.

AVAILABILITY * This routine is distributed as a component of the unbundled virtual memory support
option, VxVMI.

RETURNS N/A

SEE ALSO vmShow

2: Routines
vmStateGet()

1443

V

vmStateGet()

NAME vmStateGet() – get the state of a page of virtual memory (VxVMI Opt.)

SYNOPSIS STATUS vmStateGet

(

VM_CONTEXT_ID context, /* context - NULL == currentContext */

void * pPageAddr, /* virtual page addr */

UINT * pState /* where to return state */

)

DESCRIPTION This routine extracts state bits with the following masks:

VM_STATE_MASK_VALID
VM_STATE_MASK_WRITABLE
VM_STATE_MASK_CACHEABLE

Individual states may be identified with the following constants:

For example, to see if a page is writable, the following code would be used:

vmStateGet (vmContext, pageAddr, &state);

if ((state & VM_STATE_MASK_WRITABLE) & VM_STATE_WRITABLE)

...

If context is specified as NULL, the current virtual memory context is used.

This routine is callable from interrupt level.

AVAILABILITY This routine is distributed as a component of the unbundled virtual memory support
option, VxVMI.

RETURNS OK, or ERROR if pageAddr is not on a page boundary, the validity check fails, or the
architecture-dependent state get fails for the specified virtual address.

ERRNO S_vmLib_NOT_PAGE_ALIGNED

SEE ALSO vmLib

VM_STATE_VALID VM_STATE_VALID_NOT valid/invalid
VM_STATE_WRITABLE VM_STATE_WRITABLE_NOT writable/write-protected
VM_STATE_CACHEABLE VM_STATE_CACHEABLE_NOT cacheable/not-cacheable

VxWorks OS Libraries API Reference, 5.5
vmStateSet()

1444

vmStateSet()

NAME vmStateSet() – change the state of a block of virtual memory (VxVMI Opt.)

SYNOPSIS STATUS vmStateSet

(

VM_CONTEXT_ID context, /* context - NULL == currentContext */

void * pVirtual, /* virtual address to modify state of */

int len, /* len of virtual space to modify state of */

UINT stateMask, /* state mask */

UINT state /* state */

)

DESCRIPTION This routine changes the state of a block of virtual memory. Each page of virtual memory
has at least three elements of state information: validity, writability, and cacheability.
Specific architectures may define additional state information; see vmLib.h for additional
architecture-specific states. Memory accesses to a page marked as invalid will result in an
exception. Pages may be invalidated to prevent them from being corrupted by invalid
references. Pages may be defined as read-only or writable, depending on the state of the
writable bits. Memory accesses to pages marked as not-cacheable will always result in a
memory cycle, bypassing the cache. This is useful for multiprocessing, multiple bus
masters, and hardware control registers.

The following states are provided and may be or’ed together in the state parameter:

Additionally, the following masks are provided so that only specific states may be set.
These may be or’ed together in the stateMask parameter.

VM_STATE_MASK_VALID
VM_STATE_MASK_WRITABLE
VM_STATE_MASK_CACHEABLE

If context is specified as NULL, the current context is used.

This routine is callable from interrupt level.

AVAILABILITY This routine is distributed as a component of the unbundled virtual memory support
option, VxVMI.

RETURNS OK or, ERROR if the validation fails, pVirtual is not on a page boundary, len is not a
multiple of page size, or the architecture-dependent state set fails for the specified virtual
address.

VM_STATE_VALID VM_STATE_VALID_NOT valid/invalid
VM_STATE_WRITABLE VM_STATE_WRITABLE_NOT writable/write-protected
VM_STATE_CACHEABLE VM_STATE_CACHEABLE_NOT cacheable/not-cacheable

2: Routines
vmTranslate()

1445

V

ERRNO S_vmLib_NOT_PAGE_ALIGNED, S_vmLib_BAD_STATE_PARAM,
S_vmLib_BAD_MASK_PARAM

SEE ALSO vmLib

vmTextProtect()

NAME vmTextProtect() – write-protect a text segment (VxVMI Opt.)

SYNOPSIS STATUS vmTextProtect (void)

DESCRIPTION This routine write-protects the VxWorks text segment and sets a flag so that all text
segments loaded by the incremental loader will be write-protected. The routine should be
called after both vmLibInit() and vmGlobalMapInit() have been called.

AVAILABILITY This routine is distributed as a component of the unbundled virtual memory support
option, VxVMI.

RETURNS OK, or ERROR if the text segment cannot be write-protected.

ERRNO S_vmLib_TEXT_PROTECTION_UNAVAILABLE

SEE ALSO vmLib

vmTranslate()

NAME vmTranslate() – translate a virtual address to a physical address (VxVMI Opt.)

SYNOPSIS STATUS vmTranslate

(

VM_CONTEXT_ID context, /* context - NULL == currentContext */

void * virtualAddr, /* virtual address */

void * *physicalAddr /* place to put result */

)

DESCRIPTION This routine retrieves mapping information for a virtual address from the page translation
tables. If the specified virtual address has never been mapped, the returned status can be
either OK or ERROR; however, if it is OK, then the returned physical address will be -1. If
context is specified as NULL, the current context is used.

VxWorks OS Libraries API Reference, 5.5
vprintf()

1446

This routine is callable from interrupt level.

AVAILABILITY This routine is distributed as a component of the unbundled virtual memory support
option, VxVMI.

RETURNS OK, or ERROR if the validation or translation fails.

SEE ALSO vmLib

vprintf()

NAME vprintf() – write a string formatted with a variable argument list to standard output (ANSI)

SYNOPSIS int vprintf

(

const char * fmt, /* format string to write */

va_list vaList /* arguments to format */

)

DESCRIPTION This routine prints a string formatted with a variable argument list to standard output. It
is identical to printf(), except that it takes the variable arguments to be formatted as a list
vaList of type va_list rather than as in-line arguments.

RETURNS The number of characters output, or ERROR if there is an error during output.

SEE ALSO fioLib, printf(), American National Standard for Information Systems -Programming
Language - C, ANSI X3.159-1989: Input/Output (stdio.h)

vsprintf()

NAME vsprintf() – write a string formatted with a variable argument list to a buffer (ANSI)

SYNOPSIS int vsprintf

(

char * buffer, /* buffer to write to */

const char * fmt, /* format string */

va_list vaList /* optional arguments to format */

)

2: Routines
vxCr2Set()

1447

V

DESCRIPTION This routine copies a string formatted with a variable argument list to a specified buffer.
This routine is identical to sprintf(), except that it takes the variable arguments to be
formatted as a list vaList of type va_list rather than as in-line arguments.

RETURNS The number of characters copied to buffer, not including the NULL terminator.

SEE ALSO fioLib, sprintf(), American National Standard for Information Systems -Programming
Language - C, ANSI X3.159-1989: Input/Output (stdio.h)

vxCr2Get()

NAME vxCr2Get() – get a content of the Control Register 2 (x86)

SYNOPSIS int vxCr2Get (void)

DESCRIPTION This routine gets a content of the Control Register 2.

RETURNS a value of the Control Register 2

SEE ALSO vxLib

vxCr2Set()

NAME vxCr2Set() – set a value to the Control Register 2 (x86)

SYNOPSIS void vxCr2Set

(

int value /* CR2 value */

)

DESCRIPTION This routine sets a value to the Control Register 2.

RETURNS N/A

SEE ALSO vxLib

VxWorks OS Libraries API Reference, 5.5
vxCr3Get()

1448

vxCr3Get()

NAME vxCr3Get() – get a content of the Control Register 3 (x86)

SYNOPSIS int vxCr3Get (void)

DESCRIPTION This routine gets a content of the Control Register 3.

RETURNS a value of the Control Register 3

SEE ALSO vxLib

vxCr3Set()

NAME vxCr3Set() – set a value to the Control Register 3 (x86)

SYNOPSIS void vxCr3Set

(

int value /* CR3 value */

)

DESCRIPTION This routine sets a value to the Control Register 3.

RETURNS N/A

SEE ALSO vxLib

vxCr4Get()

NAME vxCr4Get() – get a content of the Control Register 4 (x86)

SYNOPSIS int vxCr4Get (void)

DESCRIPTION This routine gets a content of the Control Register 4.

RETURNS a value of the Control Register 4

SEE ALSO vxLib

2: Routines
vxCr0Get()

1449

V

vxCr4Set()

NAME vxCr4Set() – set a value to the Control Register 4 (x86)

SYNOPSIS void vxCr4Set

(

int value /* CR4 value */

)

DESCRIPTION This routine sets a value to the Control Register 4.

RETURNS N/A

SEE ALSO vxLib

vxCr0Get()

NAME vxCr0Get() – get a content of the Control Register 0 (x86)

SYNOPSIS int vxCr0Get (void)

DESCRIPTION This routine gets a content of the Control Register 0.

RETURNS a value of the Control Register 0

SEE ALSO vxLib

VxWorks OS Libraries API Reference, 5.5
vxCr0Set()

1450

vxCr0Set()

NAME vxCr0Set() – set a value to the Control Register 0 (x86)

SYNOPSIS void vxCr0Set

(

int value /* CR0 value */

)

DESCRIPTION This routine sets a value to the Control Register 0.

RETURNS N/A

SEE ALSO vxLib

vxDrGet()

NAME vxDrGet() – get a content of the Debug Register 0 to 7 (x86)

SYNOPSIS void vxDrGet

(

int * pDr0, /* DR0 */

int * pDr1, /* DR1 */

int * pDr2, /* DR2 */

int * pDr3, /* DR3 */

int * pDr4, /* DR4 */

int * pDr5, /* DR5 */

int * pDr6, /* DR6 */

int * pDr7 /* DR7 */

)

DESCRIPTION This routine gets a content of the Debug Register 0 to 7.

RETURNS N/A

SEE ALSO vxLib

2: Routines
vxEflagsGet()

1451

V

vxDrSet()

NAME vxDrSet() – set a value to the Debug Register 0 to 7 (x86)

SYNOPSIS void vxDrSet

(

int dr0, /* DR0 */

int dr1, /* DR1 */

int dr2, /* DR2 */

int dr3, /* DR3 */

int dr4, /* DR4 */

int dr5, /* DR5 */

int dr6, /* DR6 */

int dr7 /* DR7 */

)

DESCRIPTION This routine sets a value to the Debug Register 0 to 7.

RETURNS N/A

SEE ALSO vxLib

vxEflagsGet()

NAME vxEflagsGet() – get a content of the EFLAGS register (x86)

SYNOPSIS int vxEflagsGet (void)

DESCRIPTION This routine gets a content of the EFLAGS register

RETURNS a value of the EFLAGS register

SEE ALSO vxLib

VxWorks OS Libraries API Reference, 5.5
vxEflagsSet()

1452

vxEflagsSet()

NAME vxEflagsSet() – set a value to the EFLAGS register (x86)

SYNOPSIS void vxEflagsSet

(

int value /* EFLAGS value */

)

DESCRIPTION This routine sets a value to the EFLAGS register

RETURNS N/A

SEE ALSO vxLib

vxGdtrGet()

NAME vxGdtrGet() – get a content of the Global Descriptor Table Register (x86)

SYNOPSIS void vxGdtrGet

(

long long int * pGdtr /* memory to store GDTR */

)

DESCRIPTION This routine gets a content of the Global Descriptor Table Register

RETURNS N/A

SEE ALSO vxLib

2: Routines
vxLdtrGet()

1453

V

vxIdtrGet()

NAME vxIdtrGet() – get a content of the Interrupt Descriptor Table Register (x86)

SYNOPSIS void vxIdtrGet

(

long long int * pIdtr /* memory to store IDTR */

)

DESCRIPTION This routine gets a content of the Interrupt Descriptor Table Register

RETURNS N/A

SEE ALSO vxLib

vxLdtrGet()

NAME vxLdtrGet() – get a content of the Local Descriptor Table Register (x86)

SYNOPSIS void vxLdtrGet

(

long long int * pLdtr /* memory to store LDTR */

)

DESCRIPTION This routine gets a content of the Local Descriptor Table Register

RETURNS N/A

SEE ALSO vxLib

VxWorks OS Libraries API Reference, 5.5
vxMemArchProbe()

1454

vxMemArchProbe()

NAME vxMemArchProbe() – architecture-specific part of vxMemProbe()

SYNOPSIS STATUS vxMemArchProbe

(

char * adrs, /* address to be probed */

int mode, /* VX_READ or VX_WRITE */

int length, /* 1, 2, 4, or 8 */

char * pVal /* where to return value, or ptr to value */

/* to be written */

)

DESCRIPTION This is the routine implementing the architecture specific part of the vxMemProbe()
routine. It traps the relevant exceptions while accessing the specified address. If an
exception occurs, it returns ERROR. If no exception occurs, it returns OK.

RETURNS OK or ERROR if an exception occurred during access.

SEE ALSO vxLib

vxMemProbe()

NAME vxMemProbe() – probe an address for a bus error

SYNOPSIS STATUS vxMemProbe

(

char * adrs, /* address to be probed */

int mode, /* VX_READ or VX_WRITE */

int length, /* 1, 2, 4, or 8 */

char * pVal /* where to return value, or ptr to value */

/* to be written */

)

DESCRIPTION This routine probes a specified address to see if it is readable or writable, as specified by
mode. The address is read or written as 1, 2, or 4 bytes, as specified by length (values other
than 1, 2, or 4 yield unpredictable results). If the probe is a VX_READ (0), the value read is
copied to the location pointed to by pVal. If the probe is a VX_WRITE (1), the value written

2: Routines
vxPowerDown()

1455

V

is taken from the location pointed to by pVal. In either case, pVal should point to a value of
1, 2, or 4 bytes, as specified by length.

Note that only bus errors are trapped during the probe, and that the access must
otherwise be valid (i.e., it must not generate an address error).

EXAMPLE testMem (adrs)

char *adrs;

{

char testW = 1;

char testR;

if (vxMemProbe (adrs, VX_WRITE, 1, &testW) == OK)

printf ("value %d written to adrs %x\n", testW, adrs);

if (vxMemProbe (adrs, VX_READ, 1, &testR) == OK)

printf ("value %d read from adrs %x\n", testR, adrs);

}

MODIFICATION The BSP can modify the behavior of vxMemProbe() by supplying an alternate routine
and placing the address in the global variable _func_vxMemProbeHook. The BSP routine
will be called instead of the architecture specific routine vxMemArchProbe().

RETURNS OK, or ERROR if the probe caused a bus error or was misaligned.

SEE ALSO vxLib, vxMemArchProbe()

vxPowerDown()

NAME vxPowerDown() – place the processor in reduced-power mode (PowerPC, SH)

SYNOPSIS UINT32 vxPowerDown (void)

DESCRIPTION This routine activates the reduced-power mode if power management is enabled. It is
called by the scheduler when the kernel enters the idle loop. The power management
mode is selected by vxPowerModeSet().

RETURNS OK, or ERROR if power management is not supported or if external interrupts are
disabled.

SEE ALSO vxLib, vxPowerModeSet(), vxPowerModeGet()

VxWorks OS Libraries API Reference, 5.5
vxPowerModeGet()

1456

vxPowerModeGet()

NAME vxPowerModeGet() – get the power management mode (PowerPC, SH, x86)

SYNOPSIS UINT32 vxPowerModeGet (void)

DESCRIPTION This routine returns the power management mode set by vxPowerModeSet().

RETURNS The power management mode, or ERROR if no mode has been selected or if power
management is not supported.

SEE ALSO vxLib, vxPowerModeSet(), vxPowerDown()

vxPowerModeSet()

NAME vxPowerModeSet() – set the power management mode (PowerPC, SH, x86)

SYNOPSIS STATUS vxPowerModeSet

(

UINT32 mode /* power management mode to select */

)

DESCRIPTION This routine selects the power management mode to be activated when vxPowerDown()
is called. vxPowerModeSet() is normally called in the BSP initialization routine
sysHwInit().

USAGE PPC Power management modes include the following:

VX_POWER_MODE_DISABLE (0x1)
Power management is disabled; this prevents the MSR(POW) bit from being set (all
PPC).

VX_POWER_MODE_FULL (0x2)
All CPU units are active while the kernel is idle (PPC603, PPCEC603 and PPC860
only).

VX_POWER_MODE_DOZE (0x4)
Only the decrementer, data cache, and bus snooping are active while the kernel is idle
(PPC603, PPCEC603 and PPC860).

VX_POWER_MODE_NAP (0x8)
Only the decrementer is active while the kernel is idle (PPC603, PPCEC603 and
PPC604).

2: Routines
vxPowerModeSet()

1457

V

VX_POWER_MODE_SLEEP (0x10)
All CPU units are inactive while the kernel is idle (PPC603, PPCEC603 and PPC860 -
not recommended for the PPC603 and PPCEC603 architecture).

VX_POWER_MODE_DEEP_SLEEP (0x20)
All CPU units are inactive while the kernel is idle (PPC860 only - not recommended).

VX_POWER_MODE_DPM (0x40)
Dynamic Power Management Mode (PPC603 and PPCEC603 only).

VX_POWER_MODE_DOWN (0x80)
Only a hard reset causes an exit from power-down low power mode (PPC860 only -
not recommended).

USAGE SH Power management modes include the following:

VX_POWER_MODE_DISABLE (0x0)
Power management is disabled.

VX_POWER_MODE_SLEEP (0x1)
The core CPU is halted, on-chip peripherals operating, external memory refreshing.

VX_POWER_MODE_DEEP_SLEEP (0x2)
The core CPU is halted, on-chip peripherals operating, external memory
self-refreshing (SH-4 only).

VX_POWER_MODE_USER (0xff)
Set up to three 8-bit standby registers with user-specified values:

vxPowerModeSet (VX_POWER_MODE_USER | sbr1<<8 | sbr2<<16 | sbr3<<24);

The sbr1 value is written to the STBCR or SBYCR1, sbr2 is written to the STBCR2 or
SBYCR2, and sbr3 is written to the STBCR3 register (when available), depending on the
SH processor type.

USAGE x86: vxPowerModeSet() is called in the BSP initialization routine sysHwInit().
Power management modes include the following:

VX_POWER_MODE_DISABLE (0x1)
Power management is disable: this prevents halting the CPU.

VX_POWER_MODE_AUTOHALT (0x4)
Power management is enable: this allows halting the CPU.

RETURNS OK, or ERROR if mode is incorrect or not supported by the processor.

SEE ALSO vxLib, vxPowerModeGet(), vxPowerDown()

VxWorks OS Libraries API Reference, 5.5
vxSSDisable()

1458

vxSSDisable()

NAME vxSSDisable() – disable the superscalar dispatch (MC68060)

SYNOPSIS void vxSSDisable (void)

DESCRIPTION This function resets the ESS bit of the Processor Configuration Register (PCR) to disable
the superscalar dispatch.

RETURNS N/A

SEE ALSO vxLib

vxSSEnable()

NAME vxSSEnable() – enable the superscalar dispatch (MC68060)

SYNOPSIS void vxSSEnable (void)

DESCRIPTION This function sets the ESS bit of the Processor Configuration Register (PCR) to enable the
superscalar dispatch.

RETURNS N/A

SEE ALSO vxLib

2: Routines
vxTas()

1459

V

vxTas()

NAME vxTas() – C-callable atomic test-and-set primitive

SYNOPSIS BOOL vxTas

(

void * address /* address to test and set */

)

DESCRIPTION This routine provides a C-callable interface to a test-and-set instruction. The test-and-set
instruction is executed on the specified address. The architecture test-and-set instruction
is:

68K: tas
x86: lock bts
SH: tas.b
ARM swpb

This routine is equivalent to sysBusTas() in sysLib.

NOTE MIPS Because VxWorks does not support the MIPS MMU, only kseg0 and kseg1 addresses are
accepted; other addresses return FALSE.

NOTE x86 BTS “Bit Test and Set” instruction is executed with LOCK instruction prefix to lock the
Bus during the execution. The bit position 0 is toggled.

NOTE SH The SH version of vxTas() simply executes the tas.b instruction, and the test-and-set
(atomic read-modify-write) operation may require an external bus locking mechanism on
some hardware. In this case, wrap the vxTas() with a bus locking and unlocking code in
the sysBusTas().

RETURNS TRUE if the value had not been set (but is now), or FALSE if the value was set already.

SEE ALSO vxLib, sysBusTas()

VxWorks OS Libraries API Reference, 5.5
vxTssGet()

1460

vxTssGet()

NAME vxTssGet() – get a content of the TASK register (x86)

SYNOPSIS int vxTssGet (void)

DESCRIPTION This routine gets a content of the TASK register

RETURNS a value of the TASK register

SEE ALSO vxLib

vxTssSet()

NAME vxTssSet() – set a value to the TASK register (x86)

SYNOPSIS void vxTssSet

(

int value /* TASK register value */

)

DESCRIPTION This routine sets a value to the TASK register

RETURNS N/A

SEE ALSO vxLib

2: Routines
wctomb()

1461

W

wcstombs()

NAME wcstombs() – convert a series of wide char’s to multibyte char’s (Unimplemented) (ANSI)

SYNOPSIS size_t wcstombs

(

char * s,

const wchar_t * pwcs,

size_t n

)

DESCRIPTION This multibyte character function is unimplemented in VxWorks.

INCLUDE FILES stdlib.h

RETURNS OK, or ERROR if the parameters are invalid.

SEE ALSO ansiStdlib

wctomb()

NAME wctomb() – convert a wide character to a multibyte character (Unimplemented) (ANSI)

SYNOPSIS int wctomb

(

char * s,

wchar_t wchar

)

DESCRIPTION This multibyte character function is unimplemented in VxWorks.

INCLUDE FILES stdlib.h

RETURNS OK, or ERROR if the parameters are invalid.

SEE ALSO ansiStdlib

VxWorks OS Libraries API Reference, 5.5
wdbSystemSuspend()

1462

wdbSystemSuspend()

NAME wdbSystemSuspend() – suspend the system.

SYNOPSIS STATUS wdbSystemSuspend (void)

DESCRIPTION This routine transfers control from the run time system to the WDB agent running in
external mode. In order to give back the control to the system it must be resumed by the
the external WDB agent.

EXAMPLE The code below, called in a vxWorks application, suspends the system:

if (wdbSystemSuspend != OK)

printf ("External mode is not supported by the WDB agent.\n");

From a host tool, we can detect that the system is suspended.

First, attach to the target server:

wtxtcl> wtxToolAttach EP960CX

EP960CX_ps@sevre

Then, you can get the agent mode:

wtxtcl> wtxAgentModeGet

AGENT_MODE_EXTERN

To get the status of the system context, execute:

wtxtcl> wtxContextStatusGet CONTEXT_SYSTEM 0

CONTEXT_SUSPENDED

In order to resume the system, simply execute:

wtxtcl> wtxContextResume CONTEXT_SYSTEM 0

0

You will see that the system is now running:

wtxtcl> wtxContextStatusGet CONTEXT_SYSTEM 0

CONTEXT_RUNNING

RETURNS OK upon successful completion, ERROR if external mode is not supported by the WDB
agent.

SEE ALSO wdbLib

2: Routines
wdbUserEvtPost()

1463

W

wdbUserEvtLibInit()

NAME wdbUserEvtLibInit() – include the WDB user event library

SYNOPSIS void wdbUserEvtLibInit (void)

DESCRIPTION This null routine is provided so that wdbUserEvtLib can be linked into the system. If
INCLUDE_WDB_USER_EVENT is defined in configAll.h, wdbUserEvtLibInit() is called by
the WDB config routine, wdbConfig(), in usrWdb.c.

RETURNS N/A

SEE ALSO wdbUserEvtLib

wdbUserEvtPost()

NAME wdbUserEvtPost() – post a user event string to host tools.

SYNOPSIS STATUS wdbUserEvtPost

(

char * event /* event string to send */

)

DESCRIPTION This routine posts the string event to host tools that have registered for it. Host tools will
receive a USER WTX event string. The maximum size of the event is
WDB_MAX_USER_EVT_SIZE (defined in $WIND_BASE/target/h/wdb/wdbLib.h).

EXAMPLE The code below sends a WDB user event to host tools:

char * message = "Alarm: reactor overheating !!!";

if (wdbUserEvtPost (message) != OK)

printf ("Can’t send alarm message to host tools");

This event will be received by host tools that have registered for it. For example a WTX
TCL based tool would do:

wtxtcl> wtxToolAttach EP960CX

EP960CX_ps@sevre

wtxtcl> wtxRegisterForEvent "USER.*"

0

wtxtcl> wtxEventGet

VxWorks OS Libraries API Reference, 5.5
wdCancel()

1464

USER Alarm: reactor overheating !!!

Host tools can register for more specific user events:

wtxtcl> wtxToolAttach EP960CX

EP960CX_ps@sevre

wtxtcl> wtxRegisterForEvent "USER Alarm.*"

0

wtxtcl> wtxEventGet

USER Alarm: reactor overheating !!!

In this piece of code, only the USER events beginning with “Alarm” will be received.

RETURNS OK upon successful completion, a WDB error code if unable to send the event to the host
or ERROR if the size of the event is greater than WDB_MAX_USER_EVT_SIZE.

SEE ALSO wdbUserEvtLib

wdCancel()

NAME wdCancel() – cancel a currently counting watchdog

SYNOPSIS STATUS wdCancel

(

WDOG_ID wdId /* ID of watchdog to cancel */

)

DESCRIPTION This routine cancels a currently running watchdog timer by zeroing its delay count.
Watchdog timers may be canceled from interrupt level.

RETURNS OK, or ERROR if the watchdog timer cannot be canceled.

SEE ALSO wdLib, wdStart()

2: Routines
wdDelete()

1465

W

wdCreate()

NAME wdCreate() – create a watchdog timer

SYNOPSIS WDOG_ID wdCreate (void)

DESCRIPTION This routine creates a watchdog timer by allocating a WDOG structure in memory.

RETURNS The ID for the watchdog created, or NULL if memory is insufficient.

SEE ALSO wdLib, wdDelete()

wdDelete()

NAME wdDelete() – delete a watchdog timer

SYNOPSIS STATUS wdDelete

(

WDOG_ID wdId /* ID of watchdog to delete */

)

DESCRIPTION This routine de-allocates a watchdog timer. The watchdog will be removed from the timer
queue if it has been started. This routine complements wdCreate().

RETURNS OK, or ERROR if the watchdog timer cannot be de-allocated.

SEE ALSO wdLib, wdCreate()

VxWorks OS Libraries API Reference, 5.5
wdShow()

1466

wdShow()

NAME wdShow() – show information about a watchdog

SYNOPSIS STATUS wdShow

(

WDOG_ID wdId /* watchdog to display */

)

DESCRIPTION This routine displays the state of a watchdog.

EXAMPLE A summary of the state of a watchdog is displayed as follows:

-> wdShow myWdId
Watchdog Id : 0x3dd46c
State : OUT_OF_Q
Ticks Remaining : 0
Routine : 0
Parameter : 0

RETURNS OK or ERROR.

SEE ALSO wdShow, VxWorks Programmer’s Guide: Target Shell, windsh, Tornado User’s Guide: Shell

wdShowInit()

NAME wdShowInit() – initialize the watchdog show facility

SYNOPSIS void wdShowInit (void)

DESCRIPTION This routine links the watchdog show facility into the VxWorks system. It is called
automatically when the watchdog show facility is configured into VxWorks using either
of the following methods:

– If you use the configuration header files, define INCLUDE_SHOW_ROUTINES in
config.h.

– If you use the Tornado project facility, select INCLUDE_WATCHDOGS_SHOW.

RETURNS N/A

SEE ALSO wdShow

2: Routines
wdStart()

1467

W

wdStart()

NAME wdStart() – start a watchdog timer

SYNOPSIS STATUS wdStart

(

WDOG_ID wdId, /* watchdog ID */

int delay, /* delay count, in ticks */

FUNCPTR pRoutine, /* routine to call on time-out */

int parameter /* parameter with which to call routine */

)

DESCRIPTION This routine adds a watchdog timer to the system tick queue. The specified watchdog
routine will be called from interrupt level after the specified number of ticks has elapsed.
Watchdog timers may be started from interrupt level.

To replace either the timeout delay or the routine to be executed, call wdStart() again with
the same wdId; only the most recent wdStart() on a given watchdog ID has any effect. (If
your application requires multiple watchdog routines, use wdCreate() to generate
separate a watchdog ID for each.) To cancel a watchdog timer before the specified tick
count is reached, call wdCancel().

Watchdog timers execute only once, but some applications require periodically executing
timers. To achieve this effect, the timer routine itself must call wdStart() to restart the
timer on each invocation.

WARNING: The watchdog routine runs in the context of the system-clock ISR; thus, it is
subject to all ISR restrictions.

RETURNS OK, or ERROR if the watchdog timer cannot be started.

SEE ALSO wdLib, wdCancel()

VxWorks OS Libraries API Reference, 5.5
whoami()

1468

whoami()

NAME whoami() – display the current remote identity

SYNOPSIS void whoami (void)

DESCRIPTION This routine displays the user name currently used for remote machine access. The user
name is set with iam() or remCurIdSet().

RETURNS N/A

SEE ALSO remLib, iam(), remCurIdGet(), remCurIdSet()

write()

NAME write() – write bytes to a file

SYNOPSIS int write

(

int fd, /* file descriptor on which to write */

char * buffer, /* buffer containing bytes to be written */

size_t nbytes /* number of bytes to write */

)

DESCRIPTION This routine writes nbytes bytes from buffer to a specified file descriptor fd. It calls the
device driver to do the work.

RETURNS The number of bytes written (if not equal to nbytes, an error has occurred), or ERROR if the
file descriptor does not exist, the driver does not have a write routine, or the driver
returns ERROR. If the driver does not have a write routine, errno is set to ENOTSUP.

SEE ALSO ioLib

2: Routines
wvEventInst()

1469

W

wvEvent()

NAME wvEvent() – log a user-defined event (WindView)

SYNOPSIS STATUS wvEvent

(

event_t usrEventId, /* event */

char * buffer, /* buffer */

size_t bufSize /* buffer size */

)

DESCRIPTION This routine logs a user event. Event logging must have been started with
wvEvtLogEnable() or from the WindView GUI to use this routine. The usrEventId
should be in the range 0-25535. A buffer of data can be associated with the event; buffer is
a pointer to the start of the data block, and bufSize is its length in bytes. The size of the
event buffer configured with wvInstInit() should be adjusted when logging large user
events.

RETURNS OK, or ERROR if the event can not be logged.

SEE ALSO wvLib, dbgLib, e()

wvEventInst()

NAME wvEventInst() – instrument VxWorks Events (WindView)

SYNOPSIS STATUS wvEventInst

(

int mode /* instrumentation mode */

)

DESCRIPTION This routine instruments VxWorks Event activity.

If mode is INSTRUMENT_ON, instrumentation for events is turned on; if it is any other
value (including INSTRUMENT_OFF), instrumentation for VxWorks Events is turned off.

This routine has effect only if INCLUDE_WINDVIEW is defined in configAll.h and event
logging has been enabled for system objects.

RETURNS OK or ERROR.

SEE ALSO wvLib

VxWorks OS Libraries API Reference, 5.5
wvEvtBufferGet()

1470

wvEvtBufferGet()

NAME wvEvtBufferGet() – return the ID of the WindView event buffer (WindView)

SYNOPSIS BUFFER_ID wvEvtBufferGet (void)

RETURNS The event buffer ID if one exists, otherwise NULL.

SEE ALSO wvLib

wvEvtClassClear()

NAME wvEvtClassClear() – clear a class of events from those being logged (WindView)

SYNOPSIS void wvEvtClassClear

(

UINT32 classDescription /* description of evt classes to clear */

)

DESCRIPTION This routine clears the class or classes described by classDescription from the set of classes
currently being logged.

RETURNS N/A

SEE ALSO wvLib

wvEvtClassClearAll()

NAME wvEvtClassClearAll() – clear all classes of events from those logged (WindView)

SYNOPSIS void wvEvtClassClearAll (void)

DESCRIPTION This routine clears all classes of events so that no classes are logged if event logging is
started.

RETURNS N/A

SEE ALSO wvLib

2: Routines
wvEvtClassSet()

1471

W

wvEvtClassGet()

NAME wvEvtClassGet() – get the current set of classes being logged (WindView)

SYNOPSIS UINT32 wvEvtClassGet (void)

DESCRIPTION This routine returns the set of classes currently being logged.

RETURNS The class description.

SEE ALSO wvLib

wvEvtClassSet()

NAME wvEvtClassSet() – set the class of events to log (WindView)

SYNOPSIS void wvEvtClassSet

(

UINT32 classDescription /* description of evt classes to set */

)

DESCRIPTION This routine sets the class of events which are logged when event logging is started.
classDescription can take the following values:

WV_CLASS_1 /* Events causing context switches */

WV_CLASS_2 /* Events causing task-state transitions */

WV_CLASS_3 /* Events from object and system libraries */

See wvLib for more information about these classes, particularly Class 3.

RETURNS N/A

SEE ALSO wvLib, wvObjInst(), wvObjInstModeSet(), wvSigInst(), wvEventInst()

VxWorks OS Libraries API Reference, 5.5
wvEvtLogInit()

1472

wvEvtLogInit()

NAME wvEvtLogInit() – initialize an event log (WindView)

SYNOPSIS void wvEvtLogInit

(

BUFFER_ID evtBufId /* event-buffer id */

)

DESCRIPTION This routine initializes event logging by associating a particular event buffer with the
logging functions. It must be called before event logging is turned on.

RETURNS N/A

SEE ALSO wvLib

wvEvtLogStart()

NAME wvEvtLogStart() – start logging events to the buffer (WindView)

SYNOPSIS void wvEvtLogStart (void)

DESCRIPTION This routine starts event logging. It also resets the timestamp mechanism so that it can be
called more than once without stopping event logging.

RETURNS N/A

SEE ALSO wvLib

2: Routines
wvLibInit2()

1473

W

wvEvtLogStop()

NAME wvEvtLogStop() – stop logging events to the buffer (WindView)

SYNOPSIS void wvEvtLogStop (void)

DESCRIPTION This routine turns off all event logging, including event-logging of objects and signals
specifically requested by the user. In addition, it disables the timestamp facility.

RETURNS N/A

SEE ALSO wvLib

wvLibInit()

NAME wvLibInit() – initialize wvLib - first step (WindView)

SYNOPSIS void wvLibInit (void)

DESCRIPTION This routine starts initializing wvLib. Its actions should be performed before object
creation, so it is called from usrKernelInit() in usrKernel.c.

RETURNS N/A

SEE ALSO wvLib

wvLibInit2()

NAME wvLibInit2() – initialize wvLib - final step (WindView)

SYNOPSIS void wvLibInit2 (void)

DESCRIPTION This routine is called after wvLibInit() to complete the initialization of wvLib. It should
be called before starting any event logging.

RETURNS N/A

SEE ALSO wvLib

VxWorks OS Libraries API Reference, 5.5
wvLogHeaderCreate()

1474

wvLogHeaderCreate()

NAME wvLogHeaderCreate() – create the event-log header (WindView)

SYNOPSIS WV_LOG_HEADER_ID wvLogHeaderCreate

(

PART_ID memPart /* partition where header should be stored */

)

DESCRIPTION This routine creates the header of EVENT_CONFIG, EVENT_BUFFER, and EVENT_BEGIN
events that is required at the beginning of every event log. These events are stored in a
packed array allocated from the specified memory partition. In addition to this separate
header, this routine also logs all tasks active in the system to the event buffer for
uploading along with the other events.

This routine should be called after wvEvtLogInit() is called. If uploading events
continuously to the host, this routine should be called after the upload task is started. This
ensures that the upload task is included in the snapshot of active tasks. If upload will
occur after event logging has stopped (deferred upload), this routine can be called any
time before event logging is turned on.

RETURNS A valid WV_LOG_HEADER_ID, or NULL if memory can not be allocated.

SEE ALSO wvLib

wvLogHeaderUpload()

NAME wvLogHeaderUpload() – transfer the log header to the host (WindView)

SYNOPSIS STATUS wvLogHeaderUpload

(

WV_LOG_HEADER_ID pHeader, /* pointer to the header */

UPLOAD_ID pathId /* path by which to upload to host */

)

DESCRIPTION This functions transfers the log header events (EVENT_BEGIN, EVENT_CONFIG,
EVENT_BUFFER) to the host. These events were saved to a local buffer with the call to
wvLogHeaderCreate(). This routine should be called before any events or task names are
uploaded to the host. The events in the header buffer must be the first things the parser
sees.

2: Routines
wvNetAddressFilterSet()

1475

W

If continuously uploading events, it is best to start the uploader, and then call this routine.
If deferring upload until after event logging is stopped, this should be called before the
uploader is started.

RETURNS OK, or ERROR if there is trouble with the upload path.

SEE ALSO wvLib

wvNetAddressFilterClear()

NAME wvNetAddressFilterClear() – remove the address filter for events

SYNOPSIS void wvNetAddressFilterClear

(

int type, /* 0 for source, 1 for destination */

int direction /* 0 for input, 1 for output */

)

DESCRIPTION This routine removes any active address filter test indicated by the type and direction
parameters used to enable it. Affected events will be reported unconditionally.

RETURNS N/A

SEE ALSO wvNetLib

wvNetAddressFilterSet()

NAME wvNetAddressFilterSet() – specify an address filter for events

SYNOPSIS STATUS wvNetAddressFilterSet

(

char * pAddress, /* target address for event comparisons */

char * pMask, /* mask value applied to data fields */

int type, /* 0 for source, 1 for destination */

int direction /* 0 for input, 1 for output */

)

VxWorks OS Libraries API Reference, 5.5
wvNetDisable()

1476

DESCRIPTION This routine activates an additional test that disables certain events that do not match the
specified IP address. The pAddress parameter provides the test value in dotted-decimal
format. The type parameter indicates whether that address is compared against the source
or destination values, and the direction value identifies whether the type is interpreted
from the perspective of incoming or outgoing traffic. The pMask parameter provides a
network mask to support testing for a group of events.

RETURNS OK if filter set, or ERROR otherwise.

ERRNO N/A

SEE ALSO wvNetLib

wvNetDisable()

NAME wvNetDisable() – end reporting of network events to WindView

SYNOPSIS void wvNetDisable (void)

DESCRIPTION This routine stops WindView event reporting for all network components.

RETURNS N/A

ERRNO N/A

SEE ALSO wvNetLib

wvNetEnable()

NAME wvNetEnable() – begin reporting network events to WindView

SYNOPSIS void wvNetEnable

(

int priority /* minimum priority, or 0 for default of */

/* WV_NET_VERBOSE */

)

2: Routines
wvNetEventDisable()

1477

W

DESCRIPTION This routine activates WindView event reporting for network components, after disabling
all events with a priority less than level. The default value (or a level of
WV_NET_VERBOSE) will not disable any additional events. The available priority values
are:

WV_NET_EMERGENCY (1)
WV_NET_ALERT (2)
WV_NET_CRITICAL (3)
WV_NET_ERROR (4)
WV_NET_WARNING (5)
WV_NET_NOTICE (6)
WV_NET_INFO (7)
WV_NET_VERBOSE (8)

If an event is not explicitly disabled by the priority level, it uses the current event selection
map and class settings. The initial values enable all events of both classes.

RETURNS N/A

ERRNO N/A

SEE ALSO wvNetLib

wvNetEventDisable()

NAME wvNetEventDisable() – deactivate specific network events

SYNOPSIS STATUS wvNetEventDisable

(

int priority, /* priority level of event */

int offset /* identifier within priority level */

)

DESCRIPTION This routine prevents reporting of a single event within the priority equal to level. The
activation is overridden if the setting for the entire priority level changes. The available
priority values are:

WV_NET_EMERGENCY (1)
WV_NET_ALERT (2)
WV_NET_CRITICAL (3)
WV_NET_ERROR (4)
WV_NET_WARNING (5)
WV_NET_NOTICE (6)

VxWorks OS Libraries API Reference, 5.5
wvNetEventEnable()

1478

WV_NET_INFO (7)
WV_NET_VERBOSE (8)

Offset values for individual events are listed in the documentation.

RETURNS OK, or ERROR for unknown event.

ERRNO N/A

SEE ALSO wvNetLib

wvNetEventEnable()

NAME wvNetEventEnable() – activate specific network events

SYNOPSIS STATUS wvNetEventEnable

(

int priority, /* priority level of event */

int offset /* identifier within priority level */

)

DESCRIPTION This routine allows reporting of a single event within the priority equal to level. The
activation is overridden if the setting for the entire priority level changes. The available
priority values are:

WV_NET_EMERGENCY (1)
WV_NET_ALERT (2)
WV_NET_CRITICAL (3)
WV_NET_ERROR (4)
WV_NET_WARNING (5)
WV_NET_NOTICE (6)
WV_NET_INFO (7)
WV_NET_VERBOSE (8)

Offset values for individual events are listed in the documentation.

RETURNS OK, or ERROR for unknown event.

ERRNO N/A

SEE ALSO wvNetLib

2: Routines
wvNetLevelRemove()

1479

W

wvNetLevelAdd()

NAME wvNetLevelAdd() – enable network events with specific priority level

SYNOPSIS STATUS wvNetLevelAdd

(

int priority /* priority level to enable */

)

DESCRIPTION This routine changes the event selection map to allow reporting of any events with
priority equal to level. It will override current event selections for the given priority, but
has no effect on settings for events with higher or lower priorities. The available priority
values are:

WV_NET_EMERGENCY (1)
WV_NET_ALERT (2)
WV_NET_CRITICAL (3)
WV_NET_ERROR (4)
WV_NET_WARNING (5)
WV_NET_NOTICE (6)
WV_NET_INFO (7)
WV_NET_VERBOSE (8)

Events are only reported based on the current WindView class setting. The initial (default)
setting includes networking events from both classes.

RETURNS OK, or ERROR for unknown event level.

ERRNO N/A

SEE ALSO wvNetLib

wvNetLevelRemove()

NAME wvNetLevelRemove() – disable network events with specific priority level

SYNOPSIS STATUS wvNetLevelRemove

(

int priority /* priority level to disable */

)

VxWorks OS Libraries API Reference, 5.5
wvNetPortFilterClear()

1480

DESCRIPTION This routine changes the event selection map to prevent reporting of any events with
priority equal to level. It will override the current event selection for the given priority, but
has no effect on settings for events with higher or lower priorities. The available priority
values are:

WV_NET_EMERGENCY (1)
WV_NET_ALERT (2)
WV_NET_CRITICAL (3)
WV_NET_ERROR (4)
WV_NET_WARNING (5)
WV_NET_NOTICE (6)
WV_NET_INFO (7)
WV_NET_VERBOSE (8)

Events are only reported based on the current WindView class setting. The initial (default)
setting includes networking events from both classes.

RETURNS OK, or ERROR for unknown event level.

ERRNO N/A

SEE ALSO wvNetLib

wvNetPortFilterClear()

NAME wvNetPortFilterClear() – remove the port number filter for events

SYNOPSIS void wvNetPortFilterClear

(

int type, /* 0 for source, 1 for destination */

int direction /* 0 for input, 1 for output */

)

DESCRIPTION This routine removes any active port filter test indicated by the type and direction
parameters used to enable it. Affected events will be reported unconditionally.

RETURNS N/A

ERRNO N/A

SEE ALSO wvNetLib

2: Routines
wvObjInst()

1481

W

wvNetPortFilterSet()

NAME wvNetPortFilterSet() – specify an address filter for events

SYNOPSIS STATUS wvNetPortFilterSet

(

int port, /* target port for event comparisons */

int type, /* 0 for source, 1 for destination */

int direction /* 0 for input, 1 for output */

)

DESCRIPTION This routine activates an additional filter, which disables certain events that do not match
the specified port value. The port parameter provides the test value and the type parameter
indicates whether that value is compared against the source or destination fields. The
direction setting identifies whether the type is interpreted from the perspective of incoming
or outgoing traffic.

RETURNS OK if filter set, or ERROR otherwise.

ERRNO N/A

SEE ALSO wvNetLib

wvObjInst()

NAME wvObjInst() – instrument objects (WindView)

SYNOPSIS STATUS wvObjInst

(

int objType, /* object type */

void * objId, /* object ID or NULL for all objects */

int mode /* instrumentation mode */

)

DESCRIPTION This routine instruments a specified object or set of objects and has effect when system
objects have been enabled for event logging.

objType can be set to one of the following: OBJ_TASK (tasks), OBJ_SEM (semaphores),
OBJ_MSG (message queues), or OBJ_WD (watchdogs). objId specifies the identifier of the

VxWorks OS Libraries API Reference, 5.5
wvObjInstModeSet()

1482

particular object to be instrumented. If objId is NULL, then all objects of objType have
instrumentation turned on or off depending on the value of mode.

If mode is INSTRUMENT_ON, instrumentation is turned on; if it is any other value
(including INSTRUMENT_OFF) then instrumentation is turned off for objId.

Call wvObjInstModeSet() with INSTRUMENT_ON if you want to enable instrumentation
for all objects created after a certain place in your code. Use wvSigInst() if you want to
enable instrumentation for all signal activity.

This routine has effect only if INCLUDE_WINDVIEW is defined in configAll.h.

RETURNS OK or ERROR.

SEE ALSO wvLib, wvSigInst(), wvEventInst(), wvObjInstModeSet()

wvObjInstModeSet()

NAME wvObjInstModeSet() – set object instrumentation on/off (WindView)

SYNOPSIS STATUS wvObjInstModeSet

(

int mode /* object instrumentation on/off */

)

DESCRIPTION This routine causes objects to be created either instrumented or not depending on the
value of mode, which can be INSTRUMENT_ON or INSTRUMENT_OFF. All objects created
after wvObjInstModeSet() is called with INSTRUMENT_ON and before it is called with
INSTRUMENT_OFF are created as instrumented objects.

Use wvObjInst() if you want to enable instrumentation for a specific object or set of
objects. Use wvSigInst() if you want to enable instrumentation for all signal activity, and
wvEventInst() to enable instrumentation for VxWorks Event activity.

This routine has effect only if INCLUDE_WINDVIEW is defined in configAll.h.

RETURNS The previous value of mode or ERROR.

SEE ALSO wvLib, wvObjInst(), wvSigInst(), wvEventInst()

2: Routines
wvSigInst()

1483

W

wvRBuffMgrPrioritySet()

NAME wvRBuffMgrPrioritySet() – set the priority of the WindView rBuff manager (WindView)

SYNOPSIS STATUS wvRBuffMgrPrioritySet

(

int priority /* new priority */

)

DESCRIPTION This routine changes the priority of the tWvRBuffMgr task to the value of priority.
Priorities range from 0, the highest priority, to 255, the lowest priority. If the task is not yet
running, this priority is used when it is spawned.

RETURNS OK, or ERROR if the priority can not be set.

SEE ALSO rBuffLib, taskPrioritySet(), VxWorks Programmer’s Guide: Basic OS

wvSigInst()

NAME wvSigInst() – instrument signals (WindView)

SYNOPSIS STATUS wvSigInst

(

int mode /* instrumentation mode */

)

DESCRIPTION This routine instruments all signal activity.

If mode is INSTRUMENT_ON, instrumentation for signals is turned on; if it is any other
value (including INSTRUMENT_OFF), instrumentation for signals is turned off.

This routine has effect only if INCLUDE_WINDVIEW is defined in configAll.h and event
logging has been enabled for system objects.

RETURNS OK or ERROR.

SEE ALSO wvLib

VxWorks OS Libraries API Reference, 5.5
wvTaskNamesPreserve()

1484

wvTaskNamesPreserve()

NAME wvTaskNamesPreserve() – preserve an extra copy of task name events (WindView)

SYNOPSIS TASKBUF_ID wvTaskNamesPreserve

(

PART_ID memPart, /* memory where preserved names are stored */

int size /* must be a power of 2 */

)

DESCRIPTION This routine initializes the data structures and instrumentation necessary to allow
WindView to store an extra copy of each EVENT_TASKNAME event, which is necessary
for post-mortem analysis. This routine should be called after wvEvtLogInit() has been
called, and before event logging is started.

If this routine is called before event logging is started, all EVENT_TASKNAME events that
are produced by VxWorks are logged into the standard event buffer, and a copy of each is
logged automatically to the task name buffer created by this routine. All tasks running
when this routine is called are also added to the buffer. The events in this buffer can be
uploaded after the other events have been uploaded, to provide the task names for any
events in the log which no longer have a corresponding task name event due to wrapping
of data in the buffers. Because there may be two copies of some of the task name events
after the buffer data wraps around, the resultant log may have two task name events for
the same task. This is not a problem for the parser.

Occasionally the task ID of a task is reused, and in this case, only the last instance of the
task name event with a particular task ID is maintained.

The buffer size must be a power of two.

This routine sets the event class WV_CLASS_TASKNAMES_PRESERVE, which can be
turned off by calling wvEvtClassClear() or wvEvtClassSet().

RETURNS A valid TASKBUF_ID to be used for later uploading, or NULL if not enough memory exists
to create the task buffer.

SEE ALSO wvLib

2: Routines
wvTmrRegister()

1485

W

wvTaskNamesUpload()

NAME wvTaskNamesUpload() – upload preserved task name events (WindView)

SYNOPSIS STATUS wvTaskNamesUpload

(

TASKBUF_ID taskBufId, /* taskname event buffer to upload */

UPLOAD_ID pathId /* upload path id */

)

DESCRIPTION This routine uploads task name events, saved after calling wvTaskNamesPreserve(), to
the host by the specified upload path. There is no particular order to the events uploaded.
All the events contained in the buffer are uploaded in one pass. After all have been
uploaded, the buffer used to store the events is destroyed.

RETURNS OK, or ERROR if the upload path or task name buffer is invalid.

SEE ALSO wvLib

wvTmrRegister()

NAME wvTmrRegister() – register a timestamp timer (WindView)

SYNOPSIS void wvTmrRegister

(

UINTFUNCPTR wvTmrRtn, /* timestamp routine */

UINTFUNCPTR wvTmrLockRtn, /* locked timestamp routine */

FUNCPTR wvTmrEnable, /* enable timer routine */

FUNCPTR wvTmrDisable, /* disable timer routine */

FUNCPTR wvTmrConnect, /* connect to timer routine */

UINTFUNCPTR wvTmrPeriod, /* period of timer routine */

UINTFUNCPTR wvTmrFreq /* frequency of timer routine */

)

DESCRIPTION This routine registers a timestamp routine for each of the following:

wvTmrRtn
a timestamp routine, which returns a timestamp when called (must be called with
interrupts locked).

VxWorks OS Libraries API Reference, 5.5
wvUploadStart()

1486

wvTmrLockRtn
a timestamp routine, which returns a timestamp when called (locks interrupts).

wvTmrEnable
an enable-timer routine, which enables the timestamp timer.

wvTmrDisable
a disable-timer routine, which disables the timestamp timer.

wvTmrConnect
a connect-to-timer routine, which connects a handler to be run when the timer rolls
over; this routine should return NULL if the system clock tick is to be used.

wvTmrPeriod
a period-of-timer routine, which returns the period of the timer.

wvTmrFreq
a frequency-of-timer routine, which returns the frequency of the timer.

If any of these routines is set to NULL, the behavior of instrumented code is undefined.

RETURNS N/A

SEE ALSO wvTmrLib

wvUploadStart()

NAME wvUploadStart() – start upload of events to the host (WindView)

SYNOPSIS WV_UPLOADTASK_ID wvUploadStart

(

BUFFER_ID bufId, /* event data buffer ID */

UPLOAD_ID pathId, /* upload path to host */

BOOL uploadContinuously /* upload continuously if true */

)

DESCRIPTION This routine starts uploading events from the event buffer to the host. Events can be
uploaded either continuously or in one pass until the buffer is emptied. If
uploadContinuously is set to TRUE, the task uploading events pends until more data arrives
in the buffer. If FALSE, the buffer is flushed without waiting, but this routine returns
immediately with an ID that can be used to kill the upload task. Upload is done by
spawning the task tWVUpload. The buffer to upload is identified by bufId, and the upload
path to use is identified by pathId.

2: Routines
wvUploadStop()

1487

W

This routine blocks if no event data is in the buffer, so it should be called before event
logging is started to ensure the buffer does not overflow.

RETURNS A valid WV_UPLOADTASK_ID if started for continuous upload, a non-NULL value if
started for one-pass upload, and NULL if the task can not be spawned or memory for the
descriptor can not be allocated.

SEE ALSO wvLib

wvUploadStop()

NAME wvUploadStop() – stop upload of events to host (WindView)

SYNOPSIS STATUS wvUploadStop

(

WV_UPLOADTASK_ID upTaskId

)

DESCRIPTION This routine stops continuous upload of events to the host. It does this by making a
request to the upload task to terminate after it has emptied the buffer. For this reason it is
important to make sure data is no longer being logged to the buffer before calling this
routine.

This task blocks until the buffer is emptied, and then frees memory associated with
upTaskId.

RETURNS OK if the upload task terminates successfully, or ERROR either if upTaskId is invalid or if
the upload task terminates with an ERROR.

SEE ALSO wvLib

VxWorks OS Libraries API Reference, 5.5
wvUploadTaskConfig()

1488

wvUploadTaskConfig()

NAME wvUploadTaskConfig() – set priority and stack size of tWVUpload task (WindView)

SYNOPSIS void wvUploadTaskConfig

(

int stackSize, /* the new stack size for tWVUpload */

int priority /* the new priority for tWVUpload */

)

DESCRIPTION This routine sets the stack size and priority of future instances of the event-data upload
task, created by calling wvUploadStart(). The default stack size for this task is 5000 bytes,
and the default priority is 150.

RETURNS N/A

SEE ALSO wvLib

2: Routines
xattrib()

1489

X

xattrib()

NAME xattrib() – modify MS-DOS file attributes of many files

SYNOPSIS STATUS xattrib

(

const char * source, /* file or directory name on which to */

/* change flags */

const char * attr /* flag settings to change */

)

DESCRIPTION This function is essentially the same as attrib(), but it accepts wildcards in fileName, and
traverses subdirectories in order to modify attributes of entire file hierarchies.

The attr argument string may contain must start with either “+” or “-”, meaning the
attribute flags which will follow should be either set or cleared. After “+” or “-” any of
these four letter will signify their respective attribute flags - “A”, “S”, “H” and “R”.

EXAMPLE -> xattrib("/sd0/sysfiles", "+RS") /* write protect "sysfiles" */

-> xattrib("/sd0/logfiles", "-R") /* unprotect logfiles before deletion */

-> xdelete("/sd0/logfiles")

WARNING: This function may call itself in accordance with the depth of the source
directory, and occupies approximately 520 bytes per stack frame, meaning that to
accommodate the maximum depth of subdirectories which is 20, at least 10 Kbytes of
stack space should be available to avoid stack overflow.

RETURNS OK, or ERROR if the file can not be opened.

SEE ALSO usrFsLib

VxWorks OS Libraries API Reference, 5.5
xcopy()

1490

xcopy()

NAME xcopy() – copy a hierarchy of files with wildcards

SYNOPSIS STATUS xcopy

(

const char * source, /* source directory or wildcard name */

const char * dest /* destination directory */

)

DESCRIPTION source is a string containing a name of a directory, or a wildcard or both which will cause
this function to make a recursive copy of all files residing in that directory and matching
the wildcard pattern into the dest directory, preserving the file names and subdirectories.

WARNING: This function may call itself in accordance with the depth of the source
directory, and occupies approximately 800 bytes per stack frame, meaning that to
accommodate the maximum depth of subdirectories which is 20, at least 16 Kbytes of
stack space should be available to avoid stack overflow.

RETURNS OK or ERROR if any operation has failed.

SEE ALSO usrFsLib, tarLib, checkStack(), cp()

xdelete()

NAME xdelete() – delete a hierarchy of files with wildcards

SYNOPSIS STATUS xdelete

(

const char * source /* source directory or wildcard name */

)

DESCRIPTION source is a string containing a name of a directory, or a wildcard or both which will cause
this function to recursively remove all files and subdirectories residing in that directory
and matching the wildcard pattern. When a directory is encountered, all its contents are
removed, and then the directory itself is deleted.

WARNING: This function may call itself in accordance with the depth of the source
directory, and occupies approximately 520 bytes per stack frame, meaning that to
accommodate the maximum depth of subdirectories which is 20, at least 10 Kbytes of
stack space should be available to avoid stack overflow.

2: Routines
xdelete()

1491

X

RETURNS OK or ERROR if any operation has failed.

SEE ALSO usrFsLib, checkStack(), cp(), copy(), xcopy(), tarLib

VxWorks OS Libraries API Reference, 5.5
zbufCreate()

1492

zbufCreate()

NAME zbufCreate() – create an empty zbuf

SYNOPSIS ZBUF_ID zbufCreate (void)

DESCRIPTION This routine creates a zbuf, which remains empty (that is, it contains no data) until
segments are added by the zbuf insertion routines. Operations performed on zbufs
require a zbuf ID, which is returned by this routine.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, the returned ID is valid within the kernel protection domain only. This
restriction does not apply under non-AE versions of VxWorks.

RETURNS A zbuf ID, or NULL if a zbuf cannot be created.

SEE ALSO zbufLib, zbufDelete()

zbufCut()

NAME zbufCut() – delete bytes from a zbuf

SYNOPSIS ZBUF_SEG zbufCut

(

ZBUF_ID zbufId, /* zbuf from which bytes are cut */

ZBUF_SEG zbufSeg, /* zbuf segment base for offset */

int offset, /* relative byte offset */

int len /* number of bytes to cut */

)

DESCRIPTION This routine deletes len bytes from zbufId starting at the specified byte location.

The starting location of deletion is specified by zbufSeg and offset. See the zbufLib manual
page for more information on specifying a byte location within a zbuf. In particular, the
first byte deleted is the exact byte specified by zbufSeg and offset.

The number of bytes to delete is given by len. If this parameter is negative, or is larger
than the number of bytes in the zbuf after the specified byte location, the rest of the zbuf is
deleted. The bytes deleted may span more than one segment.

2: Routines
zbufDelete()

1493

Z

If all the bytes in any one segment are deleted, then the segment is deleted, and the data
buffer that it referenced will be freed if no other zbuf segments reference it. No segment
may survive with zero bytes referenced.

Deleting bytes out of the middle of a segment splits the segment into two. The first
segment contains the portion of the data buffer before the deleted bytes, while the other
segment contains the end portion that remains after deleting len bytes.

This routine returns the zbuf segment ID of the segment just after the deleted bytes. In the
case where bytes are cut off the end of a zbuf, a value of ZBUF_NONE is returned.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. Likewise, the returned value is valid in the
protection domain only. This restriction does not apply under non-AE versions of
VxWorks.

RETURNS The zbuf segment ID of the segment following the deleted bytes, or NULL if the operation
fails.

SEE ALSO zbufLib

zbufDelete()

NAME zbufDelete() – delete a zbuf

SYNOPSIS STATUS zbufDelete

(

ZBUF_ID zbufId /* zbuf to be deleted */

)

DESCRIPTION This routine deletes any zbuf segments in the specified zbuf, then deletes the zbuf ID
itself. zbufId must not be used after this routine executes successfully.

For any data buffers that were not in use by any other zbuf, zbufDelete() calls the
associated free routine (callback).

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

VxWorks OS Libraries API Reference, 5.5
zbufDup()

1494

RETURNS OK, or ERROR if the zbuf cannot be deleted.

SEE ALSO zbufLib, zbufCreate(), zbufInsertBuf()

zbufDup()

NAME zbufDup() – duplicate a zbuf

SYNOPSIS ZBUF_ID zbufDup

(

ZBUF_ID zbufId, /* zbuf to duplicate */

ZBUF_SEG zbufSeg, /* zbuf segment base for offset */

int offset, /* relative byte offset */

int len /* number of bytes to duplicate */

)

DESCRIPTION This routine duplicates len bytes of zbufId starting at the specified byte location, and
returns the zbuf ID of the newly created duplicate zbuf.

The starting location of duplication is specified by zbufSeg and offset. See the zbufLib
manual page for more information on specifying a byte location within a zbuf. In
particular, the first byte duplicated is the exact byte specified by zbufSeg and offset.

The number of bytes to duplicate is given by len. If this parameter is negative, or is larger
than the number of bytes in the zbuf after the specified byte location, the rest of the zbuf is
duplicated.

Duplication of zbuf data does not usually involve copying of the data. Instead, the zbuf
segment pointer information is duplicated, while the data is not, which means that the
data is shared among all zbuf segments that reference the data. See the zbufLib manual
page for more information on copying and sharing zbuf data.

RETURNS The zbuf ID of a newly created duplicate zbuf, or NULL if the operation fails.

SEE ALSO zbufLib

2: Routines
zbufExtractCopy()

1495

Z

zbufExtractCopy()

NAME zbufExtractCopy() – copy data from a zbuf to a buffer

SYNOPSIS int zbufExtractCopy

(

ZBUF_ID zbufId, /* zbuf from which data is copied */

ZBUF_SEG zbufSeg, /* zbuf segment base for offset */

int offset, /* relative byte offset */

caddr_t buf, /* buffer into which data is copied */

int len /* number of bytes to copy */

)

DESCRIPTION This routine copies len bytes of data from zbufId to the application buffer buf.

The starting location of the copy is specified by zbufSeg and offset. See the zbufLib manual
page for more information on specifying a byte location within a zbuf. In particular, the
first byte copied is the exact byte specified by zbufSeg and offset.

The number of bytes to copy is given by len. If this parameter is negative, or is larger than
the number of bytes in the zbuf after the specified byte location, the rest of the zbuf is
copied. The bytes copied may span more than one segment.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

RETURNS The number of bytes copied from the zbuf to the buffer, or ERROR if the operation fails.

SEE ALSO zbufLib

VxWorks OS Libraries API Reference, 5.5
zbufInsert()

1496

zbufInsert()

NAME zbufInsert() – insert a zbuf into another zbuf

SYNOPSIS ZBUF_SEG zbufInsert

(

ZBUF_ID zbufId1, /* zbuf to insert zbufId2 into */

ZBUF_SEG zbufSeg, /* zbuf segment base for offset */

int offset, /* relative byte offset */

ZBUF_ID zbufId2 /* zbuf to insert into zbufId1 */

)

DESCRIPTION This routine inserts all zbufId2 zbuf segments into zbufId1 at the specified byte location.

The location of insertion is specified by zbufSeg and offset. See the zbufLib manual page
for more information on specifying a byte location within a zbuf. In particular, insertion
within a zbuf occurs before the byte location specified by zbufSeg and offset. Additionally,
zbufSeg and offset must be NULL and 0, respectively, when inserting into an empty zbuf.

After all the zbufId2 segments are inserted into zbufId1, the zbuf ID zbufId2 is deleted.
zbufId2 must not be used after this routine executes successfully.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. Likewise, the returned ZBUF_SEG is valid within
the kernel protection domain only. This restriction does not apply under non-AE versions
of VxWorks.

RETURNS The zbuf segment ID for the first inserted segment, or NULL if the operation fails.

SEE ALSO zbufLib

2: Routines
zbufInsertBuf()

1497

Z

zbufInsertBuf()

NAME zbufInsertBuf() – create a zbuf segment from a buffer and insert into a zbuf

SYNOPSIS ZBUF_SEG zbufInsertBuf

(

ZBUF_ID zbufId, /* zbuf in which buffer is inserted */

ZBUF_SEG zbufSeg, /* zbuf segment base for offset */

int offset, /* relative byte offset */

caddr_t buf, /* application buffer for segment */

int len, /* number of bytes to insert */

VOIDFUNCPTR freeRtn, /* free-routine callback */

int freeArg /* argument to free routine */

)

DESCRIPTION This routine creates a zbuf segment from the application buffer buf and inserts it at the
specified byte location in zbufId.

The location of insertion is specified by zbufSeg and offset. See the zbufLib manual page
for more information on specifying a byte location within a zbuf. In particular, insertion
within a zbuf occurs before the byte location specified by zbufSeg and offset. Additionally,
zbufSeg and offset must be NULL and 0, respectively, when inserting into an empty zbuf.

The parameter freeRtn specifies a free-routine callback that runs when the data buffer buf
is no longer referenced by any zbuf segments. If freeRtn is NULL, the zbuf functions
normally, except that the application is not notified when no more zbufs segments
reference buf. The free-routine callback runs from the context of the task that last deletes
reference to the buffer. Declare the freeRtn callback as follows (using whatever routine
name suits your application):

void freeCallback

(

caddr_t buf, /* pointer to application buffer */

int freeArg /* argument to free routine */

)

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

RETURNS The zbuf segment ID of the inserted segment, or NULL if the operation fails.

SEE ALSO zbufLib

VxWorks OS Libraries API Reference, 5.5
zbufInsertCopy()

1498

zbufInsertCopy()

NAME zbufInsertCopy() – copy buffer data into a zbuf

SYNOPSIS ZBUF_SEG zbufInsertCopy

(

ZBUF_ID zbufId, /* zbuf into which data is copied */

ZBUF_SEG zbufSeg, /* zbuf segment base for offset */

int offset, /* relative byte offset */

caddr_t buf, /* buffer from which data is copied */

int len /* number of bytes to copy */

)

DESCRIPTION This routine copies len bytes of data from the application buffer buf and inserts it at the
specified byte location in zbufId. The application buffer is in no way tied to the zbuf after
this operation; a separate copy of the data is made.

The location of insertion is specified by zbufSeg and offset. See the zbufLib manual page
for more information on specifying a byte location within a zbuf. In particular, insertion
within a zbuf occurs before the byte location specified by zbufSeg and offset. Additionally,
zbufSeg and offset must be NULL and 0, respectively, when inserting into an empty zbuf.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. Likewise, the returned value is valid in the
protection domain only. This restriction does not apply under non-AE versions of
VxWorks.

RETURNS The zbuf segment ID of the first inserted segment, or NULL if the operation fails.

SEE ALSO zbufLib

2: Routines
zbufSegData()

1499

Z

zbufLength()

NAME zbufLength() – determine the length in bytes of a zbuf

SYNOPSIS int zbufLength

(

ZBUF_ID zbufId /* zbuf to determine length */

)

DESCRIPTION This routine returns the number of bytes in the zbuf zbufId.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

RETURNS The number of bytes in the zbuf, or ERROR if the operation fails.

SEE ALSO zbufLib

zbufSegData()

NAME zbufSegData() – determine the location of data in a zbuf segment

SYNOPSIS caddr_t zbufSegData

(

ZBUF_ID zbufId, /* zbuf to examine */

ZBUF_SEG zbufSeg /* segment to get pointer to data */

)

DESCRIPTION This routine returns the location of the first byte of data in the zbuf segment zbufSeg. If
zbufSeg is NULL, the location of data in the first segment in zbufId is returned.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. Likewise, the returned value is valid in the
protection domain only. This restriction does not apply under non-AE versions of
VxWorks.

VxWorks OS Libraries API Reference, 5.5
zbufSegFind()

1500

RETURNS A pointer to the first byte of data in the specified zbuf segment, or NULL if the operation
fails.

SEE ALSO zbufLib

zbufSegFind()

NAME zbufSegFind() – find the zbuf segment containing a specified byte location

SYNOPSIS ZBUF_SEG zbufSegFind

(

ZBUF_ID zbufId, /* zbuf to examine */

ZBUF_SEG zbufSeg, /* zbuf segment base for pOffset */

int * pOffset /* relative byte offset */

)

DESCRIPTION This routine translates an address within a zbuf to its most local formulation.
zbufSegFind() locates the zbuf segment in zbufId that contains the byte location specified
by zbufSeg and *pOffset, then returns that zbuf segment, and writes in *pOffset the new
offset relative to the returned segment.

If the zbufSeg, *pOffset pair specify a byte location past the end of the zbuf, or before the
first byte in the zbuf, zbufSegFind() returns NULL.

See the zbufLib manual page for a full discussion of addressing zbufs by segment and
offset.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. Likewise, the returned value is valid in the
protection domain only. This restriction does not apply under non-AE versions of
VxWorks.

RETURNS The zbuf segment ID of the segment containing the specified byte, or NULL if the
operation fails.

SEE ALSO zbufLib

2: Routines
zbufSegNext()

1501

Z

zbufSegLength()

NAME zbufSegLength() – determine the length of a zbuf segment

SYNOPSIS int zbufSegLength

(

ZBUF_ID zbufId, /* zbuf to examine */

ZBUF_SEG zbufSeg /* segment to determine length of */

)

DESCRIPTION This routine returns the number of bytes in the zbuf segment zbufSeg. If zbufSeg is NULL,
the length of the first segment in zbufId is returned.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

RETURNS The number of bytes in the specified zbuf segment, or ERROR if the operation fails.

SEE ALSO zbufLib

zbufSegNext()

NAME zbufSegNext() – get the next segment in a zbuf

SYNOPSIS ZBUF_SEG zbufSegNext

(

ZBUF_ID zbufId, /* zbuf to examine */

ZBUF_SEG zbufSeg /* segment to get next segment */

)

DESCRIPTION This routine finds the zbuf segment in zbufId that is just after the zbuf segment zbufSeg. If
zbufSeg is NULL, the segment after the first segment in zbufId is returned. If zbufSeg is the
last segment in zbufId, NULL is returned.

RETURNS The zbuf segment ID of the segment after zbufSeg, or NULL if the operation fails.

SEE ALSO zbufLib

VxWorks OS Libraries API Reference, 5.5
zbufSegPrev()

1502

zbufSegPrev()

NAME zbufSegPrev() – get the previous segment in a zbuf

SYNOPSIS ZBUF_SEG zbufSegPrev

(

ZBUF_ID zbufId, /* zbuf to examine */

ZBUF_SEG zbufSeg /* segment to get previous segment */

)

DESCRIPTION This routine finds the zbuf segment in zbufId that is just before the zbuf segment zbufSeg. If
zbufSeg is NULL, or is the first segment in zbufId, NULL is returned.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. Likewise, the returned value is valid in the
protection domain only. This restriction does not apply under non-AE versions of
VxWorks.

RETURNS The zbuf segment ID of the segment before zbufSeg, or NULL if the operation fails.

SEE ALSO zbufLib

zbufSockBufSend()

NAME zbufSockBufSend() – create a zbuf from user data and send it to a TCP socket

SYNOPSIS int zbufSockBufSend

(

int s, /* socket to send to */

char * buf, /* pointer to data buffer */

int bufLen, /* number of bytes to send */

VOIDFUNCPTR freeRtn, /* free routine callback */

int freeArg, /* argument to free routine */

int flags /* flags to underlying protocols */

)

DESCRIPTION This routine creates a zbuf from the user buffer buf, and transmits it to a previously
established connection-based (stream) socket.

2: Routines
zbufSockBufSendto()

1503

Z

The user-provided free routine callback at freeRtn is called when bufis no longer in use by
the TCP/IP network stack. Applications can exploit this callback to receive notification
that buf is free. If freeRtn is NULL, the routine functions normally, except that the
application has no way of being notified when buf is released by the network stack. The
free routine runs in the context of the task that last references the buffer. This is typically
either the context of tNetTask, or the context of the caller’s task. Declare freeRtn as follows
(using whatever name is convenient):

void freeCallback

(

caddr_t buf, /* pointer to user buffer */

int freeArg /* user-provided argument to free routine */

)

You may OR the following values into the flags parameter with this operation:

MSG_OOB (0x1)
Out-of-band data.

MSG_DONTROUTE (0x4)
Send without using routing tables.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

RETURNS The number of bytes sent, or ERROR if the call fails.

SEE ALSO zbufSockLib, zbufSockSend(), send()

zbufSockBufSendto()

NAME zbufSockBufSendto() – create a zbuf from a user message and send it to a UDP socket

SYNOPSIS int zbufSockBufSendto

(

int s, /* socket to send to */

char * buf, /* pointer to data buffer */

int bufLen, /* number of bytes to send */

VOIDFUNCPTR freeRtn, /* free routine callback */

int freeArg, /* argument to free routine */

int flags, /* flags to underlying protocols */

VxWorks OS Libraries API Reference, 5.5
zbufSockBufSendto()

1504

struct sockaddr * to, /* recipient’s address */

int tolen /* length of to socket addr */

)

DESCRIPTION This routine creates a zbuf from the user buffer buf, and sends it to the datagram socket
named by to. The socket s is the sending socket.

The user-provided free routine callback at freeRtn is called when buf is no longer in use by
the UDP/IP network stack. Applications can exploit this callback to receive notification
that buf is free. If freeRtn is NULL, the routine functions normally, except that the
application has no way of being notified when buf is released by the network stack. The
free routine runs in the context of the task that last references the buffer. This is typically
either tNetTask context, or the caller’s task context. Declare freeRtn as follows (using
whatever name is convenient):

void freeCallback

(

caddr_t buf, /* pointer to user buffer */

int freeArg /* user-provided argument to free routine */

)

You may OR the following values into the flags parameter with this operation:

MSG_OOB (0x1)
Out-of-band data.

MSG_DONTROUTE (0x4)
Send without using routing tables.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

RETURNS The number of bytes sent, or ERROR if the call fails.

SEE ALSO zbufSockLib, zbufSockSendto(), sendto()

2: Routines
zbufSockRecv()

1505

Z

zbufSockLibInit()

NAME zbufSockLibInit() – initialize the zbuf socket interface library

SYNOPSIS STATUS zbufSockLibInit (void)

DESCRIPTION This routine initializes the zbuf socket interface library. It must be called before any zbuf
socket routines are used. It is called automatically when INCLUDE_ZBUF_SOCK is defined.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

RETURNS OK, or ERROR if the zbuf socket interface could not be initialized.

SEE ALSO zbufSockLib

zbufSockRecv()

NAME zbufSockRecv() – receive data in a zbuf from a TCP socket

SYNOPSIS ZBUF_ID zbufSockRecv

(

int s, /* socket to receive data from */

int flags, /* flags to underlying protocols */

int * pLen /* number of bytes requested/returned */

)

DESCRIPTION This routine receives data from a connection-based (stream) socket, and returns the data
to the user in a newly created zbuf.

The pLen parameter indicates the number of bytes requested by the caller. If the operation
is successful, the number of bytes received is copied to pLen.

You may OR the following values into the flags parameter with this operation:

MSG_OOB (0x1)
Out-of-band data.

VxWorks OS Libraries API Reference, 5.5
zbufSockRecvfrom()

1506

MSG_PEEK (0x2)
Return data without removing it from socket.

Once the user application is finished with the zbuf, zbufDelete() should be called to
return the zbuf memory buffer to the VxWorks network stack.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

RETURNS The zbuf ID of a newly created zbuf containing the received data, or NULL if the operation
fails.

SEE ALSO zbufSockLib, recv()

zbufSockRecvfrom()

NAME zbufSockRecvfrom() – receive a message in a zbuf from a UDP socket

SYNOPSIS ZBUF_ID zbufSockRecvfrom

(

int s, /* socket to receive from */

int flags, /* flags to underlying protocols */

int * pLen, /* number of bytes requested/returned */

struct sockaddr * from, /* where to copy sender’s addr */

int * pFromLen /* value/result length of from */

)

DESCRIPTION This routine receives a message from a datagram socket, and returns the message to the
user in a newly created zbuf.

The message is received regardless of whether the socket is connected. If from is nonzero,
the address of the sender’s socket is copied to it. Initialize the value-result parameter
pFromLen to the size of the from buffer. On return, pFromLen contains the actual size of the
address stored in from.

The pLen parameter indicates the number of bytes requested by the caller. If the operation
is successful, the number of bytes received is copied to pLen.

You may OR the following values into the flags parameter with this operation:

2: Routines
zbufSockSend()

1507

Z

MSG_OOB (0x1)
Out-of-band data.

MSG_PEEK (0x2)
Return data without removing it from socket.

Once the user application is finished with the zbuf, zbufDelete() should be called to
return the zbuf memory buffer to the VxWorks network stack.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

RETURNS The zbuf ID of a newly created zbuf containing the received message, or NULL if the
operation fails.

SEE ALSO zbufSockLib

zbufSockSend()

NAME zbufSockSend() – send zbuf data to a TCP socket

SYNOPSIS int zbufSockSend

(

int s, /* socket to send to */

ZBUF_ID zbufId, /* zbuf to transmit */

int zbufLen, /* length of entire zbuf */

int flags /* flags to underlying protocols */

)

DESCRIPTION This routine transmits all of the data in zbufId to a previously established
connection-based (stream) socket.

The zbufLen parameter is used only for determining the amount of space needed from the
socket write buffer. zbufLen has no effect on how many bytes are sent; the entire zbuf is
always transmitted. If the length of zbufId is not known, the caller must first determine it
by calling zbufLength().

This routine transfers ownership of the zbuf from the user application to the VxWorks
network stack. The zbuf ID, zbufId, is deleted by this routine, and should not be used after
the routine is called, even if an ERROR status is returned. (Exceptions: when the routine
fails because the zbuf socket interface library was not initialized or an invalid zbuf ID was

VxWorks OS Libraries API Reference, 5.5
zbufSockSendto()

1508

passed in, in which case there is no zbuf to delete. Moreover, if the call fails during a
non-blocking I/O socket write with an errno of EWOULDBLOCK, then zbufId is not
deleted; thus the caller may send it again at a later time.)

You may OR the following values into the flags parameter with this operation:

MSG_OOB (0x1)
Out-of-band data.

MSG_DONTROUTE (0x4)
Send without using routing tables.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

RETURNS The number of bytes sent, or ERROR if the call fails.

SEE ALSO zbufSockLib, zbufLength(), zbufSockBufSend(), send()

zbufSockSendto()

NAME zbufSockSendto() – send a zbuf message to a UDP socket

SYNOPSIS int zbufSockSendto

(

int s, /* socket to send to */

ZBUF_ID zbufId, /* zbuf to transmit */

int zbufLen, /* length of entire zbuf */

int flags, /* flags to underlying protocols */

struct sockaddr * to, /* recipient’s address */

int tolen /* length of to socket addr */

)

DESCRIPTION This routine sends the entire message in zbufId to the datagram socket named by to. The
socket s is the sending socket.

The zbufLen parameter is used only for determining the amount of space needed from the
socket write buffer. zbufLen has no effect on how many bytes are sent; the entire zbuf is
always transmitted. If the length of zbufId is not known, the caller must first determine it
by calling zbufLength().

2: Routines
zbufSplit()

1509

Z

This routine transfers ownership of the zbuf from the user application to the VxWorks
network stack. The zbuf ID zbufId is deleted by this routine, and should not be used after
the routine is called, even if an ERROR status is returned. (Exceptions: when the routine
fails because the zbuf socket interface library was not initialized or an invalid zbuf ID was
passed in, in which case there is no zbuf to delete. Moreover, if the call fails during a
non-blocking I/O socket write with an errno of EWOULDBLOCK, then zbufId is not
deleted; thus the caller may send it again at a later time.)

You may OR the following values into the flags parameter with this operation:

MSG_OOB (0x1)
Out-of-band data.

MSG_DONTROUTE (0x4)
Send without using routing tables.

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. This restriction does not apply under non-AE
versions of VxWorks.

RETURNS The number of bytes sent, or ERROR if the call fails.

SEE ALSO zbufSockLib, zbufLength(), zbufSockBufSendto(), sendto()

zbufSplit()

NAME zbufSplit() – split a zbuf into two separate zbufs

SYNOPSIS ZBUF_ID zbufSplit

(

ZBUF_ID zbufId, /* zbuf to split into two */

ZBUF_SEG zbufSeg, /* zbuf segment base for offset */

int offset /* relative byte offset */

)

DESCRIPTION This routine splits zbufId into two separate zbufs at the specified byte location. The first
portion remains in zbufId, while the end portion is returned in a newly created zbuf.

The location of the split is specified by zbufSeg and offset. See the zbufLib manual page for
more information on specifying a byte location within a zbuf. In particular, after the split
operation, the first byte of the returned zbuf is the exact byte specified by zbufSeg and
offset.

VxWorks OS Libraries API Reference, 5.5
zbufSplit()

1510

VXWORKS AE PROTECTION DOMAINS

Under VxWorks AE, you can call this function from within the kernel protection domain
only. In addition, all arguments to this function can reference only that data which is
valid in the kernel protection domain. Likewise, the returned value is valid in the
protection domain only. This restriction does not apply under non-AE versions of
VxWorks.

RETURNS The zbuf ID of a newly created zbuf containing the end portion of zbufId, or NULL if the
operation fails.

SEE ALSO zbufLib

1511

Keyword Index

Keyword Name Page

interfaces. POSIX 1003.1c thread library... pthreadLib 217
compare keys as 32 bit identifiers. ... hashKeyCmp() 645

library for PentiumPro/2/3/4 32 bit mode. MMU .. mmuPro32Lib 163
read next word (32-bit integer) from stream. ... getw() 640

write word (32-bit integer) to stream. ... putw() 1047
exception vector (PowerPC 403). /C routine to critical excCrtConnect() 578
interrupt vector (PowerPC 403). /C routine to critical excIntCrtConnect() 581

initialize 4kc cache library. .. cache4kcLibInit() 445
MIPS 4kc cache management library. cache4kcLib 37

get lower half of 64Bit TSC (Timestamp Counter). pentiumTscGet32() 974
get 64Bit TSC (Timestamp Counter). pentiumTscGet64() 974

of register a0 (also a1 - a7) (68K). return contents ... a0() 403
of register d0 (also d1 - d7) (68K). return contents .. d0() 512

set task status register (68K, MIPS, x86). .. taskSRSet() 1347
contents of status register (68K, SH). return... sr() 1262

clear entry from cache (68K, x86). .. cacheArchClearEntry() 446
interrupt lock-out level (68K, x86, ARM, SH,/ /current........................ intLockLevelGet() 693
interrupt lock-out level (68K, x86, ARM, SH,/ /current......................... intLockLevelSet() 693
/exception vector table (68K, x86, ARM, SimSolaris,/.............. intVecTableWriteProtect() 704

SimNT and/ set interrupt level (68K, x86, ARM, SimSolaris, intLevelSet() 690
get vector (trap) base address (68K, x86, MIPS, ARM,/.. intVecBaseGet() 696
set vector (trap) base address (68K, x86, MIPS, ARM,/... intVecBaseSet() 697

get interrupt vector (68K, x86, MIPS, SH,/... intVecGet() 698
set CPU vector (trap) (68K, x86, MIPS, SH,/.. intVecSet() 699

/handler for C routine (68K, x86, MIPS, SimSolaris)............................ intHandlerCreate() 688
increment packet counters for 802.3 device. ... m2If8023PacketCount() 772

system library. ISO 9660 CD-ROM read-only file ... cdromFsLib 59
return contents of register a0 (also a1 - a7) (68K). ... a0() 403

contents of register a0 (also a1 - a7) (68K). return ... a0() 403
of register a0 (also a1 - a7) (68K). return contents ... a0() 403

change abort character. .. tyAbortSet() 1406

VxWorks OS Libraries API Reference, 5.5

1512

Keyword Name Page

set abort function. .. tyAbortFuncSet() 1406
compute absolute value (ANSI). ... fabs() 586
compute absolute value (ANSI). .. fabsf() 586

(ANSI). compute absolute value of integer.. abs() 404
compute absolute value of long (ANSI).. labs() 729

accept connection from socket. .. accept() 404
acknowledge bus interrupt..................................... sysBusIntAck() 1300

Internet protocol/ display all active connections for... inetstatShow() 681
send advertisement to all active locations. .. sendAdvertAll() 1197

get list of active task IDs... taskIdListGet() 1332
close active telnet session. ... telnetdExit() 1359

start collecting task activity data. .. spyClkStart() 1257
stop collecting task activity data. ... spyClkStop() 1258

display task activity data. ... spyReport() 1259
spy CPU activity library... spyLib 294

begin periodic task activity reports... spy() 1257
run periodic task activity reports.. spyTask() 1260

distributed objects interface adapter show routines/ .. distIfShow 83
/about installed interface adapter (VxFusion). .. distIfShow() 548

to handle Ethernet multicast addresses. library .. etherMultiLib 104
retrieve table of multicast addresses from driver... etherMultiGet() 574

packet. get addressing information from muxPacketAddrGet() 885
bytes. advance ring pointer by n.................................... rngMoveAhead() 1112

locations. send advertisement to all active.................................... sendAdvertAll() 1197
send advertisement to one location. sendAdvert() 1196

routines to RIP for SNMP Agent. VxWorks interface... m2RipLib 147
library. WDB agent context management... wdbLib 348
DHCP relay agent library. ... dhcprLib 75

MIB-II ICMP-group API for SNMP Agents.. m2IcmpLib 139
interface-group API for SNMP agents. MIB-II ... m2IfLib 139

MIB-II IP-group API for SNMP agents.. m2IpLib 142
MIB-II API library for SNMP agents.. m2Lib 144
system-group API for SNMP agents. MIB-II .. m2SysLib 148

MIB-II TCP-group API for SNMP agents.. m2TcpLib 150
MIB-II UDP-group API for SNMP agents.. m2UdpLib 152

initialize asynchronous I/O (AIO) library.. aioPxLibInit() 406
asynchronous I/O (AIO) library (POSIX)... aioPxLib 9

show AIO requests. ... aioShow() 407
asynchronous I/O (AIO) show library. .. aioPxShow 13

AIO system driver.. aioSysDrv 13
initialize AIO system driver... aioSysInit() 407

signal. set alarm clock for delivery of... alarm() 411
library. Alchemy Au cache management.................................. cacheAuLib 38

that are not necessarily aligned. /bytes with buffers.. uswab() 1426
allocate aligned memory... memalign() 806
allocate aligned memory from partition. memPartAlignedAlloc() 813

allocate aligned memory. ... memalign() 806
partition. allocate aligned memory from memPartAlignedAlloc() 813
partition. allocate block of memory from memPartAlloc() 814

shared memory system/ allocate block of memory from smMemMalloc() 1234

Keyword Index

1513

IX

Keyword Name Page

system memory partition/ allocate block of memory from.. malloc() 802
DMA devices and drivers. allocate cache-safe buffer for cacheDmaMalloc() 453

possible. allocate cache-safe buffer, if cacheR32kMalloc() 464
shared memory system/ allocate memory for array from smMemCalloc() 1232

boundary. allocate memory on page .. valloc() 1429
(ANSI). allocate space for array.. calloc() 476

interface table. allocate structure for .. m2IfAlloc() 773
pool of buffers (VxFusion). allocate telegram buffer from distTBufAlloc() 556

clock for timing base/ allocate timer using specified timer_create() 1382
(C++). call allocation failure handler cplusCallNewHandler() 502

test whether character is alphanumeric (ANSI)... isalnum() 719
announce clock tick to kernel. tickAnnounce() 1379

write character to stream (ANSI). .. putc() 1045
to standard output stream (ANSI). write character... putchar() 1046
to standard output stream (ANSI). write string... puts() 1047

sort array of objects (ANSI). ... qsort() 1049
between 0 and RAND_MAX (ANSI). /pseudo-random integer.. rand() 1054

reallocate block of memory (ANSI). .. realloc() 1065
remove file (ANSI). .. remove() 1071

indicator to beginning of file (ANSI). set file position ... rewind() 1082
from standard input stream (ANSI). /convert characters .. scanf() 1130
specify buffering for stream (ANSI). .. setbuf() 1200

in jmp_buf argument (ANSI). /calling environment .. setjmp() 1201
set appropriate locale (ANSI). .. setlocale() 1203

specify buffering for stream (ANSI). .. setvbuf() 1211
compute sine (ANSI). .. sin() 1228
compute sine (ANSI). ... sinf() 1229

compute hyperbolic sine (ANSI). .. sinh() 1230
compute hyperbolic sine (ANSI). .. sinhf() 1230

formatted string to buffer (ANSI). write... sprintf() 1256
non-negative square root (ANSI). compute... sqrt() 1261
non-negative square root (ANSI). compute... sqrtf() 1261

to generate random numbers (ANSI). /value of seed used .. srand() 1262
characters from ASCII string (ANSI). read and convert .. sscanf() 1263

one string to another (ANSI). concatenate .. strcat() 1271
of character in string (ANSI). find first occurrence... strchr() 1271

two strings lexicographically (ANSI). compare... strcmp() 1272
as appropriate to LC_COLLATE (ANSI). compare two strings .. strcoll() 1272

copy one string to another (ANSI). ... strcpy() 1273
first character from given set (ANSI). /string length up to... strcspn() 1273
error number to error string (ANSI). map ... strerror() 1274

time into formatted string (ANSI). convert broken-down.. strftime() 1275
determine length of string (ANSI). ... strlen() 1277
from one string to another (ANSI). /characters... strncat() 1277
n characters of two strings (ANSI). compare first... strncmp() 1278
from one string to another (ANSI). copy characters.. strncpy() 1278
of character from given set (ANSI). /occurrence in string.. strpbrk() 1279

of character in string (ANSI). find last occurrence... strrchr() 1279
character not in given set (ANSI). /length up to first .. strspn() 1280

of substring in string (ANSI). find first occurrence... strstr() 1280

VxWorks OS Libraries API Reference, 5.5

1514

Keyword Name Page

portion of string to double (ANSI). convert initial .. strtod() 1281
break down string into tokens (ANSI)... strtok() 1282
convert string to long integer (ANSI).. strtol() 1284

to unsigned long integer (ANSI). convert string .. strtoul() 1285
to n characters of s2 into s1 (ANSI). transform up .. strxfrm() 1287

processor (Unimplemented) (ANSI). /string to command... system() 1317
compute tangent (ANSI)... tan() 1318
compute tangent (ANSI).. tanf() 1318

compute hyperbolic tangent (ANSI)... tanh() 1319
compute hyperbolic tangent (ANSI)... tanhf() 1319

current calendar time (ANSI). determine... time() 1380
binary file (Unimplemented) (ANSI). create temporary.. tmpfile() 1391

generate temporary file name (ANSI).. tmpnam() 1391
to lower-case equivalent (ANSI). /upper-case letter... tolower() 1392
to upper-case equivalent (ANSI). /lower-case letter ... toupper() 1392

back into input stream (ANSI). push character... ungetc() 1413
formatted string to stream (ANSI). write ... vfprintf() 1431

list to standard output (ANSI). /variable argument... vprintf() 1446
argument list to buffer (ANSI). /with variable... vsprintf() 1446

char’s (Unimplemented) (ANSI). /char’s to multibyte... wcstombs() 1461
character (Unimplemented) (ANSI). /to multibyte... wctomb() 1461

abnormal program termination (ANSI). cause .. abort() 403
absolute value of integer (ANSI). compute ... abs() 404

compute arc cosine (ANSI)... acos() 405
compute arc cosine (ANSI).. acosf() 406

broken-down time into string (ANSI). convert ... asctime() 416
compute arc sine (ANSI).. asin() 417
compute arc sine (ANSI).. asinf() 417

put diagnostics into programs (ANSI)... assert() 418
compute arc tangent (ANSI)... atan() 418

compute arc tangent of y/x (ANSI)... atan2() 419
compute arc tangent of y/x (ANSI).. atan2f() 420

compute arc tangent (ANSI).. atanf() 420
termination (Unimplemented) (ANSI). /function at program... atexit() 421

convert string to double (ANSI).. atof() 421
convert string to int (ANSI).. atoi() 422

convert string to long (ANSI).. atol() 422
perform binary search (ANSI)... bsearch() 443

allocate space for array (ANSI)... calloc() 476
or equal to specified value (ANSI). /integer greater than ... ceil() 489
or equal to specified value (ANSI). /integer greater than ... ceilf() 490
and error flags for stream (ANSI). clear end-of-file ... clearerr() 493

processor time in use (ANSI). determine.. clock() 494
compute cosine (ANSI)... cos() 500
compute cosine (ANSI).. cosf() 500

compute hyperbolic cosine (ANSI)... cosh() 501
compute hyperbolic cosine (ANSI)... coshf() 501
time in seconds into string (ANSI). convert ... ctime() 510

between two calendar times (ANSI). compute difference.. difftime() 542
compute quotient and remainder (ANSI)... div() 557

Keyword Index

1515

IX

Keyword Name Page

exit task (ANSI). ... exit() 584
compute exponential value (ANSI). ... exp() 585
compute exponential value (ANSI). .. expf() 585

compute absolute value (ANSI). .. fabs() 586
compute absolute value (ANSI). ... fabsf() 586

close stream (ANSI). ... fclose() 587
indicator for stream (ANSI). test end-of-file... feof() 588

indicator for file pointer (ANSI). test error .. ferror() 589
flush stream (ANSI). ... fflush() 589

next character from stream (ANSI). return ... fgetc() 590
position indicator for stream (ANSI). /current value of file .. fgetpos() 590

of characters from stream (ANSI). read specified number... fgets() 591
or equal to specified value (ANSI). /integer less than... floor() 597
or equal to specified value (ANSI). /integer less than.. floorf() 597
compute remainder of x/y (ANSI). .. fmod() 598
compute remainder of x/y (ANSI). ... fmodf() 598

open file specified by name (ANSI). ... fopen() 599
formatted string to stream (ANSI). write.. fprintf() 606

write character to stream (ANSI). .. fputc() 610
write string to stream (ANSI). .. fputs() 611

read data into array (ANSI). .. fread() 611
free block of memory (ANSI). ... free() 612

open file specified by name (ANSI). .. freopen() 612
fraction and power of 2 (ANSI). /into normalized .. frexp() 613

convert characters from stream (ANSI). read and... fscanf() 614
position indicator for stream (ANSI). set file.. fseek() 618
position indicator for stream (ANSI). set file... fsetpos() 619
position indicator for stream (ANSI). /current value of file .. ftell() 620

write from specified array (ANSI). ... fwrite() 633
next character from stream (ANSI). return ... getc() 635

from standard input stream (ANSI). return next character ... getchar() 635
get environment variable (ANSI). .. getenv() 636

from standard input stream (ANSI). read characters ... gets() 638
time into UTC broken-down time (ANSI). convert calendar.. gmtime() 641

character is alphanumeric (ANSI). test whether .. isalnum() 719
whether character is letter (ANSI). test .. isalpha() 720

character is control character (ANSI). test whether ... iscntrl() 721
character is decimal digit (ANSI). test whether ... isdigit() 721

non-white-space character (ANSI). /is printing, ... isgraph() 722
character is lower-case letter (ANSI). test whether ... islower() 722

including space character (ANSI). /is printable,.. isprint() 723
character is punctuation (ANSI). test whether ... ispunct() 723
is white-space character (ANSI). /whether character.. isspace() 724

character is upper-case letter (ANSI). test whether ... isupper() 724
character is hexadecimal digit (ANSI). test whether ... isxdigit() 725

compute absolute value of long (ANSI). .. labs() 729
number by integral power of 2 (ANSI). multiply.. ldexp() 731

and remainder of division (ANSI). compute quotient... ldiv() 732
of object with type lconv (ANSI). set components... localeconv() 742

time into broken-down time (ANSI). convert calendar... localtime() 745

VxWorks OS Libraries API Reference, 5.5

1516

Keyword Name Page

compute natural logarithm (ANSI)... log() 746
compute base-10 logarithm (ANSI)... log10() 748
compute base-10 logarithm (ANSI).. log10f() 748
compute natural logarithm (ANSI).. logf() 749

by restoring saved environment (ANSI). /non-local goto .. longjmp() 759
from system memory partition (ANSI). /block of memory .. malloc() 802

character (Unimplemented) (ANSI). /length of multibyte .. mblen() 804
to wide char’s (Unimplemented) (ANSI). /of multibyte char’s... mbstowcs() 804
wide character (Unimplemented) (ANSI). /character to.. mbtowc() 805

block of memory for character (ANSI). search... memchr() 807
compare two blocks of memory (ANSI).. memcmp() 807

from one location to another (ANSI). copy memory ... memcpy() 808
from one location to another (ANSI). copy memory ... memmove() 812

set block of memory (ANSI)... memset() 819
time into calendar time (ANSI). convert broken-down .. mktime() 822

integer and fraction parts (ANSI). /number into .. modf() 827
in errno to error message (ANSI). map error number ... perror() 976
raised to specified power (ANSI). /value of number ... pow() 981
raised to specified power (ANSI). /value of number .. powf() 982

to standard output stream (ANSI). /formatted string ... printf() 997
ANSI assert documentation. .. ansiAssert 13
ANSI ctype documentation. ... ansiCtype 14
ANSI locale documentation. .. ansiLocale 15
ANSI math documentation. ... ansiMath 15
ANSI setjmp documentation.. ansiSetjmp 16
ANSI stdarg documentation. .. ansiStdarg 17
ANSI stdio documentation... ansiStdio 18
ANSI stdlib documentation.. ansiStdlib 22
ANSI string documentation. .. ansiString 24
ANSI time documentation.. ansiTime 25

host responses. set applette to stop FTP transient ftpTransientFatalInstall() 631
exists. install applette to test if file netDrvFileDoesNotExistInstall() 914

compute arc cosine (ANSI). ... acos() 405
compute arc cosine (ANSI). .. acosf() 406
compute arc sine (ANSI). .. asin() 417
compute arc sine (ANSI). .. asinf() 417
compute arc tangent (ANSI). ... atan() 418
compute arc tangent (ANSI). .. atanf() 420
compute arc tangent of y/x (ANSI).. atan2() 419
compute arc tangent of y/x (ANSI)... atan2f() 420

cache library for processor architecture. initialize .. cacheLibInit() 457
MCA (Machine Check Architecture). enable/disable pentiumMcaEnable() 953

show MCA (Machine Check Architecture) registers. pentiumMcaShow() 953
debugger library. architecture-dependent .. dbgArchLib 63

floating-point coprocessor/ architecture-dependent .. fppArchLib 109
interrupt library. architecture-dependent .. intArchLib 123

block size (VxVMI). get architecture-dependent page.................... vmPageBlockSizeGet() 1441
interrupt subroutine library. architecture-independent.. intLib 125

virtual memory support/ architecture-independent... vmLib 343
management library. architecture-specific cache .. cacheArchLib 37

Keyword Index

1517

IX

Keyword Name Page

exception-handling/ architecture-specific ... excArchLib 105
vxMemProbe(). architecture-specific part of............................. vxMemArchProbe() 1454

management routines. architecture-specific task ... taskArchLib 307
tape in tar format. archive named file/dir onto ... tarArchive() 1322

psr value, symbolically (ARM). /meaning of specified .. psrShow() 1006
processor status register (ARM). /contents of current.. cpsr() 508

exception vector (PowerPC, ARM). /routine to asynchronous excIntConnect() 580
CPU exception vector (PowerPC, ARM). get .. excVecGet() 582
CPU exception vector (PowerPC, ARM). set .. excVecSet() 584

interrupt bits (MIPS, PowerPC, ARM). disable corresponding intDisable() 687
interrupt bits (MIPS, PowerPC, ARM). enable corresponding... intEnable() 688

uninitialized vector handler (ARM). set.. intUninitVecSet() 695
address to virtual address (ARM). translate physical mmuPhysToVirt() 823

address to physical address (ARM). translate virtual mmuVirtToPhys() 826
MMU mapping library for ARM Ltd. processors. .. mmuMapLib 162

(also r1 - r14, r1-r15 for SH) (ARM, SH). /of register r0 ... r0() 1050
/lock-out level (68K, x86, ARM, SH, SimSolaris, SimNT). intLockLevelGet() 693
/lock-out level (68K, x86, ARM, SH, SimSolaris, SimNT). intLockLevelSet() 693

/base address (68K, x86, MIPS, ARM, SimSolaris, SimNT)..................................... intVecBaseGet() 696
/base address (68K, x86, MIPS, ARM, SimSolaris, SimNT)...................................... intVecBaseSet() 697

/vector table (68K, x86, ARM, SimSolaris, SimNT).................... intVecTableWriteProtect() 704
set interrupt level (68K, x86, ARM, SimSolaris, SimNT and/.................................. intLevelSet() 690

time until next expiration and arm timer (POSIX). set... timer_settime() 1384
initialize proxy ARP. .. proxyArpLibInit() 1001

Address Resolution Protocol (ARP) client library. proxy .. proxyLib 216
display known ARP entries... arptabShow() 415

add, modify, or delete MIB-II ARP entry.. m2IpAtransTblEntrySet() 788
create proxy ARP network... proxyNetCreate() 1002
show proxy ARP networks. ... proxyNetShow() 1003

Address Resolution Protocol (ARP) server library. proxy .. proxyArpLib 215
flush all entries in system ARP table. ... arpFlush() 413
display entries in system ARP table. .. arpShow() 415

create or modify ARP table entry. ... arpAdd() 412
remove ARP table entry. ... arpDelete() 413

get MIB-II ARP table entry. m2IpAtransTblEntryGet() 787
Address Resolution Protocol (ARP) table manipulation/... arpLib 26

allocate space for array (ANSI).. calloc() 476
read data into array (ANSI)... fread() 611

write from specified array (ANSI).. fwrite() 633
system/ allocate memory for array from shared memory................................... smMemCalloc() 1232

sort array of objects (ANSI). ... qsort() 1049
and convert characters from ASCII string (ANSI). read ... sscanf() 1263

ANSI assert documentation.. ansiAssert 13
(Western Digital WD33C93/ assert RST line on SCSI bus sysScsiBusReset() 1312

connect C routine to asynchronous exception vector/........................... excIntConnect() 580
library. initialize asynchronous I/O (AIO)... aioPxLibInit() 406

(POSIX). asynchronous I/O (AIO) library.. aioPxLib 9
library. asynchronous I/O (AIO) show aioPxShow 13

retrieve error status of asynchronous I/O operation/.. aio_error() 408
retrieve return status of asynchronous I/O operation/...................................... aio_return() 409

VxWorks OS Libraries API Reference, 5.5

1518

Keyword Name Page

(POSIX). wait for asynchronous I/O request(s) aio_suspend() 410
(POSIX). initiate list of asynchronous I/O requests ... lio_listio() 735

initiate asynchronous read (POSIX). .. aio_read() 408
initiate asynchronous write (POSIX). ... aio_write() 410

mount DOS file system from ATA hard disk or CDROM. usrAtaConfig() 1419
ATA/ATAPI initialization.. usrAta 335

instruction to clear/ execute atomic compare-and-exchange pentiumBtc() 951
instruction to set/ execute atomic compare-and-exchange pentiumBts() 951

C-callable atomic test-and-set primitive. ... vxTas() 1459
get value of prioceiling attr in mutex attr object/ pthread_mutexattr_getprioceiling() 1035

object/ set prioceiling attr in mutex attributes........ pthread_mutexattr_setprioceiling() 1037
of prioceiling attr in mutex attr object (POSIX). /value . pthread_mutexattr_getprioceiling() 1035

initialize Au cache library... cacheAuLibInit() 449
Alchemy Au cache management library. cacheAuLib 38

message using MD5. authenticate incoming RIP-2 ripAuthKeyInMD5() 1090
message using MD5. authenticate outgoing RIP-2.................... ripAuthKeyOut2MD5() 1091

show current authentication configuration. ripAuthKeyShow() 1091
sample authentication hook... ripAuthHook() 1084

interface. remove authentication hook from RIP.................... ripAuthHookDelete() 1087
interface. add authentication hook to RIP............................. ripAuthHookAdd() 1085
add new RIP authentication key... ripAuthKeyAdd() 1088

delete existing RIP authentication key... ripAuthKeyDelete() 1088
find RIP authentication key... ripAuthKeyFind() 1089
find RIP authentication key....................................... ripAuthKeyFindFirst() 1089

RIP-2 message. start MD5 authentication of outgoing ripAuthKeyOut1MD5() 1090
get NFS UNIX authentication parameters. nfsAuthUnixGet() 932

modify NFS UNIX authentication parameters. nfsAuthUnixPrompt() 933
set NFS UNIX authentication parameters. nfsAuthUnixSet() 933

display NFS UNIX authentication parameters. nfsAuthUnixShow() 934
set ID number of NFS UNIX authentication parameters. ... nfsIdSet() 941

library. PPP authentication secrets .. pppSecretLib 214
add secret to PPP authentication secrets table. pppSecretAdd() 993

delete secret from PPP authentication secrets table. pppSecretDelete() 994
display PPP authentication secrets table. pppSecretShow() 994

enable MB86930 automatic locking of kernel/ cacheMb930LockAuto() 459
connect routine to auxiliary clock interrupt. sysAuxClkConnect() 1297

turn off auxiliary clock interrupts............................... sysAuxClkDisable() 1297
turn on auxiliary clock interrupts................................. sysAuxClkEnable() 1298

get auxiliary clock rate... sysAuxClkRateGet() 1298
set auxiliary clock rate.. sysAuxClkRateSet() 1299

comparison routine for AVL tree.. nextIndex() 932
field. extract backplane address from device................ bootBpAnchorExtract() 432

to shared memory network (backplane) driver. /interface ... smNetLib 287
change backspace character. ... tyBackspaceSet() 1407

ARM,/ get vector (trap) base address (68K, x86, MIPS,............................... intVecBaseGet() 696
ARM,/ set vector (trap) base address (68K, x86, MIPS,............................... intVecBaseSet() 697

specified clock for timing base (POSIX). /timer using timer_create() 1382
initialize base virtual memory support............................... vmBaseLibInit() 1432

library. base virtual memory support... vmBaseLib 343
compute base-10 logarithm (ANSI). ... log10() 748

Keyword Index

1519

IX

Keyword Name Page

compute base-10 logarithm (ANSI).. log10f() 748
compute base-2 logarithm. ... log2() 747
compute base-2 logarithm. .. log2f() 747

to. compare keys based on strings they point................................ hashKeyStrCmp() 645
I/O driver library. Berkeley Packet Filter (BPF)... bpfDrv 35

create Berkeley Packet Filter device................................. bpfDevCreate() 442
destroy Berkeley Packet Filter device................................. bpfDevDelete() 442

(ANSI). create temporary binary file (Unimplemented) .. tmpfile() 1391
perform binary search (ANSI). ... bsearch() 443

create and initialize binary semaphore.. semBCreate() 1175
and initialize release 4.x binary semaphore. create .. semCreate() 1177

initialize static binary semaphore.. semInit() 1183
binary semaphore library. ... semBLib 262

release 4.x binary semaphore library. ... semOLib 271
/and initialize shared memory binary semaphore (VxMP). semBSmCreate() 1175

breakpoint type (MIPS). bind breakpoint handler to dbgBpTypeBind() 513
bind name to socket. .. bind() 430
bind NPT protocol to driver....................................... muxTkBind() 895

port. bind socket to privileged IP bindresvport() 431
service and END. create binding between network ... muxBind() 874

create CBIO wrapper atop BLK_DEV device. .. cbioWrapBlkDev() 485
specified physical/ show BLK_DEV structures on scsiBlkDevShow() 1139

size of largest available free block. find.. memPartFindMax() 815
RAM Disk Cached Block Driver... ramDiskCbio 225

get task control block for task ID. ... taskTcb() 1351
partition/ find largest free block in shared memory system smMemFindMax() 1233
partition. find largest free block in system memory .. memFindMax() 811

cached block I/O library.. cbioLib 55
free block of memory. .. cfree() 490

reallocate block of memory (ANSI). ... realloc() 1065
free block of memory (ANSI). .. free() 612
set block of memory (ANSI). ... memset() 819

(ANSI). search block of memory for character ... memchr() 807
partition. allocate block of memory from .. memPartAlloc() 814

memory system/ allocate block of memory from shared smMemMalloc() 1234
memory system/ reallocate block of memory from shared smMemRealloc() 1235
memory partition/ allocate block of memory from system... malloc() 802

free block of memory in partition................................... memPartFree() 815
partition. reallocate block of memory in specified memPartRealloc() 817

shared memory system partition block of memory (VxMP). free smMemFree() 1233
change state of block of virtual memory. vmBaseStateSet() 1433

(VxVMI). change state of block of virtual memory.. vmStateSet() 1444
transfer routine. block to block (sector to sector) .. cbioBlkCopy() 476

architecture-dependent page block size (VxVMI). get vmPageBlockSizeGet() 1441
sector) transfer routine. block to block (sector to.. cbioBlkCopy() 476

logical partition on SCSI block device. define.. scsiBlkDevCreate() 1137
read sector(s) from SCSI block device.. scsiRdSecs() 1154

write sector(s) to SCSI block device... scsiWrtSecs() 1168
initialize file system on block device... diskInit() 544

library. raw block device file system.. rawFsLib 226

VxWorks OS Libraries API Reference, 5.5

1520

Keyword Name Page

with dosFs. create TrueFFS block device suitable for use tffsDevCreate() 1363
functions. associate block device with raw volume............................... rawFsDevInit() 1054

/set of pending signals blocked from delivery (POSIX)................................... sigpending() 1221
get list of task IDs that are blocked on semaphore. ... semInfo() 1183

add to set of blocked signals. .. sigblock() 1217
lock (take) semaphore, blocking if not available/ ... sem_wait() 1195

show partition blocks and statistics. .. memPartShow() 818
show system memory partition blocks and statistics. .. memShow() 820

/shared memory system partition blocks and statistics (VxMP). smMemShow() 1236
read bytes or blocks from SCSI tape device. scsiRdTape() 1154
compare two blocks of memory (ANSI). .. memcmp() 807

transfer blocks to or from memory... cbioBlkRW() 477
change boot line.. bootChange() 432

interpret boot parameters from boot line... bootStringToStruct() 441
construct boot line... bootStructToString() 441

prompt for boot line parameters. bootParamsPrompt() 435
display boot line parameters. .. bootParamsShow() 435

line. interpret boot parameters from boot bootStringToStruct() 441
retrieve boot parameters using BOOTP.......................... bootpParamsGet() 437

boot ROM subroutine library. .. bootLib 31
and transfer control to boot ROMs. /network devices.. reboot() 1066

configuration module for boot ROMs. system.. bootConfig 29
network with DHCP at boot time. initialize ... dhcpcBootBind() 521

device. write to boot-image region of flash............................... tffsBootImagePut() 1362
retrieve boot parameters using BOOTP. ... bootpParamsGet() 437

Bootstrap Protocol (BOOTP) client library. .. bootpLib 33
initialization. BOOTP client library ... bootpLibInit() 436

retrieve reply. send BOOTP request message and................................. bootpMsgGet() 436
(VxFusion). initialize and bootstrap current node.. distInit() 549

client library. Bootstrap Protocol (BOOTP) .. bootpLib 33
DHCP boot-time client library. .. dhcpcBootLib 71

prevent strict border gateway filtering. ripFilterDisable() 1092
activate strict border gateway filtering. ripFilterEnable() 1093

socket with privileged port bound to it. open... rresvport() 1125
allocate memory on page boundary. .. valloc() 1429

initialize BPF driver.. bpfDrv() 443
Berkeley Packet Filter (BPF) I/O driver library. .. bpfDrv 35

delete breakpoint. .. bd() 427
set hardware breakpoint. .. bh() 429

continue from breakpoint. ... c() 445
breakpoint type (MIPS). bind breakpoint handler to... dbgBpTypeBind() 513

bind breakpoint handler to breakpoint type (MIPS). dbgBpTypeBind() 513
set or display breakpoints. ... b() 424

delete all breakpoints. .. bdall() 428
interface. get broadcast address for network............................. ifBroadcastGet() 661
interface. set broadcast address for network.............................. ifBroadcastSet() 661

show ports enabled for broadcast forwarding. .. proxyPortShow() 1004
particular port. disable broadcast forwarding for proxyPortFwdOff() 1003
particular port. enable broadcast forwarding for proxyPortFwdOn() 1004

change SNTP server broadcast settings.. sntpsConfigSet() 1251

Keyword Index

1521

IX

Keyword Name Page

convert calendar time into UTC broken-down time (ANSI). .. gmtime() 641
convert calendar time into broken-down time (ANSI). ... localtime() 745

time (ANSI). convert broken-down time into calendar....................................... mktime() 822
formatted string/ convert broken-down time into.. strftime() 1275

(ANSI). convert broken-down time into string.. asctime() 416
(POSIX). convert broken-down time into string... asctime_r() 416

convert calendar time into broken-down time (POSIX). .. gmtime_r() 641
convert calendar time into broken-down time (POSIX). localtime_r() 746

UNIX BSD 4.3 select library.. selectLib 261
interface between BSD IP protocol and MUX. .. ipProto 128

connect BSP serial device interrupts. sysSerialHwInit2() 1316
quiescent state. initialize BSP serial devices to.. sysSerialHwInit() 1315

number. return BSP version and revision.. sysBspRev() 1299
get characters from ring buffer. .. rngBufGet() 1108

put bytes into ring buffer. ... rngBufPut() 1108
create empty ring buffer. .. rngCreate() 1109

delete ring buffer. .. rngDelete() 1109
number of free bytes in ring buffer. determine ... rngFreeBytes() 1110

number of bytes in ring buffer. determine ... rngNBytes() 1112
copy data from zbuf to buffer. ... zbufExtractCopy() 1495
invert order of bytes in buffer. ... binvert() 431

zero out buffer. .. bzero() 444
to client and store in buffer. /option provided................................... dhcpcOptionGet() 530

read buffer. .. fioRead() 596
to dot notation, store it in buffer. /network address ... inet_ntoa_b() 680

copy data from mBlk to buffer. ... netMblkToBufCopy() 922
cacheDmaMalloc(). free buffer acquired with .. cacheDmaFree() 453
interrupt. clean up store buffer after data store error......................... cleanUpStoreBuffer() 493

create zbuf segment from buffer and insert into zbuf. zbufInsertBuf() 1497
write formatted string to buffer (ANSI). ... sprintf() 1256

with variable argument list to buffer (ANSI). /formatted .. vsprintf() 1446
copy buffer data into zbuf. ... zbufInsertCopy() 1498

make ring buffer empty. ... rngFlush() 1110
drivers. allocate cache-safe buffer for DMA devices and............................ cacheDmaMalloc() 453

(VxFusion). allocate telegram buffer from pool of buffers..................................... distTBufAlloc() 556
allocate cache-safe buffer, if possible. .. cacheR32kMalloc() 464

test if ring buffer is empty. .. rngIsEmpty() 1111
test if ring buffer is full (no more room). ... rngIsFull() 1111

network buffer library.. netBufLib 189
distributed objects telegram buffer library (VxFusion). ... distTBufLib 85

buffer manipulation library... bLib 28
disable store buffer (MC68060 only)............................. cacheStoreBufDisable() 470
enable store buffer (MC68060 only)............................... cacheStoreBufEnable() 470

dynamic ring buffer (rBuff) library.. rBuffLib 230
CL_POOL_ID for specified buffer size. return ... netClPoolIdGet() 910

remote file device with fixed buffer size. create.. netDevCreate2() 912
ring buffer subroutine library. .. rngLib 237

compare one buffer to another. ... bcmp() 425
copy one buffer to another. .. bcopy() 425

a time. copy one buffer to another one byte at bcopyBytes() 426

VxWorks OS Libraries API Reference, 5.5

1522

Keyword Name Page

word at a time. copy one buffer to another one long ... bcopyLongs() 426
a time. copy one buffer to another one word at bcopyWords() 427

(VxFusion). return telegram buffer to pool of buffers ... distTBufFree() 557
return ID of WindView event buffer (WindView). ... wvEvtBufferGet() 1470

start logging events to buffer (WindView). .. wvEvtLogStart() 1472
stop logging events to buffer (WindView). .. wvEvtLogStop() 1473

character. fill buffer with specified.. bfill() 428
character one byte at a/ fill buffer with specified.. bfillBytes() 429

put byte ahead in ring buffer without moving ring/ rngPutAhead() 1113
or standard error. set line buffering for standard output setlinebuf() 1202

specify buffering for stream.. setbuffer() 1200
specify buffering for stream (ANSI). .. setbuf() 1200
specify buffering for stream (ANSI). ... setvbuf() 1211

show state of Pty Buffers... ptyShow() 1045
swap buffers. .. bswap() 444

TLBs (Translation Lookaside Buffers). flush .. pentiumTlbFlush() 973
necessarily/ swap bytes with buffers that are not.. uswab() 1426

flush processor write buffers to memory... cachePipeFlush() 460
telegram buffer from pool of buffers (VxFusion). allocate................................... distTBufAlloc() 556

telegram buffer to pool of buffers (VxFusion). return distTBufFree() 557
pulse reset signal on SCSI bus. ... scsiBusReset() 1139

test and set location across bus. .. sysBusTas() 1301
convert local address to bus address. ... sysLocalToBusAdrs() 1306

convert bus address to local address........................ sysBusToLocalAdrs() 1301
probe address for bus error.. vxMemProbe() 1454

acknowledge bus interrupt. .. sysBusIntAck() 1300
generate bus interrupt. ... sysBusIntGen() 1300

disable bus interrupt level.. sysIntDisable() 1305
enable bus interrupt level... sysIntEnable() 1305

assert RST line on SCSI bus (Western Digital WD33C93/...................... sysScsiBusReset() 1312
interface. remove table bypass hook from RIP ripLeakHookDelete() 1097

tables. add hook to bypass RIP and kernel routing........................ ripLeakHookAdd() 1096
advance ring pointer by n bytes. ... rngMoveAhead() 1112

swap bytes. .. swab() 1287
read bytes from file or device... read() 1064

delete bytes from zbuf. ... zbufCut() 1492
invert order of bytes in buffer. .. binvert() 431

determine number of free bytes in ring buffer.. rngFreeBytes() 1110
determine number of bytes in ring buffer... rngNBytes() 1112

put bytes into ring buffer. .. rngBufPut() 1108
determine length in bytes of zbuf. .. zbufLength() 1499

device. read bytes or blocks from SCSI tape scsiRdTape() 1154
write bytes to file. ... write() 1468

transfer bytes to or from memory.. cbioBytesRW() 477
not necessarily aligned. swap bytes with buffers that are ... uswab() 1426

to user-defined function (C++). set new_handler..................................... set_new_handler() 1199
to user-defined function (C++). set terminate .. set_terminate() 1199

allocation failure handler (C++). call .. cplusCallNewHandler() 502
call static constructors (C++). ... cplusCtors() 503

all linked static constructors (C++). call ... cplusCtorsLink() 504

Keyword Index

1523

IX

Keyword Name Page

change C++ demangling mode (C++). .. cplusDemanglerSet() 504
change C++ demangling style (C++). ... cplusDemanglerStyleSet() 505

call static destructors (C++). .. cplusDtors() 505
all linked static destructors (C++). call .. cplusDtorsLink() 506

initialize C++ library (C++). ... cplusLibInit() 507
constructor calling strategy (C++). change C++ static... cplusXtorSet() 507
basic run-time support for C++. ... cplusLib 62

for memory deallocation (C++). /run-time support operator delete() 946
support for operator new (C++). default run-time .. operator new() 947

for operator new (nothrow) (C++). /run-time support .. operator new() 947
operator new with placement (C++). run-time support for..................................... operator new() 948

change C++ demangling mode (C++). cplusDemanglerSet() 504
change C++ demangling style (C++). cplusDemanglerStyleSet() 505

high-level math functions. C interface library to .. mathALib 153
initialize C++ library (C++)... cplusLibInit() 507

/interrupt handler for C routine (68K, x86, MIPS,/............................. intHandlerCreate() 688
exception vector/ connect C routine to asynchronous..................................... excIntConnect() 580
exception vector/ connect C routine to critical... excCrtConnect() 578
interrupt vector/ connect C routine to critical.. excIntCrtConnect() 581

(PowerPC). connect C routine to exception vector excConnect() 577
interrupt. connect C routine to hardware... intConnect() 683

interrupt handler for C routine (x86). construct intHandlerCreateI86() 689
strategy (C++). change C++ static constructor calling................................... cplusXtorSet() 507

clear all or some entries from cache. ... cacheClear() 449
clear line from CY7C604 cache. .. cacheCy604ClearLine() 450

clear page from CY7C604 cache. ... cacheCy604ClearPage() 450
clear region from CY7C604 cache. ... cacheCy604ClearRegion() 451

clear segment from CY7C604 cache. .. cacheCy604ClearSegment() 451
disable specified cache. ... cacheDisable() 452
enable specified cache. .. cacheEnable() 456

flush all or some of specified cache. ... cacheFlush() 456
all or some of specified cache. invalidate ... cacheInvalidate() 457

lock all or part of specified cache. .. cacheLock() 458
clear line from MB86930 cache. .. cacheMb930ClearLine() 458

specific context from Sun-4 cache. clear .. cacheSun4ClearContext() 470
clear line from Sun-4 cache. .. cacheSun4ClearLine() 471

clear page from Sun-4 cache. ... cacheSun4ClearPage() 471
clear segment from Sun-4 cache. .. cacheSun4ClearSegment() 472

all or part of specified cache. unlock... cacheUnlock() 475
create disk cache. ... dcacheDevCreate() 514

re-enable disk cache. .. dcacheDevEnable() 516
print information about disk cache. .. dcacheShow() 519

clear entry from cache (68K, x86). ... cacheArchClearEntry() 446
set new size to disk cache device. .. dcacheDevMemResize() 516

disk cache driver. ... dcacheCbio 67
flush data cache for drivers. .. cacheDrvFlush() 454

invalidate data cache for drivers. ... cacheDrvInvalidate() 454
disable disk cache for this device.. dcacheDevDisable() 515

initialize 4kc cache library. ... cache4kcLibInit() 445
initialize cache library. .. cacheArchLibInit() 447

VxWorks OS Libraries API Reference, 5.5

1524

Keyword Name Page

initialize Au cache library. .. cacheAuLibInit() 449
initialize Cypress CY7C604 cache library. .. cacheCy604LibInit() 452

initialize Fujitsu MB86930 cache library. ... cacheMb930LibInit() 459
initialize R3000 cache library. .. cacheR3kLibInit() 460
initialize R4000 cache library. .. cacheR4kLibInit() 461
initialize R5000 cache library. .. cacheR5kLibInit() 461
initialize R7000 cache library. .. cacheR7kLibInit() 462

initialize R10000 cache library. .. cacheR10kLibInit() 463
initialize RC32364 cache library. .. cacheR32kLibInit() 463

initialize R33000 cache library. .. cacheR33kLibInit() 464
initialize R333x0 cache library. .. cacheR333x0LibInit() 465
initialize SH7040 cache library. .. cacheSh7040LibInit() 465

initialize SH7604/SH7615 cache library. .. cacheSh7604LibInit() 466
initialize SH7622 cache library. .. cacheSh7622LibInit() 466
initialize SH7700 cache library. .. cacheSh7700LibInit() 467
initialize SH7729 cache library. .. cacheSh7729LibInit() 468
initialize SH7750 cache library. .. cacheSh7750LibInit() 469

initialize Sun-4 cache library. .. cacheSun4LibInit() 472
initialize TI TMS390 cache library. .. cacheTiTms390LibInit() 473

initialize Tx49 cache library. ... cacheTx49LibInit() 475
architecture. initialize cache library for processor.. cacheLibInit() 457

MIPS 4kc cache management library. ... cache4kcLib 37
architecture-specific cache management library. ... cacheArchLib 37

Alchemy Au cache management library. .. cacheAuLib 38
cache management library. .. cacheLib 38

MIPS R3000 cache management library. .. cacheR3kLib 47
MIPS R4000 cache management library. .. cacheR4kLib 47
MIPS R5000 cache management library. .. cacheR5kLib 48
MIPS R7000 cache management library. .. cacheR7kLib 48

MIPS R10000 cache management library. .. cacheR10kLib 49
MIPS RC32364 cache management library. .. cacheR32kLib 49

MIPS R333x0 cache management library. cacheR333x0Lib 50
MIPS R33000 cache management library. .. cacheR33kLib 50

Hitachi SH7040 cache management library. cacheSh7040Lib 51
Hitachi SH7604/SH7615 cache management library. cacheSh7604Lib 51

SH7622 cache management library. cacheSh7622Lib 52
Hitachi SH7700 cache management library. cacheSh7700Lib 52
Hitachi SH7729 cache management library. cacheSh7729Lib 53
Hitachi SH7750 cache management library. cacheSh7750Lib 53

Sun-4 cache management library. .. cacheSun4Lib 54
Toshiba Tx49 cache management library. ... cacheTx49Lib 54

modify tunable disk cache parameters.. dcacheDevTune() 517
RAM Disk Cached Block Driver. ... ramDiskCbio 225

cached block I/O library. ... cbioLib 55
free buffer acquired with cacheDmaMalloc(). ... cacheDmaFree() 453

translate virtual address for cacheLib.. cacheTiTms390VirtToPhys() 474
instruction and data caches. synchronize ... cacheTextUpdate() 473

synchronize caches for data coherency. scsiCacheSynchronize() 1141
SCSI that hardware snooping of caches is disabled. inform.................... scsiCacheSnoopDisable() 1140
SCSI that hardware snooping of caches is enabled. inform....................... scsiCacheSnoopEnable() 1140

Keyword Index

1525

IX

Keyword Name Page

devices and drivers. allocate cache-safe buffer for DMA............................... cacheDmaMalloc() 453
possible. allocate cache-safe buffer, if.. cacheR32kMalloc() 464

determine current calendar time (ANSI). ... time() 1380
convert broken-down time into calendar time (ANSI). ... mktime() 822

time (ANSI). convert calendar time into broken-down.................................... localtime() 745
time (POSIX). convert calendar time into broken-down................................... gmtime_r() 641
time (POSIX). convert calendar time into broken-down................................ localtime_r() 746

broken-down time/ convert calendar time into UTC .. gmtime() 641
compute difference between two calendar times (ANSI). .. difftime() 542

thread (POSIX). create cancellation point in calling........................... pthread_testcancel() 1043
thread (POSIX). set cancellation state for calling pthread_setcancelstate() 1039
thread (POSIX). set cancellation type for calling.................... pthread_setcanceltype() 1040

set case sensitivity of volume. dosSetVolCaseSens() 563
return mode setting for CBIO device. ... cbioModeGet() 481

set mode for CBIO device. .. cbioModeSet() 481
determine ready status of CBIO device. .. cbioRdyChgdGet() 482
change in ready status of CBIO device. force.. cbioRdyChgdSet() 483

print information about CBIO device. .. cbioShow() 484
initialize CBIO device (Generic). .. cbioDevCreate() 478

in CBIO_PARAMS structure with CBIO device parameters. fill................................ cbioParamsGet() 482
obtain CBIO device semaphore. ... cbioLock() 480
release CBIO device semaphore. ... cbioUnlock() 484

Initialize CBIO Library. .. cbioLibInit() 480
device. create CBIO wrapper atop BLK_DEV........................ cbioWrapBlkDev() 485

verify CBIO_DEV_ID. ... cbioDevVerify() 478
CBIO device/ fill in CBIO_PARAMS structure with cbioParamsGet() 482

primitive. C-callable atomic test-and-set.. vxTas() 1459
system from ATA hard disk or CDROM. mount DOS file.. usrAtaConfig() 1419

library. ISO 9660 CD-ROM read-only file system..................................... cdromFsLib 59
initialize cdromFsLib... cdromFsInit() 488

create cdromFsLib device. cdromFsDevCreate() 488
duplicate mBlk chain. .. netMblkChainDup() 916
constructs. free chain of mBlk-clBlk-cluster netMblkClChainFree() 917

chains two triggers. ... trgChainSet() 1395
device associated with serial channel. get SIO_CHAN sysSerialChanGet() 1315

VxWorks device for serial channel. create ... ttyDevCreate() 1405
device access to serial channels. provide terminal .. ttyDrv 326

change abort character.. tyAbortSet() 1406
change backspace character.. tyBackspaceSet() 1407
change line-delete character.. tyDeleteLineSet() 1407
change end-of-file character... tyEOFSet() 1409

change trap-to-monitor character... tyMonitorTrapSet() 1411
fill buffer with specified character.. bfill() 428

is printing, non-white-space character (ANSI). /character ... isgraph() 722
is printable, including space character (ANSI). /character ... isprint() 723

character is white-space character (ANSI). /whether.. isspace() 724
search block of memory for character (ANSI). .. memchr() 807

stream (ANSI). push character back into input.. ungetc() 1413
/string length up to first character from given set/.. strcspn() 1273

first occurrence in string of character from given set/ find .. strpbrk() 1279

VxWorks OS Libraries API Reference, 5.5

1526

Keyword Name Page

stream (ANSI). return next character from standard input ... getchar() 635
return next character from stream (ANSI). ... fgetc() 590
return next character from stream (ANSI). ... getc() 635

find last occurrence of character in string. .. rindex() 1083
find first occurrence of character in string. .. index() 674
find first occurrence of character in string (ANSI).. strchr() 1271
find last occurrence of character in string (ANSI).. strrchr() 1279

(ANSI). test whether character is alphanumeric... isalnum() 719
(ANSI). test whether character is control character ... iscntrl() 721
(ANSI). test whether character is decimal digit ... isdigit() 721
(ANSI). test whether character is hexadecimal digit... isxdigit() 725

test whether character is letter (ANSI). ... isalpha() 720
(ANSI). test whether character is lower-case letter .. islower() 722

including space/ test whether character is printable, ... isprint() 723
non-white-space/ test whether character is printing,... isgraph() 722

(ANSI). test whether character is punctuation.. ispunct() 723
(ANSI). test whether character is upper-case letter... isupper() 724

character/ test whether character is white-space .. isspace() 724
/string length up to first character not in given set/.. strspn() 1280
fill buffer with specified character one byte at a time.. bfillBytes() 429
character/ convert wide character to multibyte .. wctomb() 1461

stream (ANSI). write character to standard output... putchar() 1046
write character to stream (ANSI). ... putc() 1045
write character to stream (ANSI). .. fputc() 610

convert multibyte character to wide character/ ... mbtowc() 805
/wide character to multibyte character (Unimplemented)/.. wctomb() 1461
calculate length of multibyte character (Unimplemented)/.. mblen() 804
/multibyte character to wide character (Unimplemented)/.. mbtowc() 805

(ANSI). read and convert characters from ASCII string.. sscanf() 1263
another (ANSI). concatenate characters from one string to... strncat() 1277

another (ANSI). copy characters from one string to.. strncpy() 1278
get characters from ring buffer. .. rngBufGet() 1108

stream/ read and convert characters from standard input ... scanf() 1130
stream (ANSI). read characters from standard input ... gets() 638

read specified number of characters from stream (ANSI). ... fgets() 591
read and convert characters from stream (ANSI). ... fscanf() 614

(ANSI). transform up to n characters of s2 into s1 .. strxfrm() 1287
(ANSI). compare first n characters of two strings ... strncmp() 1278

convert series of wide char’s to multibyte char’s/.. wcstombs() 1461
convert series of multibyte char’s to wide char’s/ .. mbstowcs() 804

/of wide char’s to multibyte char’s (Unimplemented) (ANSI). wcstombs() 1461
/of multibyte char’s to wide char’s (Unimplemented) (ANSI). mbstowcs() 804

verify checksums on all modules...................................... moduleCheck() 827
being logged/ clear class of events from those wvEvtClassClear() 1470

(WindView). set class of events to log .. wvEvtClassSet() 1471
get current set of classes being logged/... wvEvtClassGet() 1471

logged (WindView). clear all classes of events from those wvEvtClassClearAll() 1470
get clBlk.. netClBlkGet() 908

join cluster to clBlk structure.. netClBlkJoin() 908
specified mBlk. get clBlk-cluster and join it to netMblkClGet() 918

Keyword Index

1527

IX

Keyword Name Page

join mBlk to clBlk-cluster construct. ... netMblkClJoin() 919
to memory pool. free clBlk-cluster construct back netClBlkFree() 907

register proxy client. ... proxyReg() 1005
unregister proxy client. ... proxyUnreg() 1005

retrieve option provided to client and store in buffer.................................... dhcpcOptionGet() 530
Protocol (DHCP) run-time client API. /Configuration... dhcpcLib 73
routines. DHCP run-time client information display.. dhcpcShow 75

library. DHCP client interface shared code................................ dhcpcCommonLib 72
Resolution Protocol (ARP) client library. proxy Address .. proxyLib 216

Network Time Protocol (SNTP) client library. Simple ... sntpcLib 291
File Transfer Protocol (TFTP) client library. Trivial ... tftpLib 319
Bootstrap Protocol (BOOTP) client library... bootpLib 33

disable DHCP client library.. dhcpcShutdown() 536
DHCP boot-time client library.. dhcpcBootLib 71

BOOTP client library initialization.. bootpLibInit() 436
DHCP client library initialization.. dhcpcLibInit() 528

add option to client messages. ... dhcpcOptionAdd() 529
structures. set up DHCP client parameters and data..................................... dhcpcBootInit() 522

routine to access reference clock. assign ... sntpsClockSet() 1250
set alarm clock for delivery of signal.. alarm() 411

allocate timer using specified clock for timing base (POSIX)................................... timer_create() 1382
connect routine to auxiliary clock interrupt... sysAuxClkConnect() 1297

connect routine to system clock interrupt.. sysClkConnect() 1302
user-defined system clock interrupt routine... usrClock() 1420

turn off auxiliary clock interrupts. ... sysAuxClkDisable() 1297
turn on auxiliary clock interrupts. .. sysAuxClkEnable() 1298

turn off system clock interrupts. .. sysClkDisable() 1302
turn on system clock interrupts. .. sysClkEnable() 1303

clock library (POSIX). ... clockLib 61
get current time of clock (POSIX). ... clock_gettime() 495

get auxiliary clock rate.. sysAuxClkRateGet() 1298
set auxiliary clock rate... sysAuxClkRateSet() 1299

get system clock rate.. sysClkRateGet() 1303
set system clock rate.. sysClkRateSet() 1304

set clock resolution.. clock_setres() 495
get clock resolution (POSIX). .. clock_getres() 494

clock tick support library.. tickLib 321
announce clock tick to kernel. ... tickAnnounce() 1379

(POSIX). set clock to specified time ... clock_settime() 496
close active telnet session. .. telnetdExit() 1359
close directory (POSIX).. closedir() 497

(WindView). close event-destination file......................... fileUploadPathClose() 592
close file. .. close() 496
close message queue (POSIX)... mq_close() 838
close named semaphore (POSIX). sem_close() 1188

(Windview). close socket upload path sockUploadPathClose() 1253
close stream (ANSI). .. fclose() 587

(Windview). close TSFS-socket upload path tsfsUploadPathClose() 1402
set TCP connection to closed state. .. m2TcpConnEntrySet() 798

buffer size. return CL_POOL_ID for specified netClPoolIdGet() 910

VxWorks OS Libraries API Reference, 5.5

1528

Keyword Name Page

free cluster back to memory pool. .. netClFree() 909
pool. get cluster from specified cluster netClusterGet() 911

get cluster from specified cluster pool... netClusterGet() 911
join cluster to clBlk structure. ... netClBlkJoin() 908

and get complete RFC reply code. send FTP command...................... ftpCommandEnhanced() 622
inflate compressed code. ... inflate() 682

DHCP client interface shared code library... dhcpcCommonLib 72
functions. inflate code using public domain zlib.. inflateLib 123

synchronize caches for data coherency.. scsiCacheSynchronize() 1141
(SCSI-2). SCSI library common commands for all devices scsiCommonLib 256

devices/ SCSI library common commands for all scsiCommonLib 256
get common values. .. m2IfCommonValsGet() 774

two strings (ANSI). compare first n characters of .. strncmp() 1278
identifiers. compare keys as 32 bit... hashKeyCmp() 645

they point to. compare keys based on strings hashKeyStrCmp() 645
compare one buffer to another. ... bcmp() 425
compare thread IDs (POSIX). pthread_equal() 1026

(ANSI). compare two blocks of memory memcmp() 807
appropriate to LC_COLLATE/ compare two strings as ... strcoll() 1272

lexicographically (ANSI). compare two strings ... strcmp() 1272
instruction to/ execute atomic compare-and-exchange ... pentiumBtc() 951
instruction to/ execute atomic compare-and-exchange ... pentiumBts() 951

UNIX tar compatible library. ... tarLib 306
format MS-DOS compatible volume. ... dosFsVolFormat() 562

low level I/O access to flash components.. tffsRawio() 1366
lconv (ANSI). set components of object with type................................... localeconv() 742

packet. compress DNS name in DNS resolvDNComp() 1074
inflate compressed code. ... inflate() 682

packet. expand DNS compressed name from DNS resolvDNExpand() 1074
one string to another (ANSI). concatenate characters from.. strncat() 1277

another (ANSI). concatenate one string to ... strcat() 1271
concatenate two lists.. lstConcat() 762

(POSIX). initialize condition attribute object pthread_condattr_init() 1024
(POSIX). destroy condition attributes object pthread_condattr_destroy() 1024

unblock all threads waiting on condition (POSIX). pthread_cond_broadcast() 1020
unblock thread waiting on condition (POSIX). pthread_cond_signal() 1022

destroy condition variable (POSIX)...................... pthread_cond_destroy() 1020
initialize condition variable (POSIX)............................. pthread_cond_init() 1021
wait for condition variable (POSIX)........................... pthread_cond_wait() 1023

timeout (POSIX). wait for condition variable with pthread_cond_timedwait() 1022
show current authentication configuration. .. ripAuthKeyShow() 1091

system SCSI configuration. ... sysScsiConfig() 1313
changes. alter RIP configuration after interface .. ripIfReset() 1095

display dosFs volume configuration data.. dosFsShow() 561
VxWorks. TrueFFS configuration file for... tffsConfig 315

show volume configuration information. cdromFsVolConfigShow() 489
requested NFS device. read configuration information from.......................... nfsDevInfoGet() 934

user-defined system configuration library. .. usrConfig 336
ROMs. system configuration module for boot....................................... bootConfig 29

registered with MUX. display configuration of devices... muxShow() 893

Keyword Index

1529

IX

Keyword Name Page

add routine to handle configuration parameters. dhcpcEventHookAdd() 525
retrieve current configuration parameters. dhcpcParamsGet() 533

handler. remove configuration parameters..................... dhcpcEventHookDelete() 526
DHCP. obtain set of network configuration parameters with.................................... dhcpcBind() 520

DHCP. obtain additional configuration parameters with................. dhcpcBootInformGet() 521
DHCP. obtain additional configuration parameters with......................... dhcpcInformGet() 526

run-time client/ Dynamic Host Configuration Protocol (DHCP).. dhcpcLib 73
server library. Dynamic Host Configuration Protocol (DHCP).. dhcpsLib 76
connected to SCSI controller. configure all devices ... scsiAutoConfig() 1137

unnumbered. configure interface to be ifUnnumberedSet() 672
configure SCSI peripherals. usrScsiConfig() 1425

interrupts. connect BSP serial device sysSerialHwInit2() 1316
asynchronous exception vector/ connect C routine to .. excIntConnect() 580

exception vector (PowerPC/ connect C routine to critical excCrtConnect() 578
interrupt vector (PowerPC/ connect C routine to critical excIntCrtConnect() 581

vector (PowerPC). connect C routine to exception................................... excConnect() 577
interrupt. connect C routine to hardware.................................... intConnect() 683

clock interrupt. connect routine to auxiliary sysAuxClkConnect() 1297
interrupt. connect routine to mailbox sysMailboxConnect() 1306

clock interrupt. connect routine to system sysClkConnect() 1302
signal. connect user routine to timer................................. timer_connect() 1381

get name of connected peer. .. getpeername() 637
configure all devices connected to SCSI controller. scsiAutoConfig() 1137
shut down network connection. .. shutdown() 1216

get completed FTP data connection. .. ftpDataConnGet() 623
accept connection from socket.. accept() 404

target host connection library using TSFS.................... wvTsfsUploadPathLib 358
get MIB-II TCP connection table entry. m2TcpConnEntryGet() 797

set TCP connection to closed state........................... m2TcpConnEntrySet() 798
specified host. get control connection to FTP server on ftpHookup() 626

initiate connection to socket.. connect() 497
initialize FTP data connection using PASV mode. . ftpDataConnInitPassiveMode() 624
initialize FTP data connection using PORT mode. ftpDataConnInit() 623

duration. attempt socket connection within specified connectWithTimeout() 498
protocol/ display all active connections for Internet.. inetstatShow() 681

enable connections to socket. ... listen() 736
file system. perform consistency checking on MS-DOS...................................... chkdsk() 492

(C++). change C++ static constructor calling strategy....................................... cplusXtorSet() 507
call static constructors (C++)... cplusCtors() 503

call all linked static constructors (C++)... cplusCtorsLink() 504
attributes (POSIX). set contention scope for thread pthread_attr_setscope() 1017
attributes (POSIX). get contention scope from thread.................. pthread_attr_getscope() 1011

floating-point coprocessor context. restore... fppRestore() 601
floating-point coprocessor context. save .. fppSave() 603
state is in interrupt or task context. determine if current .. intContext() 686

clear specific context from Sun-4 cache. cacheSun4ClearContext() 470
WDB agent context management library. .. wdbLib 348

create new virtual memory context (VxVMI). ... vmContextCreate() 1434
delete virtual memory context (VxVMI). ... vmContextDelete() 1435

display translation table for context (VxVMI). .. vmContextShow() 1435

VxWorks OS Libraries API Reference, 5.5

1530

Keyword Name Page

get current virtual memory context (VxVMI).. vmCurrentGet() 1436
set current virtual memory context (VxVMI).. vmCurrentSet() 1436

continue from breakpoint. ... c() 445
parameters. initiate or continue negotiating transfer scsiSyncXferNegotiate() 1162
parameters. initiate or continue negotiating wide..................... scsiWideXferNegotiate() 1167

subroutine returns. continue until current... cret() 509
get task control block for task ID... taskTcb() 1351

server on specified host. get control connection to FTP.. ftpHookup() 626
ICMP router discovery control function. implement... rdCtl() 1059

perform device-specific I/O control function. ... scsiIoctl() 1145
perform I/O control function. .. ioctl() 704

sequential access/ perform I/O control function for ... scsiSeqIoctl() 1159
perform distributed objects control function (VxFusion). ... distCtl() 544

to device. send control information to MUX or muxIoctl() 880
trigger events control library. .. trgLib 324

/objects initialization and control library (VxFusion). ... distLib 83
event logging control library (WindView). .. wvLib 351

attempts to take spin-lock/ control logging of failed.................... smObjTimeoutLogEnable() 1248
get content of Control Register 0 (x86)... vxCr0Get() 1449

set value to Control Register 0 (x86).. vxCr0Set() 1450
get content of Control Register 2 (x86)... vxCr2Get() 1447

set value to Control Register 2 (x86).. vxCr2Set() 1447
get content of Control Register 3 (x86)... vxCr3Get() 1448

set value to Control Register 3 (x86).. vxCr3Set() 1448
get content of Control Register 4 (x86)... vxCr4Get() 1448

set value to Control Register 4 (x86).. vxCr4Set() 1449
handle device control requests. .. tyIoctl() 1409

get parameters which control resolver library. resolvParamsGet() 1078
set parameters which control resolver library. resolvParamsSet() 1079

network devices and transfer control to boot ROMs. reset... reboot() 1066
transfer control to ROM monitor.. sysToMonitor() 1317

test whether character is control character (ANSI). .. iscntrl() 721
all devices connected to SCSI controller. configure.. scsiAutoConfig() 1137

devices attached to SCSI controller. list physical .. scsiShow() 1160
notify SCSI manager of SCSI (controller) event.. scsiMgrEventNotify() 1147

SCSI thread-level controller library (SCSI-2). ... scsiCtrlLib 256
send event to SCSI controller state machine. scsiMgrCtrlEvent() 1146

handle controller-bus reset event.................................. scsiMgrBusReset() 1146
calendar time (ANSI). convert broken-down time into .. mktime() 822

formatted string (ANSI). convert broken-down time into .. strftime() 1275
string (ANSI). convert broken-down time into .. asctime() 416

string (POSIX). convert broken-down time into asctime_r() 416
address. convert bus address to local sysBusToLocalAdrs() 1301

broken-down time (ANSI). convert calendar time into.. localtime() 745
broken-down time (POSIX). convert calendar time into.. gmtime_r() 641
broken-down time (POSIX). convert calendar time into... localtime_r() 746
broken-down time (ANSI). convert calendar time into UTC gmtime() 641

string (ANSI). read and convert characters from ASCII... sscanf() 1263
standard input/ read and convert characters from .. scanf() 1130

(ANSI). read and convert characters from stream ... fscanf() 614

Keyword Index

1531

IX

Keyword Name Page

volume descriptor pointer. convert device name into DOS........................ dosFsVolDescGet() 561
address to long integer. convert dot notation Internet... inet_addr() 675

to integer. convert double-precision value... irint() 717
convert format string. .. fioFormatV() 594

local address (VxMP). convert global address to smObjGlobalToLocal() 1243
string to double (ANSI). convert initial portion of ... strtod() 1281
number from string to/ convert Internet network .. inet_network() 679

address. convert local address to bus......................... sysLocalToBusAdrs() 1306
global address (VxMP). convert local address to............................. smObjLocalToGlobal() 1245

upper-case equivalent (ANSI). convert lower-case letter to... toupper() 1392
wide character/ convert multibyte character to ... mbtowc() 805

dot notation, store in/ convert network address from inet_aton() 675
notation, store it in buffer. convert network address to dot inet_ntoa_b() 680

dotted decimal notation. convert network address to .. inet_ntoa() 679
NTP format. convert portions of second to sntpsNsecToFraction() 1251

char’s to wide char’s/ convert series of multibyte... mbstowcs() 804
to multibyte char’s/ convert series of wide char’s ... wcstombs() 1461

to integer. convert single-precision value... irintf() 718
(ANSI). convert string to double .. atof() 421

convert string to int (ANSI). ... atoi() 422
convert string to long (ANSI). .. atol() 422

(ANSI). convert string to long integer .. strtol() 1284
long integer (ANSI). convert string to unsigned ... strtoul() 1285

string (ANSI). convert time in seconds into.. ctime() 510
string (POSIX). convert time in seconds into.. ctime_r() 510

lower-case equivalent (ANSI). convert upper-case letter to ... tolower() 1392
multibyte character/ convert wide character to.. wctomb() 1461

returns cookie for device... muxTkCookieGet() 897
for presence of floating-point coprocessor. probe.. fppProbe() 601

restore floating-point coprocessor context. .. fppRestore() 601
save floating-point coprocessor context. ... fppSave() 603

/floating-point coprocessor support.. fppArchLib 109
initialize floating-point coprocessor support... fppInit() 600

floating-point coprocessor support library. ... fppLib 112
core memory partition manager................................... memPartLib 160

compute both sine and cosine.. sincos() 1228
compute both sine and cosine.. sincosf() 1229

compute arc cosine (ANSI). .. acos() 405
compute arc cosine (ANSI). ... acosf() 406

compute cosine (ANSI). .. cos() 500
compute cosine (ANSI). ... cosf() 500

compute hyperbolic cosine (ANSI). .. cosh() 501
compute hyperbolic cosine (ANSI). .. coshf() 501

specify network interface hop count... ifMetricSet() 669
get value of kernel’s tick counter. ... tickGet() 1379
set value of kernel’s tick counter. .. tickSet() 1380

half of 64Bit TSC (Timestamp Counter). get lower ... pentiumTscGet32() 974
get 64Bit TSC (Timestamp Counter).. pentiumTscGet64() 974

reset TSC (Timestamp Counter)... pentiumTscReset() 974
install interface packet counter routine. m2IfPktCountRtnInstall() 779

VxWorks OS Libraries API Reference, 5.5

1532

Keyword Name Page

install interface counter update routine....................... m2IfCtrUpdateRtnInstall() 775
increment interface counters. .. m2IfCounterUpdate() 775

get default values for counters. .. m2IfDefaultValsGet() 776
increment interface packet counters. ... m2IfGenericPacketCount() 777

get MIB-II RIP-group global counters. ... m2RipGlobalCountersGet() 793
PMCs (Performance Monitoring Counters). show .. pentiumPmcShow() 970

increment packet counters for 802.3 device.......................... m2If8023PacketCount() 772
create and initialize counting semaphore. .. semCCreate() 1176

counting semaphore library.. semCLib 264
/and initialize shared memory counting semaphore (VxMP). semCSmCreate() 1178

cancel currently counting watchdog. .. wdCancel() 1464
spy CPU activity library. .. spyLib 294

return model name of CPU board.. sysModel() 1308
ARM). get CPU exception vector (PowerPC,................................ excVecGet() 582
ARM). set CPU exception vector (PowerPC,................................. excVecSet() 584
relinquish CPU (POSIX).. sched_yield() 1136

facility/ attach calling CPU to shared memory objects............................... smObjAttach() 1242
initialize task CPU utilization tool package. spyLibInit() 1259

type(int/trap), and gate/ get CPU vector, gate.. intVecGet2() 699
type(int/trap), and/ set CPU vector, gate... intVecSet2() 703

MIPS, SH, SimSolaris,/ set CPU vector (trap) (68K, x86,... intVecSet() 699
serializing instruction CPUID. execute .. pentiumSerialize() 973

get contents of CR4 register.. pentiumCr4Get() 952
sets specified value to CR4 register.. pentiumCr4Set() 952

to be called at every task create. add routine taskCreateHookAdd() 1325
queries. create all types of DNS.. resolvMkQuery() 1078

symbol table, including group/ create and add symbol to.. symAdd() 1288
semaphore. create and initialize binary .. semBCreate() 1175
semaphore. create and initialize counting semCCreate() 1176

queue. create and initialize message..................................... msgQCreate() 850
create and initialize module. moduleCreate() 828

mutual-exclusion semaphore. create and initialize.. semMCreate() 1184
4.x binary semaphore. create and initialize release... semCreate() 1177

memory binary semaphore/ create and initialize shared.................................. semBSmCreate() 1175
memory counting semaphore/ create and initialize shared.................................. semCSmCreate() 1178

memory message queue (VxMP). create and initialize shared.................................. msgQSmCreate() 868
device. create Berkeley Packet Filter.................................. bpfDevCreate() 442

service and END. create binding between network muxBind() 874
calling thread (POSIX). create cancellation point in............................ pthread_testcancel() 1043

BLK_DEV device. create CBIO wrapper atop cbioWrapBlkDev() 485
create cdromFsLib device............................. cdromFsDevCreate() 488
create disk cache.. dcacheDevCreate() 514

queue (VxFusion). create distributed message msgQDistCreate() 851
create empty ring buffer... rngCreate() 1109
create empty zbuf.. zbufCreate() 1492

(WindView). create event-log header wvLogHeaderCreate() 1474
table on disk. create FDISK-like partition usrFdiskPartCreate() 1421

create file. ... creat() 508
event data (Windview). create file for depositing fileUploadPathCreate() 592

create file system device..................................... dosFsDevCreate() 559

Keyword Index

1533

IX

Keyword Name Page

create hash table. .. hashTblCreate() 646
delete previously added module create hook routine............................ moduleCreateHookDelete() 829

in system. create list of all NFS devices nfsDevListGet() 935
create memory device.. memDevCreate() 808

multiple files. create memory device for.............................. memDevCreateDir() 810
create memory partition. memPartCreate() 814
create new line-editor ID.. ledOpen() 734

context (VxVMI). create new virtual memory.............................. vmContextCreate() 1434
entry. create or modify ARP table.. arpAdd() 412

create pipe device. ... pipeDevCreate() 979
create private environment. envPrivateCreate() 570
create proxy ARP network.................................. proxyNetCreate() 1002
create pseudo terminal. ... ptyDevCreate() 1043
create RAM disk device... ramDevCreate() 1051
create remote file device. ... netDevCreate() 911

fixed buffer size. create remote file device with............................... netDevCreate2() 912
delete previously added task create routine. .. taskCreateHookDelete() 1326

show list of task create routines.. taskCreateHookShow() 1326
initialize device and create rt11Fs file system... rt11FsMkfs() 1127

structure. create SCSI physical device........................... scsiPhysDevCreate() 1151
create SCSI sequential device. scsiSeqDevCreate() 1158

(VxMP). create shared memory partition memPartSmCreate() 818
create symbol table.. symTblCreate() 1296

(Unimplemented) (ANSI). create temporary binary file.. tmpfile() 1391
create thread (POSIX). ... pthread_create() 1025

key (POSIX). create thread specific data............................ pthread_key_create() 1029
suitable for use with dosFs. create TrueFFS block device................................... tffsDevCreate() 1363

create UNIX disk device.............................. unixDiskDevCreate() 1414
serial channel. create VxWorks device for ttyDevCreate() 1405

create watchdog timer. ... wdCreate() 1465
send it to TCP socket. create zbuf from user data and....................... zbufSockBufSend() 1502

and send it to UDP socket. create zbuf from user message zbufSockBufSendto() 1503
buffer and insert into zbuf. create zbuf segment from....................................... zbufInsertBuf() 1497

(PowerPC/ connect C routine to critical exception vector... excCrtConnect() 578
(PowerPC/ connect C routine to critical interrupt vector..................................... excIntCrtConnect() 581

ANSI ctype documentation. .. ansiCtype 14
compute cube root. ... cbrt() 485
compute cube root. ... cbrtf() 486

clear line from CY7C604 cache.. cacheCy604ClearLine() 450
clear page from CY7C604 cache... cacheCy604ClearPage() 450

clear region from CY7C604 cache....................................... cacheCy604ClearRegion() 451
clear segment from CY7C604 cache.................................... cacheCy604ClearSegment() 451

initialize Cypress CY7C604 cache library. cacheCy604LibInit() 452
initialize Cypress CY7C604 cache library..................... cacheCy604LibInit() 452

return contents of register d0 (also d1 - d7) (68K).. d0() 512
contents of register d0 (also d1 - d7) (68K). return.. d0() 512

of register d0 (also d1 - d7) (68K). return contents ... d0() 512
VxWorks remote login daemon. .. rlogind() 1105

initialize mount daemon. ... mountdInit() 836
TFTP server daemon task. .. tftpdTask() 1371

VxWorks OS Libraries API Reference, 5.5

1534

Keyword Name Page

display distributed name database filtered by type/ distNameFilterShow() 552
distributed name database library (VxFusion). distNameLib 84

shared memory objects name database library (VxMP). .. smNameLib 284
(VxFusion). distributed name database show routines.. distNameShow 85
shared memory objects name database show routines (VxMP).............................. smNameShow 286

add entry to distributed name database (VxFusion). .. distNameAdd() 551
find object by name in local database (VxFusion). .. distNameFind() 553

entry from distributed name database (VxFusion). remove.......................... distNameRemove() 555
entire distributed name database (VxFusion). display distNameShow() 555

add name to shared memory name database (VxMP). .. smNameAdd() 1237
shared memory objects name database (VxMP). /object from........................ smNameRemove() 1240

of shared memory objects name database (VxMP). /contents.................................. smNameShow() 1240
set rt11Fs file system date... rt11FsDateSet() 1125

enable last access date updating for this volume. dosFsLastAccessDateEnable() 560
events. deactivate specific network wvNetEventDisable() 1477

run-time support for memory deallocation (C++). default................................... operator delete() 946
routines. set debug level of ftp library ftpLibDebugOptionSet() 626
routines. set debug level of netDrv library netDrvDebugLevelSet() 913
partition. set debug options for memory......................... memPartOptionsSet() 816

memory system partition/ set debug options for shared.............................. smMemOptionsSet() 1234
memory partition. set debug options for system memOptionsSet() 812

get content of Debug Register 0 to 7 (x86).. vxDrGet() 1450
set value to Debug Register 0 to 7 (x86)... vxDrSet() 1451

architecture-dependent debugger library. ... dbgArchLib 63
debugging facilities. .. dbgLib 65

display debugging help menu. ... dbgHelp() 513
protocol. display debugging information for TCP tcpDebugShow() 1357

specify amount of debugging output. ... ripDebugLevelSet() 1092
initialize local debugging package... dbgInit() 514

test whether character is decimal digit (ANSI). ... isdigit() 721
network address to dotted decimal notation. convert ... inet_ntoa() 679

function. replace default address resolution muxAddrResFuncAdd() 871
print current default directory. ... pwd() 1048

change default directory. ... cd() 486
fds. set shell’s default input/output/error shellOrigStdSet() 1214

spawn task with default parameters.. sp() 1255
routine. default password encryption loginDefaultEncrypt() 751

set current default path... chdir() 491
get current default path... getwd() 640
get current default path... ioDefPathGet() 705
set current default path.. ioDefPathSet() 706
get current default path (POSIX). .. getcwd() 636

memory deallocation (C++). default run-time support for operator delete() 946
operator new (C++). default run-time support for operator new() 947

operator new (nothrow) (C++). default run-time support for operator new() 947
set default task ID. ... taskIdDefault() 1331

(MIPS). initialize default task status register.. taskSRInit() 1346
get default values for counters. m2IfDefaultValsGet() 776

time. delay for specified amount of .. sleep() 1231
nanoseconds. delay for specified number of sysNanoDelay() 1308

Keyword Index

1535

IX

Keyword Name Page

get delay on polling task....................................... muxTaskDelayGet() 893
set inter-cycle delay on polling task.. muxTaskDelaySet() 894

delay task from executing. .. taskDelay() 1327
to be called at every task delete. add routine taskDeleteHookAdd() 1329

function. delete address resolution muxAddrResFuncDel() 872
delete all breakpoints.. bdall() 428

groups. delete all MIB-II library .. m2Delete() 770
access ICMP group. delete all resources used to m2IcmpDelete() 771

access interface group. delete all resources used to ... m2IfDelete() 776
access IP group. delete all resources used to .. m2IpDelete() 789

access TCP group. delete all resources used to m2TcpDelete() 798
access UDP group. delete all resources used to m2UdpDelete() 800

with network interface. delete all routes associated.............................. ifAllRoutesDelete() 660
from list. delete and return first node .. lstGet() 765

segment from module. get (delete and return) first.. moduleSegGet() 835
delete breakpoint.. bd() 427
delete bytes from zbuf. .. zbufCut() 1492
delete device from I/O system............................... iosDevDelete() 708

list. delete directory from access.................... tftpdDirectoryRemove() 1369
queue from group (VxFusion). delete distributed message msgQDistGrpDelete() 854

address record. delete Ethernet multicast....................................... etherMultiDel() 574
authentication key. delete existing RIP... ripAuthKeyDelete() 1088

delete file (POSIX). ... unlink() 1418
delete hash table. .. hashTblDelete() 647

wildcards. delete hierarchy of files with .. xdelete() 1490
basis. delete hook routine on unit................................ pppHookDelete() 983

delete host from host table. .. hostDelete() 652
network interface. delete interface address for ifAddrDelete() 659

exclusion list. delete interface from RIP........................ ripIfExcludeListDelete() 1094
delete IP filter hook routine. ipFilterHookDelete() 716

routine. delete lease data storage....................... dhcpcCacheHookDelete() 524
delete logging fd... logFdDelete() 750
delete memory device.. memDevDelete() 810
delete memory pool. ... netPoolDelete() 923
delete message queue. ... msgQDelete() 851

add, modify, or delete MIB-II ARP entry. m2IpAtransTblEntrySet() 788
(use unld() to reclaim/ delete module ID information............................... moduleDelete() 830
device’s multicast table. delete multicast address from muxMCastAddrDel() 883

wake-up list. find and delete node from select()...................................... selNodeDelete() 1171
delete pipe device.. pipeDevDelete() 979
delete PPP network interface.. pppDelete() 982

create hook routine. delete previously added module moduleCreateHookDelete() 829
create routine. delete previously added task................. taskCreateHookDelete() 1326
delete routine. delete previously added task................. taskDeleteHookDelete() 1329
switch routine. delete previously added task................ taskSwitchHookDelete() 1350

delete proxy network... proxyNetDelete() 1002
access MIB-II system group. delete resources used to ... m2SysDelete() 795

delete ring buffer. .. rngDelete() 1109
delete RIP MIB support. ... m2RipDelete() 792
delete route... routeDelete() 1116

VxWorks OS Libraries API Reference, 5.5

1536

Keyword Name Page

table. delete route from routing....................................... mRouteDelete() 847
table. delete route from routing............................. mRouteEntryDelete() 849

network interface. delete routes associated with ifRouteDelete() 670
delete previously added task delete routine... taskDeleteHookDelete() 1329

show list of task delete routines. .. taskDeleteHookShow() 1330
structure. delete SCSI physical-device.......................... scsiPhysDevDelete() 1152

authentication secrets table. delete secret from PPP.. pppSecretDelete() 994
delete semaphore. .. semDelete() 1179

(POSIX). delete signal from signal set .. sigdelset() 1218
list. delete specified node from .. lstDelete() 763

delete symbol table. .. symTblDelete() 1296
delete task. .. taskDelete() 1327
delete task. ... td() 1358

restriction. delete task without .. taskDeleteForce() 1328
key (POSIX). delete thread specific data pthread_key_delete() 1029

list. delete trigger from trigger .. trgDelete() 1395
table. delete user entry from login loginUserDelete() 755

(VxVMI). delete virtual memory context vmContextDelete() 1435
delete watchdog timer.. wdDelete() 1465
delete zbuf.. zbufDelete() 1493

make calling task safe from deletion. ... taskSafe() 1342
make calling task unsafe from deletion. .. taskUnsafe() 1352

change C++ demangling mode (C++).............................. cplusDemanglerSet() 504
change C++ demangling style (C++). cplusDemanglerStyleSet() 505

muxTkPollReceive(). now deprecated, see ... muxPollReceive() 889
muxTkPollSend(). now deprecated, see .. muxPollSend() 890

get current interrupt nesting depth. .. intCount() 686
call static destructors (C++). ... cplusDtors() 505

call all linked static destructors (C++). ... cplusDtorsLink() 506
thread/ get value of detachstate attribute in................... pthread_attr_getdetachstate() 1008

thread attributes object/ set detachstate attribute in................... pthread_attr_setdetachstate() 1013
detect change in media................................. scsiSeqStatusCheck() 1160

create RAM disk device.. ramDevCreate() 1051
initialize RAM Disk device... ramDiskDevCreate() 1052

read bytes from file or device.. read() 1064
on specified physical device. /BLK_DEV structures.......................... scsiBlkDevShow() 1139

issue ERASE command to SCSI device.. scsiErase() 1142
command to SCSI device. issue FORMAT_UNIT............................. scsiFormatUnit() 1142

issue INQUIRY command to SCSI device.. scsiInquiry() 1144
command to SCSI device. issue LOAD/UNLOAD scsiLoadUnit() 1145
command to SCSI device. issue MODE_SELECT............................. scsiModeSelect() 1149

MODE_SENSE command to SCSI device. issue... scsiModeSense() 1149
information for physical device. show status.. scsiPhysDevShow() 1153

bytes or blocks from SCSI tape device. read.. scsiRdTape() 1154
command to SCSI device. issue READ_CAPACITY scsiReadCapacity() 1155

issue RELEASE command to SCSI device.. scsiRelease() 1155
command to SCSI device. issue RELEASE UNIT scsiReleaseUnit() 1156

issue RESERVE command to SCSI device... scsiReserve() 1157
command to SCSI device. issue RESERVE UNIT scsiReserveUnit() 1157

issue REWIND command to SCSI device... scsiRewind() 1158

Keyword Index

1537

IX

Keyword Name Page

create SCSI sequential device. .. scsiSeqDevCreate() 1158
command to SCSI device. /READ_BLOCK_LIMITS scsiSeqReadBlockLimits() 1159

on specified physical SCSI device. move tape... scsiSpace() 1161
command to SCSI device. issue START_STOP_UNIT.................. scsiStartStopUnit() 1162

command to SCSI tape device. issue MODE_SELECT scsiTapeModeSelect() 1163
command to SCSI tape device. issue MODE_SENSE scsiTapeModeSense() 1163

command to SCSI device. issue TEST_UNIT_READY................... scsiTestUnitRdy() 1166
file marks to SCSI sequential device. write ... scsiWrtFileMarks() 1167

write data to SCSI tape device. ... scsiWrtTape() 1168
to boot-image region of flash device. write ... tffsBootImagePut() 1362

do task-level read for tty device. .. tyRead() 1411
do task-level write for tty device. ... tyWrite() 1412

create UNIX disk device. .. unixDiskDevCreate() 1414
create Berkeley Packet Filter device. ... bpfDevCreate() 442

destroy Berkeley Packet Filter device. ... bpfDevDelete() 442
perform ioctl operation on device. ... cbioIoctl() 479

return mode setting for CBIO device. .. cbioModeGet() 481
set mode for CBIO device. ... cbioModeSet() 481

determine ready status of CBIO device. ... cbioRdyChgdGet() 482
change in ready status of CBIO device. force... cbioRdyChgdSet() 483

print information about CBIO device. ... cbioShow() 484
CBIO wrapper atop BLK_DEV device. create.. cbioWrapBlkDev() 485

create cdromFsLib device. .. cdromFsDevCreate() 488
disable disk cache for this device. ... dcacheDevDisable() 515
set new size to disk cache device. ... dcacheDevMemResize() 516

create file system device. ... dosFsDevCreate() 559
underlying driver is tty device. return whether ... isatty() 720

packet counters for 802.3 device. increment m2If8023PacketCount() 772
create memory device. .. memDevCreate() 808
delete memory device. .. memDevDelete() 810

information to MUX or to device. send control .. muxIoctl() 880
returns cookie for device. .. muxTkCookieGet() 897

network service from specified device. detach .. muxUnbind() 904
create remote file device. .. netDevCreate() 911

information from requested NFS device. read configuration nfsDevInfoGet() 934
unmount NFS device. .. nfsUnmount() 943

create pipe device. ... pipeDevCreate() 979
delete pipe device. ... pipeDevDelete() 979

channels. provide terminal device access to serial ... ttyDrv 326
system. initialize device and create rt11Fs file .. rt11FsMkfs() 1127

command to SCSI device and read results. /REQUEST_SENSE....... scsiReqSense() 1156
channel. get SIO_CHAN device associated with serial sysSerialChanGet() 1315

routine. start device by calling start ... muxDevStart() 877
routine. stop device by calling stop ... muxDevStop() 878

handle device control requests. .. tyIoctl() 1409
initialize rt11Fs device descriptor. ... rt11FsDevInit() 1126

initialize tty device descriptor. .. tyDevInit() 1408
remove tty device descriptor. .. tyDevRemove() 1408

pseudo-memory device driver.. memDrv 156
extract backplane address from device field. ... bootBpAnchorExtract() 432

VxWorks OS Libraries API Reference, 5.5

1538

Keyword Name Page

tape sequential device file system library. .. tapeFsLib 302
create memory device for multiple files. memDevCreateDir() 810

create VxWorks device for serial channel. ... ttyDevCreate() 1405
format flash device for use with TrueFFS. tffsDevFormat() 1364

delete device from I/O system. ... iosDevDelete() 708
tMuxPollTask. removes device from list polled by muxPollDevDel() 887

unloads device from MUX... muxDevUnload() 879
initialize CBIO device (Generic). .. cbioDevCreate() 478

find I/O device in device list.. iosDevFind() 709
socket interfaces. show device information on all ... tffsShowAll() 1368
socket interface. show device information on specific .. tffsShow() 1367

connect BSP serial device interrupts. .. sysSerialHwInit2() 1316
MUX. tests whether device is already loaded into................................. muxDevExists() 876

interface. checks if device is NPT or END muxTkDrvCheck() 898
tMuxPollTask. reports whether device is on list polled by muxPollDevStat() 888

SCSI sequential access device library (SCSI-2).. scsiSeqLib 260
find I/O device in device list. ... iosDevFind() 709

descriptor pointer. convert device name into DOS volume dosFsVolDescGet() 561
/structure with CBIO device parameters. .. cbioParamsGet() 482

obtain CBIO device semaphore. .. cbioLock() 480
release CBIO device semaphore. ... cbioUnlock() 484

create SCSI physical device structure. ... scsiPhysDevCreate() 1151
add device to I/O system. .. iosDevAdd() 708

tMuxPollTask. adds device to list polled by muxPollDevAdd() 887
find device using string name. endFindByName() 569

modify mode of raw device volume. ... rawFsModeChange() 1055
disable raw device volume. .. rawFsVolUnmount() 1056
disable tape device volume. ... tapeFsVolUnmount() 1322

create remote file device with fixed buffer size. netDevCreate2() 912
system functions. associate device with ntPassFs file.................................... ntPassFsDevInit() 943

functions. associate device with passFs file system passFsDevInit() 949
associate sequential device with tape volume/ tapeFsDevInit() 1320

function for sequential access devices. perform I/O control scsiSeqIoctl() 1159
list all system-known devices. ... devs() 519

display mounted NFS devices. ... nfsDevShow() 935
cache-safe buffer for DMA devices and drivers. allocate cacheDmaMalloc() 453

to boot ROMs. reset network devices and transfer control .. reboot() 1066
controller. list physical devices attached to SCSI ... scsiShow() 1160

controller. configure all devices connected to SCSI scsiAutoConfig() 1137
display list of devices in system. .. iosDevShow() 709

create list of all NFS devices in system. .. nfsDevListGet() 935
add multicast address to device’s multicast table. muxMCastAddrAdd() 882

delete multicast address from device’s multicast table. muxMCastAddrDel() 883
display configuration of devices registered with MUX.. muxShow() 893

common commands for all devices (SCSI-2). /library scsiCommonLib 256
SCSI library for direct access devices (SCSI-2)... scsiDirectLib 257

/down tMuxPollTask and returns devices to interrupt mode.. muxPollEnd() 888
initialize BSP serial devices to quiescent state................................... sysSerialHwInit() 1315

reset all SIO devices to quiet state. ... sysSerialReset() 1316
function. perform device-specific I/O control ... scsiIoctl() 1145

Keyword Index

1539

IX

Keyword Name Page

configuration parameters with DHCP. obtain set of network dhcpcBind() 520
configuration parameters with DHCP. obtain additional dhcpcBootInformGet() 521
configuration parameters with DHCP. obtain additional dhcpcInformGet() 526

initialize network with DHCP at boot time. ... dhcpcBootBind() 521
DHCP boot-time client library................................... dhcpcBootLib 71

code library. DHCP client interface shared dhcpcCommonLib 72
disable DHCP client library. .. dhcpcShutdown() 536

initialization. DHCP client library .. dhcpcLibInit() 528
data structures. set up DHCP client parameters and................................. dhcpcBootInit() 522

DHCP relay agent library. ... dhcprLib 75
/Host Configuration Protocol (DHCP) run-time client API. ... dhcpcLib 73
information display routines. DHCP run-time client... dhcpcShow 75

retrieve current DHCP server. .. dhcpcServerGet() 535
display current DHCP server. .. dhcpcServerShow() 535

/Host Configuration Protocol (DHCP) server library. .. dhcpsLib 76
data structures. set up DHCP server parameters and dhcpsInit() 540

initialize DHCP show facility... dhcpcShowInit() 536
(ANSI). put diagnostics into programs... assert() 418

calendar times/ compute difference between two ... difftime() 542
whether character is decimal digit (ANSI). test.. isdigit() 721

character is hexadecimal digit (ANSI). test whether .. isxdigit() 725
RST line on SCSI bus (Western Digital WD33C93 only). assert sysScsiBusReset() 1312

(SCSI-2). SCSI library for direct access devices... scsiDirectLib 257
print current default directory. ... pwd() 1048

remove directory. .. rmdir() 1107
file attributes on file or directory. modify MS-DOS... attrib() 423

change default directory. ... cd() 486
generate brief listing of directory. .. ls() 759

make directory. .. mkdir() 821
mv file into other directory. ... mv() 905
do long listing of directory and all/ .. llr() 738

list contents of directory and any of/ .. lsr() 761
generate long listing of directory contents... ll() 737

list directory contents via FTP.. ftpLs() 627
(POSIX). open directory for searching... opendir() 946

delete directory from access list. tftpdDirectoryRemove() 1369
(POSIX). directory handling library.. dirLib 81

list contents of directory (multi-purpose). ... dirList() 542
read one entry from directory (POSIX). .. readdir() 1064

reset position to start of directory (POSIX). .. rewinddir() 1082
close directory (POSIX). .. closedir() 497
add directory to access list. tftpdDirectoryAdd() 1369

hardware snooping of caches is disabled. inform SCSI that scsiCacheSnoopDisable() 1140
specified number of/ disassemble and display ... l() 729

removed interfaces for router discovery. check for new or rdiscIfReset() 1062
initialize router discovery. .. rdiscLibInit() 1063

implement ICMP router discovery control function. .. rdCtl() 1059
implement ICMP router discovery function.. rdisc() 1061

initialize ICMP router discovery function... rdiscInit() 1062
ICMP router discovery server library. ... rdiscLib 230

VxWorks OS Libraries API Reference, 5.5

1540

Keyword Name Page

DOS file system from floppy disk. mount .. usrFdConfig() 1420
FDISK-like partition table on disk. create .. usrFdiskPartCreate() 1421

DOS file system from IDE hard disk. mount .. usrIdeConfig() 1424
format disk... diskFormat() 543

initialize partitioned disk... dpartDevCreate() 564
create disk cache. .. dcacheDevCreate() 514

re-enable disk cache. .. dcacheDevEnable() 516
print information about disk cache. ... dcacheShow() 519

set new size to disk cache device...................................... dcacheDevMemResize() 516
disk cache driver. ... dcacheCbio 67

disable disk cache for this device. dcacheDevDisable() 515
modify tunable disk cache parameters. .. dcacheDevTune() 517

RAM Disk Cached Block Driver... ramDiskCbio 225
create RAM disk device. .. ramDevCreate() 1051

initialize RAM Disk device.. ramDiskDevCreate() 1052
create UNIX disk device. .. unixDiskDevCreate() 1414
install UNIX disk driver. .. unixDrv() 1416

initialize hard disk driver. .. usrAtaInit() 1420
RAM disk driver. ... ramDrv 225

(optional). prepare RAM disk driver for use... ramDrv() 1053
and VxSim for HP). UNIX-file disk driver (VxSim for Solaris.. unixDrv 332

floppy disk initialization. .. usrFd 336
initialize dosFs disk on top of UNIX. .. unixDiskInit() 1415

DOS file system from ATA hard disk or CDROM. mount... usrAtaConfig() 1419
generic disk partition manager. ... dpartCbio 98

disable superscalar dispatch (MC68060). .. vxSSDisable() 1458
enable superscalar dispatch (MC68060). ... vxSSEnable() 1458

group (VxFusion). delete distributed message queue from msgQDistGrpDelete() 854
group library (VxFusion). distributed message queue.................................. msgQDistGrpLib 180

group show routines/ distributed message queue............................. msgQDistGrpShow 181
package/ initialize distributed message queue show msgQDistShowInit() 859

routines (VxFusion). distributed message queue show msgQDistShow 182
group (VxFusion). add distributed message queue to msgQDistGrpAdd() 853

(VxFusion). create distributed message queue................................ msgQDistCreate() 851
get number of messages in distributed message queue/ msgQDistNumMsgs() 855

receive message from distributed message queue/ msgQDistReceive() 856
(VxFusion). send message to distributed message queue.................................. msgQDistSend() 857

filtered by type/ display distributed name database distNameFilterShow() 552
library (VxFusion). distributed name database .. distNameLib 84

routines (VxFusion). distributed name database show............................ distNameShow 85
(VxFusion). add entry to distributed name database distNameAdd() 551

(VxFusion). remove entry from distributed name database distNameRemove() 555
(VxFusion). display entire distributed name database distNameShow() 555

function (VxFusion). perform distributed objects control ... distCtl() 544
initialization and control/ distributed objects.. distLib 83

adapter show routines/ distributed objects interface ... distIfShow 83
queue library (VxFusion). distributed objects message.. msgQDistLib 181
buffer library (VxFusion). distributed objects telegram ... distTBufLib 85

quotient and remainder of division (ANSI). compute... ldiv() 732
allocate cache-safe buffer for DMA devices and drivers................................. cacheDmaMalloc() 453

Keyword Index

1541

IX

Keyword Name Page

packet. expand DNS compressed name from DNS resolvDNExpand() 1074
compress DNS name in DNS packet................................... resolvDNComp() 1074

compress DNS name in DNS packet.. resolvDNComp() 1074
DNS compressed name from DNS packet. expand ... resolvDNExpand() 1074

create all types of DNS queries. ... resolvMkQuery() 1078
DNS resolver library. .. resolvLib 232

address. query DNS server for host name of IP.............. resolvGetHostByAddr() 1075
host. query DNS server for IP address of resolvGetHostByName() 1076

inflate code using public domain zlib functions. .. inflateLib 123
disk or CDROM. mount DOS file system from ATA hard............................. usrAtaConfig() 1419

disk. mount DOS file system from floppy usrFdConfig() 1420
disk. mount DOS file system from IDE hard............................... usrIdeConfig() 1424

convert device name into DOS volume descriptor pointer. dosFsVolDescGet() 561
suitable for use with dosFs. /TrueFFS block device tffsDevCreate() 1363

initialize dosFs disk on top of UNIX....................................... unixDiskInit() 1415
prepare to use dosFs library. ... dosFsLibInit() 560

data. display dosFs volume configuration dosFsShow() 561
return very large double. .. infinity() 681

initial portion of string to double (ANSI). convert ... strtod() 1281
convert string to double (ANSI)... atof() 421
integer. convert double-precision value to... irint() 717

library. doubly linked list subroutine ... lstLib 137
initialize pseudo-terminal driver. ... ptyDrv() 1044

AIO system driver. .. aioSysDrv 13
initialize tty driver. .. ttyDrv() 1405

install UNIX disk driver. ... unixDrv() 1416
initialize hard disk driver. ... usrAtaInit() 1420

pseudo-memory device driver. ... memDrv 156
network remote file I/O driver. ... netDrv 190

Network File System (NFS) I/O driver. ... nfsDrv 195
pipe I/O driver. .. pipeDrv 210

pseudo-terminal driver. .. ptyDrv 223
RAM Disk Cached Block Driver. .. ramDiskCbio 225

RAM disk driver. ... ramDrv 225
memory network (backplane) driver. /interface to shared... smNetLib 287

initialize AIO system driver. ... aioSysInit() 407
initialize BPF driver. .. bpfDrv() 443

of multicast addresses from driver. retrieve table... etherMultiGet() 574
disk cache driver. .. dcacheCbio 67
install I/O driver. .. iosDrvInstall() 710

remove I/O driver. ... iosDrvRemove() 710
install memory driver. .. memDrv() 811

bind NPT protocol to driver. .. muxTkBind() 895
for packet from NPT or END driver. poll ... muxTkPollReceive() 898

receive packet from NPT driver. ... muxTkReceive() 901
install network remote file driver. ... netDrv() 913

install NFS driver. ... nfsDrv() 937
system driver number for NFS driver. return IO.. nfsDrvNumGet() 937

initialize pipe driver. ... pipeDrv() 980
prepare RAM disk driver for use (optional). .. ramDrv() 1053

VxWorks OS Libraries API Reference, 5.5

1542

Keyword Name Page

load driver into MUX.. muxDevLoad() 876
return whether underlying driver is tty device. ... isatty() 720

Packet Filter (BPF) I/O driver library. Berkeley .. bpfDrv 35
return IO system driver number for NFS driver. nfsDrvNumGet() 937

shared memory network driver show routines. .. smNetShow 288
tty driver support library. .. tyLib 326

VxSim for HP). UNIX-file disk driver (VxSim for Solaris and... unixDrv 332
buffer for DMA devices and drivers. allocate cache-safe cacheDmaMalloc() 453

flush data cache for drivers.. cacheDrvFlush() 454
invalidate data cache for drivers... cacheDrvInvalidate() 454

translate physical address for drivers.. cacheDrvPhysToVirt() 455
translate virtual address for drivers.. cacheDrvVirtToPhys() 455

translate physical address for drivers... cacheTiTms390PhysToVirt() 474
display list of system drivers.. iosDrvShow() 711

validate open fd and return driver-specific value. .. iosFdValue() 711
print contents of task’s DSP registers.. dspTaskRegsShow() 566

initialize DSP show facility. ... dspShowInit() 566
dsp show routines.. dspShow 100

initialize DSP support.. dspInit() 565
dsp support library. ... dspLib 100
duplicate mBlk. ... netMblkDup() 920
duplicate mBlk chain..................................... netMblkChainDup() 916
duplicate zbuf.. zbufDup() 1494

Protocol (DHCP) run-time/ Dynamic Host Configuration... dhcpcLib 73
Protocol (DHCP) server/ Dynamic Host Configuration... dhcpsLib 76

(POSIX). dynamic package initialization............................... pthread_once() 1038
library. dynamic ring buffer (rBuff) ... rBuffLib 230

of register edi (also esi - eax) (x86/SimNT). /contents .. edi() 568
return contents of register edi (also esi - eax)/.. edi() 568

get content of EFLAGS register (x86). ... vxEflagsGet() 1451
set value to EFLAGS register (x86). .. vxEflagsSet() 1452

high-level floating-point emulation library.. mathSoftLib 155
default password encryption routine. loginDefaultEncrypt() 751

install encryption routine. .. loginEncryptInstall() 751
for stream (ANSI). clear end-of-file and error flags .. clearerr() 493

change end-of-file character. .. tyEOFSet() 1409
stream (ANSI). test end-of-file indicator for... feof() 588

create private environment.. envPrivateCreate() 570
destroy private environment... envPrivateDestroy() 570

goto by restoring saved environment (ANSI). /non-local longjmp() 759
display environment for task. .. envShow() 571

argument (ANSI). save calling environment in jmp_buf .. setjmp() 1201
set environment variable. ... putenv() 1046
get environment variable (ANSI).. getenv() 636

initialize environment variable facility.. envLibInit() 569
environment variable library.. envLib 101

issue ERASE command to SCSI device. scsiErase() 1142
map error number in errno to error message (ANSI). .. perror() 976

standard output or standard error. set line buffering for... setlinebuf() 1202
probe address for bus error... vxMemProbe() 1454

Keyword Index

1543

IX

Keyword Name Page

clear end-of-file and error flags for stream (ANSI). .. clearerr() 493
/(take) semaphore, returning error if unavailable (POSIX). sem_trywait() 1194

pointer (ANSI). test error indicator for file .. ferror() 589
store buffer after data store error interrupt. clean up.............................. cleanUpStoreBuffer() 493

log formatted error message. .. logMsg() 757
map error number in errno to error message (ANSI). ... perror() 976

message (ANSI). map error number in errno to error.. perror() 976
(ANSI). map error number to error string .. strerror() 1274

(POSIX). map error number to error string ... strerror_r() 1274
error status library. .. errnoLib 102

I/O operation/ retrieve error status of asynchronous .. aio_error() 408
print definition of specified error status value.. printErrno() 996

task. get error status value of calling .. errnoGet() 571
task. set error status value of calling ... errnoSet() 573

specified task. get error status value of .. errnoOfTaskGet() 572
specified task. set error status value of ... errnoOfTaskSet() 572

formatted string to standard error stream. write.. printErr() 996
map error number to error string (ANSI). ... strerror() 1274
map error number to error string (POSIX). .. strerror_r() 1274

/contents of register edi (also esi - eax) (x86/SimNT).. edi() 568
record. delete Ethernet multicast address.................................... etherMultiDel() 574

library to handle Ethernet multicast addresses. etherMultiLib 104
handle controller-bus reset event. .. scsiMgrBusReset() 1146

manager of SCSI (controller) event. notify SCSI ... scsiMgrEventNotify() 1147
trigger user-defined event. ... trgEvent() 1397

return ID of WindView event buffer (WindView).................................... wvEvtBufferGet() 1470
file destination for event data. ... wvFileUploadPathLib 350

create file for depositing event data (Windview). fileUploadPathCreate() 592
include WDB user event library. .. wdbUserEvtLibInit() 1463

WDB user event library. ... wdbUserEvtLib 348
initialize event log (WindView). ... wvEvtLogInit() 1472

(WindView). event logging control library ... wvLib 351
message queue. start event notification process for................................... msgQEvStart() 859
message queue. stop event notification process for................................... msgQEvStop() 860

semaphore. start event notification process for...................................... semEvStart() 1179
semaphore. stop event notification process for...................................... semEvStop() 1181

post user event string to host tools. wdbUserEvtPost() 1463
machine. send event to SCSI controller state........................... scsiMgrCtrlEvent() 1146

send event to thread state machine.................... scsiMgrThreadEvent() 1148
log user-defined event (WindView).. wvEvent() 1469

(WindView). close event-destination file fileUploadPathClose() 592
(WindView). write to event-destination file fileUploadPathWrite() 593

create event-log header (WindView). wvLogHeaderCreate() 1474
set or display eventpoints (WindView). ... e() 567

remove address filter for events. .. wvNetAddressFilterClear() 1475
specify address filter for events. .. wvNetAddressFilterSet() 1475

deactivate specific network events. .. wvNetEventDisable() 1477
activate specific network events. .. wvNetEventEnable() 1478

remove port number filter for events. .. wvNetPortFilterClear() 1480
specify address filter for events. .. wvNetPortFilterSet() 1481

VxWorks OS Libraries API Reference, 5.5

1544

Keyword Name Page

wait for event(s). .. eventReceive() 575
send event(s). ... eventSend() 577

trigger events control library. .. trgLib 324
clear all events for current task.. eventClear() 575

(WindView). clear class of events from those being logged....................... wvEvtClassClear() 1470
clear all classes of events from those logged/ wvEvtClassClearAll() 1470

VxWorks events library. .. eventLib 104
queues. VxWorks events support for message... msgQEvLib 183

VxWorks events support for semaphores... semEvLib 265
start logging events to buffer (WindView). wvEvtLogStart() 1472
stop logging events to buffer (WindView). wvEvtLogStop() 1473

start upload of events to host (WindView). wvUploadStart() 1486
stop upload of events to host (WindView). wvUploadStop() 1487

set class of events to log (WindView). wvEvtClassSet() 1471
end reporting of network events to WindView. ... wvNetDisable() 1476
begin reporting network events to WindView. .. wvNetEnable() 1476

instrument VxWorks Events (WindView). ... wvEventInst() 1469
extra copy of task name events (WindView). preserve wvTaskNamesPreserve() 1484

upload preserved task name events (WindView). wvTaskNamesUpload() 1485
level. enable network events with specific priority wvNetLevelAdd() 1479

level. disable network events with specific priority wvNetLevelRemove() 1479
generic exception handling facilities.. excLib 106

initialize exception handling package.. excInit() 580
connect C routine to critical exception vector (PowerPC/................................. excCrtConnect() 578

connect C routine to exception vector (PowerPC). excConnect() 577
/C routine to asynchronous exception vector (PowerPC,/................................ excIntConnect() 580

ARM). get CPU exception vector (PowerPC, ... excVecGet() 582
ARM). set CPU exception vector (PowerPC, .. excVecSet() 584

x86, ARM,/ write-protect exception vector table (68K, intVecTableWriteProtect() 704
architecture-specific exception-handling facilities. ... excArchLib 105

initialize exception/interrupt vectors. .. excVecInit() 582
routine to be called with exceptions. specify .. excHookAdd() 579

handle task-level exceptions... excTask() 582
add interface to RIP exclusion list. ... ripIfExcludeListAdd() 1093

delete interface from RIP exclusion list. ... ripIfExcludeListDelete() 1094
show RIP interface exclusion list. ... ripIfExcludeListShow() 1094

compare-and-exchange/ execute atomic .. pentiumBtc() 951
compare-and-exchange/ execute atomic .. pentiumBts() 951

instruction CPUID. execute serializing.. pentiumSerialize() 973
remote machine. execute shell command on ... rcmd() 1057
delay task from executing. ... taskDelay() 1327

functions. time single execution of function or ... timex() 1385
cancel execution of thread (POSIX). pthread_cancel() 1018

shell execution routines.. shellLib 275
display synopsis of execution timer facilities. .. timexHelp() 1387

execution timer facilities. .. timexLib 323
include execution timer library. ... timexInit() 1388

group of/ time repeated executions of function or .. timexN() 1388
exit task (ANSI). .. exit() 584

from DNS packet. expand DNS compressed name....................... resolvDNExpand() 1074

Keyword Index

1545

IX

Keyword Name Page

type and value of call’s next/ expand to expression having... va_arg() 1428
compute exponential value (ANSI).. exp() 585
compute exponential value (ANSI)... expf() 585

value of call’s/ expand to expression having type and... va_arg() 1428
call allocation failure handler (C++). cplusCallNewHandler() 502

with variable argument list to fd. write string formatted.. vfdprintf() 1430
write formatted string to fd. .. fdprintf() 588

add logging fd. .. logFdAdd() 749
delete logging fd. .. logFdDelete() 750

set primary logging fd. ... logFdSet() 750
value. validate open fd and return driver-specific....................................... iosFdValue() 711

input/output/error. get fd for global standard .. ioGlobalStdGet() 706
input/output/error. set fd for global standard ... ioGlobalStdSet() 707

return fd for stream (POSIX)... fileno() 591
input/output/error. get fd for task standard.. ioTaskStdGet() 713
input/output/error. set fd for task standard... ioTaskStdSet() 713

display list of fd names in system... iosFdShow() 711
open file specified by fd (POSIX).. fdopen() 587

disk. create FDISK-like partition table on........................ usrFdiskPartCreate() 1421
FDISK-style partition handler. usrFdiskPartLib 337

read FDISK-style partition table. usrFdiskPartRead() 1422
pend on set of fds. ... select() 1169

default input/output/error fds. set shell’s .. shellOrigStdSet() 1214
backplane address from device field. extract... bootBpAnchorExtract() 432

extract net mask field from Internet address. bootNetmaskExtract() 434
populate rcvAddr fields for ifRcvAddressTable............................ rcvEtherAddrGet() 1058
partition. initialize fields in SCSI logical... scsiBlkDevInit() 1138

change name of file. ... rename() 1072
remove file. .. rm() 1107

update time on file. .. utime() 1427
write bytes to file. ... write() 1468

close file. .. close() 496
create file. .. creat() 508

read string from file. .. fioRdString() 595
open file. .. open() 945

remove file (ANSI)... remove() 1071
indicator to beginning of file (ANSI). /file position .. rewind() 1082

modify MS-DOS file attributes of many files... xattrib() 1489
directory. modify MS-DOS file attributes on file or.. attrib() 423

data. file destination for event.............................. wvFileUploadPathLib 350
create remote file device... netDevCreate() 911

size. create remote file device with fixed buffer netDevCreate2() 912
install network remote file driver.. netDrv() 913

install applette to test if file exists. netDrvFileDoesNotExistInstall() 914
(Windview). create file for depositing event data.................... fileUploadPathCreate() 592

helper file for igmp Mib.. m2Igmp 141
TrueFFS configuration file for VxWorks.. tffsConfig 315

get file from remote system... tftpGet() 1372
mv file into other directory. .. mv() 905

file/directory. copy file into other.. cp() 502

VxWorks OS Libraries API Reference, 5.5

1546

Keyword Name Page

network remote file I/O driver. .. netDrv 190
device. write file marks to SCSI sequential........................... scsiWrtFileMarks() 1167

find module by file name and path. moduleFindByNameAndPath() 832
generate temporary file name (ANSI). ... tmpnam() 1391

/object module by specifying file name or module ID. ... unld() 1416
standard input/output/error FILE of current task. return ... stdioFp() 1269

read bytes from file or device... read() 1064
MS-DOS file attributes on file or directory. modify.. attrib() 423

test error indicator for file pointer (ANSI). ... ferror() 589
display file pointer internals. ... stdioShow() 1270

stream/ store current value of file position indicator for .. fgetpos() 590
stream (ANSI). set file position indicator for ... fseek() 618
stream (ANSI). set file position indicator for .. fsetpos() 619

return current value of file position indicator for/.. ftell() 620
beginning of file (ANSI). set file position indicator to .. rewind() 1082

delete file (POSIX). ... unlink() 1418
truncate file (POSIX). ... ftruncate() 633

set file read/write pointer... lseek() 760
open file specified by fd (POSIX)... fdopen() 587
open file specified by name (ANSI). .. fopen() 599
open file specified by name (ANSI). .. freopen() 612

(POSIX). get file status information .. fstat() 619
(POSIX). get file status information ... fstatfs() 620

pathname (POSIX). get file status information using ... stat() 1268
pathname (POSIX). get file status information using ... statfs() 1268

device and create rt11Fs file system. initialize ... rt11FsMkfs() 1127
consistency checking on MS-DOS file system. perform... chkdsk() 492

mount NFS file system. ... nfsMount() 941
set rt11Fs file system date... rt11FsDateSet() 1125

create file system device. ... dosFsDevCreate() 559
MS-DOS media-compatible file system formatting/ .. dosFsFmtLib 86

or CDROM. mount DOS file system from ATA hard disk usrAtaConfig() 1419
mount DOS file system from floppy disk...................................... usrFdConfig() 1420

disk. mount DOS file system from IDE hard.. usrIdeConfig() 1424
exported file systems. remove file system from list of ... nfsUnexport() 942

associate device with ntPassFs file system functions. .. ntPassFsDevInit() 943
associate device with passFs file system functions. .. passFsDevInit() 949

pass-through (to Windows NT) file system library. ... ntPassFsLib 198
raw block device file system library. .. rawFsLib 226

RT-11 media-compatible file system library. .. rt11FsLib 239
tape sequential device file system library. ... tapeFsLib 302

ISO 9660 CD-ROM read-only file system library. ... cdromFsLib 59
MS-DOS media-compatible file system library. .. dosFsLib 86

pass-through (to UNIX) file system library (VxSim). ... passFsLib 200
Network File System (NFS) I/O driver. .. nfsDrv 195
Network File System (NFS) library. .. nfsLib 197

library. Network File System (NFS) server... nfsdLib 193
initialize file system on block device. ... diskInit() 544

exported. specify file system to be NFS .. nfsExport() 939
subroutine library. file system user interface.. usrFsLib 339

Keyword Index

1547

IX

Keyword Name Page

system from list of exported file systems. remove file .. nfsUnexport() 942
specified host. mount all file systems exported by... nfsMountAll() 942

display exported file systems of remote host................................... nfsExportShow() 939
put file to remote system. ... tftpPut() 1374

library. File Transfer Protocol (FTP) ... ftpLib 115
server. File Transfer Protocol (FTP) ... ftpdLib 113

library. Trivial File Transfer Protocol server .. tftpdLib 318
client library. Trivial File Transfer Protocol (TFTP).. tftpLib 319

POSIX file truncation.. ftruncate 117
create temporary binary file (Unimplemented) (ANSI). .. tmpfile() 1391

transfer file via TFTP... tftpCopy() 1368
interface. transfer file via TFTP using stream .. tftpXfer() 1376

close event-destination file (WindView).. fileUploadPathClose() 592
write to event-destination file (WindView).. fileUploadPathWrite() 593

format. archive named file/dir onto tape in tar.. tarArchive() 1322
copy file into other file/directory. ... cp() 502

MS-DOS file attributes of many files. modify.. xattrib() 1489
memory device for multiple files. create ... memDevCreateDir() 810

extract all files from tar formatted tape... tarExtract() 1323
copy hierarchy of files with wildcards.. xcopy() 1490

delete hierarchy of files with wildcards.. xdelete() 1490
library. Berkeley Packet Filter (BPF) I/O driver.. bpfDrv 35

create Berkeley Packet Filter device. ... bpfDevCreate() 442
destroy Berkeley Packet Filter device. ... bpfDevDelete() 442

initialize IP filter facility.. ipFilterLibInit() 716
remove address filter for events.................................... wvNetAddressFilterClear() 1475
specify address filter for events.. wvNetAddressFilterSet() 1475

remove port number filter for events.. wvNetPortFilterClear() 1480
specify address filter for events.. wvNetPortFilterSet() 1481
remove update filter from RIP interface. ripSendHookDelete() 1104

delete IP filter hook routine.. ipFilterHookDelete() 716
IP filter hooks library. .. ipFilterLib 128

add update filter to RIP interface. ripSendHookAdd() 1103
/distributed name database filtered by type (VxFusion). distNameFilterShow() 552

prevent strict border gateway filtering... ripFilterDisable() 1092
activate strict border gateway filtering.. ripFilterEnable() 1093
create remote file device with fixed buffer size. ... netDevCreate2() 912

change network interface flags. ... ifFlagChange() 663
get network interface flags. ... ifFlagGet() 664

ID. get flags associated with module moduleFlagsGet() 832
specify flags for network interface. ... ifFlagSet() 664

clear end-of-file and error flags for stream (ANSI)... clearerr() 493
low level I/O access to flash components... tffsRawio() 1366

write to boot-image region of flash device... tffsBootImagePut() 1362
TrueFFS. format flash device for use with.. tffsDevFormat() 1364

return very large float... infinityf() 682
probe for presence of floating-point coprocessor... fppProbe() 601

context. restore floating-point coprocessor ... fppRestore() 601
context. save floating-point coprocessor .. fppSave() 603

architecture-dependent floating-point coprocessor/ ... fppArchLib 109

VxWorks OS Libraries API Reference, 5.5

1548

Keyword Name Page

support. initialize floating-point coprocessor .. fppInit() 600
support library. floating-point coprocessor .. fppLib 112

library. high-level floating-point emulation... mathSoftLib 155
scanning library. floating-point formatting and ... floatLib 109

initialize floating-point I/O support. ... floatInit() 596
hardware floating-point math library. .. mathHardLib 155

initialize hardware floating-point math support................................... mathHardInit() 803
initialize software floating-point math support..................................... mathSoftInit() 803

integer and fraction/ separate floating-point number into .. modf() 827
normalized fraction and/ break floating-point number into ... frexp() 613

print contents of task’s floating-point registers. fppTaskRegsShow() 606
task TCB. get floating-point registers from fppTaskRegsGet() 605

task. set floating-point registers of fppTaskRegsSet() 605
initialize floating-point show facility....................................... fppShowInit() 604

floating-point show routines. ... fppShow 113
mount DOS file system from floppy disk. .. usrFdConfig() 1420

floppy disk initialization... usrFd 336
convert format string. ... fioFormatV() 594

log formatted error message. ... logMsg() 757
formatted I/O library. ... fioLib 108

initialize formatted I/O support library. fioLibInit() 595
convert broken-down time into formatted string (ANSI). .. strftime() 1275

(ANSI). write formatted string to buffer .. sprintf() 1256
write formatted string to fd. .. fdprintf() 588

error stream. write formatted string to standard ... printErr() 996
output stream (ANSI). write formatted string to standard ... printf() 997

(ANSI). write formatted string to stream... vfprintf() 1431
(ANSI). write formatted string to stream... fprintf() 606

extract all files from tar formatted tape. ... tarExtract() 1323
display all contents of tar formatted tape. ... tarToc() 1324

argument list to/ write string formatted with variable ... vsprintf() 1446
argument list to/ write string formatted with variable .. vfdprintf() 1430
argument list to/ write string formatted with variable .. vprintf() 1446

library. floating-point formatting and scanning.. floatLib 109
media-compatible file system formatting library. MS-DOS .. dosFsFmtLib 86

device. issue FORMAT_UNIT command to SCSI scsiFormatUnit() 1142
ports enabled for broadcast forwarding. show.. proxyPortShow() 1004

port. disable broadcast forwarding for particular................................. proxyPortFwdOff() 1003
port. enable broadcast forwarding for particular................................. proxyPortFwdOn() 1004

/number into normalized fraction and power of 2/... frexp() 613
/number into integer and fraction parts (ANSI). ... modf() 827

form frame with link-layer address. muxAddressForm() 870
list directory contents via FTP.. ftpLs() 627

initiate transfer via FTP.. ftpXfer() 631
RFC reply code. send FTP command and get complete ftpCommandEnhanced() 622

send FTP command and get reply. ftpCommand() 621
get FTP command reply... ftpReplyGet() 628
get FTP command reply................................. ftpReplyGetEnhanced() 629

get completed FTP data connection. .. ftpDataConnGet() 623
PASV mode. initialize FTP data connection using ftpDataConnInitPassiveMode() 624

Keyword Index

1549

IX

Keyword Name Page

mode. initialize FTP data connection using PORT ftpDataConnInit() 623
File Transfer Protocol (FTP) library. .. ftpLib 115

set debug level of ftp library routines. ftpLibDebugOptionSet() 626
File Transfer Protocol (FTP) server. ... ftpdLib 113

log in to remote FTP server. .. ftpLogin() 627
get control connection to FTP server on specified host. ftpHookup() 626

terminate FTP server task. ... ftpdDelete() 625
initialize FTP server task. .. ftpdInit() 625

set applette to stop FTP transient host responses. ftpTransientFatalInstall() 631
get parameters for host FTP_TRANSIENT responses. ftpTransientConfigGet() 630
set parameters for host FTP_TRANSIENT responses. ftpTransientConfigSet() 630

initialize Fujitsu MB86930 cache library. cacheMb930LibInit() 459
manager. full-featured memory partition ... memLib 158

gate type(int/trap), and gate selector (x86). /vector,.. intVecGet2() 699
selector/ get CPU vector, gate type(int/trap), and gate intVecGet2() 699
selector/ set CPU vector, gate type(int/trap), and .. intVecSet2() 703

prevent strict border gateway filtering... ripFilterDisable() 1092
activate strict border gateway filtering.. ripFilterEnable() 1093

general semaphore library.. semLib 266
unlock (give) semaphore (POSIX)... sem_post() 1193

address (VxMP). convert global address to local smObjGlobalToLocal() 1243
convert local address to global address (VxMP). smObjLocalToGlobal() 1245

get MIB-II RIP-group global counters................................... m2RipGlobalCountersGet() 793
Register/ get content of Global Descriptor Table.. vxGdtrGet() 1452

initialize global mapping.. vmBaseGlobalMapInit() 1431
initialize global mapping (VxVMI). vmGlobalMapInit() 1439
get fd for global standard/... ioGlobalStdGet() 706
set fd for global standard/.. ioGlobalStdSet() 707
initialize global state for MUX.. muxLibInit() 881

get MIB-II ICMP-group global variables... m2IcmpGroupInfoGet() 771
/to virtual space in shared global virtual mem (VxVMI). vmGlobalMap() 1438
information (VxVMI). get global virtual memory..................................... vmGlobalInfoGet() 1437

environment/ perform non-local goto by restoring saved .. longjmp() 759
compute smallest integer greater than or equal to/... ceil() 489
compute smallest integer greater than or equal to/.. ceilf() 490

Packet InterNet Groper (PING) library.. pingLib 209
mount DOS file system from IDE hard disk. .. usrIdeConfig() 1424

initialize hard disk driver. ... usrAtaInit() 1420
mount DOS file system from ATA hard disk or CDROM... usrAtaConfig() 1419

initialize system hardware.. sysHwInit() 1304
Internet address. resolve hardware address for specified arpResolve() 414

set hardware breakpoint. .. bh() 429
library. hardware floating-point math mathHardLib 155

support. initialize hardware floating-point math mathHardInit() 803
connect C routine to hardware interrupt.. intConnect() 683

disabled. inform SCSI that hardware snooping of caches is scsiCacheSnoopDisable() 1140
enabled. inform SCSI that hardware snooping of caches is scsiCacheSnoopEnable() 1140

remove hash node from hash table. hashTblRemove() 650
table. put hash node into specified hash hashTblPut() 649

specified key. find hash node that matches .. hashTblFind() 648

VxWorks OS Libraries API Reference, 5.5

1550

Keyword Name Page

create hash table. ... hashTblCreate() 646
delete hash table. ... hashTblDelete() 647

destroy hash table. ... hashTblDestroy() 647
call routine for each node in hash table. .. hashTblEach() 648

initialize hash table. .. hashTblInit() 649
put hash node into specified hash table. ... hashTblPut() 649

remove hash node from hash table. .. hashTblRemove() 650
terminate hash table. ... hashTblTerminate() 650

test hash table integrity... dcacheHashTest() 518
initialize hash table library. ... hashLibInit() 646

multiplicative hashing function. .. hashFuncMultiply() 644
iterative scaling hashing function for strings. hashFuncIterScale() 643

remainder technique. hashing function using..................................... hashFuncModulo() 644
transfer log header to host (WindView)....................... wvLogHeaderUpload() 1474

attach link-level header to packet. muxLinkHeaderCreate() 881
create event-log header (WindView)...................................... wvLogHeaderCreate() 1474

kernel heap version of netPoolInit()......................... netPoolKheapInit() 927
display task monitoring help menu. .. spyHelp() 1258

display debugging help menu. ... dbgHelp() 513
display NFS help menu. .. nfsHelp() 940

helper file for igmp Mib. ... m2Igmp 141
test whether character is hexadecimal digit (ANSI). ... isxdigit() 725

wildcards. copy hierarchy of files with... xcopy() 1490
wildcards. delete hierarchy of files with.. xdelete() 1490

display or set size of shell history. .. shellHistory() 1212
display or set size of shell history. .. h() 643

management library. Hitachi SH7040 cache .. cacheSh7040Lib 51
management library. Hitachi SH7604/SH7615 cache cacheSh7604Lib 51
management library. Hitachi SH7700 cache .. cacheSh7700Lib 52

library. Hitachi SH7700 MMU support mmuSh7700Lib 168
management library. Hitachi SH7729 cache .. cacheSh7729Lib 53
management library. Hitachi SH7750 cache .. cacheSh7750Lib 53

library. Hitachi SH7750 MMU support mmuSh7750Lib 172
sample authentication hook. .. ripAuthHook() 1084

remove route hook. ... ripRouteHookDelete() 1102
initialize task hook facilities... taskHookInit() 1330

permanent address storage hook for server. assign.......................... dhcpsAddressHookAdd() 538
assign permanent lease storage hook for server.. dhcpsLeaseHookAdd() 541

remove authentication hook from RIP interface. ripAuthHookDelete() 1087
remove table bypass hook from RIP interface. ripLeakHookDelete() 1097

PPP hook library. ... pppHookLib 212
task hook library. ... taskHookLib 307

delete IP filter hook routine... ipFilterHookDelete() 716
previously added module create hook routine. delete.......................... moduleCreateHookDelete() 829

add hook routine on unit basis. pppHookAdd() 983
delete hook routine on unit basis. pppHookDelete() 983

initialize task hook show facility. ... taskHookShowInit() 1331
task hook show routines. ... taskHookShow 308

routing tables. add hook to bypass RIP and kernel ripLeakHookAdd() 1096
non-RIP routes into RIP. add hook to install static and ripRouteHookAdd() 1099

Keyword Index

1551

IX

Keyword Name Page

add authentication hook to RIP interface.. ripAuthHookAdd() 1085
IP filter hooks library... ipFilterLib 128

specify network interface hop count... ifMetricSet() 669
DNS server for IP address of host. query.. resolvGetHostByName() 1076

log in to remote host. .. rlogin() 1105
to FTP server on specified host. get control connection .. ftpHookup() 626

file systems of remote host. display exported .. nfsExportShow() 939
systems exported by specified host. mount all file... nfsMountAll() 942

(DHCP) run-time/ Dynamic Host Configuration Protocol.. dhcpcLib 73
(DHCP) server/ Dynamic Host Configuration Protocol.. dhcpsLib 76

TSFS. target host connection library using wvTsfsUploadPathLib 358
delete host from host table... hostDelete() 652

get parameters for host FTP_TRANSIENT responses.......... ftpTransientConfigGet() 630
set parameters for host FTP_TRANSIENT responses.......... ftpTransientConfigSet() 630

address. look up host in host table by Internet hostGetByAddr() 653
look up host in host table by name. hostGetByName() 654

test that remote host is reachable.. ping() 977
query DNS server for host name of IP address. resolvGetHostByAddr() 1075

applette to stop FTP transient host responses. set ftpTransientFatalInstall() 631
add host to host table.. hostAdd() 652

post user event string to host tools.. wdbUserEvtPost() 1463
establish upload path to host using socket (Windview). sockUploadPathCreate() 1254

open upload path to host using TSFS socket/ tsfsUploadPathCreate() 1402
transfer log header to host (WindView)... wvLogHeaderUpload() 1474

start upload of events to host (WindView).. wvUploadStart() 1486
stop upload of events to host (WindView).. wvUploadStop() 1487

address. get local address (((host number))) from Internet.................................... inet_lnaof() 676
address from network and ((host number))s. form Internet........................... inet_makeaddr() 676
address from network and ((host number))s. form Internet....................... inet_makeaddr_b() 677

add host to host table... hostAdd() 652
delete host from host table... hostDelete() 652

display host table... hostShow() 654
initialize network host table.. hostTblInit() 655

address. look up host in host table by Internet ... hostGetByAddr() 653
look up host in host table by name. ... hostGetByName() 654

host table subroutine library. ... hostLib 118
synchronization. initialize host/target symbol table..................................... symSyncLibInit() 1295

synchronization. host/target symbol table... symSyncLib 297
for Solaris and VxSim for HP). /disk driver (VxSim... unixDrv 332

compute hyperbolic cosine (ANSI). .. cosh() 501
compute hyperbolic cosine (ANSI). .. coshf() 501
compute hyperbolic sine (ANSI). .. sinh() 1230
compute hyperbolic sine (ANSI). .. sinhf() 1230
compute hyperbolic tangent (ANSI)... tanh() 1319
compute hyperbolic tangent (ANSI)... tanhf() 1319

display statistics for ICMP.. icmpstatShow() 658
all resources used to access ICMP group. delete .. m2IcmpDelete() 771

routines. ICMP Information display... icmpShow 119
function. implement ICMP router discovery control.. rdCtl() 1059
function. implement ICMP router discovery .. rdisc() 1061

VxWorks OS Libraries API Reference, 5.5

1552

Keyword Name Page

function. initialize ICMP router discovery.. rdiscInit() 1062
library. ICMP router discovery server.. rdiscLib 230

initialize ICMP show routines. .. icmpShowInit() 657
initialize MIB-II ICMP-group access. ... m2IcmpInit() 772
Agents. MIB-II ICMP-group API for SNMP ... m2IcmpLib 139

get MIB-II ICMP-group global variables. m2IcmpGroupInfoGet() 771
mount DOS file system from IDE hard disk... usrIdeConfig() 1424

IDE initialization. .. usrIde 340
compare keys as 32 bit identifiers. ... hashKeyCmp() 645
display current remote identity. .. whoami() 1468

populate rcvAddr fields for ifRcvAddressTable. .. rcvEtherAddrGet() 1058
layers above. test if ifStackTable interface has no stackEntryIsTop() 1267

insert or remove entry in ifTable. .. m2IfTableUpdate() 783
resolution function for ifType/protocol. get address................... muxAddrResFuncGet() 873

display statistics for IGMP. .. igmpstatShow() 674
routines. IGMP information display... igmpShow 121

helper file for igmp Mib... m2Igmp 141
initialize IGMP show routines... igmpShowInit() 673

return unique interface index. ... ifIndexAlloc() 665
interface name given interface index. returns... ifIndexToIfName() 667

returns interface index given interface name. ifNameToIfIndex() 670
returns true if index has been allocated. ... ifIndexTest() 667

interface index library. .. ifIndexLib 119
(ANSI). test error indicator for file pointer... ferror() 589

test end-of-file indicator for stream (ANSI).. feof() 588
/current value of file position indicator for stream (ANSI).. fgetpos() 590

set file position indicator for stream (ANSI)... fseek() 618
set file position indicator for stream (ANSI).. fsetpos() 619

/current value of file position indicator for stream (ANSI).. ftell() 620
(ANSI). set file position indicator to beginning of file .. rewind() 1082
domain zlib functions. inflate code using public.. inflateLib 123

inflate compressed code.. inflate() 682
thread attribute object/ set inheritsched attribute in............... pthread_attr_setinheritsched() 1014

thread/ get value of inheritsched attribute in.............. pthread_attr_getinheritsched() 1008
double (ANSI). convert initial portion of string to... strtod() 1281

activate task that has been initialized. .. taskActivate() 1325
semaphore (POSIX). initialize/open named ... sem_open() 1191

(POSIX). initiate asynchronous read ... aio_read() 408
(POSIX). initiate asynchronous write .. aio_write() 410

initiate connection to socket. ... connect() 497
I/O requests (POSIX). initiate list of asynchronous .. lio_listio() 735
negotiating transfer/ initiate or continue................................... scsiSyncXferNegotiate() 1162

negotiating wide parameters. initiate or continue.................................. scsiWideXferNegotiate() 1167
initiate transfer via FTP. .. ftpXfer() 631

interrupt-level input.. tyIRd() 1410
characters from standard input stream (ANSI). /convert .. scanf() 1130
push character back into input stream (ANSI). .. ungetc() 1413

next character from standard input stream (ANSI). return ... getchar() 635
read characters from standard input stream (ANSI). ... gets() 638

get fd for global standard input/output/error. .. ioGlobalStdGet() 706

Keyword Index

1553

IX

Keyword Name Page

set fd for global standard input/output/error... ioGlobalStdSet() 707
get fd for task standard input/output/error.. ioTaskStdGet() 713
set fd for task standard input/output/error... ioTaskStdSet() 713

set shell’s default input/output/error fds. shellOrigStdSet() 1214
current task. return standard input/output/error FILE of .. stdioFp() 1269

device. issue INQUIRY command to SCSI....................................... scsiInquiry() 1144
display specified number of instructions. disassemble and... l() 729
automatic locking of kernel instructions/data. /MB86930 cacheMb930LockAuto() 459

instrument objects (WindView)................................... wvObjInst() 1481
instrument signals (WindView). wvSigInst() 1483

(WindView). instrument VxWorks Events wvEventInst() 1469
(WindView). set object instrumentation on/off wvObjInstModeSet() 1482

convert string to int (ANSI). ... atoi() 422
round number to nearest integer... round() 1114
round number to nearest integer... roundf() 1114

truncate to integer.. trunc() 1400
truncate to integer... truncf() 1401

Internet address to long integer. convert dot notation ... inet_addr() 675
double-precision value to integer. convert .. irint() 717
single-precision value to integer. convert .. irintf() 718
round number to nearest integer... iround() 718
round number to nearest integer.. iroundf() 719

/floating-point number into integer and fraction parts/ .. modf() 827
convert string to long integer (ANSI).. strtol() 1284

string to unsigned long integer (ANSI). convert .. strtoul() 1285
compute absolute value of integer (ANSI).. abs() 404

generate pseudo-random integer between 0 and RAND_MAX/ rand() 1054
read next word (32-bit integer) from stream. ... getw() 640

to specified/ compute smallest integer greater than or equal .. ceil() 489
to specified/ compute smallest integer greater than or equal ... ceilf() 490

specified/ compute largest integer less than or equal to.. floor() 597
specified/ compute largest integer less than or equal to... floorf() 597

write word (32-bit integer) to stream. ... putw() 1047
test hash table integrity. ... dcacheHashTest() 518
make volume integrity checking.. dosFsChkDsk() 558

task. set inter-cycle delay on polling muxTaskDelaySet() 894
agents. MIB-II interface-group API for SNMP... m2IfLib 139

initialize MIB-II interface-group routines.. m2IfInit() 778
variables. get MIB-II interface-group scalar m2IfGroupInfoGet() 778

get MIB-II interface-group table entry............................ m2IfStackEntryGet() 781
get MIB-II interface-group table entry............................... m2IfTblEntryGet() 783

hardware address for specified Internet address. resolve ... arpResolve() 414
extract lease information from Internet address. ... bootLeaseExtract() 433

extract net mask field from Internet address. ... bootNetmaskExtract() 434
look up host in host table by Internet address. ... hostGetByAddr() 653

address (((host number))) from Internet address. get local ... inet_lnaof() 676
return network number from Internet address. ... inet_netof() 678

and ((host number))s. form Internet address from network............................ inet_makeaddr() 676
and ((host number))s. form Internet address from network........................ inet_makeaddr_b() 677

routines. internet address manipulation .. inetLib 121

VxWorks OS Libraries API Reference, 5.5

1554

Keyword Name Page

interface. get Internet address of network ... ifAddrGet() 659
point-to-point peer. get Internet address of ... ifDstAddrGet() 662

integer. convert dot notation Internet address to long .. inet_addr() 675
library. Packet InterNet Groper (PING).. pingLib 209

string to address. convert Internet network number from............................... inet_network() 679
add routine to receive all internet protocol packets. ipFilterHookAdd() 715

/all active connections for Internet protocol sockets.. inetstatShow() 681
sessions. specify command interpreter for telnet ... telnetdParserSet() 1360

routine to auxiliary clock interrupt. connect... sysAuxClkConnect() 1297
acknowledge bus interrupt. ... sysBusIntAck() 1300

generate bus interrupt. .. sysBusIntGen() 1300
routine to system clock interrupt. connect... sysClkConnect() 1302

connect routine to mailbox interrupt. .. sysMailboxConnect() 1306
enable mailbox interrupt. .. sysMailboxEnable() 1307

buffer after data store error interrupt. clean up store............................... cleanUpStoreBuffer() 493
connect C routine to hardware interrupt. .. intConnect() 683
ARM). disable corresponding interrupt bits (MIPS, PowerPC, intDisable() 687
ARM). enable corresponding interrupt bits (MIPS, PowerPC, intEnable() 688

Register/ get content of Interrupt Descriptor Table ... vxIdtrGet() 1453
routine (68K, x86,/ construct interrupt handler for C..................................... intHandlerCreate() 688

routine (x86). construct interrupt handler for C................................ intHandlerCreateI86() 689
disable bus interrupt level. .. sysIntDisable() 1305
enable bus interrupt level. ... sysIntEnable() 1305

ARM, SimSolaris, SimNT/ set interrupt level (68K, x86,... intLevelSet() 690
architecture-dependent interrupt library... intArchLib 123

x86, ARM, SH,/ get current interrupt lock-out level (68K, intLockLevelGet() 693
x86, ARM, SH,/ set current interrupt lock-out level (68K, intLockLevelSet() 693

cancel interrupt locks. .. intUnlock() 696
and returns devices to interrupt mode. /tMuxPollTask muxPollEnd() 888

get current interrupt nesting depth. ... intCount() 686
/if current state is in interrupt or task context. .. intContext() 686

user-defined system clock interrupt routine.. usrClock() 1420
enable or disable interrupt stack usage (x86). intStackEnable() 695

architecture-independent interrupt subroutine library.. intLib 125
MIPS, SH, SimSolaris,/ get interrupt vector (68K, x86, ... intVecGet() 698

connect C routine to critical interrupt vector (PowerPC/............................ excIntCrtConnect() 581
interrupt-level input. .. tyIRd() 1410
interrupt-level output... tyITx() 1410

turn off auxiliary clock interrupts.. sysAuxClkDisable() 1297
turn on auxiliary clock interrupts.. sysAuxClkEnable() 1298

turn off system clock interrupts.. sysClkDisable() 1302
turn on system clock interrupts... sysClkEnable() 1303

connect BSP serial device interrupts.. sysSerialHwInit2() 1316
lock out interrupts.. intLock() 691

/current task until time interval elapses (POSIX). ... nanosleep() 906
buffer. invert order of bytes in.. binvert() 431

components. low level I/O access to flash... tffsRawio() 1366
initialize asynchronous I/O (AIO) library.. aioPxLibInit() 406

asynchronous I/O (AIO) library (POSIX)... aioPxLib 9
asynchronous I/O (AIO) show library. .. aioPxShow 13

Keyword Index

1555

IX

Keyword Name Page

perform device-specific I/O control function... scsiIoctl() 1145
perform I/O control function.. ioctl() 704

sequential access/ perform I/O control function for ... scsiSeqIoctl() 1159
find I/O device in device list. ... iosDevFind() 709

network remote file I/O driver. ... netDrv 190
Network File System (NFS) I/O driver. ... nfsDrv 195

pipe I/O driver. .. pipeDrv 210
install I/O driver. .. iosDrvInstall() 710

remove I/O driver. ... iosDrvRemove() 710
Berkeley Packet Filter (BPF) I/O driver library. ... bpfDrv 35

I/O interface library. ... ioLib 125
formatted I/O library. .. fioLib 108

cached block I/O library. ... cbioLib 55
/error status of asynchronous I/O operation (POSIX). ... aio_error() 408

/return status of asynchronous I/O operation (POSIX). ... aio_return() 409
wait for asynchronous I/O request(s) (POSIX). ... aio_suspend() 410

initiate list of asynchronous I/O requests (POSIX).. lio_listio() 735
initialize standard I/O show facility.. stdioShowInit() 1270
initialize standard I/O support.. stdioInit() 1269

initialize floating-point I/O support... floatInit() 596
initialize formatted I/O support library. .. fioLibInit() 595

add device to I/O system. ... iosDevAdd() 708
delete device from I/O system. ... iosDevDelete() 708

initialize I/O system. .. iosInit() 712
NFS driver. return IO system driver number for.............................. nfsDrvNumGet() 937

I/O system library. .. iosLib 127
initialize I/O system show facility. .. iosShowInit() 712

I/O system show routines. .. iosShow 127
print synopsis of I/O utility functions... ioHelp() 707

perform ioctl operation on device. ... cbioIoctl() 479
DNS server for host name of IP address. query...................................... resolvGetHostByAddr() 1075

query DNS server for IP address of host. resolvGetHostByName() 1076
initialize IP filter facility. .. ipFilterLibInit() 716

delete IP filter hook routine..................................... ipFilterHookDelete() 716
IP filter hooks library. ... ipFilterLib 128

all resources used to access IP group. delete.. m2IpDelete() 789
get IP MIB-II address entry........................... m2IpAddrTblEntryGet() 787

bind socket to privileged IP port. .. bindresvport() 431
interface between BSD IP protocol and MUX.. ipProto 128

information). display all IP routes (summary... routeShow() 1120
information). display all IP routes (verbose... mRouteShow() 849

traverse IP routing table. .. routeTableWalk() 1123
display IP statistics... ipstatShow() 717

initialize MIB-II IP-group access. ... m2IpInit() 790
MIB-II IP-group API for SNMP agents... m2IpLib 142

get MIB-II IP-group scalar variables.............................. m2IpGroupInfoGet() 789
values. set MIB-II IP-group variables to new............................. m2IpGroupInfoSet() 790

system library. ISO 9660 CD-ROM read-only file.................................. cdromFsLib 59
save calling environment in jmp_buf argument (ANSI). ... setjmp() 1201

announce clock tick to kernel... tickAnnounce() 1379

VxWorks OS Libraries API Reference, 5.5

1556

Keyword Name Page

initialize kernel. ... kernelInit() 726
netPoolInit(). kernel heap version of...................................... netPoolKheapInit() 927

/MB86930 automatic locking of kernel instructions/data. cacheMb930LockAuto() 459
VxWorks kernel library.. kernelLib 129

return kernel revision string.. kernelVersion() 727
add hook to bypass RIP and kernel routing tables... ripLeakHookAdd() 1096

get value of kernel’s tick counter... tickGet() 1379
set value of kernel’s tick counter.. tickSet() 1380

add new RIP authentication key. .. ripAuthKeyAdd() 1088
existing RIP authentication key. delete... ripAuthKeyDelete() 1088

find RIP authentication key. .. ripAuthKeyFind() 1089
find RIP authentication key. .. ripAuthKeyFindFirst() 1089

node that matches specified key. find hash.. hashTblFind() 648
create thread specific data key (POSIX)... pthread_key_create() 1029
delete thread specific data key (POSIX).. pthread_key_delete() 1029

compare keys as 32 bit identifiers. ... hashKeyCmp() 645
point to. compare keys based on strings they................................. hashKeyStrCmp() 645

return very large double. ... infinity() 681
return very large float... infinityf() 682
find size of largest available free block. memPartFindMax() 815

memory system partition/ find largest free block in shared............................... smMemFindMax() 1233
memory partition. find largest free block in system memFindMax() 811

equal to specified/ compute largest integer less than or... floor() 597
equal to specified/ compute largest integer less than or... floorf() 597
ifStackTable interface has no layers above. test if .. stackEntryIsTop() 1267

test if interface has no layers beneath it. ... stackEntryIsBottom() 1267
two strings as appropriate to LC_COLLATE (ANSI). compare.. strcoll() 1272

components of object with type lconv (ANSI). set .. localeconv() 742
relinquish specified lease.. dhcpcRelease() 534

renew established lease... dhcpcVerify() 538
routine to store and retrieve lease data. add... dhcpcCacheHookAdd() 523

delete lease data storage routine. dhcpcCacheHookDelete() 524
Internet address. extract lease information from...................................... bootLeaseExtract() 433

display current lease parameters.. dhcpcParamsShow() 534
network interface and setup lease request. assign... dhcpcInit() 527

assign permanent lease storage hook for server. dhcpsLeaseHookAdd() 541
retrieve current lease timers. ... dhcpcTimerGet() 537
display current lease timers. ... dhcpcTimersShow() 537

determine length in bytes of zbuf... zbufLength() 1499
(Unimplemented)/ calculate length of multibyte character .. mblen() 804

determine length of string (ANSI)... strlen() 1277
determine length of zbuf segment... zbufSegLength() 1501

from given set/ return string length up to first character ... strcspn() 1273
not in given/ return string length up to first character ... strspn() 1280

test whether character is letter (ANSI).. isalpha() 720
character is lower-case letter (ANSI). test whether.. islower() 722
character is upper-case letter (ANSI). test whether... isupper() 724

equivalent/ convert upper-case letter to lower-case.. tolower() 1392
equivalent/ convert lower-case letter to upper-case ... toupper() 1392

compare two strings lexicographically (ANSI). .. strcmp() 1272

Keyword Index

1557

IX

Keyword Name Page

change line-delete character. ... tyDeleteLineSet() 1407
read line with line-editing. ... ledRead() 734

line-editing library... ledLib 131
discard line-editor ID.. ledClose() 733

create new line-editor ID.. ledOpen() 734
change line-editor ID parameters... ledControl() 733

add physical address into linked list. .. rcvEtherAddrAdd() 1058
library. doubly linked list subroutine ... lstLib 137

(C++). call all linked static constructors cplusCtorsLink() 504
(C++). call all linked static destructors cplusDtorsLink() 506

form frame with link-layer address. .. muxAddressForm() 870
attach link-level header to packet..................... muxLinkHeaderCreate() 881

physical address into linked list. add .. rcvEtherAddrAdd() 1058
add interface to RIP exclusion list. ... ripIfExcludeListAdd() 1093

interface from RIP exclusion list. delete.. ripIfExcludeListDelete() 1094
show RIP interface exclusion list. ... ripIfExcludeListShow() 1094

add new interfaces to internal list. .. ripIfSearch() 1095
add directory to access list. .. tftpdDirectoryAdd() 1369

delete directory from access list. .. tftpdDirectoryRemove() 1369
add new trigger to trigger list. .. trgAdd() 1393
delete trigger from trigger list. .. trgDelete() 1395

add option to option request list. ... dhcpcOptionSet() 531
address to multicast address list. add multicast .. etherMultiAdd() 573

find I/O device in device list. .. iosDevFind() 709
add node to end of list. .. lstAdd() 761

report number of nodes in list. ... lstCount() 762
delete specified node from list. .. lstDelete() 763

extract sublist from list. .. lstExtract() 763
find node in list. .. lstFind() 764

find first node in list. .. lstFirst() 764
free up list. ... lstFree() 765

and return first node from list. delete... lstGet() 765
find last node in list. ... lstLast() 767

find next node in list. .. lstNext() 768
find Nth node in list. ... lstNth() 769

find previous node in list. .. lstPrevious() 769
insert node in list after specified node.. lstInsert() 766

list all system-known devices... devs() 519
any of subdirectories. list contents of directory and .. lsr() 761

(multi-purpose). list contents of directory... dirList() 542
initialize list descriptor... lstInit() 766

FTP. list directory contents via ... ftpLs() 627
from specified node. find list node nStep steps away... lstNStep() 768

to SCSI controller. list physical devices attached ... scsiShow() 1160
adds device to list polled by tMuxPollTask. muxPollDevAdd() 887

removes device from list polled by tMuxPollTask. muxPollDevDel() 887
reports whether device is on list polled by tMuxPollTask. muxPollDevStat() 888

doubly linked list subroutine library... lstLib 137
list symbols.. lkup() 737

near specified value. list symbols whose values are .. lkAddr() 736

VxWorks OS Libraries API Reference, 5.5

1558

Keyword Name Page

MIB-II entry from UDP list of listeners. get UDP ... m2UdpTblEntryGet() 801
concatenate two lists. .. lstConcat() 762

/with variable argument list to buffer (ANSI). ... vsprintf() 1446
with variable argument list to fd. /string formatted .. vfdprintf() 1430

/with variable argument list to standard output/ .. vprintf() 1446
load driver into MUX. .. muxDevLoad() 876

memory. load object module into.. ld() 730
memory. load object module into.. loadModule() 739
memory. load object module into... loadModuleAt() 739

whether device is already loaded into MUX. tests... muxDevExists() 876
get list of loaded modules.. moduleIdListGet() 833

show current status for all loaded modules... moduleShow() 836
object module loader. ... loadLib 133

device. issue LOAD/UNLOAD command to SCSI scsiLoadUnit() 1145
convert bus address to local address. ... sysBusToLocalAdrs() 1301

from Internet address. get local address (((host number)))..................................... inet_lnaof() 676
convert local address to bus address........................ sysLocalToBusAdrs() 1306

address (VxMP). convert local address to global............................... smObjLocalToGlobal() 1245
convert global address to local address (VxMP). smObjGlobalToLocal() 1243

find object by name in local database (VxFusion)...................................... distNameFind() 553
initialize local debugging package. .. dbgInit() 514

Register/ get content of Local Descriptor Table.. vxLdtrGet() 1453
set appropriate locale (ANSI).. setlocale() 1203

ANSI locale documentation. ... ansiLocale 15
send advertisement to one location. ... sendAdvert() 1196

containing specified byte location. find zbuf segment zbufSegFind() 1500
test and set location across bus. ... sysBusTas() 1301

segment. determine location of data in zbuf .. zbufSegData() 1499
copy memory from one location to another (ANSI).. memcpy() 808
copy memory from one location to another (ANSI).. memmove() 812

advertisement to all active locations. send .. sendAdvertAll() 1197
lock access to shell. ... shellLock() 1213

cache. lock all or part of specified ... cacheLock() 458
into memory (POSIX). lock all pages used by process .. mlockall() 823

(POSIX). lock mutex if it is available pthread_mutex_trylock() 1033
lock mutex (POSIX). pthread_mutex_lock() 1032
lock out interrupts. ... intLock() 691

memory (POSIX). lock specified pages into ... mlock() 822
blocking if not available/ lock (take) semaphore, .. sem_wait() 1195

returning error if/ lock (take) semaphore, ... sem_trywait() 1194
enable MB86930 automatic locking of kernel/ cacheMb930LockAuto() 459
SH,/ get current interrupt lock-out level (68K, x86, ARM, intLockLevelGet() 693
SH,/ set current interrupt lock-out level (68K, x86, ARM, intLockLevelSet() 693

cancel interrupt locks. ... intUnlock() 696
log formatted error message. .. logMsg() 757

transfer log header to host (WindView). wvLogHeaderUpload() 1474
log in to remote FTP server.. ftpLogin() 627
log in to remote host. ... rlogin() 1105
log out of VxWorks system.. logout() 758

(WindView). log user-defined event.. wvEvent() 1469

Keyword Index

1559

IX

Keyword Name Page

set class of events to log (WindView)... wvEvtClassSet() 1471
initialize event log (WindView)... wvEvtLogInit() 1472

compute base-2 logarithm. ... log2() 747
compute base-2 logarithm. .. log2f() 747

compute natural logarithm (ANSI)... log() 746
compute base-10 logarithm (ANSI)... log10() 748
compute base-10 logarithm (ANSI).. log10f() 748
compute natural logarithm (ANSI).. logf() 749

of events from those being logged (WindView). /class wvEvtClassClear() 1470
classes of events from those logged (WindView). clear all wvEvtClassClearAll() 1470
current set of classes being logged (WindView). get.. wvEvtClassGet() 1471

(WindView). event logging control library.. wvLib 351
(WindView). start logging events to buffer... wvEvtLogStart() 1472
(WindView). stop logging events to buffer... wvEvtLogStop() 1473

add logging fd. ... logFdAdd() 749
delete logging fd. ... logFdDelete() 750

set primary logging fd. .. logFdSet() 750
message logging library.. logLib 136

initialize message logging library... logInit() 753
take spin-lock/ control logging of failed attempts to............. smObjTimeoutLogEnable() 1248

get address of top of logical memory... sysMemTop() 1307
initialize fields in SCSI logical partition... scsiBlkDevInit() 1138

block device. define logical partition on SCSI.................................. scsiBlkDevCreate() 1137
VxWorks remote login daemon. .. rlogind() 1105
initialize remote login facility. ... rlogInit() 1106

remote login library. ... rlogLib 236
entry. display login prompt and validate user................................ loginPrompt() 753

change login string. ... loginStringSet() 754
initialize login table. .. loginInit() 752

add user to login table. .. loginUserAdd() 754
delete user entry from login table. .. loginUserDelete() 755

display user login table. ... loginUserShow() 756
user name and password in login table. verify.. loginUserVerify() 756

library. user login/password subroutine... loginLib 134
print VxWorks logo. ... printLogo() 1001

convert string to long (ANSI). .. atol() 422
compute absolute value of long (ANSI). ... labs() 729

notation Internet address to long integer. convert dot .. inet_addr() 675
convert string to long integer (ANSI)... strtol() 1284

convert string to unsigned long integer (ANSI)... strtoul() 1285
all subdirectories/ do long listing of directory and .. llr() 738

contents. generate long listing of directory ... ll() 737
copy one buffer to another one long word at a time. .. bcopyLongs() 426

flush TLBs (Translation Lookaside Buffers). ... pentiumTlbFlush() 973
components. low level I/O access to flash.. tffsRawio() 1366

(Timestamp Counter). get lower half of 64Bit TSC..................................... pentiumTscGet32() 974
convert upper-case letter to lower-case equivalent (ANSI).. tolower() 1392

test whether character is lower-case letter (ANSI). .. islower() 722
upper-case equivalent/ convert lower-case letter to ... toupper() 1392

initializes lstLib module. .. lstLibInit() 767

VxWorks OS Libraries API Reference, 5.5

1560

Keyword Name Page

of system register mach (also macl, pr) (SH). /contents ... mach() 802
connect routine to mailbox interrupt. ... sysMailboxConnect() 1306

enable mailbox interrupt. ... sysMailboxEnable() 1307
error message (ANSI). map error number in errno to .. perror() 976

string (ANSI). map error number to error ... strerror() 1274
string (POSIX). map error number to error ... strerror_r() 1274

interface structure pointer. map interface name to.. ifunit() 671
space in shared global/ map physical pages to virtual vmGlobalMap() 1438
virtual space (VxVMI). map physical space into... vmMap() 1440

initialize global mapping. .. vmBaseGlobalMapInit() 1431
processors. MMU mapping library for ARM Ltd. mmuMapLib 162

initialize global mapping (VxVMI).. vmGlobalMapInit() 1439
device. write file marks to SCSI sequential scsiWrtFileMarks() 1167

set signal mask.. sigsetmask() 1223
address. extract net mask field from Internet bootNetmaskExtract() 434

get subnet mask for network interface.. ifMaskGet() 668
calling thread’s signal mask (POSIX). /and/or examine pthread_sigmask() 1042

examine and/or change signal mask (POSIX).. sigprocmask() 1221
find hash node that matches specified key. ... hashTblFind() 648

interface library for multiple matching entries. route .. routeEntryLib 238
destination. find matching route for .. routeEntryLookup() 1118

ANSI math documentation. .. ansiMath 15
library to high-level math functions. C interface .. mathALib 153

hardware floating-point math library... mathHardLib 155
hardware floating-point math support. initialize... mathHardInit() 803
software floating-point math support. initialize... mathSoftInit() 803

get maximum priority (POSIX). sched_get_priority_max() 1131
kernel/ enable MB86930 automatic locking of................ cacheMb930LockAuto() 459
clear line from MB86930 cache. ... cacheMb930ClearLine() 458

initialize Fujitsu MB86930 cache library................................... cacheMb930LibInit() 459
and join it to specified mBlk. get clBlk-cluster... netMblkClGet() 918

duplicate mBlk. ... netMblkDup() 920
free mBlk back to memory pool. netMblkFree() 921

duplicate mBlk chain. ... netMblkChainDup() 916
get mBlk from memory pool. .. netMblkGet() 921

copy data from mBlk to buffer. .. netMblkToBufCopy() 922
construct. join mBlk to clBlk-cluster .. netMblkClJoin() 919

get mBlk-clBlk-cluster. ... netTupleGet() 930
free mBlk-clBlk-cluster construct. netMblkClFree() 917

free chain of mBlk-clBlk-cluster constructs................... netMblkClChainFree() 917
report mbuf statistics.. mbufShow() 805

disable superscalar dispatch (MC68060). .. vxSSDisable() 1458
enable superscalar dispatch (MC68060). ... vxSSEnable() 1458

disable store buffer (MC68060 only). .. cacheStoreBufDisable() 470
enable store buffer (MC68060 only). ... cacheStoreBufEnable() 470

Architecture). enable/disable MCA (Machine Check.................................. pentiumMcaEnable() 953
Architecture) registers. show MCA (Machine Check.................................... pentiumMcaShow() 953

incoming RIP-2 message using MD5. authenticate.. ripAuthKeyInMD5() 1090
outgoing RIP-2 message using MD5. authenticate..................................... ripAuthKeyOut2MD5() 1091

RIP-2 message. start MD5 authentication of outgoing ripAuthKeyOut1MD5() 1090

Keyword Index

1561

IX

Keyword Name Page

detect change in media.. scsiSeqStatusCheck() 1160
formatting library. MS-DOS media-compatible file system...................................... dosFsFmtLib 86

library. RT-11 media-compatible file system... rt11FsLib 239
library. MS-DOS media-compatible file system... dosFsLib 86

space in shared global virtual mem (VxVMI). /pages to virtual vmGlobalMap() 1438
display all or one group with members (VxFusion).................................... msgQDistGrpShow() 854

get address of top of logical memory. .. sysMemTop() 1307
get address of top of memory. ... sysPhysMemTop() 1310

processor write buffers to memory. flush ... cachePipeFlush() 460
transfer blocks to or from memory. ... cbioBlkRW() 477
transfer bytes to or from memory. ... cbioBytesRW() 477

free block of memory. ... cfree() 490
display memory. ... d() 512

load object module into memory. .. ld() 730
load object module into memory. ... loadModule() 739
load object module into memory. ... loadModuleAt() 739

modify memory. .. m() 770
allocate aligned memory. ... memalign() 806

reallocate block of memory (ANSI). .. realloc() 1065
free block of memory (ANSI). ... free() 612

compare two blocks of memory (ANSI). ... memcmp() 807
set block of memory (ANSI). .. memset() 819

create and initialize shared memory binary semaphore/ semBSmCreate() 1175
create and initialize shared memory counting semaphore/ semCSmCreate() 1178

default run-time support for memory deallocation (C++)................................. operator delete() 946
create memory device. .. memDevCreate() 808
delete memory device. .. memDevDelete() 810

files. create memory device for multiple memDevCreateDir() 810
install memory driver. .. memDrv() 811

memory system/ allocate memory for array from shared............................. smMemCalloc() 1232
search block of memory for character (ANSI)... memchr() 807

another (ANSI). copy memory from one location to .. memcpy() 808
another (ANSI). copy memory from one location to memmove() 812

allocate aligned memory from partition............................ memPartAlignedAlloc() 813
allocate block of memory from partition... memPartAlloc() 814

system/ allocate block of memory from shared memory smMemMalloc() 1234
system/ reallocate block of memory from shared memory smMemRealloc() 1235
partition/ allocate block of memory from system memory.. malloc() 802

free block of memory in partition.. memPartFree() 815
reallocate block of memory in specified partition. memPartRealloc() 817

(POSIX). memory management library....................................... mmanPxLib 162
(VxMP). shared memory management library.. smMemLib 281

routines (VxMP). shared memory management show smMemShow 284
(VxMP). shared memory message queue library.................................. msgQSmLib 185

create and initialize shared memory message queue (VxMP). msgQSmCreate() 868
add name to shared memory name database (VxMP)............................. smNameAdd() 1237

show information about shared memory network.. smNetShow() 1241
VxWorks interface to shared memory network (backplane)/.. smNetLib 287

routines. shared memory network driver show smNetShow 288
look up shared memory object by name (VxMP). smNameFind() 1238

VxWorks OS Libraries API Reference, 5.5

1562

Keyword Name Page

look up shared memory object by value (VxMP). smNameFindByValue() 1239
(VxMP). initialize shared memory objects descriptor ... smObjInit() 1244

attach calling CPU to shared memory objects facility/.. smObjAttach() 1242
(VxMP). install shared memory objects facility ... smObjLibInit() 1245

(VxMP). initialize shared memory objects facility ... smObjSetup() 1246
shared memory objects library (VxMP)....................................... smObjLib 288

library (VxMP). shared memory objects name database smNameLib 284
show routines (VxMP). shared memory objects name database smNameShow 286

remove object from shared memory objects name database/..................... smNameRemove() 1240
show contents of shared memory objects name database/.......................... smNameShow() 1240

(VxMP). shared memory objects show routines smObjShow 291
/current status of shared memory objects (VxMP). .. smObjShow() 1247

allocate memory on page boundary. ... valloc() 1429
add memory to system memory partition. ... memAddToPool() 806

largest free block in system memory partition. find.. memFindMax() 811
set debug options for system memory partition. ... memOptionsSet() 812

add memory to memory partition. .. memPartAddToPool() 813
create memory partition. ... memPartCreate() 814

set debug options for memory partition. .. memPartOptionsSet() 816
/block of memory from system memory partition (ANSI). ... malloc() 802

statistics. show system memory partition blocks and....................................... memShow() 820
full-featured memory partition manager... memLib 158

core memory partition manager... memPartLib 160
facility. initialize memory partition show ... memShowInit() 821

create shared memory partition (VxMP). memPartSmCreate() 818
construct back to memory pool. /clBlk-cluster netClBlkFree() 907

free cluster back to memory pool. .. netClFree() 909
free mBlk back to memory pool. .. netMblkFree() 921

get mBlk from memory pool. .. netMblkGet() 921
delete memory pool. .. netPoolDelete() 923

initialize netBufLib-managed memory pool. .. netPoolInit() 923
lock specified pages into memory (POSIX). ... mlock() 822

all pages used by process into memory (POSIX). lock.. mlockall() 823
(VxMP). shared memory semaphore library... semSmLib 274

memory show routines. ... memShow 161
of memory (VxMP). free shared memory system partition block smMemFree() 1233

and statistics/ show shared memory system partition blocks smMemShow() 1236
(VxMP). add memory to shared memory system partition.............................. smMemAddToPool() 1231
/memory for array from shared memory system partition/ smMemCalloc() 1232

largest free block in shared memory system partition/ find....................... smMemFindMax() 1233
/block of memory from shared memory system partition/ smMemMalloc() 1234

set debug options for shared memory system partition/ smMemOptionsSet() 1234
/block of memory from shared memory system partition/ smMemRealloc() 1235

add memory to memory partition. memPartAddToPool() 813
partition (VxMP). add memory to shared memory system............. smMemAddToPool() 1231

partition. add memory to system memory............................... memAddToPool() 806
disable MTRR (Memory Type Range Register). pentiumMtrrDisable() 956
enable MTRR (Memory Type Range Register). pentiumMtrrEnable() 956

system partition block of memory (VxMP). /shared memory smMemFree() 1233
display task monitoring help menu. ... spyHelp() 1258

Keyword Index

1563

IX

Keyword Name Page

display debugging help menu.. dbgHelp() 513
display NFS help menu... nfsHelp() 940

address pointers from route message. extract socket.. ripAddrsXtract() 1083
of outgoing RIP-2 message. /MD5 authentication.............. ripAuthKeyOut1MD5() 1090

build identification message.. scsiIdentMsgBuild() 1143
parse identification message... scsiIdentMsgParse() 1143
log formatted error message... logMsg() 757

send BOOTP request message and retrieve reply...................................... bootpMsgGet() 436
socket. create zbuf from user message and send it to UDP....................... zbufSockBufSendto() 1503

error number in errno to error message (ANSI). map .. perror() 976
message queue/ receive message from distributed................................ msgQDistReceive() 856

receive message from message queue. msgQReceive() 864
(POSIX). receive message from message queue mq_receive() 842

receive message from socket. ... recvfrom() 1068
receive message from socket. ... recvmsg() 1069

socket. receive message in zbuf from UDP zbufSockRecvfrom() 1506
(POSIX). notify task that message is available on queue...................................... mq_notify() 840

post-processing when outgoing message is rejected. perform........................... scsiMsgOutReject() 1151
post-processing after SCSI message is sent. perform scsiMsgOutComplete() 1150

message logging library.. logLib 136
initialize message logging library... logInit() 753

create and initialize message queue.. msgQCreate() 850
delete message queue.. msgQDelete() 851

event notification process for message queue. start ... msgQEvStart() 859
event notification process for message queue. stop ... msgQEvStop() 860

get information about message queue.. msgQInfoGet() 861
number of messages queued to message queue. get ... msgQNumMsgs() 863

receive message from message queue.. msgQReceive() 864
send message to message queue... msgQSend() 865

show information about message queue.. msgQShow() 866
(POSIX). get message queue attributes ... mq_getattr() 839
(POSIX). set message queue attributes .. mq_setattr() 844

delete distributed message queue from group/ msgQDistGrpDelete() 854
(VxFusion). distributed message queue group library msgQDistGrpLib 180

routines/ distributed message queue group show............................ msgQDistGrpShow 181
message queue library. ... msgQLib 183

initialize POSIX message queue library. .. mqPxLibInit() 837
message queue library (POSIX).. mqPxLib 179

distributed objects message queue library/ .. msgQDistLib 181
shared memory message queue library (VxMP). msgQSmLib 185

close message queue (POSIX). ... mq_close() 838
open message queue (POSIX). ... mq_open() 841

receive message from message queue (POSIX). ... mq_receive() 842
send message to message queue (POSIX). ... mq_send() 843

remove message queue (POSIX). ... mq_unlink() 845
POSIX message queue show.. mqPxShow 180

initialize POSIX message queue show facility................................ mqPxShowInit() 838
initialize message queue show facility................................ msgQShowInit() 867

initialize distributed message queue show package/ msgQDistShowInit() 859
message queue show routines....................................... msgQShow 185

VxWorks OS Libraries API Reference, 5.5

1564

Keyword Name Page

(VxFusion). distributed message queue show routines msgQDistShow 182
(VxFusion). add distributed message queue to group msgQDistGrpAdd() 853

create distributed message queue (VxFusion)................................ msgQDistCreate() 851
/of messages in distributed message queue (VxFusion)........................ msgQDistNumMsgs() 855
/message from distributed message queue (VxFusion)............................. msgQDistReceive() 856

send message to distributed message queue (VxFusion).................................. msgQDistSend() 857
and initialize shared memory message queue (VxMP). create msgQSmCreate() 868

VxWorks events support for message queues... msgQEvLib 183
handle complete SCSI message received from target...................... scsiMsgInComplete() 1150

interface library. message routines for routing............................... routeMessageLib 238
queue (VxFusion). send message to distributed message msgQDistSend() 857

send message to message queue. ... msgQSend() 865
(POSIX). send message to message queue.. mq_send() 843

send TFTP message to remote system. .. tftpSend() 1375
send message to socket.. sendmsg() 1197
send message to socket.. sendto() 1198

send zbuf message to UDP socket. zbufSockSendto() 1508
authenticate incoming RIP-2 message using MD5....................................... ripAuthKeyInMD5() 1090
authenticate outgoing RIP-2 message using MD5.................................. ripAuthKeyOut2MD5() 1091

message-logging support task. ... logTask() 758
add option to client messages... dhcpcOptionAdd() 529

message queue/ get number of messages in distributed msgQDistNumMsgs() 855
queue. get number of messages queued to message............................ msgQNumMsgs() 863

get metric for network interface....................................... ifMetricGet() 669
helper file for igmp Mib. .. m2Igmp 141

delete RIP MIB support... m2RipDelete() 792
initialize RIP MIB support.. m2RipInit() 795

initialize SNMP MIB-2 library. ... m2Init() 786
get MIB-2 routing table entry...................... m2IpRouteTblEntryGet() 791

get IP MIB-II address entry. m2IpAddrTblEntryGet() 787
agents. MIB-II API library for SNMP .. m2Lib 144

add, modify, or delete MIB-II ARP entry................................... m2IpAtransTblEntrySet() 788
get MIB-II ARP table entry. m2IpAtransTblEntryGet() 787

listeners. get UDP MIB-II entry from UDP list of m2UdpTblEntryGet() 801
initialize MIB-II ICMP-group access. .. m2IcmpInit() 772
Agents. MIB-II ICMP-group API for SNMP............................... m2IcmpLib 139

variables. get MIB-II ICMP-group global m2IcmpGroupInfoGet() 771
or DOWN. set state of MIB-II interface entry to UP m2IfTblEntrySet() 784

SNMP agents. MIB-II interface-group API for .. m2IfLib 139
routines. initialize MIB-II interface-group .. m2IfInit() 778

variables. get MIB-II interface-group scalar m2IfGroupInfoGet() 778
entry. get MIB-II interface-group table......................... m2IfStackEntryGet() 781
entry. get MIB-II interface-group table............................ m2IfTblEntryGet() 783
initialize MIB-II IP-group access. .. m2IpInit() 790

agents. MIB-II IP-group API for SNMP .. m2IpLib 142
variables. get MIB-II IP-group scalar.................................. m2IpGroupInfoGet() 789

new values. set MIB-II IP-group variables to m2IpGroupInfoSet() 790
delete all MIB-II library groups. ... m2Delete() 770

counters. get MIB-II RIP-group global m2RipGlobalCountersGet() 793
entry. get MIB-II RIP-group interface..................... m2RipIfConfEntryGet() 793

Keyword Index

1565

IX

Keyword Name Page

entry. set MIB-II RIP-group interface m2RipIfConfEntrySet() 794
entry. get MIB-II RIP-group interface m2RipIfStatEntryGet() 794

set MIB-II routing table entry. m2IpRouteTblEntrySet() 791
resources used to access MIB-II system group. delete m2SysDelete() 795

SNMP agents. MIB-II system-group API for.. m2SysLib 148
initialize MIB-II system-group routines. m2SysInit() 797
entry. get MIB-II TCP connection table..................... m2TcpConnEntryGet() 797
initialize MIB-II TCP-group access. ... m2TcpInit() 799

agents. MIB-II TCP-group API for SNMP.................................... m2TcpLib 150
variables. get MIB-II TCP-group scalar m2TcpGroupInfoGet() 799

initialize MIB-II UDP-group access... m2UdpInit() 801
agents. MIB-II UDP-group API for SNMP.................................. m2UdpLib 152

variables. get MIB-II UDP-group scalar m2UdpGroupInfoGet() 800
get system-group MIB-II variables. ... m2SysGroupInfoGet() 796

values. set system-group MIB-II variables to new m2SysGroupInfoSet() 796
get minimum priority (POSIX). sched_get_priority_min() 1132

default task status register (MIPS). initialize .. taskSRInit() 1346
library. MIPS 4kc cache management cache4kcLib 37

handler to breakpoint type (MIPS). bind breakpoint dbgBpTypeBind() 513
contents of cause register (MIPS). read.. intCRGet() 686
contents of cause register (MIPS). write ... intCRSet() 687
contents of status register (MIPS). read... intSRGet() 694
contents of status register (MIPS). update... intSRSet() 694

/(trap) base address (68K, x86, MIPS, ARM, SimSolaris, SimNT). intVecBaseGet() 696
/(trap) base address (68K, x86, MIPS, ARM, SimSolaris, SimNT). intVecBaseSet() 697

corresponding interrupt bits (MIPS, PowerPC, ARM). disable.................................. intDisable() 687
corresponding interrupt bits (MIPS, PowerPC, ARM). enable.................................... intEnable() 688

library. MIPS R10000 cache management.............................. cacheR10kLib 49
library. MIPS R3000 cache management.................................. cacheR3kLib 47
library. MIPS R33000 cache management.............................. cacheR33kLib 50
library. MIPS R333x0 cache management cacheR333x0Lib 50
library. MIPS R4000 cache management.................................. cacheR4kLib 47
library. MIPS R5000 cache management.................................. cacheR5kLib 48
library. MIPS R7000 cache management.................................. cacheR7kLib 48
library. MIPS RC32364 cache management........................... cacheR32kLib 49

/interrupt vector (68K, x86, MIPS, SH, SimSolaris, SimNT). intVecGet() 698
/CPU vector (trap) (68K, x86, MIPS, SH, SimSolaris, SimNT). intVecSet() 699

for C routine (68K, x86, MIPS, SimSolaris). /handler............................ intHandlerCreate() 688
set task status register (68K, MIPS, x86).. taskSRSet() 1347

routines. miscellaneous support... vxLib 346
PentiumPro/2/3/4 32 bit mode. MMU library for .. mmuPro32Lib 163

Ltd. processors. MMU mapping library for ARM mmuMapLib 162
Hitachi SH7700 MMU support library... mmuSh7700Lib 168
Hitachi SH7750 MMU support library... mmuSh7750Lib 172

return model name of CPU board. ... sysModel() 1308
get contents of specified MSR (Model Specific Register).................................... pentiumMsrGet() 954

initialize all MSRs (Model Specific Register).................................... pentiumMsrInit() 954
show all MSR (Model Specific Register)................................. pentiumMsrShow() 955

set value to specified MSR (Model Specific Registers)................................... pentiumMsrSet() 955
device. issue MODE_SELECT command to SCSI.................... scsiModeSelect() 1149

VxWorks OS Libraries API Reference, 5.5

1566

Keyword Name Page

tape device. issue MODE_SELECT command to SCSI scsiTapeModeSelect() 1163
device. issue MODE_SENSE command to SCSI...................... scsiModeSense() 1149

tape device. issue MODE_SENSE command to SCSI.............. scsiTapeModeSense() 1163
transfer control to ROM monitor. ... sysToMonitor() 1317

show PMCs (Performance Monitoring Counters). pentiumPmcShow() 970
display task monitoring help menu. ... spyHelp() 1258

exported by specified host. mount all file systems... nfsMountAll() 942
initialize mount daemon. .. mountdInit() 836

hard disk or CDROM. mount DOS file system from ATA.......................... usrAtaConfig() 1419
floppy disk. mount DOS file system from..................................... usrFdConfig() 1420

hard disk. mount DOS file system from IDE........................... usrIdeConfig() 1424
mount NFS file system. .. nfsMount() 941
mount protocol library. .. mountLib 178

display mounted NFS devices. ... nfsDevShow() 935
format MS-DOS compatible volume.............................. dosFsVolFormat() 562

files. modify MS-DOS file attributes of many.. xattrib() 1489
or directory. modify MS-DOS file attributes on file ... attrib() 423

consistency checking on MS-DOS file system. perform .. chkdsk() 492
system formatting library. MS-DOS media-compatible file dosFsFmtLib 86

system library. MS-DOS media-compatible file ... dosFsLib 86
get contents of specified MSR (Model Specific Register)........................... pentiumMsrGet() 954

show all MSR (Model Specific Register)....................... pentiumMsrShow() 955
set value to specified MSR (Model Specific/.. pentiumMsrSet() 955

Register). initialize all MSRs (Model Specific.. pentiumMsrInit() 954
Register). disable MTRR (Memory Type Range pentiumMtrrDisable() 956
Register). enable MTRR (Memory Type Range pentiumMtrrEnable() 956

get MTRRs to specified MTRR table. ... pentiumMtrrGet() 957
set MTRRs from specified MTRR table with WRMSR/ pentiumMtrrSet() 957

table with WRMSR/ set MTRRs from specified MTRR pentiumMtrrSet() 957
get MTRRs to specified MTRR table....................... pentiumMtrrGet() 957

character/ convert multibyte character to wide .. mbtowc() 805
convert wide character to multibyte character/ .. wctomb() 1461

calculate length of multibyte character/ .. mblen() 804
char’s/ convert series of multibyte char’s to wide.. mbstowcs() 804

series of wide char’s to multibyte char’s/ convert.. wcstombs() 1461
device’s multicast/ delete multicast address from................................. muxMCastAddrDel() 883

add multicast address to multicast address list. ... etherMultiAdd() 573
delete Ethernet multicast address record. etherMultiDel() 574

MUX/Driver. get multicast address table from muxMCastAddrGet() 884
multicast table. add multicast address to device’s muxMCastAddrAdd() 882

address list. add multicast address to multicast etherMultiAdd() 573
library to handle Ethernet multicast addresses... etherMultiLib 104

driver. retrieve table of multicast addresses from etherMultiGet() 574
multicast address to device’s multicast table. add muxMCastAddrAdd() 882

address from device’s multicast table. /multicast........................... muxMCastAddrDel() 883
function. multiplicative hashing.................................... hashFuncMultiply() 644

power of 2 (ANSI). multiply number by integral... ldexp() 731
list contents of directory (multi-purpose). .. dirList() 542

/value of prioceiling attr in mutex attr object (POSIX). .. pthread_mutexattr_getprioceiling() 1035
set protocol attribute in mutex attribute object/ pthread_mutexattr_setprotocol() 1037

Keyword Index

1567

IX

Keyword Name Page

(POSIX). destroy mutex attributes object pthread_mutexattr_destroy() 1034
get value of protocol in mutex attributes object/.......... pthread_mutexattr_getprotocol() 1036

(POSIX). initialize mutex attributes object pthread_mutexattr_init() 1036
set prioceiling attr in mutex attributes object/...... pthread_mutexattr_setprioceiling() 1037

(POSIX). initialize mutex from attributes object........................ pthread_mutex_init() 1031
(POSIX). lock mutex if it is available............................ pthread_mutex_trylock() 1033

destroy mutex (POSIX). pthread_mutex_destroy() 1030
of prioceiling attribute of mutex (POSIX). get value.......... pthread_mutex_getprioceiling() 1031

lock mutex (POSIX). ... pthread_mutex_lock() 1032
set prioceiling attribute of mutex (POSIX). dynamically pthread_mutex_setprioceiling() 1033

unlock mutex (POSIX). .. pthread_mutex_unlock() 1034
create and initialize mutual-exclusion semaphore. semMCreate() 1184

library. mutual-exclusion semaphore .. semMLib 268
without restrictions. give mutual-exclusion semaphore semMGiveForce() 1185

between BSD IP protocol and MUX. interface... ipProto 128
device is already loaded into MUX. tests whether... muxDevExists() 876

load driver into MUX. .. muxDevLoad() 876
unloads device from MUX. .. muxDevUnload() 879

initialize global state for MUX. .. muxLibInit() 881
of devices registered with MUX. display configuration ... muxShow() 893

MUX network interface library. ... muxLib 186
send control information to MUX or to device. ... muxIoctl() 880

initialize and start MUX poll task. ... muxPollStart() 891
Library. MUX toolkit Network Interface muxTkLib 188

multicast address table from MUX/Driver. get ... muxMCastAddrGet() 884
now deprecated, see muxTkPollReceive(). .. muxPollReceive() 889
now deprecated, see muxTkPollSend(). .. muxPollSend() 890

mv file into other directory. ... mv() 905
look up symbol by name. ... symFindByName() 1291

task ID associated with task name. look up ... taskNameToId() 1337
find device using string name. .. endFindByName() 569

get socket name. ... getsockname() 638
look up host in host table by name. ... hostGetByName() 654

index given interface name. returns interface..................................... ifNameToIfIndex() 670
find module by name. ... moduleFindByName() 831
get current user name and password... remCurIdGet() 1070
set remote user name and password.. remCurIdSet() 1070
set remote user name and password... iam() 657

table. verify user name and password in login loginUserVerify() 756
object module by specifying name and path. unload............................ unldByNameAndPath() 1418

find module by file name and path. moduleFindByNameAndPath() 832
look up symbol by name and type. symFindByNameAndType() 1292

generate temporary file name (ANSI). .. tmpnam() 1391
open file specified by name (ANSI). .. fopen() 599
open file specified by name (ANSI). ... freopen() 612

ID. get name associated with module moduleNameGet() 834
get name associated with task ID. taskName() 1336

display distributed name database filtered by type/............... distNameFilterShow() 552
(VxFusion). distributed name database library .. distNameLib 84
shared memory objects name database library (VxMP)..................................... smNameLib 284

VxWorks OS Libraries API Reference, 5.5

1568

Keyword Name Page

(VxFusion). distributed name database show routines................................. distNameShow 85
(VxMP). shared memory objects name database show routines.................................. smNameShow 286

add entry to distributed name database (VxFusion). distNameAdd() 551
remove entry from distributed name database (VxFusion). distNameRemove() 555

display entire distributed name database (VxFusion). distNameShow() 555
add name to shared memory name database (VxMP). ... smNameAdd() 1237
from shared memory objects name database (VxMP). /object smNameRemove() 1240

/of shared memory objects name database (VxMP). ... smNameShow() 1240
preserve extra copy of task name events (WindView)....................... wvTaskNamesPreserve() 1484

upload preserved task name events (WindView)......................... wvTaskNamesUpload() 1485
expand DNS compressed name from DNS packet..................................... resolvDNExpand() 1074

returns interface name given interface index. ifIndexToIfName() 667
compress DNS name in DNS packet. ... resolvDNComp() 1074

(VxFusion). find object by name in local database ... distNameFind() 553
object. set name in thread attribute pthread_attr_setname() 1015

descriptor/ convert device name into DOS volume.................................... dosFsVolDescGet() 561
get name of connected peer... getpeername() 637

return model name of CPU board. ... sysModel() 1308
change name of file.. rename() 1072

query DNS server for host name of IP address................................... resolvGetHostByAddr() 1075
type (VxFusion). look up name of object by value and.. distNameFindByValueAndType() 554

set symbolic name of this machine. ... sethostname() 1201
get symbolic name of this machine. ... gethostname() 637

object. get name of thread attribute pthread_attr_getname() 1009
/by specifying file name or module ID... unld() 1416

pointer. map interface name to interface structure.. ifunit() 671
database (VxMP). add name to shared memory name smNameAdd() 1237

bind name to socket. .. bind() 430
up shared memory object by name (VxMP). look... smNameFind() 1238

tar format. archive named file/dir onto tape in.. tarArchive() 1322
close named semaphore (POSIX). .. sem_close() 1188

initialize/open named semaphore (POSIX). .. sem_open() 1191
remove named semaphore (POSIX). sem_unlink() 1194

display list of fd names in system. ... iosFdShow() 711
delay for specified number of nanoseconds. ... sysNanoDelay() 1308

initiate or continue negotiating transfer/ scsiSyncXferNegotiate() 1162
initiate or continue negotiating wide parameters. scsiWideXferNegotiate() 1167

get current interrupt nesting depth. .. intCount() 686
address. extract net mask field from Internet....................... bootNetmaskExtract() 434

initialize netBufLib... netBufLibInit() 907
initialize netBufLib-managed memory pool. netPoolInit() 923

set debug level of netDrv library routines. netDrvDebugLevelSet() 913
kernel heap version of netPoolInit(). .. netPoolKheapInit() 927

create proxy ARP network. .. proxyNetCreate() 1002
delete proxy network. .. proxyNetDelete() 1002

route to destination that is network. add.. routeNetAdd() 1120
about shared memory network. show information....................................... smNetShow() 1241

notation, store in/ convert network address from dot .. inet_aton() 675
notation. extract network address in dot inet_netof_string() 678

notation, store it in/ convert network address to dot ... inet_ntoa_b() 680

Keyword Index

1569

IX

Keyword Name Page

decimal notation. convert network address to dotted .. inet_ntoa() 679
form Internet address from network and ((host number))s............................. inet_makeaddr() 676
form Internet address from network and ((host number))s......................... inet_makeaddr_b() 677

/interface to shared memory network (backplane) driver. ... smNetLib 287
network buffer library.. netBufLib 189

parameters with/ obtain set of network configuration.. dhcpcBind() 520
shut down network connection.. shutdown() 1216

control to boot ROMs. reset network devices and transfer .. reboot() 1066
shared memory network driver show routines...................................... smNetShow 288

deactivate specific network events. .. wvNetEventDisable() 1477
activate specific network events. .. wvNetEventEnable() 1478
end reporting of network events to WindView. wvNetDisable() 1476
begin reporting network events to WindView. wvNetEnable() 1476

priority level. enable network events with specific wvNetLevelAdd() 1479
priority level. disable network events with specific wvNetLevelRemove() 1479

driver. Network File System (NFS) I/O .. nfsDrv 195
library. Network File System (NFS) ... nfsLib 197

server library. Network File System (NFS) .. nfsdLib 193
initialize network host table.. hostTblInit() 655
routines. network information display.. netShow 192

add interface address for network interface.. ifAddrAdd() 658
delete interface address for network interface.. ifAddrDelete() 659

get Internet address of network interface.. ifAddrGet() 659
set interface address for network interface... ifAddrSet() 660

all routes associated with network interface. delete................................. ifAllRoutesDelete() 660
get broadcast address for network interface.. ifBroadcastGet() 661
set broadcast address for network interface.. ifBroadcastSet() 661

specify flags for network interface.. ifFlagSet() 664
get subnet mask for network interface... ifMaskGet() 668

define subnet for network interface.. ifMaskSet() 668
get metric for network interface... ifMetricGet() 669

delete routes associated with network interface... ifRouteDelete() 670
send packet out on network interface.. muxSend() 892

packet out on Toolkit or END network interface. send ... muxTkSend() 902
delete PPP network interface.. pppDelete() 982

initialize PPP network interface... pppInit() 985
lease request. assign network interface and setup .. dhcpcInit() 527

change network interface flags. ... ifFlagChange() 663
get network interface flags. ... ifFlagGet() 664

specify network interface hop count....................................... ifMetricSet() 669
network interface library. ... ifLib 120

MUX network interface library. .. muxLib 186
MUX toolkit Network Interface Library.. muxTkLib 188

network interface library. ... netLib 192
display attached network interfaces.. ifShow() 671

address. return network number from Internet inet_netof() 678
address. convert Internet network number from string to.............................. inet_network() 679

initialize network package. ... netLibInit() 915
install network remote file driver. ... netDrv() 913
driver. network remote file I/O .. netDrv 190

VxWorks OS Libraries API Reference, 5.5

1570

Keyword Name Page

library. network route manipulation ... routeLib 238
print synopsis of network routines. ... netHelp() 914

create binding between network service and END. ... muxBind() 874
device. detach network service from specified................................. muxUnbind() 904

initialize network show routines. .. netShowInit() 928
attach routine for TCP/IP network stack. generic.. ipAttach() 714

detach routine for TCP/IP network stack. generic.. ipDetach() 714
statistics. show network stack data pool........................ netStackDataPoolShow() 929
statistics. show network stack system pool netStackSysPoolShow() 929

network task entry point. .. netTask() 930
client library. Simple Network Time Protocol (SNTP).. sntpcLib 291

server library. Simple Network Time Protocol (SNTP).. sntpsLib 292
time. initialize network with DHCP at boot dhcpcBootBind() 521
WindView for Networking Interface Library. ... wvNetLib 356

show proxy ARP networks.. proxyNetShow() 1003
function (C++). set new_handler to user-defined set_new_handler() 1199

information from requested NFS device. /configuration................................. nfsDevInfoGet() 934
unmount NFS device. ... nfsUnmount() 943

display mounted NFS devices. .. nfsDevShow() 935
create list of all NFS devices in system... nfsDevListGet() 935

install NFS driver. .. nfsDrv() 937
IO system driver number for NFS driver. return.. nfsDrvNumGet() 937

specify file system to be NFS exported... nfsExport() 939
mount NFS file system.. nfsMount() 941

display NFS help menu... nfsHelp() 940
Network File System (NFS) I/O driver. ... nfsDrv 195
Network File System (NFS) library... nfsLib 197

initialize NFS server. .. nfsdInit() 936
get status of NFS server. ... nfsdStatusGet() 938

show status of NFS server. ... nfsdStatusShow() 938
Network File System (NFS) server library.. nfsdLib 193

parameters. get NFS UNIX authentication.................................. nfsAuthUnixGet() 932
parameters. modify NFS UNIX authentication........................... nfsAuthUnixPrompt() 933

parameters. set NFS UNIX authentication.................................. nfsAuthUnixSet() 933
parameters. display NFS UNIX authentication.............................. nfsAuthUnixShow() 934

parameters. set ID number of NFS UNIX authentication... nfsIdSet() 941
get type of select() wake-up node. .. selWakeupType() 1174

node in list after specified node. insert ... lstInsert() 766
steps away from specified node. find list node nStep .. lstNStep() 768

remove hash node from hash table. ... hashTblRemove() 650
delete specified node from list... lstDelete() 763

delete and return first node from list.. lstGet() 765
wake-up list. find and delete node from select() ... selNodeDelete() 1171

call routine for each node in hash table. .. hashTblEach() 648
find node in list... lstFind() 764

find first node in list.. lstFirst() 764
find last node in list.. lstLast() 767

find next node in list... lstNext() 768
find Nth node in list... lstNth() 769

find previous node in list.. lstPrevious() 769

Keyword Index

1571

IX

Keyword Name Page

node. insert node in list after specified ... lstInsert() 766
table. put hash node into specified hash.. hashTblPut() 649

specified node. find list node nStep steps away from.. lstNStep() 768
key. find hash node that matches specified..................................... hashTblFind() 648

add node to end of list... lstAdd() 761
add wake-up node to select() wake-up list.................................... selNodeAdd() 1171

and bootstrap current node (VxFusion). initialize... distInit() 549
report number of nodes in list. ... lstCount() 762

wake-up list. get number of nodes in select().. selWakeupListLen() 1173
update contents of interface non-counter object.. m2IfVariableUpdate() 785

saved environment/ perform non-local goto by restoring .. longjmp() 759
(ANSI). compute non-negative square root .. sqrt() 1261
(ANSI). compute non-negative square root .. sqrtf() 1261

add hook to install static and non-RIP routes into RIP. ripRouteHookAdd() 1099
get contents of non-volatile RAM... sysNvRamGet() 1309

write to non-volatile RAM.. sysNvRamSet() 1310
/whether character is printing, non-white-space character/... isgraph() 722

support for operator new (nothrow) (C++). /run-time..................................... operator new() 947
message queue. start event notification process for ... msgQEvStart() 859
message queue. stop event notification process for ... msgQEvStop() 860

semaphore. start event notification process for .. semEvStart() 1179
semaphore. stop event notification process for .. semEvStop() 1181

receive packet from NPT driver. .. muxTkReceive() 901
out in polled mode to END or NPT interface. send packet muxTkPollSend() 899

poll for packet from NPT or END driver. muxTkPollReceive() 898
checks if device is NPT or END interface....................................... muxTkDrvCheck() 898

bind NPT protocol to driver.. muxTkBind() 895
specified/ find list node nStep steps away from.. lstNStep() 768

pass-through (to Windows NT) file system library. ... ntPassFsLib 198
convert portions of second to NTP format... sntpsNsecToFraction() 1251

associate device with ntPassFs file system/ .. ntPassFsDevInit() 943
prepare to use ntPassFs library... ntPassFsInit() 944

reload object module.. reld() 1069
get information about object module.. moduleInfoGet() 833

file name or module/ unload object module by specifying ... unld() 1416
group number. unload object module by specifying unldByGroup() 1417

module ID. unload object module by specifying unldByModuleId() 1417
name and path. unload object module by specifying unldByNameAndPath() 1418

load object module into memory. .. ld() 730
load object module into memory. loadModule() 739
load object module into memory. loadModuleAt() 739

object module loader.. loadLib 133
library. object module management.. moduleLib 176
library. object module unloading .. unldLib 334

initialize on-board SCSI port.. sysScsiInit() 1314
(POSIX). open directory for searching... opendir() 946

driver-specific/ validate open fd and return ... iosFdValue() 711
open file. .. open() 945

(POSIX). open file specified by fd .. fdopen() 587
(ANSI). open file specified by name .. fopen() 599

VxWorks OS Libraries API Reference, 5.5

1572

Keyword Name Page

(ANSI). open file specified by name ... freopen() 612
open message queue (POSIX). mq_open() 841
open socket. .. socket() 1252

port bound to it. open socket with privileged .. rresvport() 1125
TSFS socket (Windview). open upload path to host using tsfsUploadPathCreate() 1402

default run-time support for operator new (C++). ... operator new() 947
default run-time support for operator new (nothrow) (C++). operator new() 947
(C++). run-time support for operator new with placement operator new() 948

invert order of bytes in buffer. ... binvert() 431
specify amount of debugging output. ... ripDebugLevelSet() 1092

interrupt-level output. .. tyITx() 1410
argument list to standard output (ANSI). /with variable... vprintf() 1446

line buffering for standard output or standard error. set ... setlinebuf() 1202
write character to standard output stream (ANSI)... putchar() 1046

write string to standard output stream (ANSI)... puts() 1047
formatted string to standard output stream (ANSI). write ... printf() 997

return timer expiration overrun (POSIX).. timer_getoverrun() 1383
get contents of P5 PMC0... pentiumP5PmcGet0() 958

stop P5 PMC0... pentiumP5PmcStop0() 962
get contents of P5 PMC0 and PMC1. pentiumP5PmcGet() 958

stop both P5 PMC0 and PMC1. pentiumP5PmcStop() 962
get contents of P5 PMC1... pentiumP5PmcGet1() 959

stop P5 PMC1... pentiumP5PmcStop1() 963
initialize RPC package... rpcInit() 1124

task’s access to RPC package. initialize .. rpcTaskInit() 1124
task CPU utilization tool package. initialize .. spyLibInit() 1259

initialize local debugging package... dbgInit() 514
initialize exception handling package... excInit() 580

initialize network package... netLibInit() 915
(POSIX). dynamic package initialization ... pthread_once() 1038

/distributed message queue show package (VxFusion). msgQDistShowInit() 859
compress DNS name in DNS packet... resolvDNComp() 1074

DNS compressed name from DNS packet. expand.. resolvDNExpand() 1074
attach link-level header to packet.. muxLinkHeaderCreate() 881

addressing information from packet. get .. muxPacketAddrGet() 885
return data from packet... muxPacketDataGet() 886

install interface packet counter routine. m2IfPktCountRtnInstall() 779
increment interface packet counters. m2IfGenericPacketCount() 777

device. increment packet counters for 802.3 m2If8023PacketCount() 772
library. Berkeley Packet Filter (BPF) I/O driver... bpfDrv 35

create Berkeley Packet Filter device... bpfDevCreate() 442
destroy Berkeley Packet Filter device... bpfDevDelete() 442

receive packet from NPT driver. muxTkReceive() 901
poll for packet from NPT or END driver................... muxTkPollReceive() 898
library. Packet InterNet Groper (PING) ... pingLib 209

END or NPT interface. send packet out in polled mode to muxTkPollSend() 899
interface. send packet out on network .. muxSend() 892

network interface. send packet out on Toolkit or END muxTkSend() 902
receive all internet protocol packets. add routine to..................................... ipFilterHookAdd() 715
get architecture-dependent page block size (VxVMI)........................... vmPageBlockSizeGet() 1441

Keyword Index

1573

IX

Keyword Name Page

allocate memory on page boundary. ... valloc() 1429
clear page from CY7C604 cache. cacheCy604ClearPage() 450
clear page from Sun-4 cache................................ cacheSun4ClearPage() 471

(VxVMI). get state of page of virtual memory.. vmStateGet() 1443
return page size. ... vmBasePageSizeGet() 1433
return page size (VxVMI).. vmPageSizeGet() 1442

lock specified pages into memory (POSIX). .. mlock() 822
unlock specified pages (POSIX). ... munlock() 869

shared global/ map physical pages to virtual space in.. vmGlobalMap() 1438
memory (POSIX). lock all pages used by process into .. mlockall() 823

unlock all pages used by process (POSIX). munlockall() 869
fields in SCSI logical partition. initialize.. scsiBlkDevInit() 1138

retrieve handle for partition. ... dpartPartGet() 565
add memory to system memory partition. ... memAddToPool() 806

free block in system memory partition. find largest .. memFindMax() 811
options for system memory partition. set debug ... memOptionsSet() 812

add memory to memory partition. .. memPartAddToPool() 813
allocate aligned memory from partition. .. memPartAlignedAlloc() 813
allocate block of memory from partition. ... memPartAlloc() 814

create memory partition. ... memPartCreate() 814
free block of memory in partition. ... memPartFree() 815

set debug options for memory partition. .. memPartOptionsSet() 816
block of memory in specified partition. reallocate ... memPartRealloc() 817

of memory from system memory partition (ANSI). /block... malloc() 802
free shared memory system partition block of memory/...................................... smMemFree() 1233

statistics. show partition blocks and ... memPartShow() 818
show system memory partition blocks and/.. memShow() 820

show shared memory system partition blocks and/... smMemShow() 1236
parse and display partition data.. usrFdiskPartShow() 1423

FDISK-style partition handler.. usrFdiskPartLib 337
get partition information. .. memPartInfoGet() 816

full-featured memory partition manager. ... memLib 158
core memory partition manager. .. memPartLib 160
generic disk partition manager. .. dpartCbio 98

block device. define logical partition on SCSI .. scsiBlkDevCreate() 1137
initialize memory partition show facility. .. memShowInit() 821
read FDISK-style partition table.. usrFdiskPartRead() 1422
create FDISK-like partition table on disk.................................... usrFdiskPartCreate() 1421

memory to shared memory system partition (VxMP). add................................... smMemAddToPool() 1231
from shared memory system partition (VxMP). /for array................................. smMemCalloc() 1232

block in shared memory system partition (VxMP). /free smMemFindMax() 1233
from shared memory system partition (VxMP). /of memory............................ smMemMalloc() 1234

for shared memory system partition (VxMP). /options.......................... smMemOptionsSet() 1234
from shared memory system partition (VxMP). /of memory........................... smMemRealloc() 1235

create shared memory partition (VxMP). .. memPartSmCreate() 818
initialize partitioned disk. ... dpartDevCreate() 564

into integer and fraction parts (ANSI). /number... modf() 827
processor (Unimplemented)/ pass string to command .. system() 1317

associate device with passFs file system functions................................... passFsDevInit() 949
prepare to use passFs library... passFsInit() 949

VxWorks OS Libraries API Reference, 5.5

1574

Keyword Name Page

system library (VxSim). pass-through (to UNIX) file... passFsLib 200
file system library. pass-through (to Windows NT) ntPassFsLib 198

get current user name and password. ... remCurIdGet() 1070
set remote user name and password. ... remCurIdSet() 1070
set remote user name and password. .. iam() 657

default password encryption routine. loginDefaultEncrypt() 751
verify user name and password in login table. loginUserVerify() 756

FTP data connection using PASV mode. initialize................ ftpDataConnInitPassiveMode() 624
file status information using pathname (POSIX). get... stat() 1268
file status information using pathname (POSIX). get... statfs() 1268

get name of connected peer... getpeername() 637
address of point-to-point peer. get Internet .. ifDstAddrGet() 662

pend on set of fds.. select() 1169
wake up task pended in select(). ... selWakeup() 1172

unblock every task pended on semaphore... semFlush() 1181
delivery/ retrieve set of pending signals blocked from..................................... sigpending() 1221

library. Pentium and Pentium[234].. pentiumLib 205
specific show routines. Pentium and Pentium[234].. pentiumShow 209

specific routines. Pentium and PentiumPro ... pentiumALib 201
Pentium and Pentium[234] library. .. pentiumLib 205

routines. Pentium and Pentium[234] specific show....................................... pentiumShow 209
Pentium and PentiumPro specific routines. pentiumALib 201

MMU library for PentiumPro/2/3/4 32 bit mode. mmuPro32Lib 163
Counters). show PMCs (Performance Monitoring pentiumPmcShow() 970

reports. begin periodic task activity .. spy() 1257
reports. run periodic task activity ... spyTask() 1260

spawn task to call function periodically... period() 975
call function periodically... periodRun() 976

configure SCSI peripherals. ... usrScsiConfig() 1425
for server. assign permanent address storage hook dhcpsAddressHookAdd() 538
for server. assign permanent lease storage hook dhcpsLeaseHookAdd() 541

translate virtual address to physical address (ARM)..................................... mmuVirtToPhys() 826
translate physical address for drivers. cacheDrvPhysToVirt() 455
translate physical address for drivers. cacheTiTms390PhysToVirt() 474
list. add physical address into linked........................... rcvEtherAddrAdd() 1058

address (ARM). translate physical address to virtual mmuPhysToVirt() 823
translate virtual address to physical address (VxVMI). .. vmTranslate() 1445

structures on specified physical device. show BLK_DEV scsiBlkDevShow() 1139
show status information for physical device. .. scsiPhysDevShow() 1153

create SCSI physical device structure. scsiPhysDevCreate() 1151
SCSI controller. list physical devices attached to... scsiShow() 1160

space in shared global/ map physical pages to virtual vmGlobalMap() 1438
move tape on specified physical SCSI device.. scsiSpace() 1161

space (VxVMI). map physical space into virtual ... vmMap() 1440
delete SCSI physical-device structure.............................. scsiPhysDevDelete() 1152

Packet InterNet Groper (PING) library. .. pingLib 209
initialize ping() utility. .. pingLibInit() 978

create pipe device. ... pipeDevCreate() 979
delete pipe device. .. pipeDevDelete() 979

initialize pipe driver... pipeDrv() 980

Keyword Index

1575

IX

Keyword Name Page

pipe I/O driver. ... pipeDrv 210
support for operator new with placement (C++). run-time operator new() 948

get contents of P5 PMC0.. pentiumP5PmcGet0() 958
reset PMC0... pentiumP5PmcReset0() 960
start PMC0.. pentiumP5PmcStart0() 961

stop P5 PMC0... pentiumP5PmcStop0() 962
get contents of PMC0.. pentiumP6PmcGet0() 964

reset PMC0... pentiumP6PmcReset0() 965
get contents of PMC0... pentiumPmcGet0() 968

reset PMC0.. pentiumPmcReset0() 969
start PMC0... pentiumPmcStart0() 971
stop PMC0... pentiumPmcStop0() 972

get contents of P5 PMC0 and PMC1.. pentiumP5PmcGet() 958
reset both PMC0 and PMC1... pentiumP5PmcReset() 959

stop both P5 PMC0 and PMC1... pentiumP5PmcStop() 962
get contents of PMC0 and PMC1.. pentiumP6PmcGet() 963

reset both PMC0 and PMC1... pentiumP6PmcReset() 965
start both PMC0 and PMC1.. pentiumP6PmcStart() 966
stop both PMC0 and PMC1... pentiumP6PmcStop() 966

get contents of PMC0 and PMC1... pentiumPmcGet() 967
reset both PMC0 and PMC1.. pentiumPmcReset() 969
start both PMC0 and PMC1... pentiumPmcStart() 970
stop both PMC0 and PMC1... pentiumPmcStop() 972

get contents of P5 PMC0 and PMC1.. pentiumP5PmcGet() 958
get contents of P5 PMC1.. pentiumP5PmcGet1() 959

reset both PMC0 and PMC1... pentiumP5PmcReset() 959
reset PMC1... pentiumP5PmcReset1() 960
start PMC1.. pentiumP5PmcStart1() 961

stop both P5 PMC0 and PMC1... pentiumP5PmcStop() 962
stop P5 PMC1... pentiumP5PmcStop1() 963

get contents of PMC0 and PMC1.. pentiumP6PmcGet() 963
get contents of PMC1.. pentiumP6PmcGet1() 964

reset both PMC0 and PMC1... pentiumP6PmcReset() 965
reset PMC1... pentiumP6PmcReset1() 965

start both PMC0 and PMC1.. pentiumP6PmcStart() 966
stop both PMC0 and PMC1... pentiumP6PmcStop() 966

stop PMC1... pentiumP6PmcStop1() 967
get contents of PMC0 and PMC1... pentiumPmcGet() 967

get contents of PMC1... pentiumPmcGet1() 968
reset both PMC0 and PMC1.. pentiumPmcReset() 969

reset PMC1.. pentiumPmcReset1() 969
start both PMC0 and PMC1... pentiumPmcStart() 970

start PMC1... pentiumPmcStart1() 971
stop both PMC0 and PMC1... pentiumPmcStop() 972

stop PMC1... pentiumPmcStop1() 972
Counters). show PMCs (Performance Monitoring................... pentiumPmcShow() 970

into DOS volume descriptor pointer. convert device name........................... dosFsVolDescGet() 561
name to interface structure pointer. map interface.. ifunit() 671

set file read/write pointer. .. lseek() 760
test error indicator for file pointer (ANSI). ... ferror() 589

VxWorks OS Libraries API Reference, 5.5

1576

Keyword Name Page

advance ring pointer by n bytes. .. rngMoveAhead() 1112
display file pointer internals. .. stdioShow() 1270

structure. return pointer to SCSI_PHYS_DEV.......................... scsiPhysDevIdGet() 1152
buffer without moving ring pointers. /byte ahead in ring rngPutAhead() 1113

extract socket address pointers from route message................................ ripAddrsXtract() 1083
address for other end of point-to-point link. define ifDstAddrSet() 663

get Internet address of point-to-point peer. .. ifDstAddrGet() 662
library. Point-to-Point Protocol... pppLib 212

routines. Point-to-Point Protocol show .. pppShow 215
parameters/ set scheduling policy and scheduling sched_setscheduler() 1135

get current scheduling policy (POSIX). .. sched_getscheduler() 1133
END driver. poll for packet from NPT or muxTkPollReceive() 898

initialize and start MUX poll task. ... muxPollStart() 891
adds device to list polled by tMuxPollTask. muxPollDevAdd() 887

removes device from list polled by tMuxPollTask. muxPollDevDel() 887
/whether device is on list polled by tMuxPollTask. muxPollDevStat() 888

interface. send packet out in polled mode to END or NPT............................. muxTkPollSend() 899
get delay on polling task. ... muxTaskDelayGet() 893

set inter-cycle delay on polling task. .. muxTaskDelaySet() 894
add another entry to address pool. ... dhcpsLeaseEntryAdd() 540

construct back to memory pool. free clBlk-cluster.. netClBlkFree() 907
free cluster back to memory pool. .. netClFree() 909

cluster from specified cluster pool. get .. netClusterGet() 911
free mBlk back to memory pool. .. netMblkFree() 921

get mBlk from memory pool. .. netMblkGet() 921
delete memory pool. .. netPoolDelete() 923

netBufLib-managed memory pool. initialize .. netPoolInit() 923
allocate telegram buffer from pool of buffers (VxFusion)..................................... distTBufAlloc() 556

return telegram buffer to pool of buffers (VxFusion)....................................... distTBufFree() 557
show pool statistics. .. netPoolShow() 927

show network stack data pool statistics. ... netStackDataPoolShow() 929
show network stack system pool statistics. ... netStackSysPoolShow() 929

stack (POSIX). pop cleanup routine off top of pthread_cleanup_pop() 1019
forwarding for particular port. disable broadcast proxyPortFwdOff() 1003
forwarding for particular port. enable broadcast proxyPortFwdOn() 1004

initialize on-board SCSI port.. sysScsiInit() 1314
bind socket to privileged IP port.. bindresvport() 431
open socket with privileged port bound to it. .. rresvport() 1125

FTP data connection using PORT mode. initialize .. ftpDataConnInit() 623
remove port number filter for events. wvNetPortFilterClear() 1480

forwarding. show ports enabled for broadcast proxyPortShow() 1004
store current value of file position indicator for stream/ ... fgetpos() 590

(ANSI). set file position indicator for stream... fseek() 618
(ANSI). set file position indicator for stream.. fsetpos() 619

return current value of file position indicator for stream/ ... ftell() 620
beginning of file/ set file position indicator to .. rewind() 1082

(POSIX). reset position to start of directory.. rewinddir() 1082
interfaces. POSIX 1003.1c thread library ... pthreadLib 217

thread attributes object (POSIX). destroy.. pthread_attr_destroy() 1007
in thread attributes object (POSIX). /attribute pthread_attr_getdetachstate() 1008

Keyword Index

1577

IX

Keyword Name Page

in thread attributes object (POSIX). /attribute....................... pthread_attr_getinheritsched() 1008
in thread attributes object (POSIX). /schedparam attribute . pthread_attr_getschedparam() 1009

from thread attributes object (POSIX). /attribute........................ pthread_attr_getschedpolicy() 1010
scope from thread attributes (POSIX). get contention pthread_attr_getscope() 1011
from thread attributes object (POSIX). /stackaddr attribute pthread_attr_getstackaddr() 1011

in thread attributes object (POSIX). /stacksize attribute pthread_attr_getstacksize() 1012
thread attributes object (POSIX). initialize ... pthread_attr_init() 1012

in thread attributes object (POSIX). /attribute.......................... pthread_attr_setdetachstate() 1013
in thread attribute object (POSIX). /attribute....................... pthread_attr_setinheritsched() 1014

in thread attributes object (POSIX). /schedparam attribute . pthread_attr_setschedparam() 1015
in thread attributes object (POSIX). /attribute......................... pthread_attr_setschedpolicy() 1016

scope for thread attributes (POSIX). set contention............................. pthread_attr_setscope() 1017
in thread attributes object (POSIX). /stackaddr attribute pthread_attr_setstackaddr() 1017
in thread attributes object (POSIX). /stacksize attribute pthread_attr_setstacksize() 1018
cancel execution of thread (POSIX). .. pthread_cancel() 1018

routine off top of stack (POSIX). pop cleanup pthread_cleanup_pop() 1019
routine onto cleanup stack (POSIX). pushes....................................... pthread_cleanup_push() 1019

threads waiting on condition (POSIX). unblock all............................. pthread_cond_broadcast() 1020
destroy condition variable (POSIX). ... pthread_cond_destroy() 1020

initialize condition variable (POSIX). .. pthread_cond_init() 1021
thread waiting on condition (POSIX). unblock ... pthread_cond_signal() 1022

variable with timeout (POSIX). wait for condition................ pthread_cond_timedwait() 1022
wait for condition variable (POSIX). ... pthread_cond_wait() 1023
condition attributes object (POSIX). destroy pthread_condattr_destroy() 1024
condition attribute object (POSIX). initialize pthread_condattr_init() 1024

create thread (POSIX). ... pthread_create() 1025
dynamically detach thread (POSIX). .. pthread_detach() 1025

compare thread IDs (POSIX). ... pthread_equal() 1026
terminate thread (POSIX). ... pthread_exit() 1026

attribute from thread (POSIX). /value of schedparam.......... pthread_getschedparam() 1027
get thread specific data (POSIX). ... pthread_getspecific() 1027

wait for thread to terminate (POSIX). .. pthread_join() 1028
thread specific data key (POSIX). create ... pthread_key_create() 1029
thread specific data key (POSIX). delete... pthread_key_delete() 1029

send signal to thread (POSIX). ... pthread_kill() 1030
destroy mutex (POSIX). ... pthread_mutex_destroy() 1030

prioceiling attribute of mutex (POSIX). get value of.................. pthread_mutex_getprioceiling() 1031
mutex from attributes object (POSIX). initialize .. pthread_mutex_init() 1031

lock mutex (POSIX). ... pthread_mutex_lock() 1032
prioceiling attribute of mutex (POSIX). dynamically set pthread_mutex_setprioceiling() 1033

lock mutex if it is available (POSIX). ... pthread_mutex_trylock() 1033
mutex attributes object (POSIX). destroy pthread_mutexattr_destroy() 1034

unlock mutex (POSIX). .. pthread_mutex_unlock() 1034
prioceiling attr in mutex attr object (POSIX). /value of pthread_mutexattr_getprioceiling() 1035

in mutex attributes object (POSIX). /value of protocol pthread_mutexattr_getprotocol() 1036
mutex attributes object (POSIX). initialize pthread_mutexattr_init() 1036

in mutex attributes object (POSIX). set prioceiling attr pthread_mutexattr_setprioceiling() 1037
in mutex attribute object (POSIX). /protocol attribute pthread_mutexattr_setprotocol() 1037

dynamic package initialization (POSIX). ... pthread_once() 1038
get calling thread’s ID (POSIX). ... pthread_self() 1039

VxWorks OS Libraries API Reference, 5.5

1578

Keyword Name Page

state for calling thread (POSIX). set cancellation......................... pthread_setcancelstate() 1039
type for calling thread (POSIX). set cancellation.......................... pthread_setcanceltype() 1040

attribute for thread (POSIX). /set schedparam.................... pthread_setschedparam() 1040
set thread specific data (POSIX). ... pthread_setspecific() 1041

calling thread’s signal mask (POSIX). /and/or examine............................... pthread_sigmask() 1042
point in calling thread (POSIX). create cancellation pthread_testcancel() 1043

read one entry from directory (POSIX). ... readdir() 1064
position to start of directory (POSIX). reset... rewinddir() 1082

get maximum priority (POSIX). ... sched_get_priority_max() 1131
parameters for specified task (POSIX). get scheduling sched_getparam() 1132

get minimum priority (POSIX). ... sched_get_priority_min() 1132
get current scheduling policy (POSIX). .. sched_getscheduler() 1133

get current time slice (POSIX). ... sched_rr_get_interval() 1134
set task’s priority (POSIX). ... sched_setparam() 1134

and scheduling parameters (POSIX). /scheduling policy sched_setscheduler() 1135
relinquish CPU (POSIX). .. sched_yield() 1136

close named semaphore (POSIX). .. sem_close() 1188
destroy unnamed semaphore (POSIX). ... sem_destroy() 1189

get value of semaphore (POSIX). ... sem_getvalue() 1190
initialize unnamed semaphore (POSIX). .. sem_init() 1191

named semaphore (POSIX). initialize/open .. sem_open() 1191
unlock (give) semaphore (POSIX). ... sem_post() 1193

returning error if unavailable (POSIX). /(take) semaphore, sem_trywait() 1194
remove named semaphore (POSIX). .. sem_unlink() 1194

blocking if not available (POSIX). /(take) semaphore, .. sem_wait() 1195
action associated with signal (POSIX). /and/or specify .. sigaction() 1216

add signal to signal set (POSIX). ... sigaddset() 1217
delete signal from signal set (POSIX). .. sigdelset() 1218
set with no signals included (POSIX). initialize signal .. sigemptyset() 1218
set with all signals included (POSIX). initialize signal ... sigfillset() 1219

see if signal is in signal set (POSIX). test to ... sigismember() 1220
signals blocked from delivery (POSIX). /set of pending ... sigpending() 1221

and/or change signal mask (POSIX). examine ... sigprocmask() 1221
task until delivery of signal (POSIX). suspend .. sigsuspend() 1224

for signal to be delivered (POSIX). wait .. sigwait() 1226
information using pathname (POSIX). get file status.. stat() 1268
information using pathname (POSIX). get file status.. statfs() 1268
error number to error string (POSIX). map .. strerror_r() 1274

string into tokens (reentrant) (POSIX). break down.. strtok_r() 1283
clock for timing base (POSIX). /using specified.. timer_create() 1382

previously created timer (POSIX). remove... timer_delete() 1383
timer expiration overrun (POSIX). return.. timer_getoverrun() 1383

expiration and reload value (POSIX). /time before.. timer_gettime() 1384
next expiration and arm timer (POSIX). set time until... timer_settime() 1384

delete file (POSIX). .. unlink() 1418
memory management library (POSIX). .. mmanPxLib 162

message queue library (POSIX). ... mqPxLib 179
scheduling library (POSIX). ... schedPxLib 245

synchronization library (POSIX). semaphore ... semPxLib 271
timer library (POSIX). .. timerLib 322

Keyword Index

1579

IX

Keyword Name Page

of asynchronous I/O operation (POSIX). /error status.. aio_error() 408
initiate asynchronous read (POSIX). .. aio_read() 408

of asynchronous I/O operation (POSIX). /return status ... aio_return() 409
asynchronous I/O request(s) (POSIX). wait for .. aio_suspend() 410

initiate asynchronous write (POSIX). ... aio_write() 410
broken-down time into string (POSIX). convert ... asctime_r() 416

get clock resolution (POSIX). ... clock_getres() 494
get current time of clock (POSIX). ... clock_gettime() 495

set clock to specified time (POSIX). ... clock_settime() 496
close directory (POSIX). ... closedir() 497

time in seconds into string (POSIX). convert .. ctime_r() 510
open file specified by fd (POSIX). ... fdopen() 587

return fd for stream (POSIX). ... fileno() 591
get file status information (POSIX). .. fstat() 619

clock library (POSIX). .. clockLib 61
get file status information (POSIX). ... fstatfs() 620

truncate file (POSIX). ... ftruncate() 633
get current default path (POSIX). ... getcwd() 636

time into broken-down time (POSIX). convert calendar.. gmtime_r() 641
send signal to task (POSIX). ... kill() 728

asynchronous I/O requests (POSIX). initiate list of .. lio_listio() 735
time into broken-down time (POSIX). convert calendar... localtime_r() 746

directory handling library (POSIX). .. dirLib 81
specified pages into memory (POSIX). lock ... mlock() 822

used by process into memory (POSIX). lock all pages ... mlockall() 823
close message queue (POSIX). ... mq_close() 838

get message queue attributes (POSIX). .. mq_getattr() 839
message is available on queue (POSIX). notify task that.. mq_notify() 840

open message queue (POSIX). ... mq_open() 841
message from message queue (POSIX). receive.. mq_receive() 842

send message to message queue (POSIX). ... mq_send() 843
set message queue attributes (POSIX). ... mq_setattr() 844

remove message queue (POSIX). ... mq_unlink() 845
unlock specified pages (POSIX). .. munlock() 869

all pages used by process (POSIX). unlock .. munlockall() 869
until time interval elapses (POSIX). suspend current task nanosleep() 906

open directory for searching (POSIX). ... opendir() 946
task until delivery of signal (POSIX). suspend ... pause() 950

asynchronous I/O (AIO) library (POSIX). ... aioPxLib 9
POSIX file truncation. .. ftruncate 117

initialize POSIX message queue library................................... mqPxLibInit() 837
POSIX message queue show. .. mqPxShow 180

facility. initialize POSIX message queue show................................ mqPxShowInit() 838
initialize POSIX semaphore show facility. semPxShowInit() 1186

POSIX semaphore show library.................................... semPxShow 273
initialize POSIX semaphore support...................................... semPxLibInit() 1185
initialize POSIX threads support.. pthreadLibInit() 1007

tools. post user event string to host wdbUserEvtPost() 1463
message is sent. perform post-processing after SCSI scsiMsgOutComplete() 1150

message is rejected. perform post-processing when outgoing..................... scsiMsgOutReject() 1151

VxWorks OS Libraries API Reference, 5.5

1580

Keyword Name Page

of number raised to specified power (ANSI). compute value .. pow() 981
of number raised to specified power (ANSI). compute value ... powf() 982

(PowerPC, SH, x86). get power management mode.............................. vxPowerModeGet() 1456
(PowerPC, SH, x86). set power management mode............................... vxPowerModeSet() 1456

into normalized fraction and power of 2 (ANSI). /number ... frexp() 613
multiply number by integral power of 2 (ANSI)... ldexp() 731

to critical exception vector (PowerPC 403). /C routine.................................... excCrtConnect() 578
to critical interrupt vector (PowerPC 403). /C routine.............................. excIntCrtConnect() 581

C routine to exception vector (PowerPC). connect ... excConnect() 577
asynchronous exception vector (PowerPC, ARM). /C routine to........................... excIntConnect() 580

get CPU exception vector (PowerPC, ARM). .. excVecGet() 582
set CPU exception vector (PowerPC, ARM). ... excVecSet() 584

interrupt bits (MIPS, PowerPC, ARM). /corresponding............................... intDisable() 687
interrupt bits (MIPS, PowerPC, ARM). /corresponding................................ intEnable() 688

in reduced-power mode (PowerPC, SH). /processor vxPowerDown() 1455
get power management mode (PowerPC, SH, x86). .. vxPowerModeGet() 1456
set power management mode (PowerPC, SH, x86). ... vxPowerModeSet() 1456

library. PPP authentication secrets.. pppSecretLib 214
table. add secret to PPP authentication secrets..................................... pppSecretAdd() 993

table. delete secret from PPP authentication secrets................................. pppSecretDelete() 994
table. display PPP authentication secrets.................................. pppSecretShow() 994

PPP hook library.. pppHookLib 212
get PPP link statistics. ... pppstatGet() 995

display PPP link statistics. ... pppstatShow() 995
get PPP link status information....................................... pppInfoGet() 984

display PPP link status information.................................... pppInfoShow() 985
delete PPP network interface. .. pppDelete() 982

initialize PPP network interface. ... pppInit() 985
register mach (also macl, pr) (SH). /contents of system.. mach() 802

answer. send pre-formatted query and return resolvSend() 1081
name events (WindView). preserve extra copy of task.................... wvTaskNamesPreserve() 1484

(WindView). upload preserved task name events wvTaskNamesUpload() 1485
filtering. prevent strict border gateway ripFilterDisable() 1092

set primary logging fd.. logFdSet() 750
C-callable atomic test-and-set primitive... vxTas() 1459

from task’s TCB. print complete information ... ti() 1378
registers. print contents of task’s DSP........................... dspTaskRegsShow() 566

floating-point registers. print contents of task’s fppTaskRegsShow() 606
directory. print current default ... pwd() 1048

error status value. print definition of specified .. printErrno() 996
device. print information about CBIO....................................... cbioShow() 484
cache. print information about disk.................................... dcacheShow() 519
object. print information on specified .. show() 1215

stack usage. print summary of each task’s checkStack() 491
TCB. print summary of each task’s ... i() 656

functions. print synopsis of I/O utility .. ioHelp() 707
routines. print synopsis of network... netHelp() 914
routines. print synopsis of selected .. help() 651

print VxWorks logo. ... printLogo() 1001
information. print VxWorks version .. version() 1430

Keyword Index

1581

IX

Keyword Name Page

test whether character is printable, including space/ ... isprint() 723
test whether character is printing, non-white-space/ ... isgraph() 722

attr object (POSIX). get value of prioceiling attr in mutex...... pthread_mutexattr_getprioceiling() 1035
attributes object/ set prioceiling attr in mutex...... pthread_mutexattr_setprioceiling() 1037
(POSIX). get value of prioceiling attribute of mutex... pthread_mutex_getprioceiling() 1031

(POSIX). dynamically set prioceiling attribute of mutex... pthread_mutex_setprioceiling() 1033
tWVUpload task/ set priority and stack size of wvUploadTaskConfig() 1488

network events with specific priority level. enable ... wvNetLevelAdd() 1479
network events with specific priority level. disable wvNetLevelRemove() 1479

examine priority of task. .. taskPriorityGet() 1339
change priority of task. ... taskPrioritySet() 1339

get priority of tMuxPollTask. muxTaskPriorityGet() 894
reset priority of tMuxPollTask. muxTaskPrioritySet() 895

manager (WindView). set priority of WindView rBuff.................. wvRBuffMgrPrioritySet() 1483
get maximum priority (POSIX)..................................... sched_get_priority_max() 1131
get minimum priority (POSIX)...................................... sched_get_priority_min() 1132

set task’s priority (POSIX).. sched_setparam() 1134
create private environment. ... envPrivateCreate() 570

destroy private environment. envPrivateDestroy() 570
bind socket to privileged IP port. ... bindresvport() 431

open socket with privileged port bound to it. .. rresvport() 1125
probe address for bus error. vxMemProbe() 1454

floating-point coprocessor. probe for presence of ... fppProbe() 601
library. Remote Procedure Call (RPC) support... rpcLib 239

initialize cache library for processor architecture.. cacheLibInit() 457
mode (PowerPC, SH). place processor in reduced-power vxPowerDown() 1455

get processor number. ... sysProcNumGet() 1311
set processor number. .. sysProcNumSet() 1311

return contents of current processor status register/... cpsr() 508
determine processor time in use (ANSI)... clock() 494

pass string to command processor (Unimplemented)/... system() 1317
memory. flush processor write buffers to.................................... cachePipeFlush() 460

mapping library for ARM Ltd. processors. MMU ... mmuMapLib 162
cause abnormal program termination (ANSI). .. abort() 403
call function at program termination/ .. atexit() 421

return contents of program counter. ... pc() 950
put diagnostics into programs (ANSI). ... assert() 418

change shell prompt. ... shellPromptSet() 1214
entry. display login prompt and validate user.. loginPrompt() 753

parameters. prompt for boot line....................................... bootParamsPrompt() 435
debugging information for TCP protocol. display... tcpDebugShow() 1357

display all statistics for TCP protocol. ... tcpstatShow() 1358
display statistics for UDP protocol. .. udpstatShow() 1413
interface between BSD IP protocol and MUX... ipProto 128

proxy Address Resolution Protocol (ARP) client library. .. proxyLib 216
proxy Address Resolution Protocol (ARP) server library....................................... proxyArpLib 215

Address Resolution Protocol (ARP) table/ .. arpLib 26
attribute object (POSIX). set protocol attribute in mutex pthread_mutexattr_setprotocol() 1037

library. Bootstrap Protocol (BOOTP) client .. bootpLib 33
Dynamic Host Configuration Protocol (DHCP) run-time/... dhcpcLib 73

VxWorks OS Libraries API Reference, 5.5

1582

Keyword Name Page

Dynamic Host Configuration Protocol (DHCP) server/.. dhcpsLib 76
File Transfer Protocol (FTP) library. .. ftpLib 115
File Transfer Protocol (FTP) server. ... ftpdLib 113

object (POSIX). get value of protocol in mutex attributes pthread_mutexattr_getprotocol() 1036
mount protocol library. ... mountLib 178

Point-to-Point Protocol library. ... pppLib 212
to receive all internet protocol packets. add routine.......................... ipFilterHookAdd() 715

library. Routing Information Protocol (RIP) v1 and v2 .. ripLib 234
Trivial File Transfer Protocol server library. .. tftpdLib 318

Point-to-Point Protocol show routines... pppShow 215
library. Simple Network Time Protocol (SNTP) client .. sntpcLib 291
library. Simple Network Time Protocol (SNTP) server... sntpsLib 292

connections for Internet protocol sockets. /all active..................................... inetstatShow() 681
Trivial File Transfer Protocol (TFTP) client/ ... tftpLib 319

bind NPT protocol to driver. ... muxTkBind() 895
routing table. add protocol-specific route to mRouteEntryAdd() 848

Protocol (ARP) client/ proxy Address Resolution .. proxyLib 216
Protocol (ARP) server/ proxy Address Resolution ... proxyArpLib 215

initialize proxy ARP. ... proxyArpLibInit() 1001
create proxy ARP network... proxyNetCreate() 1002
show proxy ARP networks. .. proxyNetShow() 1003

register proxy client. .. proxyReg() 1005
unregister proxy client. ... proxyUnreg() 1005

delete proxy network. ... proxyNetDelete() 1002
create pseudo terminal. .. ptyDevCreate() 1043

destroy pseudo terminal. ... ptyDevRemove() 1044
pseudo-memory device driver.. memDrv 156

0 and RAND_MAX/ generate pseudo-random integer between ... rand() 1054
initialize pseudo-terminal driver. .. ptyDrv() 1044

pseudo-terminal driver. .. ptyDrv 223
display meaning of specified psr value, symbolically (ARM). psrShow() 1006

show state of Pty Buffers.. ptyShow() 1045
inflate code using public domain zlib functions. ... inflateLib 123

bus. pulse reset signal on SCSI... scsiBusReset() 1139
test whether character is punctuation (ANSI). .. ispunct() 723

create all types of DNS queries. .. resolvMkQuery() 1078
send pre-formatted query and return answer.. resolvSend() 1081

of IP address. query DNS server for host name resolvGetHostByAddr() 1075
address of host. query DNS server for IP......................... resolvGetHostByName() 1076

response. construct query, send it, wait for.. resolvQuery() 1080
trigger work queue task and queue. reset .. trgWorkQReset() 1400
create and initialize message queue. ... msgQCreate() 850

delete message queue. .. msgQDelete() 851
process for message queue. /event notification msgQEvStart() 859
process for message queue. /event notification msgQEvStop() 860

get information about message queue. .. msgQInfoGet() 861
of messages queued to message queue. get number .. msgQNumMsgs() 863

receive message from message queue. .. msgQReceive() 864
send message to message queue. ... msgQSend() 865

show information about message queue. .. msgQShow() 866

Keyword Index

1583

IX

Keyword Name Page

get message queue attributes (POSIX).. mq_getattr() 839
set message queue attributes (POSIX)... mq_setattr() 844

delete distributed message queue from group (VxFusion). msgQDistGrpDelete() 854
distributed message queue group library/... msgQDistGrpLib 180
distributed message queue group show routines/.......................... msgQDistGrpShow 181

message queue library. ... msgQLib 183
initialize POSIX message queue library. .. mqPxLibInit() 837

message queue library (POSIX).. mqPxLib 179
distributed objects message queue library (VxFusion). ... msgQDistLib 181

shared memory message queue library (VxMP). .. msgQSmLib 185
close message queue (POSIX). ... mq_close() 838

that message is available on queue (POSIX). notify task.. mq_notify() 840
open message queue (POSIX). ... mq_open() 841

receive message from message queue (POSIX). ... mq_receive() 842
send message to message queue (POSIX). ... mq_send() 843

remove message queue (POSIX). ... mq_unlink() 845
POSIX message queue show.. mqPxShow 180

initialize POSIX message queue show facility.. mqPxShowInit() 838
initialize message queue show facility.. msgQShowInit() 867

initialize distributed message queue show package (VxFusion). msgQDistShowInit() 859
message queue show routines... msgQShow 185

distributed message queue show routines/ .. msgQDistShow 182
reset trigger work queue task and queue. ... trgWorkQReset() 1400

add distributed message queue to group (VxFusion). msgQDistGrpAdd() 853
create distributed message queue (VxFusion). .. msgQDistCreate() 851

in distributed message queue (VxFusion). /of messages............... msgQDistNumMsgs() 855
from distributed message queue (VxFusion). /message.......................... msgQDistReceive() 856

message to distributed message queue (VxFusion). send.. msgQDistSend() 857
shared memory message queue (VxMP). /and initialize msgQSmCreate() 868

initialize queued signal facilities. ... sigqueueInit() 1223
send queued signal to task. .. sigqueue() 1222

get number of messages queued to message queue. msgQNumMsgs() 863
events support for message queues. VxWorks... msgQEvLib 183

BSP serial devices to quiescent state. initialize sysSerialHwInit() 1315
reset all SIO devices to quiet state. ... sysSerialReset() 1316

compute quotient and remainder (ANSI). ... div() 557
division (ANSI). compute quotient and remainder of .. ldiv() 732

(reentrant). compute quotient and remainder.. div_r() 558
(reentrant). compute quotient and remainder... ldiv_r() 732

return contents of register r0 (also r1 - r14, r1-r15 for/ .. r0() 1050
/contents of register r0 (also r1 - r14, r1-r15 for SH) (ARM,/.. r0() 1050

initialize R10000 cache library.. cacheR10kLibInit() 463
library. MIPS R10000 cache management .. cacheR10kLib 49

/of register r0 (also r1 - r14, r1-r15 for SH) (ARM, SH). .. r0() 1050
/of register r0 (also r1 - r14, r1-r15 for SH) (ARM, SH)... r0() 1050

initialize R3000 cache library.. cacheR3kLibInit() 460
library. MIPS R3000 cache management .. cacheR3kLib 47

initialize R33000 cache library.. cacheR33kLibInit() 464
library. MIPS R33000 cache management .. cacheR33kLib 50

initialize R333x0 cache library...................................... cacheR333x0LibInit() 465

VxWorks OS Libraries API Reference, 5.5

1584

Keyword Name Page

library. MIPS R333x0 cache management..................................... cacheR333x0Lib 50
initialize R4000 cache library. .. cacheR4kLibInit() 461

library. MIPS R4000 cache management.. cacheR4kLib 47
initialize R5000 cache library. .. cacheR5kLibInit() 461

library. MIPS R5000 cache management.. cacheR5kLib 48
initialize R7000 cache library. .. cacheR7kLibInit() 462

library. MIPS R7000 cache management.. cacheR7kLib 48
get contents of non-volatile RAM.. sysNvRamGet() 1309

write to non-volatile RAM... sysNvRamSet() 1310
RAM Disk Cached Block Driver. ramDiskCbio 225

create RAM disk device... ramDevCreate() 1051
initialize RAM Disk device. .. ramDiskDevCreate() 1052

RAM disk driver.. ramDrv 225
(optional). prepare RAM disk driver for use .. ramDrv() 1053

/integer between 0 and RAND_MAX (ANSI). ... rand() 1054
value of seed used to generate random numbers (ANSI). reset... srand() 1262
disable MTRR (Memory Type Range Register). .. pentiumMtrrDisable() 956
enable MTRR (Memory Type Range Register). .. pentiumMtrrEnable() 956

library. raw block device file system .. rawFsLib 226
modify mode of raw device volume. rawFsModeChange() 1055

disable raw device volume. .. rawFsVolUnmount() 1056
associate block device with raw volume functions. .. rawFsDevInit() 1054

prepare to use raw volume library. ... rawFsInit() 1055
status. notify rawFsLib of change in ready....................... rawFsReadyChange() 1056

dynamic ring buffer (rBuff) library. .. rBuffLib 230
set priority of WindView rBuff manager (WindView). wvRBuffMgrPrioritySet() 1483

initialize RC32364 cache library....................................... cacheR32kLibInit() 463
library. MIPS RC32364 cache management..................................... cacheR32kLib 49

ifRcvAddressTable. populate rcvAddr fields for .. rcvEtherAddrGet() 1058
given address. get rcvAddress table entries for m2IfRcvAddrEntryGet() 779
modify entries of rcvAddressTable....................................... m2IfRcvAddrEntrySet() 780

test that remote host is reachable. ... ping() 977
from ASCII string (ANSI). read and convert characters ... sscanf() 1263

from standard input stream/ read and convert characters ... scanf() 1130
from stream (ANSI). read and convert characters ... fscanf() 614

read buffer. ... fioRead() 596
device. read bytes from file or .. read() 1064

tape device. read bytes or blocks from SCSI scsiRdTape() 1154
input stream (ANSI). read characters from standard ... gets() 638

from requested NFS device. read configuration information nfsDevInfoGet() 934
register (MIPS). read contents of cause ... intCRGet() 686
register (MIPS). read contents of status... intSRGet() 694

read data into array (ANSI).. fread() 611
table. read FDISK-style partition............................... usrFdiskPartRead() 1422

do task-level read for tty device. ... tyRead() 1411
read line with line-editing. ... ledRead() 734

integer) from stream. read next word (32-bit ... getw() 640
(POSIX). read one entry from directory .. readdir() 1064

initiate asynchronous read (POSIX). .. aio_read() 408
command to SCSI device and read results. /REQUEST_SENSE............................ scsiReqSense() 1156

Keyword Index

1585

IX

Keyword Name Page

block device. read sector(s) from SCSI ... scsiRdSecs() 1154
characters from stream/ read specified number of... fgets() 591

read string from file. .. fioRdString() 595
to SCSI device. issue READ_BLOCK_LIMITS command ... scsiSeqReadBlockLimits() 1159

device. issue READ_CAPACITY command to SCSI scsiReadCapacity() 1155
ISO 9660 CD-ROM read-only file system library. ... cdromFsLib 59

set file read/write pointer... lseek() 760
notify rawFsLib of change in ready status. .. rawFsReadyChange() 1056

notify rt11Fs of change in ready status. ... rt11FsReadyChange() 1128
notify tapeFsLib of change in ready status. .. tapeFsReadyChange() 1321

determine ready status of CBIO device. cbioRdyChgdGet() 482
force change in ready status of CBIO device. cbioRdyChgdSet() 483
check if task is ready to run... taskIsReady() 1335

(ANSI). reallocate block of memory.. realloc() 1065
from shared memory system/ reallocate block of memory................................. smMemRealloc() 1235

specified partition. reallocate block of memory in memPartRealloc() 817
wait for real-time signals.. sigwaitinfo() 1227

add routine to be called at reboot. ... rebootHookAdd() 1067
reboot support library. .. rebootLib 231

packets. add routine to receive all internet protocol ipFilterHookAdd() 715
ID information (use unld() to reclaim space). delete module moduleDelete() 830

Ethernet multicast address record. delete... etherMultiDel() 574
SH). place processor in reduced-power mode (PowerPC, vxPowerDown() 1455

re-enable disk cache. .. dcacheDevEnable() 516
compute quotient and remainder (reentrant). .. div_r() 558
compute quotient and remainder (reentrant). ... ldiv_r() 732

break down string into tokens (reentrant) (POSIX).. strtok_r() 1283
assign routine to access reference clock. .. sntpsClockSet() 1250

get content of Debug Register 0 to 7 (x86). .. vxDrGet() 1450
set value to Debug Register 0 to 7 (x86). ... vxDrSet() 1451

get content of Control Register 0 (x86).. vxCr0Get() 1449
set value to Control Register 0 (x86).. vxCr0Set() 1450

get content of Control Register 2 (x86).. vxCr2Get() 1447
set value to Control Register 2 (x86).. vxCr2Set() 1447

get content of Control Register 3 (x86).. vxCr3Get() 1448
set value to Control Register 3 (x86).. vxCr3Set() 1448

get content of Control Register 4 (x86).. vxCr4Get() 1448
set value to Control Register 4 (x86).. vxCr4Set() 1449

set task status register (68K, MIPS, x86). .. taskSRSet() 1347
return contents of status register (68K, SH). .. sr() 1262

get contents of CR4 register.. pentiumCr4Get() 952
sets specified value to CR4 register... pentiumCr4Set() 952

specified MSR (Model Specific Register). get contents of pentiumMsrGet() 954
all MSRs (Model Specific Register). initialize... pentiumMsrInit() 954

show all MSR (Model Specific Register). .. pentiumMsrShow() 955
MTRR (Memory Type Range Register). disable ... pentiumMtrrDisable() 956
MTRR (Memory Type Range Register). enable .. pentiumMtrrEnable() 956

(68K). return contents of register a0 (also a1 - a7) .. a0() 403
of current processor status register (ARM). /contents.. cpsr() 508

(68K). return contents of register d0 (also d1 - d7) .. d0() 512

VxWorks OS Libraries API Reference, 5.5

1586

Keyword Name Page

return contents of register edi (also esi - eax)/ ... edi() 568
return contents of system register mach (also macl, pr)/... mach() 802

initialize default task status register (MIPS).. taskSRInit() 1346
read contents of cause register (MIPS).. intCRGet() 686

write contents of cause register (MIPS)... intCRSet() 687
read contents of status register (MIPS).. intSRGet() 694

update contents of status register (MIPS)... intSRSet() 694
register proxy client. .. proxyReg() 1005

r1-r15 for/ return contents of register r0 (also r1 - r14,... r0() 1050
(WindView). register timestamp timer...................................... wvTmrRegister() 1485

get content of EFLAGS register (x86). ... vxEflagsGet() 1451
set value to EFLAGS register (x86). .. vxEflagsSet() 1452

of Global Descriptor Table Register (x86). get content... vxGdtrGet() 1452
of Interrupt Descriptor Table Register (x86). get content.. vxIdtrGet() 1453

of Local Descriptor Table Register (x86). get content.. vxLdtrGet() 1453
get content of TASK register (x86). ... vxTssGet() 1460

set value to TASK register (x86). ... vxTssSet() 1460
return contents of status register (x86/SimNT). .. eflags() 568
routing system. remove registered handler from routeStorageUnbind() 1122
configuration of devices registered with MUX. display....................................... muxShow() 893

set task’s registers. ... taskRegsSet() 1340
display contents of task’s registers. .. taskRegsShow() 1341

print contents of task’s DSP registers. ... dspTaskRegsShow() 566
of task’s floating-point registers. print contents.................................. fppTaskRegsShow() 606

modify registers. ... mRegs() 845
(Machine Check Architecture) registers. show MCA pentiumMcaShow() 953
specified MSR (Model Specific Registers). set value to.. pentiumMsrSet() 955

get floating-point registers from task TCB...................................... fppTaskRegsGet() 605
get task’s registers from TCB. .. taskRegsGet() 1340

set floating-point registers of task... fppTaskRegsSet() 605
DHCP relay agent library. ... dhcprLib 75

relinquish CPU (POSIX)... sched_yield() 1136
relinquish specified lease. dhcpcRelease() 534
reload object module. .. reld() 1069

/time before expiration and reload value (POSIX). .. timer_gettime() 1384
compute quotient and remainder (ANSI). .. div() 557
compute quotient and remainder of division (ANSI). ... ldiv() 732

compute remainder of x/y (ANSI). .. fmod() 598
compute remainder of x/y (ANSI). ... fmodf() 598

compute quotient and remainder (reentrant). ... div_r() 558
compute quotient and remainder (reentrant). ... ldiv_r() 732

hashing function using remainder technique... hashFuncModulo() 644
expiration and reload/ get remaining time before ... timer_gettime() 1384

remote access to target shell. .. remShellLib 232
remote command library... remLib 231

create remote file device. .. netDevCreate() 911
buffer size. create remote file device with fixed netDevCreate2() 912

install network remote file driver.. netDrv() 913
network remote file I/O driver. ... netDrv 190
log in to remote FTP server. .. ftpLogin() 627

Keyword Index

1587

IX

Keyword Name Page

log in to remote host.. rlogin() 1105
exported file systems of remote host. display.. nfsExportShow() 939

test that remote host is reachable. ... ping() 977
display current remote identity. ... whoami() 1468

VxWorks remote login daemon.. rlogind() 1105
initialize remote login facility... rlogInit() 1106

remote login library... rlogLib 236
execute shell command on remote machine. ... rcmd() 1057

support library. Remote Procedure Call (RPC) ... rpcLib 239
retrieve current time from remote source... sntpcTimeGet() 1249

get file from remote system. .. tftpGet() 1372
put file to remote system. .. tftpPut() 1374

send TFTP message to remote system. ... tftpSend() 1375
set remote user name and password. remCurIdSet() 1070
set remote user name and password. .. iam() 657

events. remove address filter for wvNetAddressFilterClear() 1475
remove ARP table entry.. arpDelete() 413

from RIP interface. remove authentication hook....................... ripAuthHookDelete() 1087
parameters handler. remove configuration dhcpcEventHookDelete() 526

remove directory... rmdir() 1107
name database (VxFusion). remove entry from distributed....................... distNameRemove() 555

insert or remove entry in ifTable..................................... m2IfTableUpdate() 783
remove file. .. rm() 1107
remove file (ANSI). ... remove() 1071

list of exported file/ remove file system from.. nfsUnexport() 942
table. remove hash node from hash hashTblRemove() 650

remove I/O driver.. iosDrvRemove() 710
remove message queue (POSIX). mq_unlink() 845

(POSIX). remove named semaphore... sem_unlink() 1194
memory objects name database/ remove object from shared................................ smNameRemove() 1240

events. remove port number filter for wvNetPortFilterClear() 1480
timer (POSIX). remove previously created.. timer_delete() 1383

routing system. remove registered handler from routeStorageUnbind() 1122
table. remove route from routing routeEntryDel() 1117

remove route hook. ripRouteHookDelete() 1102
table. remove symbol from symbol.................................... symRemove() 1294

RIP interface. remove table bypass hook from ripLeakHookDelete() 1097
task. remove task variable from taskVarDelete() 1354

remove tty device descriptor. tyDevRemove() 1408
interface. remove update filter from RIP.................... ripSendHookDelete() 1104

request message and retrieve reply. send BOOTP... bootpMsgGet() 436
send FTP command and get reply. ... ftpCommand() 621

get FTP command reply. ... ftpReplyGet() 628
get FTP command reply. ... ftpReplyGetEnhanced() 629

command and get complete RFC reply code. send FTP.............................. ftpCommandEnhanced() 622
wait for asynchronous I/O request(s) (POSIX). ... aio_suspend() 410

device and read/ issue REQUEST_SENSE command to SCSI scsiReqSense() 1156
disable task rescheduling.. taskLock() 1336
enable task rescheduling.. taskUnlock() 1351

device. issue RESERVE command to SCSI....................................... scsiReserve() 1157

VxWorks OS Libraries API Reference, 5.5

1588

Keyword Name Page

device. issue RESERVE UNIT command to SCSI scsiReserveUnit() 1157
state. reset all SIO devices to quiet sysSerialReset() 1316

reset both PMC0 and PMC1. pentiumP5PmcReset() 959
reset both PMC0 and PMC1. pentiumP6PmcReset() 965
reset both PMC0 and PMC1. pentiumPmcReset() 969

handle controller-bus reset event. .. scsiMgrBusReset() 1146
transfer control to boot/ reset network devices and ... reboot() 1066

reset PMC0. .. pentiumP5PmcReset0() 960
reset PMC0. .. pentiumP6PmcReset0() 965
reset PMC0. ... pentiumPmcReset0() 969
reset PMC1. .. pentiumP5PmcReset1() 960
reset PMC1. .. pentiumP6PmcReset1() 965
reset PMC1. ... pentiumPmcReset1() 969

directory (POSIX). reset position to start of.. rewinddir() 1082
tMuxPollTask. reset priority of.. muxTaskPrioritySet() 895

pulse reset signal on SCSI bus. ... scsiBusReset() 1139
and queue. reset trigger work queue task.............................. trgWorkQReset() 1400

reset TSC (Timestamp Counter)....................... pentiumTscReset() 974
generate random numbers/ reset value of seed used to... srand() 1262

set clock resolution. .. clock_setres() 495
replace default address resolution function................................... muxAddrResFuncAdd() 871

delete address resolution function.................................... muxAddrResFuncDel() 872
ifType/protocol. get address resolution function for.............................. muxAddrResFuncGet() 873

get clock resolution (POSIX). ... clock_getres() 494
client library. proxy Address Resolution Protocol (ARP).. proxyLib 216

server library. proxy Address Resolution Protocol (ARP)... proxyArpLib 215
table manipulation/ Address Resolution Protocol (ARP)... arpLib 26

initialize resolver library... resolvInit() 1077
get parameters which control resolver library.. resolvParamsGet() 1078
set parameters which control resolver library... resolvParamsSet() 1079

DNS resolver library.. resolvLib 232
restart task.. taskRestart() 1341

delete task without restriction. ... taskDeleteForce() 1328
/semaphore without restrictions.. semMGiveForce() 1185

return BSP version and revision number. ... sysBspRev() 1299
return kernel revision string.. kernelVersion() 727

issue REWIND command to SCSI device. scsiRewind() 1158
FTP command and get complete RFC reply code. send.............................. ftpCommandEnhanced() 622

get characters from ring buffer.. rngBufGet() 1108
put bytes into ring buffer.. rngBufPut() 1108
create empty ring buffer... rngCreate() 1109

delete ring buffer... rngDelete() 1109
number of free bytes in ring buffer. determine .. rngFreeBytes() 1110

determine number of bytes in ring buffer.. rngNBytes() 1112
make ring buffer empty. ... rngFlush() 1110
test if ring buffer is empty. .. rngIsEmpty() 1111

room). test if ring buffer is full (no more ... rngIsFull() 1111
dynamic ring buffer (rBuff) library. .. rBuffLib 230

library. ring buffer subroutine ... rngLib 237
ring/ put byte ahead in ring buffer without moving..................................... rngPutAhead() 1113

Keyword Index

1589

IX

Keyword Name Page

advance ring pointer by n bytes. rngMoveAhead() 1112
in ring buffer without moving ring pointers. put byte ahead rngPutAhead() 1113
interface table maintained by RIP. display internal ... ripIfShow() 1096

static and non-RIP routes into RIP. add hook to install.................................. ripRouteHookAdd() 1099
routing table maintained by RIP. display internal ... ripRouteShow() 1102

add hook to bypass RIP and kernel routing tables. ripLeakHookAdd() 1096
add new RIP authentication key.. ripAuthKeyAdd() 1088

delete existing RIP authentication key.................................... ripAuthKeyDelete() 1088
find RIP authentication key....................................... ripAuthKeyFind() 1089
find RIP authentication key............................... ripAuthKeyFindFirst() 1089

interface changes. alter RIP configuration after .. ripIfReset() 1095
add interface to RIP exclusion list. .. ripIfExcludeListAdd() 1093

delete interface from RIP exclusion list. ripIfExcludeListDelete() 1094
VxWorks interface routines to RIP for SNMP Agent.. m2RipLib 147

add authentication hook to RIP interface. ... ripAuthHookAdd() 1085
authentication hook from RIP interface. remove................................... ripAuthHookDelete() 1087

remove table bypass hook from RIP interface. ... ripLeakHookDelete() 1097
add update filter to RIP interface. ... ripSendHookAdd() 1103

remove update filter from RIP interface. ... ripSendHookDelete() 1104
show RIP interface exclusion list. ripIfExcludeListShow() 1094

delete RIP MIB support.. m2RipDelete() 792
initialize RIP MIB support... m2RipInit() 795

terminate all RIP processing. ... ripShutdown() 1104
initialize RIP routing library... ripLibInit() 1097

Routing Information Protocol (RIP) v1 and v2 library.. ripLib 234
MD5 authentication of outgoing RIP-2 message. start ripAuthKeyOut1MD5() 1090

authenticate incoming RIP-2 message using MD5. ripAuthKeyInMD5() 1090
authenticate outgoing RIP-2 message using MD5. ripAuthKeyOut2MD5() 1091

get MIB-II RIP-group global counters. m2RipGlobalCountersGet() 793
get MIB-II RIP-group interface entry. m2RipIfConfEntryGet() 793
set MIB-II RIP-group interface entry. m2RipIfConfEntrySet() 794
get MIB-II RIP-group interface entry. m2RipIfStatEntryGet() 794

generic ROM initialization... romStart() 1113
ROM initialization module. .. bootInit 30

transfer control to ROM monitor. ... sysToMonitor() 1317
boot ROM subroutine library. ... bootLib 31

and transfer control to boot ROMs. reset network devices .. reboot() 1066
configuration module for boot ROMs. system ... bootConfig 29

ring buffer is full (no more room). test if .. rngIsFull() 1111
compute cube root.. cbrt() 485
compute cube root.. cbrtf() 486

compute non-negative square root (ANSI). ... sqrt() 1261
compute non-negative square root (ANSI). ... sqrtf() 1261

root task. .. usrRoot() 1425
integer. round number to nearest... round() 1114
integer. round number to nearest... roundf() 1114
integer. round number to nearest... iround() 718
integer. round number to nearest.. iroundf() 719
enable round-robin selection.. kernelTimeSlice() 727

add route. ... routeAdd() 1115

VxWorks OS Libraries API Reference, 5.5

1590

Keyword Name Page

delete route. .. routeDelete() 1116
find matching route for destination. routeEntryLookup() 1118

remove route from routing table... routeEntryDel() 1117
delete route from routing table... mRouteDelete() 847
delete route from routing table............................... mRouteEntryDelete() 849

remove route hook. ... ripRouteHookDelete() 1102
insert route in routing table... routeEntryAdd() 1116

multiple matching entries. route interface library for... routeEntryLib 238
network route manipulation library... routeLib 238

socket address pointers from route message. extract ... ripAddrsXtract() 1083
network. add route to destination that is....................................... routeNetAdd() 1120

add protocol-specific route to routing table.. mRouteEntryAdd() 848
new or removed interfaces for router discovery. check for .. rdiscIfReset() 1062

initialize router discovery... rdiscLibInit() 1063
function. implement ICMP router discovery control.. rdCtl() 1059

implement ICMP router discovery function. .. rdisc() 1061
initialize ICMP router discovery function. .. rdiscInit() 1062

library. ICMP router discovery server ... rdiscLib 230
interface. delete all routes associated with network ifAllRoutesDelete() 660

interface. delete routes associated with network ifRouteDelete() 670
to install static and non-RIP routes into RIP. add hook............................... ripRouteHookAdd() 1099

display all IP routes (summary information).................................... routeShow() 1120
add multiple routes to same destination... mRouteAdd() 846
display all IP routes (verbose information).................................. mRouteShow() 849

(RIP) v1 and v2 library. Routing Information Protocol ... ripLib 234
message routines for routing interface library. routeMessageLib 238

initialize RIP routing library.. ripLibInit() 1097
display routing statistics. ... routestatShow() 1122

remove registered handler from routing system.. routeStorageUnbind() 1122
insert route in routing table.. routeEntryAdd() 1116

remove route from routing table... routeEntryDel() 1117
change entry in routing table.. routeModify() 1119

traverse IP routing table.. routeTableWalk() 1123
delete route from routing table... mRouteDelete() 847

add protocol-specific route to routing table... mRouteEntryAdd() 848
delete route from routing table... mRouteEntryDelete() 849

get MIB-2 routing table entry.................................. m2IpRouteTblEntryGet() 791
set MIB-II routing table entry................................... m2IpRouteTblEntrySet() 791

RIP. display internal routing table maintained by ripRouteShow() 1102
hook to bypass RIP and kernel routing tables. add .. ripLeakHookAdd() 1096

initialize RPC package.. rpcInit() 1124
initialize task’s access to RPC package... rpcTaskInit() 1124
Remote Procedure Call (RPC) support library. .. rpcLib 239

Digital WD33C93 only). assert RST line on SCSI bus (Western.......................... sysScsiBusReset() 1312
system library. RT-11 media-compatible file... rt11FsLib 239

initialize rt11Fs device descriptor. ... rt11FsDevInit() 1126
initialize device and create rt11Fs file system... rt11FsMkfs() 1127

set rt11Fs file system date. .. rt11FsDateSet() 1125
prepare to use rt11Fs library. .. rt11FsInit() 1127

status. notify rt11Fs of change in ready rt11FsReadyChange() 1128

Keyword Index

1591

IX

Keyword Name Page

modify mode of rt11Fs volume... rt11FsModeChange() 1128
make calling task safe from deletion.. taskSafe() 1342

get MIB-II interface-group scalar variables. .. m2IfGroupInfoGet() 778
get MIB-II IP-group scalar variables. ... m2IpGroupInfoGet() 789

get MIB-II TCP-group scalar variables. .. m2TcpGroupInfoGet() 799
get MIB-II UDP-group scalar variables. ... m2UdpGroupInfoGet() 800

strings. iterative scaling hashing function for hashFuncIterScale() 643
floating-point formatting and scanning library. ... floatLib 109

thread/ dynamically set schedparam attribute for....................... pthread_setschedparam() 1040
thread (POSIX). get value of schedparam attribute from pthread_getschedparam() 1027

attributes/ get value of schedparam attribute in thread... pthread_attr_getschedparam() 1009
attributes object/ set schedparam attribute in thread... pthread_attr_setschedparam() 1015

thread attributes object/ get schedpolicy attribute from........... pthread_attr_getschedpolicy() 1010
thread attributes object/ set schedpolicy attribute in pthread_attr_setschedpolicy() 1016

scheduling library (POSIX). ... schedPxLib 245
specified task (POSIX). get scheduling parameters for sched_getparam() 1132
set scheduling policy and scheduling parameters (POSIX). sched_setscheduler() 1135

scheduling parameters/ set scheduling policy and.................................... sched_setscheduler() 1135
get current scheduling policy (POSIX). sched_getscheduler() 1133

(POSIX). set contention scope for thread attributes pthread_attr_setscope() 1017
(POSIX). get contention scope from thread attributes.................... pthread_attr_getscope() 1011
shell to stop processing script. signal .. shellScriptAbort() 1215

define logical partition on SCSI block device. .. scsiBlkDevCreate() 1137
read sector(s) from SCSI block device. ... scsiRdSecs() 1154

write sector(s) to SCSI block device. .. scsiWrtSecs() 1168
pulse reset signal on SCSI bus. ... scsiBusReset() 1139

WD33C93/ assert RST line on SCSI bus (Western Digital sysScsiBusReset() 1312
system SCSI configuration. .. sysScsiConfig() 1313

all devices connected to SCSI controller. configure..................................... scsiAutoConfig() 1137
physical devices attached to SCSI controller. list ... scsiShow() 1160

notify SCSI manager of SCSI (controller) event................................. scsiMgrEventNotify() 1147
send event to SCSI controller state machine. scsiMgrCtrlEvent() 1146

issue ERASE command to SCSI device.. scsiErase() 1142
FORMAT_UNIT command to SCSI device. issue .. scsiFormatUnit() 1142
issue INQUIRY command to SCSI device.. scsiInquiry() 1144

LOAD/UNLOAD command to SCSI device. issue .. scsiLoadUnit() 1145
MODE_SELECT command to SCSI device. issue ... scsiModeSelect() 1149

issue MODE_SENSE command to SCSI device... scsiModeSense() 1149
READ_CAPACITY command to SCSI device. issue ... scsiReadCapacity() 1155

issue RELEASE command to SCSI device.. scsiRelease() 1155
RELEASE UNIT command to SCSI device. issue .. scsiReleaseUnit() 1156
issue RESERVE command to SCSI device.. scsiReserve() 1157

RESERVE UNIT command to SCSI device. issue .. scsiReserveUnit() 1157
issue REWIND command to SCSI device.. scsiRewind() 1158

command to SCSI/ /READ_BLOCK_LIMITS........ scsiSeqReadBlockLimits() 1159
tape on specified physical SCSI device. move.. scsiSpace() 1161

START_STOP_UNIT command to SCSI device. issue .. scsiStartStopUnit() 1162
TEST_UNIT_READY command to SCSI device. issue .. scsiTestUnitRdy() 1166

REQUEST_SENSE command to SCSI device and read results. issue........................ scsiReqSense() 1156
SCSI initialization. ... usrScsi 342

VxWorks OS Libraries API Reference, 5.5

1592

Keyword Name Page

Computer System Interface (SCSI) library. Small... scsiLib 258
for all devices (SCSI-2). SCSI library common commands scsiCommonLib 256

devices (SCSI-2). SCSI library for direct access scsiDirectLib 257
/Computer System Interface (SCSI) library (SCSI-1). .. scsi1Lib 246
/Computer System Interface (SCSI) library (SCSI-2). .. scsi2Lib 249

initialize fields in SCSI logical partition... scsiBlkDevInit() 1138
show status information for SCSI manager.. scsiMgrShow() 1147

SCSI manager library (SCSI-2). scsiMgrLib 259
(controller) event. notify SCSI manager of SCSI scsiMgrEventNotify() 1147

perform post-processing after SCSI message is sent.................................. scsiMsgOutComplete() 1150
target. handle complete SCSI message received from scsiMsgInComplete() 1150

configure SCSI peripherals... usrScsiConfig() 1425
structure. create SCSI physical device...................................... scsiPhysDevCreate() 1151
structure. delete SCSI physical-device scsiPhysDevDelete() 1152

initialize on-board SCSI port. ... sysScsiInit() 1314
library (SCSI-2). SCSI sequential access device ... scsiSeqLib 260

create SCSI sequential device. scsiSeqDevCreate() 1158
write file marks to SCSI sequential device. scsiWrtFileMarks() 1167

read bytes or blocks from SCSI tape device.. scsiRdTape() 1154
MODE_SELECT command to SCSI tape device. issue scsiTapeModeSelect() 1163

issue MODE_SENSE command to SCSI tape device.. scsiTapeModeSense() 1163
write data to SCSI tape device.. scsiWrtTape() 1168

display options for specified SCSI target... scsiTargetOptionsShow() 1165
get options for one or all SCSI targets. .. scsiTargetOptionsGet() 1164
set options for one or all SCSI targets. ... scsiTargetOptionsSet() 1164

caches is disabled. inform SCSI that hardware snooping of scsiCacheSnoopDisable() 1140
caches is enabled. inform SCSI that hardware snooping of scsiCacheSnoopEnable() 1140

perform generic SCSI thread initialization. scsiThreadInit() 1166
library (SCSI-2). SCSI thread-level controller... scsiCtrlLib 256

Interface (SCSI) library (SCSI-1). /Computer System.. scsi1Lib 246
Interface (SCSI) library (SCSI-2). /Computer System.. scsi2Lib 249

commands for all devices (SCSI-2). SCSI library common scsiCommonLib 256
controller library (SCSI-2). SCSI thread-level .. scsiCtrlLib 256

for direct access devices (SCSI-2). SCSI library.. scsiDirectLib 257
SCSI manager library (SCSI-2). ... scsiMgrLib 259
access device library (SCSI-2). SCSI sequential ... scsiSeqLib 260

initialize SCSI-2 interface to scsiLib.. scsi2IfInit() 1136
initialize SCSI-2 interface to scsiLib. .. scsi2IfInit() 1136

return pointer to SCSI_PHYS_DEV structure. scsiPhysDevIdGet() 1152
perform binary search (ANSI)... bsearch() 443

character (ANSI). search block of memory for .. memchr() 807
open directory for searching (POSIX). .. opendir() 946

convert portions of second to NTP format. sntpsNsecToFraction() 1251
convert time in seconds into string (ANSI). ... ctime() 510
convert time in seconds into string (POSIX).. ctime_r() 510

secrets table. delete secret from PPP authentication......................... pppSecretDelete() 994
secrets table. add secret to PPP authentication.................................. pppSecretAdd() 993

PPP authentication secrets library. ... pppSecretLib 214
secret to PPP authentication secrets table. add ... pppSecretAdd() 993

secret from PPP authentication secrets table. delete ... pppSecretDelete() 994

Keyword Index

1593

IX

Keyword Name Page

display PPP authentication secrets table. .. pppSecretShow() 994
routine. block to block (sector to sector) transfer .. cbioBlkCopy() 476

block to block (sector to sector) transfer routine. .. cbioBlkCopy() 476
block device. read sector(s) from SCSI .. scsiRdSecs() 1154

block device. write sector(s) to SCSI .. scsiWrtSecs() 1168
numbers/ reset value of seed used to generate random... srand() 1262
location of data in zbuf segment. determine... zbufSegData() 1499

determine length of zbuf segment... zbufSegLength() 1501
byte location. find zbuf segment containing specified zbufSegFind() 1500

into zbuf. create zbuf segment from buffer and insert............................. zbufInsertBuf() 1497
clear segment from CY7C604 cache. cacheCy604ClearSegment() 451

get (delete and return) first segment from module.. moduleSegGet() 835
clear segment from Sun-4 cache. cacheSun4ClearSegment() 472

find first segment in module... moduleSegFirst() 834
find next segment in module... moduleSegNext() 835
get next segment in zbuf. .. zbufSegNext() 1501

get previous segment in zbuf. ... zbufSegPrev() 1502
write-protect text segment (VxVMI). ... vmTextProtect() 1445

wake up task pended in select(). ... selWakeup() 1172
initialize select facility. ... selectInit() 1170

UNIX BSD 4.3 select library. ... selectLib 261
get type of select() wake-up node. selWakeupType() 1174

add wake-up node to select() wake-up list. ... selNodeAdd() 1171
find and delete node from select() wake-up list. ... selNodeDelete() 1171

wake up all tasks in select() wake-up list. .. selWakeupAll() 1172
initialize select() wake-up list. selWakeupListInit() 1173

get number of nodes in select() wake-up list. selWakeupListLen() 1173
terminate select() wake-up list. selWakeupListTerm() 1174

gate type(int/trap), and gate selector (x86). /CPU vector, ... intVecGet2() 699
gate type(int/trap), and selector (x86). /CPU vector, .. intVecSet2() 703

create and initialize binary semaphore. ... semBCreate() 1175
create and initialize counting semaphore. ... semCCreate() 1176

initialize release 4.x binary semaphore. create and ... semCreate() 1177
delete semaphore. .. semDelete() 1179

event notification process for semaphore. start ... semEvStart() 1179
event notification process for semaphore. stop.. semEvStop() 1181

unblock every task pended on semaphore. ... semFlush() 1181
give semaphore. ... semGive() 1182

task IDs that are blocked on semaphore. get list of ... semInfo() 1183
initialize static binary semaphore. ... semInit() 1183

initialize mutual-exclusion semaphore. create and ... semMCreate() 1184
show information about semaphore. ... semShow() 1186

take semaphore. ... semTake() 1188
obtain CBIO device semaphore. .. cbioLock() 480
release CBIO device semaphore. .. cbioUnlock() 484

available/ lock (take) semaphore, blocking if not.. sem_wait() 1195
available. take release 4.x semaphore, if semaphore is .. semClear() 1177

take release 4.x semaphore, if semaphore is available. ... semClear() 1177
binary semaphore library... semBLib 262

counting semaphore library... semCLib 264

VxWorks OS Libraries API Reference, 5.5

1594

Keyword Name Page

general semaphore library. .. semLib 266
mutual-exclusion semaphore library. .. semMLib 268
release 4.x binary semaphore library. ... semOLib 271

shared memory semaphore library (VxMP). ... semSmLib 274
close named semaphore (POSIX). ... sem_close() 1188

destroy unnamed semaphore (POSIX). .. sem_destroy() 1189
get value of semaphore (POSIX). .. sem_getvalue() 1190

initialize unnamed semaphore (POSIX). ... sem_init() 1191
initialize/open named semaphore (POSIX). ... sem_open() 1191

unlock (give) semaphore (POSIX). .. sem_post() 1193
remove named semaphore (POSIX). ... sem_unlink() 1194

unavailable/ lock (take) semaphore, returning error if.................................... sem_trywait() 1194
initialize POSIX semaphore show facility...................................... semPxShowInit() 1186

initialize semaphore show facility... semShowInit() 1187
POSIX semaphore show library... semPxShow 273

semaphore show routines.. semShow 273
initialize POSIX semaphore support... semPxLibInit() 1185
library (POSIX). semaphore synchronization .. semPxLib 271

shared memory binary semaphore (VxMP). /initialize semBSmCreate() 1175
shared memory counting semaphore (VxMP). /initialize semCSmCreate() 1178

give mutual-exclusion semaphore without/ .. semMGiveForce() 1185
VxWorks events support for semaphores. ... semEvLib 265

set case sensitivity of volume. dosSetVolCaseSens() 563
library (SCSI-2). SCSI sequential access device... scsiSeqLib 260

/I/O control function for sequential access devices. .. scsiSeqIoctl() 1159
create SCSI sequential device.. scsiSeqDevCreate() 1158

write file marks to SCSI sequential device... scsiWrtFileMarks() 1167
library. tape sequential device file system... tapeFsLib 302

volume functions. associate sequential device with tape................................... tapeFsDevInit() 1320
device associated with serial channel. get SIO_CHAN sysSerialChanGet() 1315

create VxWorks device for serial channel. .. ttyDevCreate() 1405
terminal device access to serial channels. provide ... ttyDrv 326

connect BSP serial device interrupts..................................... sysSerialHwInit2() 1316
state. initialize BSP serial devices to quiescent sysSerialHwInit() 1315

execute serializing instruction CPUID.......................... pentiumSerialize() 973
wide char’s/ convert series of multibyte char’s to .. mbstowcs() 804

multibyte char’s/ convert series of wide char’s to... wcstombs() 1461
File Transfer Protocol (FTP) server... ftpdLib 113

retrieve current DHCP server.. dhcpcServerGet() 535
display current DHCP server.. dhcpcServerShow() 535

address storage hook for server. assign permanent dhcpsAddressHookAdd() 538
lease storage hook for server. assign permanent dhcpsLeaseHookAdd() 541

log in to remote FTP server... ftpLogin() 627
initialize NFS server.. nfsdInit() 936

get status of NFS server... nfsdStatusGet() 938
show status of NFS server... nfsdStatusShow() 938

set TFTP server address.. tftpPeerSet() 1374
change SNTP server broadcast settings...................................... sntpsConfigSet() 1251

TFTP server daemon task.. tftpdTask() 1371
address. query DNS server for host name of IP....................... resolvGetHostByAddr() 1075

Keyword Index

1595

IX

Keyword Name Page

query DNS server for IP address of host. resolvGetHostByName() 1076
Network File System (NFS) server library. .. nfsdLib 193
Resolution Protocol (ARP) server library. proxy Address proxyArpLib 215

ICMP router discovery server library. ... rdiscLib 230
Network Time Protocol (SNTP) server library. Simple .. sntpsLib 292

server library. ... telnetdLib 314
Trivial File Transfer Protocol server library. ... tftpdLib 318

Configuration Protocol (DHCP) server library. Dynamic Host... dhcpsLib 76
get control connection to FTP server on specified host. .. ftpHookup() 626

structures. set up DHCP server parameters and data ... dhcpsInit() 540
initialize TFTP server task... tftpdInit() 1370
terminate FTP server task... ftpdDelete() 625
initialize FTP server task.. ftpdInit() 625

create binding between network service and END... muxBind() 874
detach network service from specified device..................................... muxUnbind() 904
initialize telnet services.. telnetdInit() 1359
initialize telnet services.. telnetdStart() 1361

close active telnet session. .. telnetdExit() 1359
initialize TFTP session. ... tftpInit() 1373

quit TFTP session. ... tftpQuit() 1375
command interpreter for telnet sessions. specify... telnetdParserSet() 1360

ANSI setjmp documentation. .. ansiSetjmp 16
r1 - r14, r1-r15 for SH) (ARM, SH). /of register r0 (also... r0() 1050

of status register (68K, SH). return contents ... sr() 1262
reduced-power mode (PowerPC, SH). place processor in .. vxPowerDown() 1455

ARM, SimSolaris, SimNT and SH). /level (68K, x86,... intLevelSet() 690
register mach (also macl, pr) (SH). /contents of system .. mach() 802

r0 (also r1 - r14, r1-r15 for SH) (ARM, SH). /of register .. r0() 1050
/lock-out level (68K, x86, ARM, SH, SimSolaris, SimNT)..................................... intLockLevelGet() 693
/lock-out level (68K, x86, ARM, SH, SimSolaris, SimNT)...................................... intLockLevelSet() 693

/vector (68K, x86, MIPS, SH, SimSolaris, SimNT).. intVecGet() 698
vector (trap) (68K, x86, MIPS, SH, SimSolaris, SimNT). /CPU...................................... intVecSet() 699

management mode (PowerPC, SH, x86). get power .. vxPowerModeGet() 1456
management mode (PowerPC, SH, x86). set power.. vxPowerModeSet() 1456

initialize SH7040 cache library. cacheSh7040LibInit() 465
library. Hitachi SH7040 cache management cacheSh7040Lib 51

initialize SH7604/SH7615 cache library. cacheSh7604LibInit() 466
library. Hitachi SH7604/SH7615 cache management.................... cacheSh7604Lib 51

initialize SH7622 cache library. cacheSh7622LibInit() 466
library. SH7622 cache management cacheSh7622Lib 52

initialize SH7700 cache library. cacheSh7700LibInit() 467
library. Hitachi SH7700 cache management cacheSh7700Lib 52

Hitachi SH7700 MMU support library. mmuSh7700Lib 168
initialize SH7729 cache library. cacheSh7729LibInit() 468

library. Hitachi SH7729 cache management cacheSh7729Lib 53
initialize SH7750 cache library. cacheSh7750LibInit() 469

library. Hitachi SH7750 cache management cacheSh7750Lib 53
Hitachi SH7750 MMU support library. mmuSh7750Lib 172

DHCP client interface shared code library. ... dhcpcCommonLib 72
/pages to virtual space in shared global virtual mem/.................................. vmGlobalMap() 1438

VxWorks OS Libraries API Reference, 5.5

1596

Keyword Name Page

(VxMP). create and initialize shared memory binary semaphore semBSmCreate() 1175
create and initialize shared memory counting/ semCSmCreate() 1178

library (VxMP). shared memory management .. smMemLib 281
routines (VxMP). shared memory management show.......................... smMemShow 284

library (VxMP). shared memory message queue................................... msgQSmLib 185
(VxMP). create and initialize shared memory message queue.......................... msgQSmCreate() 868

(VxMP). add name to shared memory name database smNameAdd() 1237
show information about shared memory network.. smNetShow() 1241

VxWorks interface to shared memory network/ ... smNetLib 287
show routines. shared memory network driver................................... smNetShow 288

(VxMP). look up shared memory object by name.............................. smNameFind() 1238
(VxMP). look up shared memory object by value.............. smNameFindByValue() 1239

descriptor (VxMP). initialize shared memory objects ... smObjInit() 1244
(VxMP). attach calling CPU to shared memory objects facility smObjAttach() 1242

(VxMP). install shared memory objects facility smObjLibInit() 1245
(VxMP). initialize shared memory objects facility smObjSetup() 1246

(VxMP). shared memory objects library .. smObjLib 288
database library (VxMP). shared memory objects name....................................... smNameLib 284
database show routines/ shared memory objects name................................... smNameShow 286

database/ remove object from shared memory objects name........................... smNameRemove() 1240
database/ show contents of shared memory objects name................................ smNameShow() 1240

routines (VxMP). shared memory objects show....................................... smObjShow 291
display current status of shared memory objects (VxMP)............................... smObjShow() 1247

(VxMP). create shared memory partition memPartSmCreate() 818
library (VxMP). shared memory semaphore ... semSmLib 274

block of memory (VxMP). free shared memory system partition.............................. smMemFree() 1233
blocks and statistics/ show shared memory system partition........................... smMemShow() 1236

(VxMP). add memory to shared memory system partition................. smMemAddToPool() 1231
allocate memory for array from shared memory system partition/ smMemCalloc() 1232

find largest free block in shared memory system partition/ smMemFindMax() 1233
allocate block of memory from shared memory system partition/ smMemMalloc() 1234
(VxMP). set debug options for shared memory system partition................. smMemOptionsSet() 1234

(VxMP). /block of memory from shared memory system partition........................ smMemRealloc() 1235
start shell. ... shellInit() 1213

lock access to shell. .. shellLock() 1213
remote access to target shell. ... remShellLib 232

machine. execute shell command on remote .. rcmd() 1057
shell entry point. .. shell() 1212
shell execution routines. ... shellLib 275

display or set size of shell history. ... shellHistory() 1212
display or set size of shell history. ... h() 643

change shell prompt... shellPromptSet() 1214
script. signal shell to stop processing shellScriptAbort() 1215

input/output/error fds. set shell’s default.. shellOrigStdSet() 1214
POSIX message queue show. .. mqPxShow 180

show AIO requests. .. aioShow() 407
Register). show all MSR (Model Specific pentiumMsrShow() 955

specified physical device. show BLK_DEV structures on scsiBlkDevShow() 1139
objects name database (VxMP). show contents of shared memory......................... smNameShow() 1240

configuration. show current authentication ripAuthKeyShow() 1091

Keyword Index

1597

IX

Keyword Name Page

loaded modules. show current status for all moduleShow() 836
socket interfaces. show device information on all................................ tffsShowAll() 1368

specific socket interface. show device information on ... tffsShow() 1367
initialize POSIX semaphore show facility. ... semPxShowInit() 1186

initialize semaphore show facility. ... semShowInit() 1187
initialize standard I/O show facility. .. stdioShowInit() 1270

initialize task hook show facility. ... taskHookShowInit() 1331
initialize trigger show facility. .. trgShowInit() 1399

initialize watchdog show facility. ... wdShowInit() 1466
initialize DHCP show facility. .. dhcpcShowInit() 536

initialize DSP show facility. .. dspShowInit() 566
initialize floating-point show facility. .. fppShowInit() 604

initialize I/O system show facility. ... iosShowInit() 712
initialize memory partition show facility. .. memShowInit() 821

initialize POSIX message queue show facility. .. mqPxShowInit() 838
initialize message queue show facility. .. msgQShowInit() 867
include virtual memory show facility (VxVMI). .. vmShowInit() 1442

queue. show information about message msgQShow() 866
semaphore. show information about ... semShow() 1186

memory network. show information about shared smNetShow() 1241
watchdog. show information about ... wdShow() 1466

asynchronous I/O (AIO) show library... aioPxShow 13
POSIX semaphore show library... semPxShow 273

routines. show list of task create.............................. taskCreateHookShow() 1326
routines. show list of task delete taskDeleteHookShow() 1330
routines. show list of task switch taskSwitchHookShow() 1350

Architecture) registers. show MCA (Machine Check.......................... pentiumMcaShow() 953
statistics. show network stack data pool.............. netStackDataPoolShow() 929
statistics. show network stack system pool netStackSysPoolShow() 929

/distributed message queue show package (VxFusion). msgQDistShowInit() 859
statistics. show partition blocks and..................................... memPartShow() 818

Monitoring Counters). show PMCs (Performance.............................. pentiumPmcShow() 970
show pool statistics. ... netPoolShow() 927

broadcast forwarding. show ports enabled for .. proxyPortShow() 1004
show proxy ARP networks. proxyNetShow() 1003

list. show RIP interface exclusion................... ripIfExcludeListShow() 1094
trigger show routine. ... trgShow 325

initialize task show routine facility... taskShowInit() 1344
dsp show routines... dspShow 100

floating-point show routines.. fppShow 113
I/O system show routines... iosShow 127

initialize TCP show routines.. tcpShowInit() 1357
initialize UDP show routines.. udpShowInit() 1413

memory show routines... memShow 161
message queue show routines... msgQShow 185

and Pentium[234] specific show routines. Pentium.. pentiumShow 209
Point-to-Point Protocol show routines... pppShow 215

semaphore show routines... semShow 273
shared memory network driver show routines.. smNetShow 288

task hook show routines.. taskHookShow 308

VxWorks OS Libraries API Reference, 5.5

1598

Keyword Name Page

task show routines. ... taskShow 312
watchdog show routines. ... wdShow 350

initialize ICMP show routines. ... icmpShowInit() 657
initialize IGMP show routines. ... igmpShowInit() 673

initialize network show routines. .. netShowInit() 928
/message queue group show routines (VxFusion)............................... msgQDistGrpShow 181

distributed message queue show routines (VxFusion)....................................... msgQDistShow 182
/objects interface adapter show routines (VxFusion)... distIfShow 83

distributed name database show routines (VxFusion).. distNameShow 85
shared memory management show routines (VxMP). ... smMemShow 284

memory objects name database show routines (VxMP). shared................................. smNameShow 286
shared memory objects show routines (VxMP). ... smObjShow 291

virtual memory show routines (VxVMI).. vmShow 346
partition blocks and/ show shared memory system................................. smMemShow() 1236

show state of Pty Buffers. .. ptyShow() 1045
physical device. show status information for scsiPhysDevShow() 1153

SCSI manager. show status information for scsiMgrShow() 1147
show status of NFS server.................................. nfsdStatusShow() 938

blocks and statistics. show system memory partition memShow() 820
show trigger information.. trgShow() 1399

information. show volume configuration cdromFsVolConfigShow() 489
handler associated with signal. specify ... signal() 1220

wait for signal... sigtimedwait() 1224
connect user routine to timer signal... timer_connect() 1381

alarm clock for delivery of signal. set.. alarm() 411
initialize signal facilities. .. sigInit() 1219

initialize queued signal facilities. ... sigqueueInit() 1223
software signal facility library. .. sigLib 276

(POSIX). delete signal from signal set.. sigdelset() 1218
install signal handler. .. sigvec() 1226

(POSIX). test to see if signal is in signal set .. sigismember() 1220
set signal mask. ... sigsetmask() 1223

examine calling thread’s signal mask (POSIX). /and/or......................... pthread_sigmask() 1042
examine and/or change signal mask (POSIX). ... sigprocmask() 1221

pulse reset signal on SCSI bus.. scsiBusReset() 1139
specify action associated with signal (POSIX). /and/or .. sigaction() 1216
suspend task until delivery of signal (POSIX). .. sigsuspend() 1224
suspend task until delivery of signal (POSIX). .. pause() 950

add signal to signal set (POSIX). ... sigaddset() 1217
delete signal from signal set (POSIX). .. sigdelset() 1218

test to see if signal is in signal set (POSIX). ... sigismember() 1220
included (POSIX). initialize signal set with all signals .. sigfillset() 1219
included (POSIX). initialize signal set with no signals... sigemptyset() 1218

processing script. signal shell to stop .. shellScriptAbort() 1215
(POSIX). wait for signal to be delivered .. sigwait() 1226

send signal to caller’s task. ... raise() 1050
add signal to signal set (POSIX). ... sigaddset() 1217

send queued signal to task. ... sigqueue() 1222
send signal to task (POSIX)... kill() 728
send signal to thread (POSIX). ... pthread_kill() 1030

Keyword Index

1599

IX

Keyword Name Page

add to set of blocked signals. .. sigblock() 1217
wait for real-time signals. ... sigwaitinfo() 1227

retrieve set of pending signals blocked from delivery/.................................. sigpending() 1221
initialize signal set with no signals included (POSIX). .. sigemptyset() 1218
initialize signal set with all signals included (POSIX). .. sigfillset() 1219

instrument signals (WindView). ... wvSigInst() 1483
x86, ARM, SH, SimSolaris, SimNT). /lock-out level (68K, intLockLevelGet() 693
x86, ARM, SH, SimSolaris, SimNT). /lock-out level (68K, intLockLevelSet() 693

x86, MIPS, ARM, SimSolaris, SimNT). /base address (68K,................................ intVecBaseGet() 696
x86, MIPS, ARM, SimSolaris, SimNT). /base address (68K,................................. intVecBaseSet() 697

x86, MIPS, SH, SimSolaris, SimNT). /vector (68K, .. intVecGet() 698
x86, MIPS, SH, SimSolaris, SimNT). /vector (trap) (68K, .. intVecSet() 699

(68K, x86, ARM, SimSolaris, SimNT). /vector table........................... intVecTableWriteProtect() 704
(68K, x86, ARM, SimSolaris, SimNT and SH). /level.. intLevelSet() 690

for C routine (68K, x86, MIPS, SimSolaris). /handler.. intHandlerCreate() 688
level (68K, x86, ARM, SH, SimSolaris, SimNT). /lock-out intLockLevelGet() 693
level (68K, x86, ARM, SH, SimSolaris, SimNT). /lock-out intLockLevelSet() 693

address (68K, x86, MIPS, ARM, SimSolaris, SimNT). /base.................................... intVecBaseGet() 696
address (68K, x86, MIPS, ARM, SimSolaris, SimNT). /base..................................... intVecBaseSet() 697

vector (68K, x86, MIPS, SH, SimSolaris, SimNT). /interrupt..................................... intVecGet() 698
(trap) (68K, x86, MIPS, SH, SimSolaris, SimNT). /vector... intVecSet() 699

vector table (68K, x86, ARM, SimSolaris, SimNT). /exception.......... intVecTableWriteProtect() 704
/level (68K, x86, ARM, SimSolaris, SimNT and SH). intLevelSet() 690

compute both sine and cosine.. sincos() 1228
compute both sine and cosine.. sincosf() 1229

compute sine (ANSI). .. sin() 1228
compute sine (ANSI). ... sinf() 1229

compute hyperbolic sine (ANSI). .. sinh() 1230
compute hyperbolic sine (ANSI). .. sinhf() 1230

compute arc sine (ANSI). .. asin() 417
compute arc sine (ANSI). ... asinf() 417

integer. convert single-precision value to .. irintf() 718
subroutine. single-step, but step over ... so() 1252

single-step task. ... s() 1130
reset all SIO devices to quiet state. sysSerialReset() 1316

with serial channel. get SIO_CHAN device associated........................ sysSerialChanGet() 1315
get current time slice (POSIX).. sched_rr_get_interval() 1134

or equal to specified/ compute smallest integer greater than .. ceil() 489
or equal to specified/ compute smallest integer greater than ... ceilf() 490

interface routines to RIP for SNMP Agent. VxWorks... m2RipLib 147
MIB-II ICMP-group API for SNMP Agents. ... m2IcmpLib 139

MIB-II interface-group API for SNMP agents... m2IfLib 139
MIB-II IP-group API for SNMP agents.. m2IpLib 142

MIB-II API library for SNMP agents.. m2Lib 144
MIB-II system-group API for SNMP agents... m2SysLib 148

MIB-II TCP-group API for SNMP agents... m2TcpLib 150
MIB-II UDP-group API for SNMP agents.. m2UdpLib 152

initialize SNMP MIB-2 library.. m2Init() 786
inform SCSI that hardware snooping of caches is/.......................... scsiCacheSnoopDisable() 1140
inform SCSI that hardware snooping of caches is enabled. scsiCacheSnoopEnable() 1140

VxWorks OS Libraries API Reference, 5.5

1600

Keyword Name Page

Simple Network Time Protocol (SNTP) client library. .. sntpcLib 291
settings. change SNTP server broadcast ... sntpsConfigSet() 1251

Simple Network Time Protocol (SNTP) server library. ... sntpsLib 292
receive data from socket. .. recv() 1067

receive message from socket. ... recvfrom() 1068
receive message from socket. .. recvmsg() 1069

send data to socket. ... send() 1196
send message to socket. ... sendmsg() 1197
send message to socket. ... sendto() 1198

open socket. .. socket() 1252
user data and send it to TCP socket. create zbuf from zbufSockBufSend() 1502
message and send it to UDP socket. create zbuf from user...................... zbufSockBufSendto() 1503

receive data in zbuf from TCP socket. ... zbufSockRecv() 1505
message in zbuf from UDP socket. receive... zbufSockRecvfrom() 1506

send zbuf data to TCP socket. ... zbufSockSend() 1507
send zbuf message to UDP socket. ... zbufSockSendto() 1508

accept connection from socket. .. accept() 404
bind name to socket. ... bind() 430

initiate connection to socket. ... connect() 497
enable connections to socket. ... listen() 736

route message. extract socket address pointers from ripAddrsXtract() 1083
specified duration. attempt socket connection within connectWithTimeout() 498

device information on specific socket interface. show .. tffsShow() 1367
initialize zbuf socket interface library. zbufSockLibInit() 1505

zbuf socket interface library. .. zbufSockLib 361
show device information on all socket interfaces. ... tffsShowAll() 1368

generic socket library... sockLib 293
get socket name. .. getsockname() 638
set socket options. .. setsockopt() 1203
get socket options. ... getsockopt() 639

bind socket to privileged IP port. bindresvport() 431
socket upload path library. wvSockUploadPathLib 357

close socket upload path (Windview).............. sockUploadPathClose() 1253
write to socket upload path (Windview).............. sockUploadPathWrite() 1255

upload path to host using socket (Windview). establish................. sockUploadPathCreate() 1254
upload path to host using TSFS socket (Windview). open tsfsUploadPathCreate() 1402

bound to it. open socket with privileged port ... rresvport() 1125
for Internet protocol sockets. /active connections.................................... inetstatShow() 681

support. initialize software floating-point math.................................... mathSoftInit() 803
library. software signal facility ... sigLib 276

/disk driver (VxSim for Solaris and VxSim for HP).. unixDrv 332
sort array of objects (ANSI). ... qsort() 1049

current time from remote source. retrieve .. sntpcTimeGet() 1249
(use unld() to reclaim space). /module ID information........................... moduleDelete() 830

/is printable, including space character (ANSI)... isprint() 723
allocate space for array (ANSI). .. calloc() 476

map physical pages to virtual space in shared global virtual/............................ vmGlobalMap() 1438
(VxVMI). map physical space into virtual space.. vmMap() 1440

physical space into virtual space (VxVMI). map... vmMap() 1440
spawn task. .. taskSpawn() 1345

Keyword Index

1601

IX

Keyword Name Page

periodically. spawn task to call function .. period() 975
repeatedly. spawn task to call function ... repeat() 1072

parameters. spawn task with default ... sp() 1255
of failed attempts to take spin-lock (VxMP). /logging.............. smObjTimeoutLogEnable() 1248

zbufs. split zbuf into two separate .. zbufSplit() 1509
spy CPU activity library. ... spyLib 294

stop spying and reporting. .. spyStop() 1260
compute non-negative square root (ANSI). .. sqrt() 1261
compute non-negative square root (ANSI). .. sqrtf() 1261

routine for TCP/IP network stack. generic attach .. ipAttach() 714
routine for TCP/IP network stack. generic detach .. ipDetach() 714

initialize task with stack at specified address. .. taskInit() 1334
show network stack data pool statistics. netStackDataPoolShow() 929

pop cleanup routine off top of stack (POSIX). .. pthread_cleanup_pop() 1019
pushes routine onto cleanup stack (POSIX). .. pthread_cleanup_push() 1019
(WindView). set priority and stack size of tWVUpload task.................. wvUploadTaskConfig() 1488

show network stack system pool statistics. netStackSysPoolShow() 929
display stack trace of task. .. tt() 1404

print summary of each task’s stack usage. ... checkStack() 491
enable or disable interrupt stack usage (x86).. intStackEnable() 695

attribute in thread/ get stack value of stacksize...................... pthread_attr_getstacksize() 1012
thread/ get value of stackaddr attribute from pthread_attr_getstackaddr() 1011
attributes object/ set stackaddr attribute in thread pthread_attr_setstackaddr() 1017

attributes/ get stack value of stacksize attribute in thread.............. pthread_attr_getstacksize() 1012
attributes object/ set stacksize attribute in thread............... pthread_attr_setstacksize() 1018

SCSI device. issue START_STOP_UNIT command to.................. scsiStartStopUnit() 1162
serial devices to quiescent state. initialize BSP .. sysSerialHwInit() 1315

reset all SIO devices to quiet state. ... sysSerialReset() 1316
set TCP connection to closed state. .. m2TcpConnEntrySet() 798

(POSIX). set cancellation state for calling thread pthread_setcancelstate() 1039
initialize global state for MUX.. muxLibInit() 881

context. determine if current state is in interrupt or task .. intContext() 686
send event to SCSI controller state machine. .. scsiMgrCtrlEvent() 1146

send event to thread state machine. .. scsiMgrThreadEvent() 1148
virtual memory. change state of block of ... vmBaseStateSet() 1433

virtual memory/ change state of block of ... vmStateSet() 1444
entry to UP or DOWN. set state of MIB-II interface m2IfTblEntrySet() 784

virtual memory (VxVMI). get state of page of ... vmStateGet() 1443
show state of Pty Buffers. .. ptyShow() 1045

RIP. add hook to install static and non-RIP routes into ripRouteHookAdd() 1099
initialize static binary semaphore. .. semInit() 1183

strategy (C++). change C++ static constructor calling.. cplusXtorSet() 507
call static constructors (C++). ... cplusCtors() 503

call all linked static constructors (C++). cplusCtorsLink() 504
call static destructors (C++). ... cplusDtors() 505

call all linked static destructors (C++). cplusDtorsLink() 506
display routing statistics.. routestatShow() 1122

display IP statistics.. ipstatShow() 717
report mbuf statistics.. mbufShow() 805

show partition blocks and statistics.. memPartShow() 818

VxWorks OS Libraries API Reference, 5.5

1602

Keyword Name Page

memory partition blocks and statistics. show system .. memShow() 820
show pool statistics. ... netPoolShow() 927

show network stack data pool statistics. .. netStackDataPoolShow() 929
show network stack system pool statistics. .. netStackSysPoolShow() 929

get PPP link statistics. ... pppstatGet() 995
display PPP link statistics. ... pppstatShow() 995

display statistics for ICMP. .. icmpstatShow() 658
display statistics for IGMP. .. igmpstatShow() 674

display all statistics for TCP protocol.. tcpstatShow() 1358
display statistics for UDP protocol....................................... udpstatShow() 1413

system partition blocks and statistics (VxMP). /memory smMemShow() 1236
rawFsLib of change in ready status. notify .. rawFsReadyChange() 1056

rt11Fs of change in ready status. notify .. rt11FsReadyChange() 1128
tapeFsLib of change in ready status. notify ... tapeFsReadyChange() 1321

get task’s status as string. .. taskStatusString() 1347
show current status for all loaded modules. moduleShow() 836

get TFTP status information.. tftpInfoShow() 1372
get PPP link status information... pppInfoGet() 984

display PPP link status information.. pppInfoShow() 985
physical device. show status information for...................................... scsiPhysDevShow() 1153

manager. show status information for SCSI scsiMgrShow() 1147
get file status information (POSIX). .. fstat() 619
get file status information (POSIX). ... fstatfs() 620

pathname (POSIX). get file status information using .. stat() 1268
pathname (POSIX). get file status information using .. statfs() 1268

error status library. ... errnoLib 102
operation/ retrieve error status of asynchronous I/O... aio_error() 408

operation/ retrieve return status of asynchronous I/O.. aio_return() 409
determine ready status of CBIO device. cbioRdyChgdGet() 482

force change in ready status of CBIO device. cbioRdyChgdSet() 483
get status of NFS server. ... nfsdStatusGet() 938

show status of NFS server. ... nfsdStatusShow() 938
modify status of relationship. m2IfStackEntrySet() 781

objects/ display current status of shared memory... smObjShow() 1247
x86). set task status register (68K, MIPS,... taskSRSet() 1347

return contents of status register (68K, SH).. sr() 1262
contents of current processor status register (ARM). return ... cpsr() 508

initialize default task status register (MIPS). ... taskSRInit() 1346
read contents of status register (MIPS). ... intSRGet() 694

update contents of status register (MIPS). .. intSRSet() 694
return contents of status register (x86/SimNT).. eflags() 568

definition of specified error status value. print .. printErrno() 996
get error status value of calling task... errnoGet() 571
set error status value of calling task.. errnoSet() 573

task. get error status value of specified..................................... errnoOfTaskGet() 572
task. set error status value of specified...................................... errnoOfTaskSet() 572

ANSI stdarg documentation. ... ansiStdarg 17
copy in (or stdin) to out (or stdout). ... copy() 498

ANSI stdio documentation.. ansiStdio 18
ANSI stdlib documentation. ... ansiStdlib 22

Keyword Index

1603

IX

Keyword Name Page

copy in (or stdin) to out (or stdout). ... copy() 498
assign permanent address storage hook for server. dhcpsAddressHookAdd() 538

assign permanent lease storage hook for server. dhcpsLeaseHookAdd() 541
delete lease data storage routine. dhcpcCacheHookDelete() 524

C++ static constructor calling strategy (C++). change... cplusXtorSet() 507
write word (32-bit integer) to stream.. putw() 1047

specify buffering for stream... setbuffer() 1200
word (32-bit integer) from stream. read next .. getw() 640

string to standard error stream. write formatted... printErr() 996
write character to stream (ANSI). ... putc() 1045

character to standard output stream (ANSI). write... putchar() 1046
string to standard output stream (ANSI). write... puts() 1047

characters from standard input stream (ANSI). /and convert... scanf() 1130
specify buffering for stream (ANSI). ... setbuf() 1200
specify buffering for stream (ANSI). ... setvbuf() 1211

push character back into input stream (ANSI). ... ungetc() 1413
write formatted string to stream (ANSI). .. vfprintf() 1431

and error flags for stream (ANSI). /end-of-file ... clearerr() 493
close stream (ANSI). .. fclose() 587

test end-of-file indicator for stream (ANSI). .. feof() 588
flush stream (ANSI). .. fflush() 589

return next character from stream (ANSI). .. fgetc() 590
of file position indicator for stream (ANSI). /current value .. fgetpos() 590
number of characters from stream (ANSI). read specified... fgets() 591

write formatted string to stream (ANSI). ... fprintf() 606
write character to stream (ANSI). ... fputc() 610

write string to stream (ANSI). ... fputs() 611
and convert characters from stream (ANSI). read ... fscanf() 614

file position indicator for stream (ANSI). set ... fseek() 618
file position indicator for stream (ANSI). set .. fsetpos() 619

of file position indicator for stream (ANSI). /current value .. ftell() 620
return next character from stream (ANSI). .. getc() 635

character from standard input stream (ANSI). return next.. getchar() 635
characters from standard input stream (ANSI). read ... gets() 638

string to standard output stream (ANSI). /formatted ... printf() 997
transfer file via TFTP using stream interface. ... tftpXfer() 1376

return fd for stream (POSIX). .. fileno() 591
copy from/to specified streams. .. copyStreams() 499

occurrence of character in string. find last ... rindex() 1083
get task’s status as string. .. taskStatusString() 1347

occurrence of character in string. find first .. index() 674
return kernel revision string. .. kernelVersion() 727

change login string. ... loginStringSet() 754
convert characters from ASCII string (ANSI). read and ... sscanf() 1263

occurrence of character in string (ANSI). find first.. strchr() 1271
map error number to error string (ANSI). ... strerror() 1274

time into formatted string (ANSI). /broken-down .. strftime() 1275
determine length of string (ANSI). .. strlen() 1277

occurrence of character in string (ANSI). find last.. strrchr() 1279
occurrence of substring in string (ANSI). find first.. strstr() 1280

VxWorks OS Libraries API Reference, 5.5

1604

Keyword Name Page

convert broken-down time into string (ANSI). .. asctime() 416
convert time in seconds into string (ANSI). .. ctime() 510

ANSI string documentation. ... ansiString 24
argument list to buffer/ write string formatted with variable .. vsprintf() 1446

argument list to fd. write string formatted with variable vfdprintf() 1430
argument list to/ write string formatted with variable ... vprintf() 1446

read string from file. ... fioRdString() 595
break down string into tokens (ANSI)... strtok() 1282

(POSIX). break down string into tokens (reentrant)... strtok_r() 1283
character from given/ return string length up to first ... strcspn() 1273

character not in given/ return string length up to first ... strspn() 1280
find device using string name. .. endFindByName() 569

set/ find first occurrence in string of character from given.. strpbrk() 1279
map error number to error string (POSIX)... strerror_r() 1274

convert broken-down time into string (POSIX)... asctime_r() 416
convert time in seconds into string (POSIX)... ctime_r() 510

Internet network number from string to address. convert .. inet_network() 679
concatenate one string to another (ANSI). ... strcat() 1271

copy one string to another (ANSI). .. strcpy() 1273
/characters from one string to another (ANSI). ... strncat() 1277

copy characters from one string to another (ANSI). .. strncpy() 1278
write formatted string to buffer (ANSI). .. sprintf() 1256

(Unimplemented) (ANSI). pass string to command processor.. system() 1317
convert initial portion of string to double (ANSI).. strtod() 1281

convert string to double (ANSI)... atof() 421
write formatted string to fd.. fdprintf() 588
post user event string to host tools. ... wdbUserEvtPost() 1463

convert string to int (ANSI). ... atoi() 422
convert string to long (ANSI). .. atol() 422
convert string to long integer (ANSI).. strtol() 1284

stream. write formatted string to standard error .. printErr() 996
stream (ANSI). write string to standard output... puts() 1047

stream/ write formatted string to standard output... printf() 997
write formatted string to stream (ANSI). ... vfprintf() 1431
write formatted string to stream (ANSI). ... fprintf() 606

write string to stream (ANSI). .. fputs() 611
integer (ANSI). convert string to unsigned long .. strtoul() 1285

scaling hashing function for strings. iterative.. hashFuncIterScale() 643
first n characters of two strings (ANSI). compare ... strncmp() 1278

LC_COLLATE/ compare two strings as appropriate to ... strcoll() 1272
(ANSI). compare two strings lexicographically .. strcmp() 1272

compare keys based on strings they point to.. hashKeyStrCmp() 645
of directory and any of subdirectories. list contents ... lsr() 761

listing of directory and all subdirectories contents. /long .. llr() 738
update relationship between sub-layers. .. m2IfStackTblUpdate() 782

extract sublist from list... lstExtract() 763
define subnet for network interface. ifMaskSet() 668

interface. get subnet mask for network ... ifMaskGet() 668
find first occurrence of substring in string (ANSI). ... strstr() 1280

create TrueFFS block device suitable for use with dosFs. tffsDevCreate() 1363

Keyword Index

1605

IX

Keyword Name Page

clear specific context from Sun-4 cache.. cacheSun4ClearContext() 470
clear line from Sun-4 cache.. cacheSun4ClearLine() 471

clear page from Sun-4 cache... cacheSun4ClearPage() 471
clear segment from Sun-4 cache.. cacheSun4ClearSegment() 472

initialize Sun-4 cache library. ... cacheSun4LibInit() 472
library. Sun-4 cache management... cacheSun4Lib 54

(MC68060). disable superscalar dispatch .. vxSSDisable() 1458
(MC68060). enable superscalar dispatch ... vxSSEnable() 1458

time interval elapses/ suspend current task until .. nanosleep() 906
suspend system. .. wdbSystemSuspend() 1462
suspend task... taskSuspend() 1348
suspend task.. ts() 1401

signal (POSIX). suspend task until delivery of sigsuspend() 1224
signal (POSIX). suspend task until delivery of .. pause() 950
check if task is suspended. .. taskIsSuspended() 1335

swap buffers. .. bswap() 444
swap bytes. ... swab() 1287

are not necessarily aligned. swap bytes with buffers that ... uswab() 1426
to be called at every task switch. add routine taskSwitchHookAdd() 1349

delete previously added task switch routine. .. taskSwitchHookDelete() 1350
show list of task switch routines.. taskSwitchHookShow() 1350

set symbolic name of this machine. sethostname() 1201
get symbolic name of this machine. gethostname() 637

of specified psr value, symbolically (ARM). /meaning psrShow() 1006
list symbols. ... lkup() 737

specified value. list symbols whose values are near.. lkAddr() 736
host/target symbol table synchronization. initialize................................... symSyncLibInit() 1295
host/target symbol table synchronization. ... symSyncLib 297

(POSIX). semaphore synchronization library .. semPxLib 271
coherency. synchronize caches for data.................... scsiCacheSynchronize() 1141

data caches. synchronize instruction and cacheTextUpdate() 473
facilities. display synopsis of execution timer .. timexHelp() 1387

functions. print synopsis of I/O utility ... ioHelp() 707
print synopsis of network routines. .. netHelp() 914
print synopsis of selected routines. .. help() 651

system-dependent library... sysLib 299
agents. MIB-II system-group API for SNMP.. m2SysLib 148

get system-group MIB-II variables................. m2SysGroupInfoGet() 796
to new values. set system-group MIB-II variables.................. m2SysGroupInfoSet() 796

initialize MIB-II system-group routines... m2SysInit() 797
list all system-known devices. ... devs() 519

not available (POSIX). lock (take) semaphore, blocking if ... sem_wait() 1195
error if unavailable/ lock (take) semaphore, returning sem_trywait() 1194

compute tangent (ANSI)... tan() 1318
compute tangent (ANSI).. tanf() 1318

compute hyperbolic tangent (ANSI)... tanh() 1319
compute hyperbolic tangent (ANSI)... tanhf() 1319

compute arc tangent (ANSI)... atan() 418
compute arc tangent (ANSI).. atanf() 420
compute arc tangent of y/x (ANSI)... atan2() 419

VxWorks OS Libraries API Reference, 5.5

1606

Keyword Name Page

compute arc tangent of y/x (ANSI). .. atan2f() 420
all files from tar formatted tape. extract... tarExtract() 1323

all contents of tar formatted tape. display.. tarToc() 1324
read bytes or blocks from SCSI tape device. .. scsiRdTape() 1154

command to SCSI tape device. issue MODE_SELECT scsiTapeModeSelect() 1163
MODE_SENSE command to SCSI tape device. issue .. scsiTapeModeSense() 1163

write data to SCSI tape device. .. scsiWrtTape() 1168
disable tape device volume.. tapeFsVolUnmount() 1322

archive named file/dir onto tape in tar format. .. tarArchive() 1322
SCSI device. move tape on specified physical... scsiSpace() 1161

system library. tape sequential device file.. tapeFsLib 302
/sequential device with tape volume functions.. tapeFsDevInit() 1320

initialize tape volume library... tapeFsInit() 1321
status. notify tapeFsLib of change in ready..................... tapeFsReadyChange() 1321

UNIX tar compatible library. ... tarLib 306
named file/dir onto tape in tar format. archive.. tarArchive() 1322

extract all files from tar formatted tape. ... tarExtract() 1323
display all contents of tar formatted tape. ... tarToc() 1324

SCSI message received from target. handle complete................................ scsiMsgInComplete() 1150
options for specified SCSI target. display... scsiTargetOptionsShow() 1165

using TSFS. target host connection library wvTsfsUploadPathLib 358
remote access to target shell... remShellLib 232

options for one or all SCSI targets. get ... scsiTargetOptionsGet() 1164
options for one or all SCSI targets. set .. scsiTargetOptionsSet() 1164

send signal to caller’s task. ... raise() 1050
single-step task. ... s() 1130

send queued signal to task. ... sigqueue() 1222
FILE of current task. /input/output/error .. stdioFp() 1269

delete task. .. taskDelete() 1327
get task ID of running task. .. taskIdSelf() 1332

verify existence of task. .. taskIdVerify() 1333
get information about task. ... taskInfoGet() 1333

examine priority of task. ... taskPriorityGet() 1339
change priority of task. .. taskPrioritySet() 1339

restart task. ... taskRestart() 1341
resume task. ... taskResume() 1342
spawn task. ... taskSpawn() 1345

suspend task. .. taskSuspend() 1348
add task variable to task. ... taskVarAdd() 1352

remove task variable from task. ... taskVarDelete() 1354
get list of task variables of task. .. taskVarInfo() 1355

delete task. ... td() 1358
initialize TFTP server task. ... tftpdInit() 1370
TFTP server daemon task. .. tftpdTask() 1371

resume task. .. tr() 1393
suspend task. .. ts() 1401

display stack trace of task. ... tt() 1404
display environment for task. .. envShow() 571

error status value of calling task. get... errnoGet() 571
status value of specified task. get error... errnoOfTaskGet() 572

Keyword Index

1607

IX

Keyword Name Page

status value of specified task. set error... errnoOfTaskSet() 572
error status value of calling task. set.. errnoSet() 573

clear all events for current task. ... eventClear() 575
floating-point registers of task. set.. fppTaskRegsSet() 605

terminate FTP server task. ... ftpdDelete() 625
initialize FTP server task. .. ftpdInit() 625

message-logging support task. ... logTask() 758
initialize and start MUX poll task. ... muxPollStart() 891

get delay on polling task. ... muxTaskDelayGet() 893
inter-cycle delay on polling task. set... muxTaskDelaySet() 894

start collecting task activity data.. spyClkStart() 1257
stop collecting task activity data.. spyClkStop() 1258

display task activity data... spyReport() 1259
begin periodic task activity reports.. spy() 1257

run periodic task activity reports.. spyTask() 1260
reset trigger work queue task and queue.. trgWorkQReset() 1400

exit task (ANSI). ... exit() 584
state is in interrupt or task context. /if current... intContext() 686

ID. get task control block for task .. taskTcb() 1351
package. initialize task CPU utilization tool ... spyLibInit() 1259

routine to be called at every task create. add .. taskCreateHookAdd() 1325
delete previously added task create routine. taskCreateHookDelete() 1326

show list of task create routines.................................... taskCreateHookShow() 1326
routine to be called at every task delete. add.. taskDeleteHookAdd() 1329

delete previously added task delete routine. taskDeleteHookDelete() 1329
show list of task delete routines. taskDeleteHookShow() 1330

network task entry point.. netTask() 930
delay task from executing.. taskDelay() 1327

initialize task hook facilities. ... taskHookInit() 1330
task hook library. ... taskHookLib 307

initialize task hook show facility. taskHookShowInit() 1331
task hook show routines.. taskHookShow 308

set default task ID. .. taskIdDefault() 1331
get name associated with task ID. ... taskName() 1336
get task control block for task ID. .. taskTcb() 1351

name. look up task ID associated with task taskNameToId() 1337
get task ID of running task. ... taskIdSelf() 1332

get list of active task IDs. ... taskIdListGet() 1332
semaphore. get list of task IDs that are blocked on.. semInfo() 1183

display task information from TCBs. ... taskShow() 1343
task information library. ... taskInfo 309

check if task is ready to run... taskIsReady() 1335
check if task is suspended. .. taskIsSuspended() 1335

task management library. ... taskLib 310
architecture-specific task management routines. ... taskArchLib 307

display task monitoring help menu. .. spyHelp() 1258
up task ID associated with task name. look... taskNameToId() 1337

preserve extra copy of task name events (WindView)............... wvTaskNamesPreserve() 1484
upload preserved task name events (WindView)................. wvTaskNamesUpload() 1485

examine task options. .. taskOptionsGet() 1337

VxWorks OS Libraries API Reference, 5.5

1608

Keyword Name Page

change task options.. taskOptionsSet() 1338
wake up task pended in select(). ... selWakeup() 1172

unblock every task pended on semaphore... semFlush() 1181
parameters for specified task (POSIX). get scheduling.............................. sched_getparam() 1132

send signal to task (POSIX)... kill() 728
get content of TASK register (x86). .. vxTssGet() 1460

set value to TASK register (x86). .. vxTssSet() 1460
disable task rescheduling. ... taskLock() 1336
enable task rescheduling. .. taskUnlock() 1351

make calling task safe from deletion. ... taskSafe() 1342
initialize task show routine facility. .. taskShowInit() 1344

task show routines. ... taskShow 312
get fd for task standard/.. ioTaskStdGet() 713
set fd for task standard/... ioTaskStdSet() 713

MIPS, x86). set task status register (68K, .. taskSRSet() 1347
initialize default task status register (MIPS). ... taskSRInit() 1346

routine to be called at every task switch. add... taskSwitchHookAdd() 1349
delete previously added task switch routine.................................. taskSwitchHookDelete() 1350

show list of task switch routines. taskSwitchHookShow() 1350
floating-point registers from task TCB. get .. fppTaskRegsGet() 605

initialized. activate task that has been.. taskActivate() 1325
on queue (POSIX). notify task that message is available mq_notify() 840

periodically. spawn task to call function... period() 975
repeatedly. spawn task to call function.. repeat() 1072

make calling task unsafe from deletion. ... taskUnsafe() 1352
(POSIX). suspend task until delivery of signal ... sigsuspend() 1224
(POSIX). suspend task until delivery of signal ... pause() 950

elapses/ suspend current task until time interval ... nanosleep() 906
get value of task variable... taskVarGet() 1354
set value of task variable.. taskVarSet() 1356

remove task variable from task. .. taskVarDelete() 1354
add task variable to task. ... taskVarAdd() 1352

initialize task variables facility. ... taskVarInit() 1355
get list of task variables of task. .. taskVarInfo() 1355

library. task variables support .. taskVarLib 313
and stack size of tWVUpload task (WindView). set priority wvUploadTaskConfig() 1488

spawn task with default parameters. ... sp() 1255
address. initialize task with stack at specified.. taskInit() 1334

delete task without restriction. taskDeleteForce() 1328
handle task-level exceptions... excTask() 582

device. do task-level read for tty... tyRead() 1411
device. do task-level write for tty ... tyWrite() 1412

initialize task’s access to RPC package. rpcTaskInit() 1124
print contents of task’s DSP registers... dspTaskRegsShow() 566

registers. print contents of task’s floating-point .. fppTaskRegsShow() 606
wake-up list. wake up all tasks in select() ... selWakeupAll() 1172

set task’s priority (POSIX). sched_setparam() 1134
set task’s registers. .. taskRegsSet() 1340

display contents of task’s registers. ... taskRegsShow() 1341
get task’s registers from TCB. ... taskRegsGet() 1340

Keyword Index

1609

IX

Keyword Name Page

print summary of each task’s stack usage. .. checkStack() 491
get task’s status as string. ... taskStatusString() 1347

complete information from task’s TCB. print ... ti() 1378
print summary of each task’s TCB. ... i() 656
telnetd. report whether tasks were pre-started by ... telnetdStaticTaskInitializationGet() 1362

get task’s registers from TCB. .. taskRegsGet() 1340
information from task’s TCB. print complete ... ti() 1378

registers from task TCB. get floating-point fppTaskRegsGet() 605
print summary of each task’s TCB. .. i() 656

display task information from TCBs. ... taskShow() 1343
get MIB-II TCP connection table entry. m2TcpConnEntryGet() 797

state. set TCP connection to closed m2TcpConnEntrySet() 798
all resources used to access TCP group. delete.. m2TcpDelete() 798

routines. TCP information display.. tcpShow 313
debugging information for TCP protocol. display .. tcpDebugShow() 1357

display all statistics for TCP protocol. .. tcpstatShow() 1358
initialize TCP show routines. .. tcpShowInit() 1357

from user data and send it to TCP socket. create zbuf.................................... zbufSockBufSend() 1502
receive data in zbuf from TCP socket. ... zbufSockRecv() 1505

send zbuf data to TCP socket. .. zbufSockSend() 1507
initialize MIB-II TCP-group access. .. m2TcpInit() 799

MIB-II TCP-group API for SNMP agents. m2TcpLib 150
get MIB-II TCP-group scalar variables....................... m2TcpGroupInfoGet() 799

generic attach routine for TCP/IP network stack. ... ipAttach() 714
generic detach routine for TCP/IP network stack. .. ipDetach() 714

buffers (VxFusion). allocate telegram buffer from pool of distTBufAlloc() 556
distributed objects telegram buffer library/ .. distTBufLib 85

buffers (VxFusion). return telegram buffer to pool of .. distTBufFree() 557
initialize telnet services... telnetdInit() 1359
initialize telnet services... telnetdStart() 1361

close active telnet session. ... telnetdExit() 1359
command interpreter for telnet sessions. specify.. telnetdParserSet() 1360
tasks were pre-started by telnetd. report whether....... telnetdStaticTaskInitializationGet() 1362

(Unimplemented)/ create temporary binary file ... tmpfile() 1391
generate temporary file name (ANSI). .. tmpnam() 1391

create pseudo terminal.. ptyDevCreate() 1043
destroy pseudo terminal.. ptyDevRemove() 1044

serial channels. provide terminal device access to.. ttyDrv 326
terminate all RIP processing. ripShutdown() 1104
terminate FTP server task. ... ftpdDelete() 625
terminate hash table.. hashTblTerminate() 650

wait for thread to terminate (POSIX). .. pthread_join() 1028
wake-up list. terminate select()... selWakeupListTerm() 1174

terminate thread (POSIX).. pthread_exit() 1026
function (C++). set terminate to user-defined.. set_terminate() 1199

cause abnormal program termination (ANSI). .. abort() 403
call function at program termination (Unimplemented)/.. atexit() 421

bus. test and set location across.. sysBusTas() 1301
C-callable atomic test-and-set primitive.. vxTas() 1459

already loaded into MUX. tests whether device is.. muxDevExists() 876

VxWorks OS Libraries API Reference, 5.5

1610

Keyword Name Page

SCSI device. issue TEST_UNIT_READY command to scsiTestUnitRdy() 1166
write-protect text segment (VxVMI). ... vmTextProtect() 1445

transfer file via TFTP. ... tftpCopy() 1368
Trivial File Transfer Protocol (TFTP) client library. .. tftpLib 319

send TFTP message to remote system..................................... tftpSend() 1375
set TFTP server address. .. tftpPeerSet() 1374

TFTP server daemon task. .. tftpdTask() 1371
initialize TFTP server task.. tftpdInit() 1370
initialize TFTP session. .. tftpInit() 1373

quit TFTP session. .. tftpQuit() 1375
get TFTP status information. .. tftpInfoShow() 1372
set TFTP transfer mode. .. tftpModeSet() 1373

transfer file via TFTP using stream interface.. tftpXfer() 1376
get name of thread attribute object. pthread_attr_getname() 1009
set name in thread attribute object. pthread_attr_setname() 1015

set inheritsched attribute in thread attribute object/................ pthread_attr_setinheritsched() 1014
(POSIX). destroy thread attributes object............................... pthread_attr_destroy() 1007

/of detachstate attribute in thread attributes object/ pthread_attr_getdetachstate() 1008
/of inheritsched attribute in thread attributes object/ pthread_attr_getinheritsched() 1008
/of schedparam attribute in thread attributes object/ pthread_attr_getschedparam() 1009

get schedpolicy attribute from thread attributes object/ pthread_attr_getschedpolicy() 1010
/of stackaddr attribute from thread attributes object/ pthread_attr_getstackaddr() 1011

/of stacksize attribute in thread attributes object/ pthread_attr_getstacksize() 1012
(POSIX). initialize thread attributes object...................................... pthread_attr_init() 1012

set detachstate attribute in thread attributes object/ pthread_attr_setdetachstate() 1013
set schedparam attribute in thread attributes object/ pthread_attr_setschedparam() 1015
set schedpolicy attribute in thread attributes object/ pthread_attr_setschedpolicy() 1016

set stackaddr attribute in thread attributes object/ pthread_attr_setstackaddr() 1017
set stacksize attribute in thread attributes object/ pthread_attr_setstacksize() 1018

get contention scope from thread attributes (POSIX)......................... pthread_attr_getscope() 1011
set contention scope for thread attributes (POSIX)......................... pthread_attr_setscope() 1017

compare thread IDs (POSIX). .. pthread_equal() 1026
perform generic SCSI thread initialization. ... scsiThreadInit() 1166

POSIX 1003.1c thread library interfaces. ... pthreadLib 217
cancel execution of thread (POSIX). .. pthread_cancel() 1018

create thread (POSIX). .. pthread_create() 1025
dynamically detach thread (POSIX). ... pthread_detach() 1025

terminate thread (POSIX). .. pthread_exit() 1026
of schedparam attribute from thread (POSIX). get value pthread_getschedparam() 1027

send signal to thread (POSIX). ... pthread_kill() 1030
cancellation state for calling thread (POSIX). set................................... pthread_setcancelstate() 1039
cancellation type for calling thread (POSIX). set.................................... pthread_setcanceltype() 1040

set schedparam attribute for thread (POSIX). dynamically pthread_setschedparam() 1040
cancellation point in calling thread (POSIX). create pthread_testcancel() 1043

(POSIX). create thread specific data key................................. pthread_key_create() 1029
(POSIX). delete thread specific data key................................ pthread_key_delete() 1029

get thread specific data (POSIX)......................... pthread_getspecific() 1027
set thread specific data (POSIX)......................... pthread_setspecific() 1041

send event to thread state machine................................... scsiMgrThreadEvent() 1148
wait for thread to terminate (POSIX). pthread_join() 1028

Keyword Index

1611

IX

Keyword Name Page

(POSIX). unblock thread waiting on condition pthread_cond_signal() 1022
library (SCSI-2). SCSI thread-level controller .. scsiCtrlLib 256

get calling thread’s ID (POSIX).. pthread_self() 1039
change and/or examine calling thread’s signal mask (POSIX). pthread_sigmask() 1042

initialize POSIX threads support... pthreadLibInit() 1007
(POSIX). unblock all threads waiting on condition.............. pthread_cond_broadcast() 1020

initialize TI TMS390 cache library. cacheTiTms390LibInit() 473
get value of kernel’s tick counter. .. tickGet() 1379
set value of kernel’s tick counter. ... tickSet() 1380

clock tick support library.. tickLib 321
announce clock tick to kernel... tickAnnounce() 1379

delay for specified amount of time.. sleep() 1231
to another one byte at a time. copy one buffer ... bcopyBytes() 426

to another one long word at a time. copy one buffer .. bcopyLongs() 426
to another one word at a time. copy one buffer ... bcopyWords() 427

character one byte at a time. /buffer with specified... bfillBytes() 429
network with DHCP at boot time. initialize .. dhcpcBootBind() 521
determine current calendar time (ANSI). ... time() 1380

time into UTC broken-down time (ANSI). convert calendar... gmtime() 641
calendar time into broken-down time (ANSI). convert .. localtime() 745
broken-down time into calendar time (ANSI). convert ... mktime() 822

reload value/ get remaining time before expiration and..................................... timer_gettime() 1384
ANSI time documentation. .. ansiTime 25

retrieve current time from remote source. sntpcTimeGet() 1249
(ANSI). convert time in seconds into string ... ctime() 510

(POSIX). convert time in seconds into string ... ctime_r() 510
determine processor time in use (ANSI)... clock() 494

suspend current task until time interval elapses (POSIX). nanosleep() 906
(ANSI). convert calendar time into broken-down time... localtime() 745

(POSIX). convert calendar time into broken-down time.. gmtime_r() 641
(POSIX). convert calendar time into broken-down time....................................... localtime_r() 746

(ANSI). convert broken-down time into calendar time... mktime() 822
(ANSI). convert broken-down time into formatted string... strftime() 1275

convert broken-down time into string (ANSI). .. asctime() 416
convert broken-down time into string (POSIX). ... asctime_r() 416

(ANSI). convert calendar time into UTC broken-down time gmtime() 641
get current time of clock (POSIX)... clock_gettime() 495

update time on file... utime() 1427
set clock to specified time (POSIX). .. clock_settime() 496

calendar time into broken-down time (POSIX). convert ... gmtime_r() 641
calendar time into broken-down time (POSIX). convert .. localtime_r() 746

library. Simple Network Time Protocol (SNTP) client... sntpcLib 291
library. Simple Network Time Protocol (SNTP) server ... sntpsLib 292

function or group of/ time repeated executions of ... timexN() 1388
function or functions. time single execution of.. timex() 1385

get current time slice (POSIX)....................................... sched_rr_get_interval() 1134
arm timer (POSIX). set time until next expiration and................................ timer_settime() 1384

list of function calls to be timed. clear... timexClear() 1386
specify functions to be timed. ... timexFunc() 1386

list of function calls to be timed. display ... timexShow() 1390

VxWorks OS Libraries API Reference, 5.5

1612

Keyword Name Page

called after watchdog timeout. .. rdiscTimerEvent() 1063
set WTX timeout. ... symSyncTimeoutSet() 1295

for condition variable with timeout (POSIX). wait pthread_cond_timedwait() 1022
cancel timer. .. timer_cancel() 1381

create watchdog timer. .. wdCreate() 1465
delete watchdog timer. ... wdDelete() 1465

start watchdog timer. ... wdStart() 1467
(POSIX). return timer expiration overrun timer_getoverrun() 1383

display synopsis of execution timer facilities. .. timexHelp() 1387
execution timer facilities. .. timexLib 323

include execution timer library. ... timexInit() 1388
watchdog timer library. .. wdLib 349

timer library (POSIX).. timerLib 322
timer library (WindView). ... wvTmrLib 357

remove previously created timer (POSIX). .. timer_delete() 1383
until next expiration and arm timer (POSIX). set time.. timer_settime() 1384

connect user routine to timer signal. ... timer_connect() 1381
for timing base/ allocate timer using specified clock .. timer_create() 1382

register timestamp timer (WindView). .. wvTmrRegister() 1485
retrieve current lease timers. ... dhcpcTimerGet() 537
display current lease timers. ... dhcpcTimersShow() 537

between two calendar times (ANSI). /difference ... difftime() 542
get lower half of 64Bit TSC (Timestamp Counter). pentiumTscGet32() 974

get 64Bit TSC (Timestamp Counter). pentiumTscGet64() 974
reset TSC (Timestamp Counter). pentiumTscReset() 974

register timestamp timer (WindView). wvTmrRegister() 1485
functions to be called after timing. specify ... timexPost() 1389

to be called prior to timing. specify functions.. timexPre() 1390
using specified clock for timing base (POSIX). /timer...................................... timer_create() 1382

Buffers). flush TLBs (Translation Lookaside........................... pentiumTlbFlush() 973
initialize TI TMS390 cache library................................ cacheTiTms390LibInit() 473

adds device to list polled by tMuxPollTask.. muxPollDevAdd() 887
device from list polled by tMuxPollTask. removes....................................... muxPollDevDel() 887
device is on list polled by tMuxPollTask. reports whether......................... muxPollDevStat() 888

get priority of tMuxPollTask.. muxTaskPriorityGet() 894
reset priority of tMuxPollTask... muxTaskPrioritySet() 895

devices to/ shuts down tMuxPollTask and returns ... muxPollEnd() 888
break down string into tokens (ANSI). ... strtok() 1282
break down string into tokens (reentrant) (POSIX). ... strtok_r() 1283

task CPU utilization tool package. initialize... spyLibInit() 1259
Library. MUX toolkit Network Interface ... muxTkLib 188

interface. send packet out on Toolkit or END network .. muxTkSend() 902
post user event string to host tools... wdbUserEvtPost() 1463

library. Toshiba Tx49 cache management cacheTx49Lib 54
display stack trace of task. ... tt() 1404

memory. transfer blocks to or from.. cbioBlkRW() 477
memory. transfer bytes to or from .. cbioBytesRW() 477

reset network devices and transfer control to boot ROMs. ... reboot() 1066
monitor. transfer control to ROM .. sysToMonitor() 1317

transfer file via TFTP... tftpCopy() 1368

Keyword Index

1613

IX

Keyword Name Page

stream interface. transfer file via TFTP using... tftpXfer() 1376
(WindView). transfer log header to host wvLogHeaderUpload() 1474

set TFTP transfer mode. ... tftpModeSet() 1373
or continue negotiating transfer parameters. initiate.................... scsiSyncXferNegotiate() 1162

library. File Transfer Protocol (FTP)... ftpLib 115
server. File Transfer Protocol (FTP)... ftpdLib 113

library. Trivial File Transfer Protocol server.. tftpdLib 318
client library. Trivial File Transfer Protocol (TFTP) ... tftpLib 319

to block (sector to sector) transfer routine. block... cbioBlkCopy() 476
initiate transfer via FTP. .. ftpXfer() 631

of s2 into s1 (ANSI). transform up to n characters... strxfrm() 1287
set applette to stop FTP transient host responses. ftpTransientFatalInstall() 631

Buffers). flush TLBs (Translation Lookaside pentiumTlbFlush() 973
SimSolaris,/ set CPU vector (trap) (68K, x86, MIPS, SH, ... intVecSet() 699

MIPS, ARM,/ get vector (trap) base address (68K, x86, intVecBaseGet() 696
MIPS, ARM,/ set vector (trap) base address (68K, x86, intVecBaseSet() 697

change trap-to-monitor character. tyMonitorTrapSet() 1411
traverse IP routing table. routeTableWalk() 1123

enable trigger. ... trgEnable() 1396
library. trigger events control.. trgLib 324
delete trigger from trigger list. ... trgDelete() 1395
show trigger information.. trgShow() 1399

add new trigger to trigger list. ... trgAdd() 1393
delete trigger from trigger list. ... trgDelete() 1395

turn trigger off. .. trgDisable() 1396
initialize trigger show facility. ... trgShowInit() 1399

trigger show routine. .. trgShow 325
add new trigger to trigger list. .. trgAdd() 1393

trigger user-defined event.. trgEvent() 1397
queue. reset trigger work queue task and trgWorkQReset() 1400

initialize triggering library.. trgLibInit() 1397
set triggering off. ... trgOff() 1398
set triggering on. .. trgOn() 1398

chains two triggers. ... trgChainSet() 1395
server library. Trivial File Transfer Protocol.. tftpdLib 318

(TFTP) client library. Trivial File Transfer Protocol... tftpLib 319
flash device for use with TrueFFS. format .. tffsDevFormat() 1364

for use with dosFs. create TrueFFS block device suitable tffsDevCreate() 1363
VxWorks. TrueFFS configuration file for... tffsConfig 315

TrueFFS interface for VxWorks.. tffsDrv 316
initialize TrueFFS system... tffsDrv() 1365

set TrueFFS volume options. tffsDevOptionsSet() 1365
truncate file (POSIX). ... ftruncate() 633
truncate to integer. .. trunc() 1400
truncate to integer. ... truncf() 1401

POSIX file truncation. ... ftruncate 117
get lower half of 64Bit TSC (Timestamp Counter). pentiumTscGet32() 974

get 64Bit TSC (Timestamp Counter). pentiumTscGet64() 974
reset TSC (Timestamp Counter). pentiumTscReset() 974

host connection library using TSFS. target.. wvTsfsUploadPathLib 358

VxWorks OS Libraries API Reference, 5.5

1614

Keyword Name Page

open upload path to host using TSFS socket (Windview). tsfsUploadPathCreate() 1402
write to TSFS upload path (Windview).................. tsfsUploadPathWrite() 1403

(Windview). close TSFS-socket upload path tsfsUploadPathClose() 1402
do task-level read for tty device. .. tyRead() 1411

do task-level write for tty device. .. tyWrite() 1412
whether underlying driver is tty device. return... isatty() 720

initialize tty device descriptor. .. tyDevInit() 1408
remove tty device descriptor. .. tyDevRemove() 1408

initialize tty driver... ttyDrv() 1405
tty driver support library. .. tyLib 326

modify tunable disk cache parameters........................... dcacheDevTune() 517
set priority and stack size of tWVUpload task (WindView). wvUploadTaskConfig() 1488

initialize Tx49 cache library... cacheTx49LibInit() 475
Toshiba Tx49 cache management library. cacheTx49Lib 54

selector/ get CPU vector, gate type(int/trap), and gate ... intVecGet2() 699
(x86). set CPU vector, gate type(int/trap), and selector .. intVecSet2() 703

all resources used to access UDP group. delete ... m2UdpDelete() 800
routines. UDP information display .. udpShow 332

get UDP MIB-II entry from UDP list of listeners. m2UdpTblEntryGet() 801
list of listeners. get UDP MIB-II entry from UDP....................... m2UdpTblEntryGet() 801

display statistics for UDP protocol. .. udpstatShow() 1413
initialize UDP show routines... udpShowInit() 1413

user message and send it to UDP socket. create zbuf from..................... zbufSockBufSendto() 1503
receive message in zbuf from UDP socket.. zbufSockRecvfrom() 1506

send zbuf message to UDP socket... zbufSockSendto() 1508
initialize MIB-II UDP-group access... m2UdpInit() 801

MIB-II UDP-group API for SNMP agents.................................. m2UdpLib 152
get MIB-II UDP-group scalar variables. m2UdpGroupInfoGet() 800

condition (POSIX). unblock all threads waiting on pthread_cond_broadcast() 1020
semaphore. unblock every task pended on....................................... semFlush() 1181

condition (POSIX). unblock thread waiting on pthread_cond_signal() 1022
string to command processor (Unimplemented) (ANSI). pass .. system() 1317

create temporary binary file (Unimplemented) (ANSI). .. tmpfile() 1391
char’s to multibyte char’s (Unimplemented) (ANSI). /wide................................. wcstombs() 1461

/to multibyte character (Unimplemented) (ANSI). ... wctomb() 1461
/at program termination (Unimplemented) (ANSI). ... atexit() 421

/length of multibyte character (Unimplemented) (ANSI). ... mblen() 804
/char’s to wide char’s (Unimplemented) (ANSI). ... mbstowcs() 804

/character to wide character (Unimplemented) (ANSI). ... mbtowc() 805
(ARM). set uninitialized vector handler intUninitVecSet() 695

dosFs disk on top of UNIX. initialize ... unixDiskInit() 1415
parameters. get NFS UNIX authentication .. nfsAuthUnixGet() 932

parameters. modify NFS UNIX authentication nfsAuthUnixPrompt() 933
parameters. set NFS UNIX authentication .. nfsAuthUnixSet() 933

parameters. display NFS UNIX authentication nfsAuthUnixShow() 934
set ID number of NFS UNIX authentication/... nfsIdSet() 941

UNIX BSD 4.3 select library. ... selectLib 261
create UNIX disk device.. unixDiskDevCreate() 1414
install UNIX disk driver.. unixDrv() 1416

(VxSim). pass-through (to UNIX) file system library... passFsLib 200

Keyword Index

1615

IX

Keyword Name Page

UNIX tar compatible library. ... tarLib 306
for Solaris and VxSim for/ UNIX-file disk driver (VxSim.. unixDrv 332

/module ID information (use unld() to reclaim space)... moduleDelete() 830
specifying file name or/ unload object module by... unld() 1416

specifying group number. unload object module by.. unldByGroup() 1417
specifying module ID. unload object module by.................................. unldByModuleId() 1417

specifying name and path. unload object module by......................... unldByNameAndPath() 1418
object module unloading library. ... unldLib 334

unloads device from MUX.................................. muxDevUnload() 879
specified cache. unlock all or part of.. cacheUnlock() 475

process (POSIX). unlock all pages used by ... munlockall() 869
(POSIX). unlock (give) semaphore... sem_post() 1193

unlock mutex (POSIX). pthread_mutex_unlock() 1034
(POSIX). unlock specified pages.. munlock() 869

unmount NFS device. .. nfsUnmount() 943
destroy unnamed semaphore (POSIX). sem_destroy() 1189

initialize unnamed semaphore (POSIX). .. sem_init() 1191
configure interface to be unnumbered.. ifUnnumberedSet() 672

unregister proxy client.. proxyUnreg() 1005
make calling task unsafe from deletion. ... taskUnsafe() 1352
convert string to unsigned long integer (ANSI). .. strtoul() 1285

non-counter object. update contents of interface........................ m2IfVariableUpdate() 785
register (MIPS). update contents of status ... intSRSet() 694

interface. remove update filter from RIP.................................. ripSendHookDelete() 1104
interface. add update filter to RIP... ripSendHookAdd() 1103

sub-layers. update relationship between m2IfStackTblUpdate() 782
install interface counter update routine. m2IfCtrUpdateRtnInstall() 775
install interface variable update routine. m2IfVarUpdateRtnInstall() 786

update time on file. .. utime() 1427
enable last access date updating for this volume. dosFsLastAccessDateEnable() 560

(WindView). start upload of events to host wvUploadStart() 1486
(WindView). stop upload of events to host wvUploadStop() 1487

socket upload path library..................................... wvSockUploadPathLib 357
socket (Windview). establish upload path to host using sockUploadPathCreate() 1254

socket (Windview). open upload path to host using TSFS tsfsUploadPathCreate() 1402
close socket upload path (Windview). sockUploadPathClose() 1253

write to socket upload path (Windview). sockUploadPathWrite() 1255
close TSFS-socket upload path (Windview). tsfsUploadPathClose() 1402

write to TSFS upload path (Windview). tsfsUploadPathWrite() 1403
events (WindView). upload preserved task name wvTaskNamesUpload() 1485

convert lower-case letter to upper-case equivalent (ANSI). ... toupper() 1392
test whether character is upper-case letter (ANSI)... isupper() 724

lower-case equivalent/ convert upper-case letter to.. tolower() 1392
delete module ID information (use unld() to reclaim space). moduleDelete() 830

socket. create zbuf from user data and send it to TCP........................... zbufSockBufSend() 1502
login prompt and validate user entry. display .. loginPrompt() 753

delete user entry from login table................................. loginUserDelete() 755
include WDB user event library. .. wdbUserEvtLibInit() 1463

WDB user event library. ... wdbUserEvtLib 348
tools. post user event string to host wdbUserEvtPost() 1463

VxWorks OS Libraries API Reference, 5.5

1616

Keyword Name Page

library. file system user interface subroutine ... usrFsLib 339
library. user interface subroutine ... usrLib 341
display user login table. ... loginUserShow() 756
library. user login/password subroutine.. loginLib 134

UDP socket. create zbuf from user message and send it to........................ zbufSockBufSendto() 1503
get current user name and password... remCurIdGet() 1070
set remote user name and password... remCurIdSet() 1070
set remote user name and password.. iam() 657

login table. verify user name and password in loginUserVerify() 756
connect user routine to timer signal. timer_connect() 1381

add user to login table.. loginUserAdd() 754
trigger user-defined event. .. trgEvent() 1397

log user-defined event (WindView)...................................... wvEvent() 1469
set new_handler to user-defined function (C++)............................. set_new_handler() 1199

set terminate to user-defined function (C++).................................... set_terminate() 1199
interrupt routine. user-defined system clock ... usrClock() 1420

configuration library. user-defined system.. usrConfig 336
initialization routine. user-defined system.. usrInit() 1424

convert calendar time into UTC broken-down time (ANSI). gmtime() 641
initialize task CPU utilization tool package... spyLibInit() 1259

/va_list object for use by va_arg() and va_end(). ... va_start() 1429
object for use by va_arg() and va_end(). initialize va_list... va_start() 1429

driver-specific value. validate open fd and return... iosFdValue() 711
display login prompt and validate user entry.. loginPrompt() 753
return from routine using va_list object. /normal .. va_end() 1428

va_arg() and/ initialize va_list object for use by.. va_start() 1429
SimSolaris,/ get interrupt vector (68K, x86, MIPS, SH,... intVecGet() 698

and gate selector/ get CPU vector, gate type(int/trap), .. intVecGet2() 699
and selector (x86). set CPU vector, gate type(int/trap), ... intVecSet2() 703

set uninitialized vector handler (ARM). .. intUninitVecSet() 695
routine to critical exception vector (PowerPC 403). /C...................................... excCrtConnect() 578
routine to critical interrupt vector (PowerPC 403). /C................................ excIntCrtConnect() 581

connect C routine to exception vector (PowerPC). .. excConnect() 577
/to asynchronous exception vector (PowerPC, ARM). excIntConnect() 580

get CPU exception vector (PowerPC, ARM). .. excVecGet() 582
set CPU exception vector (PowerPC, ARM). ... excVecSet() 584

write-protect exception vector table (68K, x86, ARM,/ intVecTableWriteProtect() 704
SH, SimSolaris,/ set CPU vector (trap) (68K, x86, MIPS, .. intVecSet() 699

(68K, x86, MIPS, ARM,/ get vector (trap) base address...................................... intVecBaseGet() 696
(68K, x86, MIPS, ARM,/ set vector (trap) base address...................................... intVecBaseSet() 697

initialize exception/interrupt vectors.. excVecInit() 582
display all IP routes (verbose information).. mRouteShow() 849

return BSP version and revision number. sysBspRev() 1299
print VxWorks version information. .. version() 1430

kernel heap version of netPoolInit(). netPoolKheapInit() 927
translate physical address to virtual address (ARM). mmuPhysToVirt() 823

translate virtual address for cacheLib. cacheTiTms390VirtToPhys() 474
translate virtual address for drivers. cacheDrvVirtToPhys() 455

address (ARM). translate virtual address to physical mmuVirtToPhys() 826
address (VxVMI). translate virtual address to physical .. vmTranslate() 1445

Keyword Index

1617

IX

Keyword Name Page

virtual space in shared global virtual mem (VxVMI). /pages to vmGlobalMap() 1438
virtual/ map physical pages to virtual space in shared global............................... vmGlobalMap() 1438

map physical space into virtual space (VxVMI). ... vmMap() 1440
change state of block of virtual memory. .. vmBaseStateSet() 1433

(VxVMI). create new virtual memory context vmContextCreate() 1434
(VxVMI). delete virtual memory context vmContextDelete() 1435

(VxVMI). get current virtual memory context ... vmCurrentGet() 1436
(VxVMI). set current virtual memory context .. vmCurrentSet() 1436
(VxVMI). get global virtual memory information........................... vmGlobalInfoGet() 1437

(VxVMI). include virtual memory show facility vmShowInit() 1442
(VxVMI). virtual memory show routines... vmShow 346

initialize base virtual memory support. vmBaseLibInit() 1432
library. base virtual memory support.. vmBaseLib 343

architecture-independent virtual memory support library/.. vmLib 343
(VxVMI). initialize virtual memory support module vmLibInit() 1440

enable or disable virtual memory (VxVMI). ... vmEnable() 1437
get state of page of virtual memory (VxVMI). .. vmStateGet() 1443

change state of block of virtual memory (VxVMI). ... vmStateSet() 1444
modify mode of raw device volume. ... rawFsModeChange() 1055

disable raw device volume. .. rawFsVolUnmount() 1056
modify mode of rt11Fs volume. ... rt11FsModeChange() 1128

disable tape device volume. ... tapeFsVolUnmount() 1322
access date updating for this volume. enable last........................ dosFsLastAccessDateEnable() 560
format MS-DOS compatible volume. ... dosFsVolFormat() 562

set case sensitivity of volume. ... dosSetVolCaseSens() 563
display dosFs volume configuration data.. dosFsShow() 561

information. show volume configuration cdromFsVolConfigShow() 489
convert device name into DOS volume descriptor pointer................................ dosFsVolDescGet() 561

block device with raw volume functions. associate rawFsDevInit() 1054
sequential device with tape volume functions. associate tapeFsDevInit() 1320

make volume integrity checking. dosFsChkDsk() 558
prepare to use raw volume library.. rawFsInit() 1055

initialize tape volume library... tapeFsInit() 1321
set TrueFFS volume options. .. tffsDevOptionsSet() 1365

message queue group library (VxFusion). distributed msgQDistGrpLib 180
queue group show routines (VxFusion). /message...................................... msgQDistGrpShow 181

objects message queue library (VxFusion). distributed ... msgQDistLib 181
message queue show routines (VxFusion). distributed .. msgQDistShow 182

objects control function (VxFusion). /distributed ... distCtl() 544
installed interface adapter (VxFusion). /information about distIfShow() 548

and bootstrap current node (VxFusion). initialize... distInit() 549
to distributed name database (VxFusion). add entry... distNameAdd() 551

name database filtered by type (VxFusion). /distributed distNameFilterShow() 552
by name in local database (VxFusion). find object.. distNameFind() 553

of object by value and type (VxFusion). look up name..... distNameFindByValueAndType() 554
from distributed name database (VxFusion). remove entry distNameRemove() 555

distributed name database (VxFusion). display entire.................................... distNameShow() 555
buffer from pool of buffers (VxFusion). allocate telegram................................ distTBufAlloc() 556

buffer to pool of buffers (VxFusion). return telegram distTBufFree() 557
adapter show routines (VxFusion). /objects interface .. distIfShow 83

VxWorks OS Libraries API Reference, 5.5

1618

Keyword Name Page

and control library (VxFusion). /initialization.. distLib 83
name database library (VxFusion). distributed .. distNameLib 84

distributed message queue (VxFusion). create ... msgQDistCreate() 851
message queue to group (VxFusion). add distributed msgQDistGrpAdd() 853

message queue from group (VxFusion). /distributed............................ msgQDistGrpDelete() 854
all or one group with members (VxFusion). display....................................... msgQDistGrpShow() 854

in distributed message queue (VxFusion). /of messages msgQDistNumMsgs() 855
from distributed message queue (VxFusion). receive message msgQDistReceive() 856

to distributed message queue (VxFusion). send message msgQDistSend() 857
message queue show package (VxFusion). /distributed.............................. msgQDistShowInit() 859
name database show routines (VxFusion). distributed .. distNameShow 85

telegram buffer library (VxFusion). /objects .. distTBufLib 85
architecture-specific part of vxMemProbe(). ... vxMemArchProbe() 1454

shared memory binary semaphore (VxMP). create and initialize semBSmCreate() 1175
memory counting semaphore (VxMP). /and initialize shared semCSmCreate() 1178

shared memory system partition (VxMP). add memory to smMemAddToPool() 1231
shared memory system partition (VxMP). /memory for array from smMemCalloc() 1232
shared memory system partition (VxMP). /largest free block in.......................... smMemFindMax() 1233

partition block of memory (VxMP). /shared memory system............................ smMemFree() 1233
shared memory system partition (VxMP). /block of memory from smMemMalloc() 1234
shared memory system partition (VxMP). set debug options for smMemOptionsSet() 1234
shared memory system partition (VxMP). /block of memory from smMemRealloc() 1235

blocks and statistics (VxMP). /system partition smMemShow() 1236
to shared memory name database (VxMP). add name.. smNameAdd() 1237

shared memory object by name (VxMP). look up.. smNameFind() 1238
shared memory object by value (VxMP). look up.. smNameFindByValue() 1239
memory objects name database (VxMP). /object from shared smNameRemove() 1240
memory objects name database (VxMP). /contents of shared................................. smNameShow() 1240
shared memory objects facility (VxMP). attach calling CPU to smObjAttach() 1242

address to local address (VxMP). convert global smObjGlobalToLocal() 1243
memory objects descriptor (VxMP). initialize shared .. smObjInit() 1244

shared memory objects facility (VxMP). install.. smObjLibInit() 1245
address to global address (VxMP). convert local................................ smObjLocalToGlobal() 1245

shared memory objects facility (VxMP). initialize ... smObjSetup() 1246
of shared memory objects (VxMP). /current status.. smObjShow() 1247
attempts to take spin-lock (VxMP). /logging of failed smObjTimeoutLogEnable() 1248

memory message queue library (VxMP). shared... msgQSmLib 185
memory semaphore library (VxMP). shared.. semSmLib 274

memory management library (VxMP). shared... smMemLib 281
management show routines (VxMP). shared memory... smMemShow 284

objects name database library (VxMP). shared memory... smNameLib 284
name database show routines (VxMP). shared memory objects.............................. smNameShow 286

shared memory objects library (VxMP). ... smObjLib 288
memory objects show routines (VxMP). shared... smObjShow 291

create shared memory partition (VxMP). .. memPartSmCreate() 818
shared memory message queue (VxMP). create and initialize msgQSmCreate() 868

(to UNIX) file system library (VxSim). pass-through ... passFsLib 200
driver (VxSim for Solaris and VxSim for HP). UNIX-file disk... unixDrv 332

for/ UNIX-file disk driver (VxSim for Solaris and VxSim.. unixDrv 332
new virtual memory context (VxVMI). create ... vmContextCreate() 1434

Keyword Index

1619

IX

Keyword Name Page

delete virtual memory context (VxVMI). ... vmContextDelete() 1435
translation table for context (VxVMI). display .. vmContextShow() 1435

current virtual memory context (VxVMI). get.. vmCurrentGet() 1436
current virtual memory context (VxVMI). set ... vmCurrentSet() 1436

or disable virtual memory (VxVMI). enable.. vmEnable() 1437
virtual memory information (VxVMI). get global.. vmGlobalInfoGet() 1437

in shared global virtual mem (VxVMI). /to virtual space vmGlobalMap() 1438
initialize global mapping (VxVMI). ... vmGlobalMapInit() 1439

virtual memory support module (VxVMI). initialize.. vmLibInit() 1440
space into virtual space (VxVMI). map physical .. vmMap() 1440

/page block size (VxVMI). .. vmPageBlockSizeGet() 1441
return page size (VxVMI). .. vmPageSizeGet() 1442

virtual memory show facility (VxVMI). include.. vmShowInit() 1442
of page of virtual memory (VxVMI). get state ... vmStateGet() 1443

of block of virtual memory (VxVMI). change state ... vmStateSet() 1444
write-protect text segment (VxVMI). ... vmTextProtect() 1445

address to physical address (VxVMI). translate virtual ... vmTranslate() 1445
/virtual memory support library (VxVMI). ... vmLib 343

virtual memory show routines (VxVMI). .. vmShow 346
TrueFFS configuration file for VxWorks. ... tffsConfig 315

TrueFFS interface for VxWorks. .. tffsDrv 316
channel. create VxWorks device for serial .. ttyDevCreate() 1405

VxWorks events library.. eventLib 104
message queues. VxWorks events support for .. msgQEvLib 183

semaphores. VxWorks events support for ... semEvLib 265
instrument VxWorks Events (WindView). wvEventInst() 1469

RIP for SNMP Agent. VxWorks interface routines to .. m2RipLib 147
memory network (backplane)/ VxWorks interface to shared... smNetLib 287

VxWorks kernel library... kernelLib 129
print VxWorks logo... printLogo() 1001

VxWorks remote login daemon... rlogind() 1105
log out of VxWorks system. ... logout() 758

print VxWorks version information. .. version() 1430
wake-up list. wake up all tasks in select().................................. selWakeupAll() 1172

select(). wake up task pended in ... selWakeup() 1172
get type of select() wake-up node. .. selWakeupType() 1174

wake-up list. add wake-up node to select() .. selNodeAdd() 1171
add wake-up node to select() wake-up list... selNodeAdd() 1171
and delete node from select() wake-up list. find.. selNodeDelete() 1171

wake up all tasks in select() wake-up list.. selWakeupAll() 1172
initialize select() wake-up list.. selWakeupListInit() 1173

number of nodes in select() wake-up list. get .. selWakeupListLen() 1173
terminate select() wake-up list... selWakeupListTerm() 1174

cancel currently counting watchdog. ... wdCancel() 1464
show information about watchdog. ... wdShow() 1466

initialize watchdog show facility. ... wdShowInit() 1466
watchdog show routines. .. wdShow 350

called after watchdog timeout. .. rdiscTimerEvent() 1063
create watchdog timer. ... wdCreate() 1465
delete watchdog timer. ... wdDelete() 1465

VxWorks OS Libraries API Reference, 5.5

1620

Keyword Name Page

start watchdog timer.. wdStart() 1467
watchdog timer library... wdLib 349

on SCSI bus (Western Digital WD33C93 only). /RST line................................ sysScsiBusReset() 1312
library. WDB agent context management .. wdbLib 348
include WDB user event library. wdbUserEvtLibInit() 1463

WDB user event library. .. wdbUserEvtLib 348
report whether tasks were pre-started by telnetd. telnetdStaticTaskInitializationGet() 1362

assert RST line on SCSI bus (Western Digital WD33C93/ sysScsiBusReset() 1312
test whether character is white-space character (ANSI). ... isspace() 724

character/ convert wide character to multibyte .. wctomb() 1461
convert multibyte character to wide character (Unimplemented)/ mbtowc() 805

char’s/ convert series of wide char’s to multibyte .. wcstombs() 1461
/series of multibyte char’s to wide char’s (Unimplemented)/.................................... mbstowcs() 804

or continue negotiating wide parameters. initiate scsiWideXferNegotiate() 1167
copy hierarchy of files with wildcards.. xcopy() 1490

delete hierarchy of files with wildcards... xdelete() 1490
library. pass-through (to Windows NT) file system .. ntPassFsLib 198
close socket upload path (Windview). ... sockUploadPathClose() 1253
path to host using socket (Windview). establish upload sockUploadPathCreate() 1254

wvSockUploadPathLib library (Windview). initialize............................ sockUploadPathLibInit() 1254
write to socket upload path (Windview). ... sockUploadPathWrite() 1255

close TSFS-socket upload path (Windview). ... tsfsUploadPathClose() 1402
path to host using TSFS socket (Windview). open upload........................ tsfsUploadPathCreate() 1402
wvTsfsUploadPathLib library (Windview). initialize.............................. tsfsUploadPathLibInit() 1403

write to TSFS upload path (Windview). ... tsfsUploadPathWrite() 1403
log user-defined event (WindView).. wvEvent() 1469

instrument VxWorks Events (WindView)... wvEventInst() 1469
ID of WindView event buffer (WindView). return... wvEvtBufferGet() 1470

events from those being logged (WindView). clear class of................................. wvEvtClassClear() 1470
of events from those logged (WindView). clear all classes wvEvtClassClearAll() 1470

set of classes being logged (WindView). get current....................................... wvEvtClassGet() 1471
set class of events to log (WindView)... wvEvtClassSet() 1471

initialize event log (WindView)... wvEvtLogInit() 1472
start logging events to buffer (WindView)... wvEvtLogStart() 1472
stop logging events to buffer (WindView)... wvEvtLogStop() 1473

initialize wvLib - first step (WindView).. wvLibInit() 1473
initialize wvLib - final step (WindView).. wvLibInit2() 1473

create event-log header (WindView)... wvLogHeaderCreate() 1474
transfer log header to host (WindView)... wvLogHeaderUpload() 1474

reporting of network events to WindView. end .. wvNetDisable() 1476
reporting network events to WindView. begin .. wvNetEnable() 1476

instrument objects (WindView).. wvObjInst() 1481
object instrumentation on/off (WindView). set ... wvObjInstModeSet() 1482

of WindView rBuff manager (WindView). set priority wvRBuffMgrPrioritySet() 1483
instrument signals (WindView).. wvSigInst() 1483

extra copy of task name events (WindView). preserve............................. wvTaskNamesPreserve() 1484
preserved task name events (WindView). upload wvTaskNamesUpload() 1485

register timestamp timer (WindView).. wvTmrRegister() 1485
start upload of events to host (WindView).. wvUploadStart() 1486
stop upload of events to host (WindView)... wvUploadStop() 1487

Keyword Index

1621

IX

Keyword Name Page

stack size of tWVUpload task (WindView). set priority and................... wvUploadTaskConfig() 1488
event logging control library (WindView). ... wvLib 351

timer library (WindView). ... wvTmrLib 357
set or display eventpoints (WindView). ... e() 567

close event-destination file (WindView). ... fileUploadPathClose() 592
file for depositing event data (Windview). create fileUploadPathCreate() 592

wvFileUploadPathLib library (Windview). initialize fileUploadPathLibInit() 593
to event-destination file (WindView). write fileUploadPathWrite() 593

(WindView). return ID of WindView event buffer wvEvtBufferGet() 1470
Interface Library. WindView for Networking ... wvNetLib 356

(WindView). set priority of WindView rBuff manager wvRBuffMgrPrioritySet() 1483
stream. read next word (32-bit integer) from... getw() 640

stream. write word (32-bit integer) to... putw() 1047
one buffer to another one long word at a time. copy ... bcopyLongs() 426
copy one buffer to another one word at a time. .. bcopyWords() 427

reset trigger work queue task and queue................................ trgWorkQReset() 1400
create CBIO wrapper atop BLK_DEV device. cbioWrapBlkDev() 485

flush processor write buffers to memory. cachePipeFlush() 460
write bytes to file. .. write() 1468

output stream (ANSI). write character to standard.. putchar() 1046
(ANSI). write character to stream.. putc() 1045
(ANSI). write character to stream.. fputc() 610

register (MIPS). write contents of cause .. intCRSet() 687
device. write data to SCSI tape ... scsiWrtTape() 1168

sequential device. write file marks to SCSI scsiWrtFileMarks() 1167
do task-level write for tty device. ... tyWrite() 1412

buffer (ANSI). write formatted string to ... sprintf() 1256
write formatted string to fd. ... fdprintf() 588

standard error stream. write formatted string to ... printErr() 996
standard output stream/ write formatted string to ... printf() 997

stream (ANSI). write formatted string to ... vfprintf() 1431
stream (ANSI). write formatted string to .. fprintf() 606

(ANSI). write from specified array... fwrite() 633
initiate asynchronous write (POSIX). ... aio_write() 410

block device. write sector(s) to SCSI.. scsiWrtSecs() 1168
variable argument list to/ write string formatted with .. vsprintf() 1446

variable argument list to fd. write string formatted with .. vfdprintf() 1430
variable argument list to/ write string formatted with .. vprintf() 1446

output stream (ANSI). write string to standard.. puts() 1047
write string to stream (ANSI). ... fputs() 611

flash device. write to boot-image region of tffsBootImagePut() 1362
file (WindView). write to event-destination fileUploadPathWrite() 593

write to non-volatile RAM. sysNvRamSet() 1310
(Windview). write to socket upload path sockUploadPathWrite() 1255
(Windview). write to TSFS upload path tsfsUploadPathWrite() 1403

stream. write word (32-bit integer) to .. putw() 1047
table (68K, x86, ARM,/ write-protect exception vector............. intVecTableWriteProtect() 704

(VxVMI). write-protect text segment vmTextProtect() 1445
from specified MTRR table with WRMSR instruction. set MTRRs pentiumMtrrSet() 957

set WTX timeout.. symSyncTimeoutSet() 1295

VxWorks OS Libraries API Reference, 5.5

1622

Keyword Name Page

(Windview). initialize wvFileUploadPathLib library................ fileUploadPathLibInit() 593
initialize wvLib - final step (WindView). wvLibInit2() 1473
initialize wvLib - first step (WindView). wvLibInit() 1473

(Windview). initialize wvSockUploadPathLib library........... sockUploadPathLibInit() 1254
(Windview). initialize wvTsfsUploadPathLib library tsfsUploadPathLibInit() 1403

status register (68K, MIPS, x86). set task... taskSRSet() 1347
content of Control Register 2 (x86). get .. vxCr2Get() 1447

value to Control Register 2 (x86). set.. vxCr2Set() 1447
content of Control Register 3 (x86). get .. vxCr3Get() 1448

value to Control Register 3 (x86). set.. vxCr3Set() 1448
content of Control Register 4 (x86). get .. vxCr4Get() 1448
content of Control Register 0 (x86). get .. vxCr0Get() 1449

value to Control Register 4 (x86). set.. vxCr4Set() 1449
value to Control Register 0 (x86). set.. vxCr0Set() 1450

of Debug Register 0 to 7 (x86). get content ... vxDrGet() 1450
value to Debug Register 0 to 7 (x86). set... vxDrSet() 1451

get content of EFLAGS register (x86)... vxEflagsGet() 1451
set value to EFLAGS register (x86).. vxEflagsSet() 1452

Descriptor Table Register (x86). get content of Global... vxGdtrGet() 1452
Descriptor Table Register (x86). /content of Interrupt ... vxIdtrGet() 1453
Descriptor Table Register (x86). get content of Local .. vxLdtrGet() 1453

management mode (PowerPC, SH, x86). get power ... vxPowerModeGet() 1456
management mode (PowerPC, SH, x86). set power... vxPowerModeSet() 1456

get content of TASK register (x86)... vxTssGet() 1460
set value to TASK register (x86)... vxTssSet() 1460

clear entry from cache (68K, x86). ... cacheArchClearEntry() 446
handler for C routine (x86). construct interrupt intHandlerCreateI86() 689

disable interrupt stack usage (x86). enable or .. intStackEnable() 695
and gate selector (x86). /gate type(int/trap),.. intVecGet2() 699

type(int/trap), and selector (x86). set CPU vector, gate .. intVecSet2() 703
/interrupt lock-out level (68K, x86, ARM, SH, SimSolaris,/ intLockLevelGet() 693
/interrupt lock-out level (68K, x86, ARM, SH, SimSolaris,/ intLockLevelSet() 693

/exception vector table (68K, x86, ARM, SimSolaris, SimNT). intVecTableWriteProtect() 704
and/ set interrupt level (68K, x86, ARM, SimSolaris, SimNT intLevelSet() 690

/(trap) base address (68K, x86, MIPS, ARM, SimSolaris,/.............................. intVecBaseGet() 696
/(trap) base address (68K, x86, MIPS, ARM, SimSolaris,/.............................. intVecBaseSet() 697
get interrupt vector (68K, x86, MIPS, SH, SimSolaris,/ .. intVecGet() 698

set CPU vector (trap) (68K, x86, MIPS, SH, SimSolaris,/ ... intVecSet() 699
/handler for C routine (68K, x86, MIPS, SimSolaris)...................................... intHandlerCreate() 688

register edi (also esi - eax) (x86/SimNT). /contents of.. edi() 568
contents of status register (x86/SimNT). return... eflags() 568

compute remainder of x/y (ANSI). .. fmod() 598
compute remainder of x/y (ANSI). ... fmodf() 598

compute arc tangent of y/x (ANSI). .. atan2() 419
compute arc tangent of y/x (ANSI). ... atan2f() 420

create empty zbuf. .. zbufCreate() 1492
delete bytes from zbuf. ... zbufCut() 1492

delete zbuf. .. zbufDelete() 1493
duplicate zbuf. .. zbufDup() 1494

insert zbuf into another zbuf. ... zbufInsert() 1496

Keyword Index

1623

IX

Keyword Name Page

from buffer and insert into zbuf. create zbuf segment zbufInsertBuf() 1497
copy buffer data into zbuf... zbufInsertCopy() 1498

determine length in bytes of zbuf... zbufLength() 1499
get next segment in zbuf.. zbufSegNext() 1501

get previous segment in zbuf... zbufSegPrev() 1502
send zbuf data to TCP socket... zbufSockSend() 1507

receive data in zbuf from TCP socket. .. zbufSockRecv() 1505
receive message in zbuf from UDP socket. zbufSockRecvfrom() 1506

it to TCP socket. create zbuf from user data and send......................... zbufSockBufSend() 1502
send it to UDP socket. create zbuf from user message and....................... zbufSockBufSendto() 1503

zbuf interface library. ... zbufLib 359
insert zbuf into another zbuf. .. zbufInsert() 1496

split zbuf into two separate zbufs. ... zbufSplit() 1509
send zbuf message to UDP socket.............................. zbufSockSendto() 1508

determine location of data in zbuf segment.. zbufSegData() 1499
determine length of zbuf segment.. zbufSegLength() 1501

specified byte location. find zbuf segment containing .. zbufSegFind() 1500
insert into zbuf. create zbuf segment from buffer and............................... zbufInsertBuf() 1497

initialize zbuf socket interface library............................... zbufSockLibInit() 1505
zbuf socket interface library... zbufSockLib 361

copy data from zbuf to buffer... zbufExtractCopy() 1495
split zbuf into two separate zbufs. .. zbufSplit() 1509

code using public domain zlib functions. inflate .. inflateLib 123

	VxWorks OS Libraries API Reference
	Copyright
	Contents
	1 Libraries
	aioPxLib – asynchronous I/O (AIO) library (POSIX)
	aioPxShow – asynchronous I/O (AIO) show library
	aioSysDrv – AIO system driver
	ansiAssert – ANSI assert documentation
	ansiCtype – ANSI ctype documentation
	ansiLocale – ANSI locale documentation
	ansiMath – ANSI math documentation
	ansiSetjmp – ANSI setjmp documentation
	ansiStdarg – ANSI stdarg documentation
	ansiStdio – ANSI stdio documentation
	ansiStdlib – ANSI stdlib documentation
	ansiString – ANSI string documentation
	ansiTime – ANSI time documentation
	arpLib – Address Resolution Protocol (ARP) table manipulation library
	bLib – buffer manipulation library
	bootConfig – system configuration module for boot ROMs
	bootInit – ROM initialization module
	bootLib – boot ROM subroutine library
	bootpLib – Bootstrap Protocol (BOOTP) client library
	bpfDrv – Berkeley Packet Filter (BPF) I/O driver library
	cache4kcLib – MIPS 4kc cache management library
	cacheArchLib – architecture-specific cache management library
	cacheAuLib – Alchemy Au cache management library
	cacheLib – cache management library
	cacheR3kLib – MIPS R3000 cache management library
	cacheR4kLib – MIPS R4000 cache management library
	cacheR5kLib – MIPS R5000 cache management library
	cacheR7kLib – MIPS R7000 cache management library
	cacheR10kLib – MIPS R10000 cache management library
	cacheR32kLib – MIPS RC32364 cache management library
	cacheR33kLib – MIPS R33000 cache management library
	cacheR333x0Lib – MIPS R333x0 cache management library
	cacheSh7040Lib – Hitachi SH7040 cache management library
	cacheSh7604Lib – Hitachi SH7604/SH7615 cache management library
	cacheSh7622Lib – SH7622 cache management library
	cacheSh7700Lib – Hitachi SH7700 cache management library
	cacheSh7729Lib – Hitachi SH7729 cache management library
	cacheSh7750Lib – Hitachi SH7750 cache management library
	cacheSun4Lib – Sun-4 cache management library
	cacheTx49Lib – Toshiba Tx49 cache management library
	cbioLib – cached block I/O library
	cdromFsLib – ISO 9660 CD-ROM read-only file system library
	clockLib – clock library (POSIX)
	cplusLib – basic run-time support for C++
	dbgArchLib – architecture-dependent debugger library
	dbgLib – debugging facilities
	dcacheCbio – disk cache driver
	dhcpcBootLib – DHCP boot-time client library
	dhcpcCommonLib – DHCP client interface shared code library
	dhcpcLib – Dynamic Host Configuration Protocol (DHCP) run-time client API
	dhcpcShow – DHCP run-time client information display routines
	dhcprLib – DHCP relay agent library
	dhcpsLib – Dynamic Host Configuration Protocol (DHCP) server library
	dirLib – directory handling library (POSIX)
	distIfShow – distributed objects interface adapter show routines (VxFusion Opt.)
	distLib – distributed objects initialization and control library (VxFusion Opt.)
	distNameLib – distributed name database library (VxFusion Opt.)
	distNameShow – distributed name database show routines (VxFusion Opt.)
	distTBufLib – distributed objects telegram buffer library (VxFusion Opt.)
	dosFsFmtLib – MS-DOS media-compatible file system formatting library
	dosFsLib – MS-DOS media-compatible file system library
	dpartCbio – generic disk partition manager
	dspLib – dsp support library
	dspShow – dsp show routines
	envLib – environment variable library
	errnoLib – error status library
	etherMultiLib – a library to handle Ethernet multicast addresses
	eventLib – VxWorks events library
	excArchLib – architecture-specific exception-handling facilities
	excLib – generic exception handling facilities
	fioLib – formatted I/O library
	floatLib – floating-point formatting and scanning library
	fppArchLib – architecture-dependent floating-point coprocessor support
	fppLib – floating-point coprocessor support library
	fppShow – floating-point show routines
	ftpdLib – File Transfer Protocol (FTP) server
	ftpLib – File Transfer Protocol (FTP) library
	ftruncate – POSIX file truncation
	hostLib – host table subroutine library
	icmpShow – ICMP Information display routines
	ifIndexLib – interface index library
	ifLib – network interface library
	igmpShow – IGMP information display routines
	inetLib – internet address manipulation routines
	inflateLib – inflate code using public domain zlib functions
	intArchLib – architecture-dependent interrupt library
	intLib – architecture-independent interrupt subroutine library
	ioLib – I/O interface library
	iosLib – I/O system library
	iosShow – I/O system show routines
	ipFilterLib – IP filter hooks library
	ipProto – an interface between the BSD IP protocol and the MUX
	kernelLib – VxWorks kernel library
	ledLib – line-editing library
	loadLib – object module loader
	loginLib – user login/password subroutine library
	logLib – message logging library
	lstLib – doubly linked list subroutine library
	m2IcmpLib – MIB-II ICMP-group API for SNMP Agents
	m2IfLib – MIB-II interface-group API for SNMP agents
	m2Igmp – helper file for igmp Mib
	m2IpLib – MIB-II IP-group API for SNMP agents
	m2Lib – MIB-II API library for SNMP agents
	m2RipLib – VxWorks interface routines to RIP for SNMP Agent
	m2SysLib – MIB-II system-group API for SNMP agents
	m2TcpLib – MIB-II TCP-group API for SNMP agents
	m2UdpLib – MIB-II UDP-group API for SNMP agents
	mathALib – C interface library to high-level math functions
	mathHardLib – hardware floating-point math library
	mathSoftLib – high-level floating-point emulation library
	memDrv – pseudo-memory device driver
	memLib – full-featured memory partition manager
	memPartLib – core memory partition manager
	memShow – memory show routines
	mmanPxLib – memory management library (POSIX)
	mmuMapLib – MMU mapping library for ARM Ltd. processors
	mmuPro32Lib – MMU library for PentiumPro/2/3/4 32 bit mode
	mmuSh7700Lib – Hitachi SH7700 MMU support library
	mmuSh7750Lib – Hitachi SH7750 MMU support library
	moduleLib – object module management library
	mountLib – mount protocol library
	mqPxLib – message queue library (POSIX)
	mqPxShow – POSIX message queue show
	msgQDistGrpLib – distributed message queue group library (VxFusion Opt.)
	msgQDistGrpShow – distributed message queue group show routines (VxFusion Opt.)
	msgQDistLib – distributed objects message queue library (VxFusion Opt.)
	msgQDistShow – distributed message queue show routines (VxFusion Opt.)
	msgQEvLib – VxWorks events support for message queues
	msgQLib – message queue library
	msgQShow – message queue show routines
	msgQSmLib – shared memory message queue library (VxMP Opt.)
	muxLib – MUX network interface library
	muxTkLib – MUX toolkit Network Interface Library
	netBufLib – network buffer library
	netDrv – network remote file I/O driver
	netLib – network interface library
	netShow – network information display routines
	nfsdLib – Network File System (NFS) server library
	nfsDrv – Network File System (NFS) I/O driver
	nfsLib – Network File System (NFS) library
	ntPassFsLib – pass-through (to Windows NT) file system library
	passFsLib – pass-through (to UNIX) file system library (VxSim)
	pentiumALib – Pentium and PentiumPro specific routines
	pentiumLib – Pentium and Pentium[234] library
	pentiumShow – Pentium and Pentium[234] specific show routines
	pingLib – Packet InterNet Groper (PING) library
	pipeDrv – pipe I/O driver
	pppHookLib – PPP hook library
	pppLib – Point-to-Point Protocol library
	pppSecretLib – PPP authentication secrets library
	pppShow – Point-to-Point Protocol show routines
	proxyArpLib – proxy Address Resolution Protocol (ARP) server library
	proxyLib – proxy Address Resolution Protocol (ARP) client library
	pthreadLib – POSIX 1003.1c thread library interfaces
	ptyDrv – pseudo-terminal driver
	ramDiskCbio – RAM Disk Cached Block Driver
	ramDrv – RAM disk driver
	rawFsLib – raw block device file system library
	rBuffLib – dynamic ring buffer (rBuff) library
	rdiscLib – ICMP router discovery server library
	rebootLib – reboot support library
	remLib – remote command library
	remShellLib – remote access to target shell
	resolvLib – DNS resolver library
	ripLib – Routing Information Protocol (RIP) v1 and v2 library
	rlogLib – remote login library
	rngLib – ring buffer subroutine library
	routeEntryLib – route interface library for multiple matching entries
	routeLib – network route manipulation library
	routeMessageLib – message routines for the routing interface library
	rpcLib – Remote Procedure Call (RPC) support library
	rt11FsLib – RT-11 media-compatible file system library
	schedPxLib – scheduling library (POSIX)
	scsi1Lib – Small Computer System Interface (SCSI) library (SCSI-1)
	scsi2Lib – Small Computer System Interface (SCSI) library (SCSI-2)
	scsiCommonLib – SCSI library common commands for all devices (SCSI-2)
	scsiCtrlLib – SCSI thread-level controller library (SCSI-2)
	scsiDirectLib – SCSI library for direct access devices (SCSI-2)
	scsiLib – Small Computer System Interface (SCSI) library
	scsiMgrLib – SCSI manager library (SCSI-2)
	scsiSeqLib – SCSI sequential access device library (SCSI-2)
	selectLib – UNIX BSD 4.3 select library
	semBLib – binary semaphore library
	semCLib – counting semaphore library
	semEvLib – VxWorks events support for semaphores
	semLib – general semaphore library
	semMLib – mutual-exclusion semaphore library
	semOLib – release 4.x binary semaphore library
	semPxLib – semaphore synchronization library (POSIX)
	semPxShow – POSIX semaphore show library
	semShow – semaphore show routines
	semSmLib – shared memory semaphore library (VxMP Opt.)
	shellLib – shell execution routines
	sigLib – software signal facility library
	smMemLib – shared memory management library (VxMP Opt.)
	smMemShow – shared memory management show routines (VxMP Opt.)
	smNameLib – shared memory objects name database library (VxMP Opt.)
	smNameShow – shared memory objects name database show routines (VxMP Opt.)
	smNetLib – VxWorks interface to shared memory network (backplane) driver
	smNetShow – shared memory network driver show routines
	smObjLib – shared memory objects library (VxMP Opt.)
	smObjShow – shared memory objects show routines (VxMP Opt.)
	sntpcLib – Simple Network Time Protocol (SNTP) client library
	sntpsLib – Simple Network Time Protocol (SNTP) server library
	sockLib – generic socket library
	spyLib – spy CPU activity library
	symLib – symbol table subroutine library
	symSyncLib – host/target symbol table synchronization
	sysLib – system-dependent library
	tapeFsLib – tape sequential device file system library
	tarLib – UNIX tar compatible library
	taskArchLib – architecture-specific task management routines
	taskHookLib – task hook library
	taskHookShow – task hook show routines
	taskInfo – task information library
	taskLib – task management library
	taskShow – task show routines
	taskVarLib – task variables support library
	tcpShow – TCP information display routines
	telnetdLib – server library
	tffsConfig – TrueFFS configuration file for VxWorks
	tffsDrv – TrueFFS interface for VxWorks
	tftpdLib – Trivial File Transfer Protocol server library
	tftpLib – Trivial File Transfer Protocol (TFTP) client library
	tickLib – clock tick support library
	timerLib – timer library (POSIX)
	timexLib – execution timer facilities
	trgLib – trigger events control library
	trgShow – trigger show routine
	ttyDrv – provide terminal device access to serial channels
	tyLib – tty driver support library
	udpShow – UDP information display routines
	unixDrv – UNIX-file disk driver (VxSim for Solaris and VxSim for HP)
	unldLib – object module unloading library
	usrAta – ATA/ATAPI initialization
	usrConfig – user-defined system configuration library
	usrFd – floppy disk initialization
	usrFdiskPartLib – FDISK-style partition handler
	usrFsLib – file system user interface subroutine library
	usrIde – IDE initialization
	usrLib – user interface subroutine library
	usrScsi – SCSI initialization
	vmBaseLib – base virtual memory support library
	vmLib – architecture-independent virtual memory support library (VxVMI Opt.)
	vmShow – virtual memory show routines (VxVMI Opt.)
	vxLib – miscellaneous support routines
	wdbLib – WDB agent context management library
	wdbUserEvtLib – WDB user event library
	wdLib – watchdog timer library
	wdShow – watchdog show routines
	wvFileUploadPathLib – file destination for event data
	wvLib – event logging control library (WindView)
	wvNetLib – WindView for Networking Interface Library
	wvSockUploadPathLib – socket upload path library
	wvTmrLib – timer library (WindView)
	wvTsfsUploadPathLib – target host connection library using TSFS
	zbufLib – zbuf interface library
	zbufSockLib – zbuf socket interface library

	2 Routines
	a0(�) – return the contents of register a0 (also a1 - a7) (68K)
	abort(�) – cause abnormal program termination (ANSI)
	abs(�) – compute the absolute value of an integer (ANSI)
	accept(�) – accept a connection from a socket
	acos(�) – compute an arc cosine (ANSI)
	acosf(�) – compute an arc cosine (ANSI)
	aioPxLibInit(�) – initialize the asynchronous I/O (AIO) library
	aioShow(�) – show AIO requests
	aioSysInit(�) – initialize the AIO system driver
	aio_error(�) – retrieve error status of asynchronous I/O operation (POSIX)
	aio_read(�) – initiate an asynchronous read (POSIX)
	aio_return(�) – retrieve return status of asynchronous I/O operation (POSIX)
	aio_suspend(�) – wait for asynchronous I/O request(s) (POSIX)
	aio_write(�) – initiate an asynchronous write (POSIX)
	alarm(�) – set an alarm clock for delivery of a signal
	arpAdd(�) – create or modify an ARP table entry
	arpDelete(�) – remove an ARP table entry
	arpFlush(�) – flush all entries in the system ARP table
	arpResolve(�) – resolve a hardware address for a specified Internet address
	arpShow(�) – display entries in the system ARP table
	arptabShow(�) – display the known ARP entries
	asctime(�) – convert broken-down time into a string (ANSI)
	asctime_r(�) – convert broken-down time into a string (POSIX)
	asin(�) – compute an arc sine (ANSI)
	asinf(�) – compute an arc sine (ANSI)
	assert(�) – put diagnostics into programs (ANSI)
	atan(�) – compute an arc tangent (ANSI)
	atan2(�) – compute the arc tangent of y/x (ANSI)
	atan2f(�) – compute the arc tangent of y/x (ANSI)
	atanf(�) – compute an arc tangent (ANSI)
	atexit(�) – call a function at program termination (Unimplemented) (ANSI)
	atof(�) – convert a string to a double (ANSI)
	atoi(�) – convert a string to an int (ANSI)
	atol(�) – convert a string to a long (ANSI)
	attrib(�) – modify MS-DOS file attributes on a file or directory
	b(�) – set or display breakpoints
	bcmp(�) – compare one buffer to another
	bcopy(�) – copy one buffer to another
	bcopyBytes(�) – copy one buffer to another one byte at a time
	bcopyLongs(�) – copy one buffer to another one long word at a time
	bcopyWords(�) – copy one buffer to another one word at a time
	bd(�) – delete a breakpoint
	bdall(�) – delete all breakpoints
	bfill(�) – fill a buffer with a specified character
	bfillBytes(�) – fill buffer with a specified character one byte at a time
	bh(�) – set a hardware breakpoint
	bind(�) – bind a name to a socket
	bindresvport(�) – bind a socket to a privileged IP port
	binvert(�) – invert the order of bytes in a buffer
	bootBpAnchorExtract(�) – extract a backplane address from a device field
	bootChange(�) – change the boot line
	bootLeaseExtract(�) – extract the lease information from an Internet address
	bootNetmaskExtract(�) – extract the net mask field from an Internet address
	bootParamsPrompt(�) – prompt for boot line parameters
	bootParamsShow(�) – display boot line parameters
	bootpLibInit(�) – BOOTP client library initialization
	bootpMsgGet(�) – send a BOOTP request message and retrieve reply
	bootpParamsGet(�) – retrieve boot parameters using BOOTP
	bootStringToStruct(�) – interpret the boot parameters from the boot line
	bootStructToString(�) – construct a boot line
	bpfDevCreate(�) – create Berkeley Packet Filter device
	bpfDevDelete(�) – destroy Berkeley Packet Filter device
	bpfDrv(�) – initialize the BPF driver
	bsearch(�) – perform a binary search (ANSI)
	bswap(�) – swap buffers
	bzero(�) – zero out a buffer
	c(�) – continue from a breakpoint
	cache4kcLibInit(�) – initialize the 4kc cache library
	cacheArchClearEntry(�) – clear an entry from a cache (68K, x86)
	cacheArchLibInit(�) – initialize the cache library
	cacheAuLibInit(�) – initialize the Au cache library
	cacheClear(�) – clear all or some entries from a cache
	cacheCy604ClearLine(�) – clear a line from a CY7C604 cache
	cacheCy604ClearPage(�) – clear a page from a CY7C604 cache
	cacheCy604ClearRegion(�) – clear a region from a CY7C604 cache
	cacheCy604ClearSegment(�) – clear a segment from a CY7C604 cache
	cacheCy604LibInit(�) – initialize the Cypress CY7C604 cache library
	cacheDisable(�) – disable the specified cache
	cacheDmaFree(�) – free the buffer acquired with cacheDmaMalloc(�)
	cacheDmaMalloc(�) – allocate a cache-safe buffer for DMA devices and drivers
	cacheDrvFlush(�) – flush the data cache for drivers
	cacheDrvInvalidate(�) – invalidate data cache for drivers
	cacheDrvPhysToVirt(�) – translate a physical address for drivers
	cacheDrvVirtToPhys(�) – translate a virtual address for drivers
	cacheEnable(�) – enable the specified cache
	cacheFlush(�) – flush all or some of a specified cache
	cacheInvalidate(�) – invalidate all or some of a specified cache
	cacheLibInit(�) – initialize the cache library for a processor architecture
	cacheLock(�) – lock all or part of a specified cache
	cacheMb930ClearLine(�) – clear a line from an MB86930 cache
	cacheMb930LibInit(�) – initialize the Fujitsu MB86930 cache library
	cacheMb930LockAuto(�) – enable MB86930 automatic locking of kernel instructions/data
	cachePipeFlush(�) – flush processor write buffers to memory
	cacheR3kLibInit(�) – initialize the R3000 cache library
	cacheR4kLibInit(�) – initialize the R4000 cache library
	cacheR5kLibInit(�) – initialize the R5000 cache library
	cacheR7kLibInit(�) – initialize the R7000 cache library
	cacheR10kLibInit(�) – initialize the R10000 cache library
	cacheR32kLibInit(�) – initialize the RC32364 cache library
	cacheR32kMalloc(�) – allocate a cache-safe buffer, if possible
	cacheR33kLibInit(�) – initialize the R33000 cache library
	cacheR333x0LibInit(�) – initialize the R333x0 cache library
	cacheSh7040LibInit(�) – initialize the SH7040 cache library
	cacheSh7604LibInit(�) – initialize the SH7604/SH7615 cache library
	cacheSh7622LibInit(�) – initialize the SH7622 cache library
	cacheSh7700LibInit(�) – initialize the SH7700 cache library
	cacheSh7729LibInit(�) – initialize the SH7729 cache library
	cacheSh7750LibInit(�) – initialize the SH7750 cache library
	cacheStoreBufDisable(�) – disable the store buffer (MC68060 only)
	cacheStoreBufEnable(�) – enable the store buffer (MC68060 only)
	cacheSun4ClearContext(�) – clear a specific context from a Sun-4 cache
	cacheSun4ClearLine(�) – clear a line from a Sun-4 cache
	cacheSun4ClearPage(�) – clear a page from a Sun-4 cache
	cacheSun4ClearSegment(�) – clear a segment from a Sun-4 cache
	cacheSun4LibInit(�) – initialize the Sun-4 cache library
	cacheTextUpdate(�) – synchronize the instruction and data caches
	cacheTiTms390LibInit(�) – initialize the TI TMS390 cache library
	cacheTiTms390PhysToVirt(�) – translate a physical address for drivers
	cacheTiTms390VirtToPhys(�) – translate a virtual address for cacheLib
	cacheTx49LibInit(�) – initialize the Tx49 cache library
	cacheUnlock(�) – unlock all or part of a specified cache
	calloc(�) – allocate space for an array (ANSI)
	cbioBlkCopy(�) – block to block (sector to sector) transfer routine
	cbioBlkRW(�) – transfer blocks to or from memory
	cbioBytesRW(�) – transfer bytes to or from memory
	cbioDevCreate(�) – initialize a CBIO device (Generic)
	cbioDevVerify(�) – verify CBIO_DEV_ID
	cbioIoctl(�) – perform ioctl operation on device
	cbioLibInit(�) – Initialize CBIO Library
	cbioLock(�) – obtain CBIO device semaphore.
	cbioModeGet(�) – return the mode setting for CBIO device
	cbioModeSet(�) – set mode for CBIO device
	cbioParamsGet(�) – fill in CBIO_PARAMS structure with CBIO device parameters
	cbioRdyChgdGet(�) – determine ready status of CBIO device
	cbioRdyChgdSet(�) – force a change in ready status of CBIO device
	cbioShow(�) – print information about a CBIO device
	cbioUnlock(�) – release CBIO device semaphore.
	cbioWrapBlkDev(�) – create CBIO wrapper atop a BLK_DEV device
	cbrt(�) – compute a cube root
	cbrtf(�) – compute a cube root
	cd(�) – change the default directory
	cdromFsDevCreate(�) – create a cdromFsLib device
	cdromFsInit(�) – initialize cdromFsLib
	cdromFsVolConfigShow(�) – show the volume configuration information
	ceil(�) – compute the smallest integer greater than or equal to a specified value (ANSI)
	ceilf(�) – compute the smallest integer greater than or equal to a specified value (ANSI)
	cfree(�) – free a block of memory
	chdir(�) – set the current default path
	checkStack(�) – print a summary of each task’s stack usage
	chkdsk(�) – perform consistency checking on a MS-DOS file system
	cleanUpStoreBuffer(�) – clean up store buffer after a data store error interrupt
	clearerr(�) – clear end-of-file and error flags for a stream (ANSI)
	clock(�) – determine the processor time in use (ANSI)
	clock_getres(�) – get the clock resolution (POSIX)
	clock_gettime(�) – get the current time of the clock (POSIX)
	clock_setres(�) – set the clock resolution
	clock_settime(�) – set the clock to a specified time (POSIX)
	close(�) – close a file
	closedir(�) – close a directory (POSIX)
	connect(�) – initiate a connection to a socket
	connectWithTimeout(�) – attempt socket connection within a specified duration
	copy(�) – copy in (or stdin) to out (or stdout)
	copyStreams(�) – copy from/to specified streams
	cos(�) – compute a cosine (ANSI)
	cosf(�) – compute a cosine (ANSI)
	cosh(�) – compute a hyperbolic cosine (ANSI)
	coshf(�) – compute a hyperbolic cosine (ANSI)
	cp(�) – copy file into other file/directory.
	cplusCallNewHandler(�) – call the allocation failure handler (C++)
	cplusCtors(�) – call static constructors (C++)
	cplusCtorsLink(�) – call all linked static constructors (C++)
	cplusDemanglerSet(�) – change C++ demangling mode (C++)
	cplusDemanglerStyleSet(�) – change C++ demangling style (C++)
	cplusDtors(�) – call static destructors (C++)
	cplusDtorsLink(�) – call all linked static destructors (C++)
	cplusLibInit(�) – initialize the C++ library (C++)
	cplusXtorSet(�) – change C++ static constructor calling strategy (C++)
	cpsr(�) – return the contents of the current processor status register (ARM)
	creat(�) – create a file
	cret(�) – continue until the current subroutine returns
	ctime(�) – convert time in seconds into a string (ANSI)
	ctime_r(�) – convert time in seconds into a string (POSIX)
	d(�) – display memory
	d0(�) – return the contents of register d0 (also d1 - d7) (68K)
	dbgBpTypeBind(�) – bind a breakpoint handler to a breakpoint type (MIPS)
	dbgHelp(�) – display debugging help menu
	dbgInit(�) – initialize the local debugging package
	dcacheDevCreate(�) – create a disk cache
	dcacheDevDisable(�) – disable the disk cache for this device
	dcacheDevEnable(�) – re-enable the disk cache
	dcacheDevMemResize(�) – set a new size to a disk cache device
	dcacheDevTune(�) – modify tunable disk cache parameters
	dcacheHashTest(�) – test hash table integrity
	dcacheShow(�) – print information about disk cache
	devs(�) – list all system-known devices
	dhcpcBind(�) – obtain a set of network configuration parameters with DHCP
	dhcpcBootBind(�) – initialize the network with DHCP at boot time
	dhcpcBootInformGet(�) – obtain additional configuration parameters with DHCP
	dhcpcBootInit(�) – set up the DHCP client parameters and data structures
	dhcpcCacheHookAdd(�) – add a routine to store and retrieve lease data
	dhcpcCacheHookDelete(�) – delete a lease data storage routine
	dhcpcEventHookAdd(�) – add a routine to handle configuration parameters
	dhcpcEventHookDelete(�) – remove the configuration parameters handler
	dhcpcInformGet(�) – obtain additional configuration parameters with DHCP
	dhcpcInit(�) – assign network interface and setup lease request
	dhcpcLibInit(�) – DHCP client library initialization
	dhcpcOptionAdd(�) – add an option to the client messages
	dhcpcOptionGet(�) – retrieve an option provided to a client and store in a buffer
	dhcpcOptionSet(�) – add an option to the option request list
	dhcpcParamsGet(�) – retrieve current configuration parameters
	dhcpcParamsShow(�) – display current lease parameters
	dhcpcRelease(�) – relinquish specified lease
	dhcpcServerGet(�) – retrieve the current DHCP server
	dhcpcServerShow(�) – display current DHCP server
	dhcpcShowInit(�) – initialize the DHCP show facility
	dhcpcShutdown(�) – disable DHCP client library
	dhcpcTimerGet(�) – retrieve current lease timers
	dhcpcTimersShow(�) – display current lease timers
	dhcpcVerify(�) – renew an established lease
	dhcpsAddressHookAdd(�) – assign a permanent address storage hook for the server
	dhcpsInit(�) – set up the DHCP server parameters and data structures
	dhcpsLeaseEntryAdd(�) – add another entry to the address pool
	dhcpsLeaseHookAdd(�) – assign a permanent lease storage hook for the server
	difftime(�) – compute the difference between two calendar times (ANSI)
	dirList(�) – list contents of a directory (multi-purpose)
	diskFormat(�) – format a disk
	diskInit(�) – initialize a file system on a block device
	distCtl(�) – perform a distributed objects control function (VxFusion Opt.)
	distIfShow(�) – display information about the installed interface adapter (VxFusion Opt.)
	distInit(�) – initialize and bootstrap the current node (VxFusion Opt.)
	distNameAdd(�) – add an entry to the distributed name database (VxFusion Opt.)
	distNameFilterShow(�) – display the distributed name database filtered by type (VxFusion Opt.)
	distNameFind(�) – find an object by name in the local database (VxFusion Opt.)
	distNameFindByValueAndType(�) – look up the name of an object by value and type (VxFusion Opt.)
	distNameRemove(�) – remove an entry from the distributed name database (VxFusion Opt.)
	distNameShow(�) – display the entire distributed name database (VxFusion Opt.)
	distTBufAlloc(�) – allocate a telegram buffer from the pool of buffers (VxFusion Opt.)
	distTBufFree(�) – return a telegram buffer to the pool of buffers (VxFusion Opt.)
	div(�) – compute a quotient and remainder (ANSI)
	div_r(�) – compute a quotient and remainder (reentrant)
	dosFsChkDsk(�) – make volume integrity checking.
	dosFsDevCreate(�) – create file system device.
	dosFsLastAccessDateEnable(�) – enable last access date updating for this volume
	dosFsLibInit(�) – prepare to use the dosFs library
	dosFsShow(�) – display dosFs volume configuration data.
	dosFsVolDescGet(�) – convert a device name into a DOS volume descriptor pointer.
	dosFsVolFormat(�) – format an MS-DOS compatible volume
	dosSetVolCaseSens(�) – set case sensitivity of volume
	dpartDevCreate(�) – initialize a partitioned disk
	dpartPartGet(�) – retrieve handle for a partition
	dspInit(�) – initialize DSP support
	dspShowInit(�) – initialize the DSP show facility
	dspTaskRegsShow(�) – print the contents of a task’s DSP registers
	e(�) – set or display eventpoints (WindView)
	edi(�) – return the contents of register edi (also esi - eax) (x86/SimNT)
	eflags(�) – return the contents of the status register (x86/SimNT)
	endFindByName(�) – find a device using its string name
	envLibInit(�) – initialize environment variable facility
	envPrivateCreate(�) – create a private environment
	envPrivateDestroy(�) – destroy a private environment
	envShow(�) – display the environment for a task
	errnoGet(�) – get the error status value of the calling task
	errnoOfTaskGet(�) – get the error status value of a specified task
	errnoOfTaskSet(�) – set the error status value of a specified task
	errnoSet(�) – set the error status value of the calling task
	etherMultiAdd(�) – add multicast address to a multicast address list
	etherMultiDel(�) – delete an Ethernet multicast address record
	etherMultiGet(�) – retrieve a table of multicast addresses from a driver
	eventClear(�) – clear all events for current task.
	eventReceive(�) – wait for event(s)
	eventSend(�) – send event(s)
	excConnect(�) – connect a C routine to an exception vector (PowerPC)
	excCrtConnect(�) – connect a C routine to a critical exception vector (PowerPC 403)
	excHookAdd(�) – specify a routine to be called with exceptions
	excInit(�) – initialize the exception handling package
	excIntConnect(�) – connect a C routine to an asynchronous exception vector (PowerPC, ARM)
	excIntCrtConnect(�) – connect a C routine to a critical interrupt vector (PowerPC 403)
	excTask(�) – handle task-level exceptions
	excVecGet(�) – get a CPU exception vector (PowerPC, ARM)
	excVecInit(�) – initialize the exception/interrupt vectors
	excVecSet(�) – set a CPU exception vector (PowerPC, ARM)
	exit(�) – exit a task (ANSI)
	exp(�) – compute an exponential value (ANSI)
	expf(�) – compute an exponential value (ANSI)
	fabs(�) – compute an absolute value (ANSI)
	fabsf(�) – compute an absolute value (ANSI)
	fclose(�) – close a stream (ANSI)
	fdopen(�) – open a file specified by a file descriptor (POSIX)
	fdprintf(�) – write a formatted string to a file descriptor
	feof(�) – test the end-of-file indicator for a stream (ANSI)
	ferror(�) – test the error indicator for a file pointer (ANSI)
	fflush(�) – flush a stream (ANSI)
	fgetc(�) – return the next character from a stream (ANSI)
	fgetpos(�) – store the current value of the file position indicator for a stream (ANSI)
	fgets(�) – read a specified number of characters from a stream (ANSI)
	fileno(�) – return the file descriptor for a stream (POSIX)
	fileUploadPathClose(�) – close the event-destination file (WindView)
	fileUploadPathCreate(�) – create a file for depositing event data (Windview)
	fileUploadPathLibInit(�) – initialize the wvFileUploadPathLib library (Windview)
	fileUploadPathWrite(�) – write to the event-destination file (WindView)
	fioFormatV(�) – convert a format string
	fioLibInit(�) – initialize the formatted I/O support library
	fioRdString(�) – read a string from a file
	fioRead(�) – read a buffer
	floatInit(�) – initialize floating-point I/O support
	floor(�) – compute the largest integer less than or equal to a specified value (ANSI)
	floorf(�) – compute the largest integer less than or equal to a specified value (ANSI)
	fmod(�) – compute the remainder of x/y (ANSI)
	fmodf(�) – compute the remainder of x/y (ANSI)
	fopen(�) – open a file specified by name (ANSI)
	fppInit(�) – initialize floating-point coprocessor support
	fppProbe(�) – probe for the presence of a floating-point coprocessor
	fppRestore(�) – restore the floating-point coprocessor context
	fppSave(�) – save the floating-point coprocessor context
	fppShowInit(�) – initialize the floating-point show facility
	fppTaskRegsGet(�) – get the floating-point registers from a task TCB
	fppTaskRegsSet(�) – set the floating-point registers of a task
	fppTaskRegsShow(�) – print the contents of a task’s floating-point registers
	fprintf(�) – write a formatted string to a stream (ANSI)
	fputc(�) – write a character to a stream (ANSI)
	fputs(�) – write a string to a stream (ANSI)
	fread(�) – read data into an array (ANSI)
	free(�) – free a block of memory (ANSI)
	freopen(�) – open a file specified by name (ANSI)
	frexp(�) – break a floating-point number into a normalized fraction and power of 2 (ANSI)
	fscanf(�) – read and convert characters from a stream (ANSI)
	fseek(�) – set the file position indicator for a stream (ANSI)
	fsetpos(�) – set the file position indicator for a stream (ANSI)
	fstat(�) – get file status information (POSIX)
	fstatfs(�) – get file status information (POSIX)
	ftell(�) – return the current value of the file position indicator for a stream (ANSI)
	ftpCommand(�) – send an FTP command and get the reply
	ftpCommandEnhanced(�) – send an FTP command and get the complete RFC reply code
	ftpDataConnGet(�) – get a completed FTP data connection
	ftpDataConnInit(�) – initialize an FTP data connection using PORT mode
	ftpDataConnInitPassiveMode(�) – initialize an FTP data connection using PASV mode
	ftpdDelete(�) – terminate the FTP server task
	ftpdInit(�) – initialize the FTP server task
	ftpHookup(�) – get a control connection to the FTP server on a specified host
	ftpLibDebugOptionSet(�) – set the debug level of the ftp library routines
	ftpLogin(�) – log in to a remote FTP server
	ftpLs(�) – list directory contents via FTP
	ftpReplyGet(�) – get an FTP command reply
	ftpReplyGetEnhanced(�) – get an FTP command reply
	ftpTransientConfigGet(�) – get parameters for host FTP_TRANSIENT responses
	ftpTransientConfigSet(�) – set parameters for host FTP_TRANSIENT responses
	ftpTransientFatalInstall(�) – set applette to stop FTP transient host responses
	ftpXfer(�) – initiate a transfer via FTP
	ftruncate(�) – truncate a file (POSIX)
	fwrite(�) – write from a specified array (ANSI)
	getc(�) – return the next character from a stream (ANSI)
	getchar(�) – return the next character from the standard input stream (ANSI)
	getcwd(�) – get the current default path (POSIX)
	getenv(�) – get an environment variable (ANSI)
	gethostname(�) – get the symbolic name of this machine
	getpeername(�) – get the name of a connected peer
	gets(�) – read characters from the standard input stream (ANSI)
	getsockname(�) – get a socket name
	getsockopt(�) – get socket options
	getw(�) – read the next word (32-bit integer) from a stream
	getwd(�) – get the current default path
	gmtime(�) – convert calendar time into UTC broken-down time (ANSI)
	gmtime_r(�) – convert calendar time into broken-down time (POSIX)
	h(�) – display or set the size of shell history
	hashFuncIterScale(�) – iterative scaling hashing function for strings
	hashFuncModulo(�) – hashing function using remainder technique
	hashFuncMultiply(�) – multiplicative hashing function
	hashKeyCmp(�) – compare keys as 32 bit identifiers
	hashKeyStrCmp(�) – compare keys based on strings they point to
	hashLibInit(�) – initialize hash table library
	hashTblCreate(�) – create a hash table
	hashTblDelete(�) – delete a hash table
	hashTblDestroy(�) – destroy a hash table
	hashTblEach(�) – call a routine for each node in a hash table
	hashTblFind(�) – find a hash node that matches the specified key
	hashTblInit(�) – initialize a hash table
	hashTblPut(�) – put a hash node into the specified hash table
	hashTblRemove(�) – remove a hash node from a hash table
	hashTblTerminate(�) – terminate a hash table
	help(�) – print a synopsis of selected routines
	hostAdd(�) – add a host to the host table
	hostDelete(�) – delete a host from the host table
	hostGetByAddr(�) – look up a host in the host table by its Internet address
	hostGetByName(�) – look up a host in the host table by its name
	hostShow(�) – display the host table
	hostTblInit(�) – initialize the network host table
	i(�) – print a summary of each task’s TCB
	iam(�) – set the remote user name and password
	icmpShowInit(�) – initialize ICMP show routines
	icmpstatShow(�) – display statistics for ICMP
	ifAddrAdd(�) – add an interface address for a network interface
	ifAddrDelete(�) – delete an interface address for a network interface
	ifAddrGet(�) – get the Internet address of a network interface
	ifAddrSet(�) – set an interface address for a network interface
	ifAllRoutesDelete(�) – delete all routes associated with a network interface
	ifBroadcastGet(�) – get the broadcast address for a network interface
	ifBroadcastSet(�) – set the broadcast address for a network interface
	ifDstAddrGet(�) – get the Internet address of a point-to-point peer
	ifDstAddrSet(�) – define an address for the other end of a point-to-point link
	ifFlagChange(�) – change the network interface flags
	ifFlagGet(�) – get the network interface flags
	ifFlagSet(�) – specify the flags for a network interface
	ifIndexAlloc(�) – return a unique interface index
	ifIndexLibInit(�) – initializes library variables
	ifIndexLibShutdown(�) – frees library variables
	ifIndexTest(�) – returns true if an index has been allocated.
	ifIndexToIfName(�) – returns the interface name given the interface index
	ifMaskGet(�) – get the subnet mask for a network interface
	ifMaskSet(�) – define a subnet for a network interface
	ifMetricGet(�) – get the metric for a network interface
	ifMetricSet(�) – specify a network interface hop count
	ifNameToIfIndex(�) – returns the interface index given the interface name
	ifRouteDelete(�) – delete routes associated with a network interface
	ifShow(�) – display the attached network interfaces
	ifunit(�) – map an interface name to an interface structure pointer
	ifUnnumberedSet(�) – configure an interface to be unnumbered
	igmpShowInit(�) – initialize IGMP show routines
	igmpstatShow(�) – display statistics for IGMP
	index(�) – find the first occurrence of a character in a string
	inet_addr(�) – convert a dot notation Internet address to a long integer
	inet_aton(�) – convert a network address from dot notation, store in a structure
	inet_lnaof(�) – get the local address (host number) from the Internet address
	inet_makeaddr(�) – form an Internet address from network and host numbers
	inet_makeaddr_b(�) – form an Internet address from network and host numbers
	inet_netof(�) – return the network number from an Internet address
	inet_netof_string(�) – extract the network address in dot notation
	inet_network(�) – convert an Internet network number from string to address
	inet_ntoa(�) – convert a network address to dotted decimal notation
	inet_ntoa_b(�) – convert an network address to dot notation, store it in a buffer
	inetstatShow(�) – display all active connections for Internet protocol sockets
	infinity(�) – return a very large double
	infinityf(�) – return a very large float
	inflate(�) – inflate compressed code
	intConnect(�) – connect a C routine to a hardware interrupt
	intContext(�) – determine if the current state is in interrupt or task context
	intCount(�) – get the current interrupt nesting depth
	intCRGet(�) – read the contents of the cause register (MIPS)
	intCRSet(�) – write the contents of the cause register (MIPS)
	intDisable(�) – disable corresponding interrupt bits (MIPS, PowerPC, ARM)
	intEnable(�) – enable corresponding interrupt bits (MIPS, PowerPC, ARM)
	intHandlerCreate(�) – construct an interrupt handler for a C routine (68K, x86, MIPS, SimSolaris)
	intHandlerCreateI86(�) – construct an interrupt handler for a C routine (x86)
	intLevelSet(�) – set the interrupt level (68K, x86, ARM, SimSolaris, SimNT and SH)
	intLock(�) – lock out interrupts
	intLockLevelGet(�) – get the current interrupt lock-out level (68K, x86, ARM, SH, SimSolaris, SimNT)
	intLockLevelSet(�) – set the current interrupt lock-out level (68K, x86, ARM, SH, SimSolaris, SimNT)
	intSRGet(�) – read the contents of the status register (MIPS)
	intSRSet(�) – update the contents of the status register (MIPS)
	intStackEnable(�) – enable or disable the interrupt stack usage (x86)
	intUninitVecSet(�) – set the uninitialized vector handler (ARM)
	intUnlock(�) – cancel interrupt locks
	intVecBaseGet(�) – get the vector (trap) base address (68K, x86, MIPS, ARM, SimSolaris, SimNT)
	intVecBaseSet(�) – set the vector (trap) base address (68K, x86, MIPS, ARM, SimSolaris, SimNT)
	intVecGet(�) – get an interrupt vector (68K, x86, MIPS, SH, SimSolaris, SimNT)
	intVecGet2(�) – get a CPU vector, gate type(int/trap), and gate selector (x86)
	intVecSet(�) – set a CPU vector (trap) (68K, x86, MIPS, SH, SimSolaris, SimNT)
	intVecSet2(�) – set a CPU vector, gate type(int/trap), and selector (x86)
	intVecTableWriteProtect(�) – write-protect exception vector table (68K, x86, ARM, SimSolaris, SimNT)
	ioctl(�) – perform an I/O control function
	ioDefPathGet(�) – get the current default path
	ioDefPathSet(�) – set the current default path
	ioGlobalStdGet(�) – get the file descriptor for global standard input/output/error
	ioGlobalStdSet(�) – set the file descriptor for global standard input/output/error
	ioHelp(�) – print a synopsis of I/O utility functions
	iosDevAdd(�) – add a device to the I/O system
	iosDevDelete(�) – delete a device from the I/O system
	iosDevFind(�) – find an I/O device in the device list
	iosDevShow(�) – display the list of devices in the system
	iosDrvInstall(�) – install an I/O driver
	iosDrvRemove(�) – remove an I/O driver
	iosDrvShow(�) – display a list of system drivers
	iosFdShow(�) – display a list of file descriptor names in the system
	iosFdValue(�) – validate an open file descriptor and return the driver-specific value
	iosInit(�) – initialize the I/O system
	iosShowInit(�) – initialize the I/O system show facility
	ioTaskStdGet(�) – get the file descriptor for task standard input/output/error
	ioTaskStdSet(�) – set the file descriptor for task standard input/output/error
	ipAttach(�) – a generic attach routine for the TCP/IP network stack
	ipDetach(�) – a generic detach routine for the TCP/IP network stack
	ipFilterHookAdd(�) – add a routine to receive all internet protocol packets
	ipFilterHookDelete(�) – delete a IP filter hook routine
	ipFilterLibInit(�) – initialize IP filter facility
	ipstatShow(�) – display IP statistics
	irint(�) – convert a double-precision value to an integer
	irintf(�) – convert a single-precision value to an integer
	iround(�) – round a number to the nearest integer
	iroundf(�) – round a number to the nearest integer
	isalnum(�) – test whether a character is alphanumeric (ANSI)
	isalpha(�) – test whether a character is a letter (ANSI)
	isatty(�) – return whether the underlying driver is a tty device
	iscntrl(�) – test whether a character is a control character (ANSI)
	isdigit(�) – test whether a character is a decimal digit (ANSI)
	isgraph(�) – test whether a character is a printing, non-white-space character (ANSI)
	islower(�) – test whether a character is a lower-case letter (ANSI)
	isprint(�) – test whether a character is printable, including the space character (ANSI)
	ispunct(�) – test whether a character is punctuation (ANSI)
	isspace(�) – test whether a character is a white-space character (ANSI)
	isupper(�) – test whether a character is an upper-case letter (ANSI)
	isxdigit(�) – test whether a character is a hexadecimal digit (ANSI)
	kernelInit(�) – initialize the kernel
	kernelTimeSlice(�) – enable round-robin selection
	kernelVersion(�) – return the kernel revision string
	kill(�) – send a signal to a task (POSIX)
	l(�) – disassemble and display a specified number of instructions
	labs(�) – compute the absolute value of a long (ANSI)
	ld(�) – load an object module into memory
	ldexp(�) – multiply a number by an integral power of 2 (ANSI)
	ldiv(�) – compute the quotient and remainder of the division (ANSI)
	ldiv_r(�) – compute a quotient and remainder (reentrant)
	ledClose(�) – discard the line-editor ID
	ledControl(�) – change the line-editor ID parameters
	ledOpen(�) – create a new line-editor ID
	ledRead(�) – read a line with line-editing
	lio_listio(�) – initiate a list of asynchronous I/O requests (POSIX)
	listen(�) – enable connections to a socket
	lkAddr(�) – list symbols whose values are near a specified value
	lkup(�) – list symbols
	ll(�) – generate a long listing of directory contents
	llr(�) – do a long listing of directory and all its subdirectories contents
	loadModule(�) – load an object module into memory
	loadModuleAt(�) – load an object module into memory
	localeconv(�) – set the components of an object with type lconv (ANSI)
	localtime(�) – convert calendar time into broken-down time (ANSI)
	localtime_r(�) – convert calendar time into broken-down time (POSIX)
	log(�) – compute a natural logarithm (ANSI)
	log2(�) – compute a base-2 logarithm
	log2f(�) – compute a base-2 logarithm
	log10(�) – compute a base-10 logarithm (ANSI)
	log10f(�) – compute a base-10 logarithm (ANSI)
	logf(�) – compute a natural logarithm (ANSI)
	logFdAdd(�) – add a logging file descriptor
	logFdDelete(�) – delete a logging file descriptor
	logFdSet(�) – set the primary logging file descriptor
	loginDefaultEncrypt(�) – default password encryption routine
	loginEncryptInstall(�) – install an encryption routine
	loginInit(�) – initialize the login table
	logInit(�) – initialize message logging library
	loginPrompt(�) – display a login prompt and validate a user entry
	loginStringSet(�) – change the login string
	loginUserAdd(�) – add a user to the login table
	loginUserDelete(�) – delete a user entry from the login table
	loginUserShow(�) – display the user login table
	loginUserVerify(�) – verify a user name and password in the login table
	logMsg(�) – log a formatted error message
	logout(�) – log out of the VxWorks system
	logTask(�) – message-logging support task
	longjmp(�) – perform non-local goto by restoring saved environment (ANSI)
	ls(�) – generate a brief listing of a directory
	lseek(�) – set a file read/write pointer
	lsr(�) – list the contents of a directory and any of its subdirectories
	lstAdd(�) – add a node to the end of a list
	lstConcat(�) – concatenate two lists
	lstCount(�) – report the number of nodes in a list
	lstDelete(�) – delete a specified node from a list
	lstExtract(�) – extract a sublist from a list
	lstFind(�) – find a node in a list
	lstFirst(�) – find first node in list
	lstFree(�) – free up a list
	lstGet(�) – delete and return the first node from a list
	lstInit(�) – initialize a list descriptor
	lstInsert(�) – insert a node in a list after a specified node
	lstLast(�) – find the last node in a list
	lstLibInit(�) – initializes lstLib module
	lstNext(�) – find the next node in a list
	lstNStep(�) – find a list node nStep steps away from a specified node
	lstNth(�) – find the Nth node in a list
	lstPrevious(�) – find the previous node in a list
	m(�) – modify memory
	m2Delete(�) – delete all the MIB-II library groups
	m2IcmpDelete(�) – delete all resources used to access the ICMP group
	m2IcmpGroupInfoGet(�) – get the MIB-II ICMP-group global variables
	m2IcmpInit(�) – initialize MIB-II ICMP-group access
	m2If8023PacketCount(�) – increment the packet counters for an 802.3 device
	m2IfAlloc(�) – allocate the structure for the interface table
	m2IfCommonValsGet(�) – get the common values
	m2IfCounterUpdate(�) – increment interface counters
	m2IfCtrUpdateRtnInstall(�) – install an interface counter update routine
	m2IfDefaultValsGet(�) – get the default values for the counters
	m2IfDelete(�) – delete all resources used to access the interface group
	m2IfFree(�) – free an interface data structure
	m2IfGenericPacketCount(�) – increment the interface packet counters
	m2IfGroupInfoGet(�) – get the MIB-II interface-group scalar variables
	m2IfInit(�) – initialize MIB-II interface-group routines
	m2IfPktCountRtnInstall(�) – install an interface packet counter routine
	m2IfRcvAddrEntryGet(�) – get the rcvAddress table entries for a given address
	m2IfRcvAddrEntrySet(�) – modify the entries of the rcvAddressTable
	m2IfStackEntryGet(�) – get a MIB-II interface-group table entry
	m2IfStackEntrySet(�) – modify the status of a relationship
	m2IfStackTblUpdate(�) – update the relationship between the sub-layers
	m2IfTableUpdate(�) – insert or remove an entry in the ifTable
	m2IfTblEntryGet(�) – get a MIB-II interface-group table entry
	m2IfTblEntrySet(�) – set the state of a MIB-II interface entry to UP or DOWN
	m2IfVariableUpdate(�) – update the contents of an interface non-counter object
	m2IfVarUpdateRtnInstall(�) – install an interface variable update routine
	m2Init(�) – initialize the SNMP MIB-2 library
	m2IpAddrTblEntryGet(�) – get an IP MIB-II address entry
	m2IpAtransTblEntryGet(�) – get a MIB-II ARP table entry
	m2IpAtransTblEntrySet(�) – add, modify, or delete a MIB-II ARP entry
	m2IpDelete(�) – delete all resources used to access the IP group
	m2IpGroupInfoGet(�) – get the MIB-II IP-group scalar variables
	m2IpGroupInfoSet(�) – set MIB-II IP-group variables to new values
	m2IpInit(�) – initialize MIB-II IP-group access
	m2IpRouteTblEntryGet(�) – get a MIB-2 routing table entry
	m2IpRouteTblEntrySet(�) – set a MIB-II routing table entry
	m2RipDelete(�) – delete the RIP MIB support
	m2RipGlobalCountersGet(�) – get MIB-II RIP-group global counters
	m2RipIfConfEntryGet(�) – get MIB-II RIP-group interface entry
	m2RipIfConfEntrySet(�) – set MIB-II RIP-group interface entry
	m2RipIfStatEntryGet(�) – get MIB-II RIP-group interface entry
	m2RipInit(�) – initialize the RIP MIB support
	m2SysDelete(�) – delete resources used to access the MIB-II system group
	m2SysGroupInfoGet(�) – get system-group MIB-II variables
	m2SysGroupInfoSet(�) – set system-group MIB-II variables to new values
	m2SysInit(�) – initialize MIB-II system-group routines
	m2TcpConnEntryGet(�) – get a MIB-II TCP connection table entry
	m2TcpConnEntrySet(�) – set a TCP connection to the closed state
	m2TcpDelete(�) – delete all resources used to access the TCP group
	m2TcpGroupInfoGet(�) – get MIB-II TCP-group scalar variables
	m2TcpInit(�) – initialize MIB-II TCP-group access
	m2UdpDelete(�) – delete all resources used to access the UDP group
	m2UdpGroupInfoGet(�) – get MIB-II UDP-group scalar variables
	m2UdpInit(�) – initialize MIB-II UDP-group access
	m2UdpTblEntryGet(�) – get a UDP MIB-II entry from the UDP list of listeners
	mach(�) – return the contents of system register mach (also macl, pr) (SH)
	malloc(�) – allocate a block of memory from the system memory partition (ANSI)
	mathHardInit(�) – initialize hardware floating-point math support
	mathSoftInit(�) – initialize software floating-point math support
	mblen(�) – calculate the length of a multibyte character (Unimplemented) (ANSI)
	mbstowcs(�) – convert a series of multibyte char’s to wide char’s (Unimplemented) (ANSI)
	mbtowc(�) – convert a multibyte character to a wide character (Unimplemented) (ANSI)
	mbufShow(�) – report mbuf statistics
	memAddToPool(�) – add memory to the system memory partition
	memalign(�) – allocate aligned memory
	memchr(�) – search a block of memory for a character (ANSI)
	memcmp(�) – compare two blocks of memory (ANSI)
	memcpy(�) – copy memory from one location to another (ANSI)
	memDevCreate(�) – create a memory device
	memDevCreateDir(�) – create a memory device for multiple files
	memDevDelete(�) – delete a memory device
	memDrv(�) – install a memory driver
	memFindMax(�) – find the largest free block in the system memory partition
	memmove(�) – copy memory from one location to another (ANSI)
	memOptionsSet(�) – set the debug options for the system memory partition
	memPartAddToPool(�) – add memory to a memory partition
	memPartAlignedAlloc(�) – allocate aligned memory from a partition
	memPartAlloc(�) – allocate a block of memory from a partition
	memPartCreate(�) – create a memory partition
	memPartFindMax(�) – find the size of the largest available free block
	memPartFree(�) – free a block of memory in a partition
	memPartInfoGet(�) – get partition information
	memPartOptionsSet(�) – set the debug options for a memory partition
	memPartRealloc(�) – reallocate a block of memory in a specified partition
	memPartShow(�) – show partition blocks and statistics
	memPartSmCreate(�) – create a shared memory partition (VxMP Opt.)
	memset(�) – set a block of memory (ANSI)
	memShow(�) – show system memory partition blocks and statistics
	memShowInit(�) – initialize the memory partition show facility
	mkdir(�) – make a directory
	mktime(�) – convert broken-down time into calendar time (ANSI)
	mlock(�) – lock specified pages into memory (POSIX)
	mlockall(�) – lock all pages used by a process into memory (POSIX)
	mmuPhysToVirt(�) – translate a physical address to a virtual address (ARM)
	mmuPro32LibInit(�) – initialize module
	mmuSh7700LibInit(�) – initialize module
	mmuSh7750LibInit(�) – initialize module
	mmuVirtToPhys(�) – translate a virtual address to a physical address (ARM)
	modf(�) – separate a floating-point number into integer and fraction parts (ANSI)
	moduleCheck(�) – verify checksums on all modules
	moduleCreate(�) – create and initialize a module
	moduleCreateHookAdd(�) – add a routine to be called when a module is added
	moduleCreateHookDelete(�) – delete a previously added module create hook routine
	moduleDelete(�) – delete module ID information (use unld(�) to reclaim space)
	moduleFindByGroup(�) – find a module by group number
	moduleFindByName(�) – find a module by name
	moduleFindByNameAndPath(�) – find a module by file name and path
	moduleFlagsGet(�) – get the flags associated with a module ID
	moduleIdListGet(�) – get a list of loaded modules
	moduleInfoGet(�) – get information about an object module
	moduleNameGet(�) – get the name associated with a module ID
	moduleSegFirst(�) – find the first segment in a module
	moduleSegGet(�) – get (delete and return) the first segment from a module
	moduleSegNext(�) – find the next segment in a module
	moduleShow(�) – show the current status for all the loaded modules
	mountdInit(�) – initialize the mount daemon
	mqPxLibInit(�) – initialize the POSIX message queue library
	mqPxShowInit(�) – initialize the POSIX message queue show facility
	mq_close(�) – close a message queue (POSIX)
	mq_getattr(�) – get message queue attributes (POSIX)
	mq_notify(�) – notify a task that a message is available on a queue (POSIX)
	mq_open(�) – open a message queue (POSIX)
	mq_receive(�) – receive a message from a message queue (POSIX)
	mq_send(�) – send a message to a message queue (POSIX)
	mq_setattr(�) – set message queue attributes (POSIX)
	mq_unlink(�) – remove a message queue (POSIX)
	mRegs(�) – modify registers
	mRouteAdd(�) – add multiple routes to the same destination
	mRouteDelete(�) – delete a route from the routing table
	mRouteEntryAdd(�) – add a protocol-specific route to the routing table
	mRouteEntryDelete(�) – delete route from the routing table
	mRouteShow(�) – display all IP routes (verbose information)
	msgQCreate(�) – create and initialize a message queue
	msgQDelete(�) – delete a message queue
	msgQDistCreate(�) – create a distributed message queue (VxFusion Opt.)
	msgQDistGrpAdd(�) – add a distributed message queue to a group (VxFusion Opt.)
	msgQDistGrpDelete(�) – delete a distributed message queue from a group (VxFusion Opt.)
	msgQDistGrpShow(�) – display all or one group with its members (VxFusion Opt.)
	msgQDistNumMsgs(�) – get the number of messages in a distributed message queue (VxFusion Opt.)
	msgQDistReceive(�) – receive a message from a distributed message queue (VxFusion Opt.)
	msgQDistSend(�) – send a message to a distributed message queue (VxFusion Opt.)
	msgQDistShowInit(�) – initialize the distributed message queue show package (VxFusion Opt.)
	msgQEvStart(�) – start event notification process for a message queue
	msgQEvStop(�) – stop event notification process for a message queue
	msgQInfoGet(�) – get information about a message queue
	msgQNumMsgs(�) – get the number of messages queued to a message queue
	msgQReceive(�) – receive a message from a message queue
	msgQSend(�) – send a message to a message queue
	msgQShow(�) – show information about a message queue
	msgQShowInit(�) – initialize the message queue show facility
	msgQSmCreate(�) – create and initialize a shared memory message queue (VxMP Opt.)
	munlock(�) – unlock specified pages (POSIX)
	munlockall(�) – unlock all pages used by a process (POSIX)
	muxAddressForm(�) – form a frame with a link-layer address
	muxAddrResFuncAdd(�) – replace the default address resolution function
	muxAddrResFuncDel(�) – delete an address resolution function
	muxAddrResFuncGet(�) – get the address resolution function for ifType/protocol
	muxBind(�) – create a binding between a network service and an END
	muxDevExists(�) – tests whether a device is already loaded into the MUX
	muxDevLoad(�) – load a driver into the MUX
	muxDevStart(�) – start a device by calling its start routine
	muxDevStop(�) – stop a device by calling its stop routine
	muxDevUnload(�) – unloads a device from the MUX
	muxIoctl(�) – send control information to the MUX or to a device
	muxLibInit(�) – initialize global state for the MUX
	muxLinkHeaderCreate(�) – attach a link-level header to a packet
	muxMCastAddrAdd(�) – add a multicast address to a device’s multicast table
	muxMCastAddrDel(�) – delete a multicast address from a device’s multicast table
	muxMCastAddrGet(�) – get the multicast address table from the MUX/Driver
	muxPacketAddrGet(�) – get addressing information from a packet
	muxPacketDataGet(�) – return the data from a packet
	muxPollDevAdd(�) – adds a device to list polled by tMuxPollTask
	muxPollDevDel(�) – removes a device from the list polled by tMuxPollTask
	muxPollDevStat(�) – reports whether device is on list polled by tMuxPollTask
	muxPollEnd(�) – shuts down tMuxPollTask and returns devices to interrupt mode
	muxPollReceive(�) – now deprecated, see muxTkPollReceive(�)
	muxPollSend(�) – now deprecated, see muxTkPollSend(�)
	muxPollStart(�) – initialize and start the MUX poll task
	muxSend(�) – send a packet out on a network interface
	muxShow(�) – display configuration of devices registered with the MUX
	muxTaskDelayGet(�) – get the delay on the polling task
	muxTaskDelaySet(�) – set the inter-cycle delay on the polling task
	muxTaskPriorityGet(�) – get the priority of tMuxPollTask
	muxTaskPrioritySet(�) – reset the priority of tMuxPollTask
	muxTkBind(�) – bind an NPT protocol to a driver
	muxTkCookieGet(�) – returns the cookie for a device
	muxTkDrvCheck(�) – checks if the device is an NPT or an END interface
	muxTkPollReceive(�) – poll for a packet from a NPT or END driver
	muxTkPollSend(�) – send a packet out in polled mode to an END or NPT interface
	muxTkReceive(�) – receive a packet from a NPT driver
	muxTkSend(�) – send a packet out on a Toolkit or END network interface
	muxUnbind(�) – detach a network service from the specified device
	mv(�) – mv file into other directory.
	nanosleep(�) – suspend the current task until the time interval elapses (POSIX)
	netBufLibInit(�) – initialize netBufLib
	netClBlkFree(�) – free a clBlk-cluster construct back to the memory pool
	netClBlkGet(�) – get a clBlk
	netClBlkJoin(�) – join a cluster to a clBlk structure
	netClFree(�) – free a cluster back to the memory pool
	netClPoolIdGet(�) – return a CL_POOL_ID for a specified buffer size
	netClusterGet(�) – get a cluster from the specified cluster pool
	netDevCreate(�) – create a remote file device
	netDevCreate2(�) – create a remote file device with fixed buffer size
	netDrv(�) – install the network remote file driver
	netDrvDebugLevelSet(�) – set the debug level of the netDrv library routines
	netDrvFileDoesNotExistInstall(�) – install an applette to test if a file exists
	netHelp(�) – print a synopsis of network routines
	netLibInit(�) – initialize the network package
	netMblkChainDup(�) – duplicate an mBlk chain
	netMblkClChainFree(�) – free a chain of mBlk-clBlk-cluster constructs
	netMblkClFree(�) – free an mBlk-clBlk-cluster construct
	netMblkClGet(�) – get a clBlk-cluster and join it to the specified mBlk
	netMblkClJoin(�) – join an mBlk to a clBlk-cluster construct
	netMblkDup(�) – duplicate an mBlk
	netMblkFree(�) – free an mBlk back to its memory pool
	netMblkGet(�) – get an mBlk from a memory pool
	netMblkToBufCopy(�) – copy data from an mBlk to a buffer
	netPoolDelete(�) – delete a memory pool
	netPoolInit(�) – initialize a netBufLib-managed memory pool
	netPoolKheapInit(�) – kernel heap version of netPoolInit(�)
	netPoolShow(�) – show pool statistics
	netShowInit(�) – initialize network show routines
	netStackDataPoolShow(�) – show network stack data pool statistics
	netStackSysPoolShow(�) – show network stack system pool statistics
	netTask(�) – network task entry point
	netTupleGet(�) – get an mBlk-clBlk-cluster
	nextIndex(�) – the comparison routine for the AVL tree
	nfsAuthUnixGet(�) – get the NFS UNIX authentication parameters
	nfsAuthUnixPrompt(�) – modify the NFS UNIX authentication parameters
	nfsAuthUnixSet(�) – set the NFS UNIX authentication parameters
	nfsAuthUnixShow(�) – display the NFS UNIX authentication parameters
	nfsDevInfoGet(�) – read configuration information from the requested NFS device
	nfsDevListGet(�) – create list of all the NFS devices in the system
	nfsDevShow(�) – display the mounted NFS devices
	nfsdInit(�) – initialize the NFS server
	nfsDrv(�) – install the NFS driver
	nfsDrvNumGet(�) – return the IO system driver number for the NFS driver
	nfsdStatusGet(�) – get the status of the NFS server
	nfsdStatusShow(�) – show the status of the NFS server
	nfsExport(�) – specify a file system to be NFS exported
	nfsExportShow(�) – display the exported file systems of a remote host
	nfsHelp(�) – display the NFS help menu
	nfsIdSet(�) – set the ID number of the NFS UNIX authentication parameters
	nfsMount(�) – mount an NFS file system
	nfsMountAll(�) – mount all file systems exported by a specified host
	nfsUnexport(�) – remove a file system from the list of exported file systems
	nfsUnmount(�) – unmount an NFS device
	ntPassFsDevInit(�) – associate a device with ntPassFs file system functions
	ntPassFsInit(�) – prepare to use the ntPassFs library
	open(�) – open a file
	opendir(�) – open a directory for searching (POSIX)
	operator delete(�) – default run-time support for memory deallocation (C++)
	operator new(�) – default run-time support for operator new (C++)
	operator new(�) – default run-time support for operator new (nothrow) (C++)
	operator new(�) – run-time support for operator new with placement (C++)
	passFsDevInit(�) – associate a device with passFs file system functions
	passFsInit(�) – prepare to use the passFs library
	pause(�) – suspend the task until delivery of a signal (POSIX)
	pc(�) – return the contents of the program counter
	pentiumBtc(�) – execute atomic compare-and-exchange instruction to clear a bit
	pentiumBts(�) – execute atomic compare-and-exchange instruction to set a bit
	pentiumCr4Get(�) – get contents of CR4 register
	pentiumCr4Set(�) – sets specified value to the CR4 register
	pentiumMcaEnable(�) – enable/disable the MCA (Machine Check Architecture)
	pentiumMcaShow(�) – show MCA (Machine Check Architecture) registers
	pentiumMsrGet(�) – get the contents of the specified MSR (Model Specific Register)
	pentiumMsrInit(�) – initialize all the MSRs (Model Specific Register)
	pentiumMsrSet(�) – set a value to the specified MSR (Model Specific Registers)
	pentiumMsrShow(�) – show all the MSR (Model Specific Register)
	pentiumMtrrDisable(�) – disable MTRR (Memory Type Range Register)
	pentiumMtrrEnable(�) – enable MTRR (Memory Type Range Register)
	pentiumMtrrGet(�) – get MTRRs to a specified MTRR table
	pentiumMtrrSet(�) – set MTRRs from specified MTRR table with WRMSR instruction.
	pentiumP5PmcGet(�) – get the contents of P5 PMC0 and PMC1
	pentiumP5PmcGet0(�) – get the contents of P5 PMC0
	pentiumP5PmcGet1(�) – get the contents of P5 PMC1
	pentiumP5PmcReset(�) – reset both PMC0 and PMC1
	pentiumP5PmcReset0(�) – reset PMC0
	pentiumP5PmcReset1(�) – reset PMC1
	pentiumP5PmcStart0(�) – start PMC0
	pentiumP5PmcStart1(�) – start PMC1
	pentiumP5PmcStop(�) – stop both P5 PMC0 and PMC1
	pentiumP5PmcStop0(�) – stop P5 PMC0
	pentiumP5PmcStop1(�) – stop P5 PMC1
	pentiumP6PmcGet(�) – get the contents of PMC0 and PMC1
	pentiumP6PmcGet0(�) – get the contents of PMC0
	pentiumP6PmcGet1(�) – get the contents of PMC1
	pentiumP6PmcReset(�) – reset both PMC0 and PMC1
	pentiumP6PmcReset0(�) – reset PMC0
	pentiumP6PmcReset1(�) – reset PMC1
	pentiumP6PmcStart(�) – start both PMC0 and PMC1
	pentiumP6PmcStop(�) – stop both PMC0 and PMC1
	pentiumP6PmcStop1(�) – stop PMC1
	pentiumPmcGet(�) – get the contents of PMC0 and PMC1
	pentiumPmcGet0(�) – get the contents of PMC0
	pentiumPmcGet1(�) – get the contents of PMC1
	pentiumPmcReset(�) – reset both PMC0 and PMC1
	pentiumPmcReset0(�) – reset PMC0
	pentiumPmcReset1(�) – reset PMC1
	pentiumPmcShow(�) – show PMCs (Performance Monitoring Counters)
	pentiumPmcStart(�) – start both PMC0 and PMC1
	pentiumPmcStart0(�) – start PMC0
	pentiumPmcStart1(�) – start PMC1
	pentiumPmcStop(�) – stop both PMC0 and PMC1
	pentiumPmcStop0(�) – stop PMC0
	pentiumPmcStop1(�) – stop PMC1
	pentiumSerialize(�) – execute a serializing instruction CPUID
	pentiumTlbFlush(�) – flush TLBs (Translation Lookaside Buffers)
	pentiumTscGet32(�) – get the lower half of the 64Bit TSC (Timestamp Counter)
	pentiumTscGet64(�) – get 64Bit TSC (Timestamp Counter)
	pentiumTscReset(�) – reset the TSC (Timestamp Counter)
	period(�) – spawn a task to call a function periodically
	periodRun(�) – call a function periodically
	perror(�) – map an error number in errno to an error message (ANSI)
	ping(�) – test that a remote host is reachable
	pingLibInit(�) – initialize the ping(�) utility
	pipeDevCreate(�) – create a pipe device
	pipeDevDelete(�) – delete a pipe device
	pipeDrv(�) – initialize the pipe driver
	pow(�) – compute the value of a number raised to a specified power (ANSI)
	powf(�) – compute the value of a number raised to a specified power (ANSI)
	pppDelete(�) – delete a PPP network interface
	pppHookAdd(�) – add a hook routine on a unit basis
	pppHookDelete(�) – delete a hook routine on a unit basis
	pppInfoGet(�) – get PPP link status information
	pppInfoShow(�) – display PPP link status information
	pppInit(�) – initialize a PPP network interface
	pppSecretAdd(�) – add a secret to the PPP authentication secrets table
	pppSecretDelete(�) – delete a secret from the PPP authentication secrets table
	pppSecretShow(�) – display the PPP authentication secrets table
	pppstatGet(�) – get PPP link statistics
	pppstatShow(�) – display PPP link statistics
	printErr(�) – write a formatted string to the standard error stream
	printErrno(�) – print the definition of a specified error status value
	printf(�) – write a formatted string to the standard output stream (ANSI)
	printLogo(�) – print the VxWorks logo
	proxyArpLibInit(�) – initialize proxy ARP
	proxyNetCreate(�) – create a proxy ARP network
	proxyNetDelete(�) – delete a proxy network
	proxyNetShow(�) – show proxy ARP networks
	proxyPortFwdOff(�) – disable broadcast forwarding for a particular port
	proxyPortFwdOn(�) – enable broadcast forwarding for a particular port
	proxyPortShow(�) – show ports enabled for broadcast forwarding
	proxyReg(�) – register a proxy client
	proxyUnreg(�) – unregister a proxy client
	psrShow(�) – display the meaning of a specified psr value, symbolically (ARM)
	pthreadLibInit(�) – initialize POSIX threads support
	pthread_attr_destroy(�) – destroy a thread attributes object (POSIX)
	pthread_attr_getdetachstate(�) – get value of detachstate attribute from thread attributes object...
	pthread_attr_getinheritsched(�) – get value of inheritsched attribute in thread attributes object...
	pthread_attr_getname(�) – get name of thread attribute object
	pthread_attr_getschedparam(�) – get value of schedparam attribute from thread attributes object (...
	pthread_attr_getschedpolicy(�) – get schedpolicy attribute from thread attributes object (POSIX)
	pthread_attr_getscope(�) – get contention scope from thread attributes (POSIX)
	pthread_attr_getstackaddr(�) – get value of stackaddr attribute from thread attributes object (PO...
	pthread_attr_getstacksize(�) – get stack value of stacksize attribute from thread attributes obje...
	pthread_attr_init(�) – initialize thread attributes object (POSIX)
	pthread_attr_setdetachstate(�) – set detachstate attribute in thread attributes object (POSIX)
	pthread_attr_setinheritsched(�) – set inheritsched attribute in thread attribute object (POSIX)
	pthread_attr_setname(�) – set name in thread attribute object
	pthread_attr_setschedparam(�) – set schedparam attribute in thread attributes object (POSIX)
	pthread_attr_setschedpolicy(�) – set schedpolicy attribute in thread attributes object (POSIX)
	pthread_attr_setscope(�) – set contention scope for thread attributes (POSIX)
	pthread_attr_setstackaddr(�) – set stackaddr attribute in thread attributes object (POSIX)
	pthread_attr_setstacksize(�) – set stacksize attribute in thread attributes object (POSIX)
	pthread_cancel(�) – cancel execution of a thread (POSIX)
	pthread_cleanup_pop(�) – pop a cleanup routine off the top of the stack (POSIX)
	pthread_cleanup_push(�) – pushes a routine onto the cleanup stack (POSIX)
	pthread_cond_broadcast(�) – unblock all threads waiting on a condition (POSIX)
	pthread_cond_destroy(�) – destroy a condition variable (POSIX)
	pthread_cond_init(�) – initialize condition variable (POSIX)
	pthread_cond_signal(�) – unblock a thread waiting on a condition (POSIX)
	pthread_cond_timedwait(�) – wait for a condition variable with a timeout (POSIX)
	pthread_cond_wait(�) – wait for a condition variable (POSIX)
	pthread_condattr_destroy(�) – destroy a condition attributes object (POSIX)
	pthread_condattr_init(�) – initialize a condition attribute object (POSIX)
	pthread_create(�) – create a thread (POSIX)
	pthread_detach(�) – dynamically detach a thread (POSIX)
	pthread_equal(�) – compare thread IDs (POSIX)
	pthread_exit(�) – terminate a thread (POSIX)
	pthread_getschedparam(�) – get value of schedparam attribute from a thread (POSIX)
	pthread_getspecific(�) – get thread specific data (POSIX)
	pthread_join(�) – wait for a thread to terminate (POSIX)
	pthread_key_create(�) – create a thread specific data key (POSIX)
	pthread_key_delete(�) – delete a thread specific data key (POSIX)
	pthread_kill(�) – send a signal to a thread (POSIX)
	pthread_mutex_destroy(�) – destroy a mutex (POSIX)
	pthread_mutex_getprioceiling(�) – get the value of the prioceiling attribute of a mutex (POSIX)
	pthread_mutex_init(�) – initialize mutex from attributes object (POSIX)
	pthread_mutex_lock(�) – lock a mutex (POSIX)
	pthread_mutex_setprioceiling(�) – dynamically set the prioceiling attribute of a mutex (POSIX)
	pthread_mutex_trylock(�) – lock mutex if it is available (POSIX)
	pthread_mutex_unlock(�) – unlock a mutex (POSIX)
	pthread_mutexattr_destroy(�) – destroy mutex attributes object (POSIX)
	pthread_mutexattr_getprioceiling(�) – get the current value of the prioceiling attribute in a mut...
	pthread_mutexattr_getprotocol(�) – get value of protocol in mutex attributes object (POSIX)
	pthread_mutexattr_init(�) – initialize mutex attributes object (POSIX)
	pthread_mutexattr_setprioceiling(�) – set prioceiling attribute in mutex attributes object (POSIX)
	pthread_mutexattr_setprotocol(�) – set protocol attribute in mutex attribute object (POSIX)
	pthread_once(�) – dynamic package initialization (POSIX)
	pthread_self(�) – get the calling thread’s ID (POSIX)
	pthread_setcancelstate(�) – set cancellation state for calling thread (POSIX)
	pthread_setcanceltype(�) – set cancellation type for calling thread (POSIX)
	pthread_setschedparam(�) – dynamically set schedparam attribute for a thread (POSIX)
	pthread_setspecific(�) – set thread specific data (POSIX)
	pthread_sigmask(�) – change and/or examine calling thread’s signal mask (POSIX)
	pthread_testcancel(�) – create a cancellation point in the calling thread (POSIX)
	ptyDevCreate(�) – create a pseudo terminal
	ptyDevRemove(�) – destroy a pseudo terminal
	ptyDrv(�) – initialize the pseudo-terminal driver
	ptyShow(�) – show the state of the Pty Buffers
	putc(�) – write a character to a stream (ANSI)
	putchar(�) – write a character to the standard output stream (ANSI)
	putenv(�) – set an environment variable
	puts(�) – write a string to the standard output stream (ANSI)
	putw(�) – write a word (32-bit integer) to a stream
	pwd(�) – print the current default directory
	qsort(�) – sort an array of objects (ANSI)
	r0(�) – return the contents of register r0 (also r1 - r14, r1-r15 for SH) (ARM, SH)
	raise(�) – send a signal to the caller’s task
	ramDevCreate(�) – create a RAM disk device
	ramDiskDevCreate(�) – initialize a RAM Disk device
	ramDrv(�) – prepare a RAM disk driver for use (optional)
	rand(�) – generate a pseudo-random integer between 0 and RAND_MAX (ANSI)
	rawFsDevInit(�) – associate a block device with raw volume functions
	rawFsInit(�) – prepare to use the raw volume library
	rawFsModeChange(�) – modify the mode of a raw device volume
	rawFsReadyChange(�) – notify rawFsLib of a change in ready status
	rawFsVolUnmount(�) – disable a raw device volume
	rcmd(�) – execute a shell command on a remote machine
	rcvEtherAddrAdd(�) – add a physical address into the linked list
	rcvEtherAddrGet(�) – populate the rcvAddr fields for the ifRcvAddressTable
	rdCtl(�) – implement the ICMP router discovery control function
	rdisc(�) – implement the ICMP router discovery function
	rdiscIfReset(�) – check for new or removed interfaces for router discovery
	rdiscInit(�) – initialize the ICMP router discovery function
	rdiscLibInit(�) – initialize router discovery
	rdiscTimerEvent(�) – called after watchdog timeout
	read(�) – read bytes from a file or device
	readdir(�) – read one entry from a directory (POSIX)
	realloc(�) – reallocate a block of memory (ANSI)
	reboot(�) – reset network devices and transfer control to boot ROMs
	rebootHookAdd(�) – add a routine to be called at reboot
	recv(�) – receive data from a socket
	recvfrom(�) – receive a message from a socket
	recvmsg(�) – receive a message from a socket
	reld(�) – reload an object module
	remCurIdGet(�) – get the current user name and password
	remCurIdSet(�) – set the remote user name and password
	remove(�) – remove a file (ANSI)
	rename(�) – change the name of a file
	repeat(�) – spawn a task to call a function repeatedly
	repeatRun(�) – call a function repeatedly
	resolvDNComp(�) – compress a DNS name in a DNS packet
	resolvDNExpand(�) – expand a DNS compressed name from a DNS packet
	resolvGetHostByAddr(�) – query the DNS server for the host name of an IP address
	resolvGetHostByName(�) – query the DNS server for the IP address of a host
	resolvInit(�) – initialize the resolver library
	resolvMkQuery(�) – create all types of DNS queries
	resolvParamsGet(�) – get the parameters which control the resolver library
	resolvParamsSet(�) – set the parameters which control the resolver library
	resolvQuery(�) – construct a query, send it, wait for a response
	resolvSend(�) – send a pre-formatted query and return the answer
	rewind(�) – set the file position indicator to the beginning of a file (ANSI)
	rewinddir(�) – reset position to the start of a directory (POSIX)
	rindex(�) – find the last occurrence of a character in a string
	ripAddrsXtract(�) – extract socket address pointers from the route message
	ripAuthHook(�) – sample authentication hook
	ripAuthHookAdd(�) – add an authentication hook to a RIP interface
	ripAuthHookDelete(�) – remove an authentication hook from a RIP interface
	ripAuthKeyAdd(�) – add a new RIP authentication key
	ripAuthKeyDelete(�) – delete an existing RIP authentication key
	ripAuthKeyFind(�) – find a RIP authentication key
	ripAuthKeyFindFirst(�) – find a RIP authentication key
	ripAuthKeyInMD5(�) – authenticate an incoming RIP-2 message using MD5
	ripAuthKeyOut1MD5(�) – start MD5 authentication of an outgoing RIP-2 message
	ripAuthKeyOut2MD5(�) – authenticate an outgoing RIP-2 message using MD5
	ripAuthKeyShow(�) – show current authentication configuration
	ripDebugLevelSet(�) – specify amount of debugging output
	ripFilterDisable(�) – prevent strict border gateway filtering
	ripFilterEnable(�) – activate strict border gateway filtering
	ripIfExcludeListAdd(�) – add an interface to the RIP exclusion list
	ripIfExcludeListDelete(�) – delete an interface from RIP exclusion list
	ripIfExcludeListShow(�) – show the RIP interface exclusion list
	ripIfReset(�) – alter the RIP configuration after an interface changes
	ripIfSearch(�) – add new interfaces to the internal list
	ripIfShow(�) – display the internal interface table maintained by RIP
	ripLeakHookAdd(�) – add a hook to bypass the RIP and kernel routing tables
	ripLeakHookDelete(�) – remove a table bypass hook from a RIP interface
	ripLibInit(�) – initialize the RIP routing library
	ripRouteHookAdd(�) – add a hook to install static and non-RIP routes into RIP
	ripRouteHookDelete(�) – remove the route hook
	ripRouteShow(�) – display the internal routing table maintained by RIP
	ripSendHookAdd(�) – add an update filter to a RIP interface
	ripSendHookDelete(�) – remove an update filter from a RIP interface
	ripShutdown(�) – terminate all RIP processing
	rlogin(�) – log in to a remote host
	rlogind(�) – the VxWorks remote login daemon
	rlogInit(�) – initialize the remote login facility
	rm(�) – remove a file
	rmdir(�) – remove a directory
	rngBufGet(�) – get characters from a ring buffer
	rngBufPut(�) – put bytes into a ring buffer
	rngCreate(�) – create an empty ring buffer
	rngDelete(�) – delete a ring buffer
	rngFlush(�) – make a ring buffer empty
	rngFreeBytes(�) – determine the number of free bytes in a ring buffer
	rngIsEmpty(�) – test if a ring buffer is empty
	rngIsFull(�) – test if a ring buffer is full (no more room)
	rngMoveAhead(�) – advance a ring pointer by n bytes
	rngNBytes(�) – determine the number of bytes in a ring buffer
	rngPutAhead(�) – put a byte ahead in a ring buffer without moving ring pointers
	romStart(�) – generic ROM initialization
	round(�) – round a number to the nearest integer
	roundf(�) – round a number to the nearest integer
	routeAdd(�) – add a route
	routeDelete(�) – delete a route
	routeEntryAdd(�) – insert a route in the routing table
	routeEntryDel(�) – remove a route from the routing table
	routeEntryLookup(�) – find a matching route for a destination
	routeModify(�) – change an entry in the routing table
	routeNetAdd(�) – add a route to a destination that is a network
	routeShow(�) – display all IP routes (summary information)
	routestatShow(�) – display routing statistics
	routeStorageUnbind(�) – remove a registered handler from the routing system
	routeTableWalk(�) – traverse the IP routing table
	rpcInit(�) – initialize the RPC package
	rpcTaskInit(�) – initialize a task’s access to the RPC package
	rresvport(�) – open a socket with a privileged port bound to it
	rt11FsDateSet(�) – set the rt11Fs file system date
	rt11FsDevInit(�) – initialize the rt11Fs device descriptor
	rt11FsInit(�) – prepare to use the rt11Fs library
	rt11FsMkfs(�) – initialize a device and create an rt11Fs file system
	rt11FsModeChange(�) – modify the mode of an rt11Fs volume
	rt11FsReadyChange(�) – notify rt11Fs of a change in ready status
	s(�) – single-step a task
	scanf(�) – read and convert characters from the standard input stream (ANSI)
	sched_get_priority_max(�) – get the maximum priority (POSIX)
	sched_get_priority_min(�) – get the minimum priority (POSIX)
	sched_getparam(�) – get the scheduling parameters for a specified task (POSIX)
	sched_getscheduler(�) – get the current scheduling policy (POSIX)
	sched_rr_get_interval(�) – get the current time slice (POSIX)
	sched_setparam(�) – set a task’s priority (POSIX)
	sched_setscheduler(�) – set scheduling policy and scheduling parameters (POSIX)
	sched_yield(�) – relinquish the CPU (POSIX)
	scsi2IfInit(�) – initialize the SCSI-2 interface to scsiLib
	scsiAutoConfig(�) – configure all devices connected to a SCSI controller
	scsiBlkDevCreate(�) – define a logical partition on a SCSI block device
	scsiBlkDevInit(�) – initialize fields in a SCSI logical partition
	scsiBlkDevShow(�) – show the BLK_DEV structures on a specified physical device
	scsiBusReset(�) – pulse the reset signal on the SCSI bus
	scsiCacheSnoopDisable(�) – inform SCSI that hardware snooping of caches is disabled
	scsiCacheSnoopEnable(�) – inform SCSI that hardware snooping of caches is enabled
	scsiCacheSynchronize(�) – synchronize the caches for data coherency
	scsiErase(�) – issue an ERASE command to a SCSI device
	scsiFormatUnit(�) – issue a FORMAT_UNIT command to a SCSI device
	scsiIdentMsgBuild(�) – build an identification message
	scsiIdentMsgParse(�) – parse an identification message
	scsiInquiry(�) – issue an INQUIRY command to a SCSI device
	scsiIoctl(�) – perform a device-specific I/O control function
	scsiLoadUnit(�) – issue a LOAD/UNLOAD command to a SCSI device
	scsiMgrBusReset(�) – handle a controller-bus reset event
	scsiMgrCtrlEvent(�) – send an event to the SCSI controller state machine
	scsiMgrEventNotify(�) – notify the SCSI manager of a SCSI (controller) event
	scsiMgrShow(�) – show status information for the SCSI manager
	scsiMgrThreadEvent(�) – send an event to the thread state machine
	scsiModeSelect(�) – issue a MODE_SELECT command to a SCSI device
	scsiModeSense(�) – issue a MODE_SENSE command to a SCSI device
	scsiMsgInComplete(�) – handle a complete SCSI message received from the target
	scsiMsgOutComplete(�) – perform post-processing after a SCSI message is sent
	scsiMsgOutReject(�) – perform post-processing when an outgoing message is rejected
	scsiPhysDevCreate(�) – create a SCSI physical device structure
	scsiPhysDevDelete(�) – delete a SCSI physical-device structure
	scsiPhysDevIdGet(�) – return a pointer to a SCSI_PHYS_DEV structure
	scsiPhysDevShow(�) – show status information for a physical device
	scsiRdSecs(�) – read sector(s) from a SCSI block device
	scsiRdTape(�) – read bytes or blocks from a SCSI tape device
	scsiReadCapacity(�) – issue a READ_CAPACITY command to a SCSI device
	scsiRelease(�) – issue a RELEASE command to a SCSI device
	scsiReleaseUnit(�) – issue a RELEASE UNIT command to a SCSI device
	scsiReqSense(�) – issue a REQUEST_SENSE command to a SCSI device and read results
	scsiReserve(�) – issue a RESERVE command to a SCSI device
	scsiReserveUnit(�) – issue a RESERVE UNIT command to a SCSI device
	scsiRewind(�) – issue a REWIND command to a SCSI device
	scsiSeqDevCreate(�) – create a SCSI sequential device
	scsiSeqIoctl(�) – perform an I/O control function for sequential access devices
	scsiSeqReadBlockLimits(�) – issue a READ_BLOCK_LIMITS command to a SCSI device
	scsiSeqStatusCheck(�) – detect a change in media
	scsiShow(�) – list the physical devices attached to a SCSI controller
	scsiSpace(�) – move the tape on a specified physical SCSI device
	scsiStartStopUnit(�) – issue a START_STOP_UNIT command to a SCSI device
	scsiSyncXferNegotiate(�) – initiate or continue negotiating transfer parameters
	scsiTapeModeSelect(�) – issue a MODE_SELECT command to a SCSI tape device
	scsiTapeModeSense(�) – issue a MODE_SENSE command to a SCSI tape device
	scsiTargetOptionsGet(�) – get options for one or all SCSI targets
	scsiTargetOptionsSet(�) – set options for one or all SCSI targets
	scsiTargetOptionsShow(�) – display options for specified SCSI target
	scsiTestUnitRdy(�) – issue a TEST_UNIT_READY command to a SCSI device
	scsiThreadInit(�) – perform generic SCSI thread initialization
	scsiWideXferNegotiate(�) – initiate or continue negotiating wide parameters
	scsiWrtFileMarks(�) – write file marks to a SCSI sequential device
	scsiWrtSecs(�) – write sector(s) to a SCSI block device
	scsiWrtTape(�) – write data to a SCSI tape device
	select(�) – pend on a set of file descriptors
	selectInit(�) – initialize the select facility
	selNodeAdd(�) – add a wake-up node to a select(�) wake-up list
	selNodeDelete(�) – find and delete a node from a select(�) wake-up list
	selWakeup(�) – wake up a task pended in select(�)
	selWakeupAll(�) – wake up all tasks in a select(�) wake-up list
	selWakeupListInit(�) – initialize a select(�) wake-up list
	selWakeupListLen(�) – get the number of nodes in a select(�) wake-up list
	selWakeupListTerm(�) – terminate a select(�) wake-up list
	selWakeupType(�) – get the type of a select(�) wake-up node
	semBCreate(�) – create and initialize a binary semaphore
	semBSmCreate(�) – create and initialize a shared memory binary semaphore (VxMP Opt.)
	semCCreate(�) – create and initialize a counting semaphore
	semClear(�) – take a release 4.x semaphore, if the semaphore is available
	semCreate(�) – create and initialize a release 4.x binary semaphore
	semCSmCreate(�) – create and initialize a shared memory counting semaphore (VxMP Opt.)
	semDelete(�) – delete a semaphore
	semEvStart(�) – start event notification process for a semaphore
	semEvStop(�) – stop event notification process for a semaphore
	semFlush(�) – unblock every task pended on a semaphore
	semGive(�) – give a semaphore
	semInfo(�) – get a list of task IDs that are blocked on a semaphore
	semInit(�) – initialize a static binary semaphore
	semMCreate(�) – create and initialize a mutual-exclusion semaphore
	semMGiveForce(�) – give a mutual-exclusion semaphore without restrictions
	semPxLibInit(�) – initialize POSIX semaphore support
	semPxShowInit(�) – initialize the POSIX semaphore show facility
	semShow(�) – show information about a semaphore
	semShowInit(�) – initialize the semaphore show facility
	semTake(�) – take a semaphore
	sem_close(�) – close a named semaphore (POSIX)
	sem_destroy(�) – destroy an unnamed semaphore (POSIX)
	sem_getvalue(�) – get the value of a semaphore (POSIX)
	sem_init(�) – initialize an unnamed semaphore (POSIX)
	sem_open(�) – initialize/open a named semaphore (POSIX)
	sem_post(�) – unlock (give) a semaphore (POSIX)
	sem_trywait(�) – lock (take) a semaphore, returning error if unavailable (POSIX)
	sem_unlink(�) – remove a named semaphore (POSIX)
	sem_wait(�) – lock (take) a semaphore, blocking if not available (POSIX)
	send(�) – send data to a socket
	sendAdvert(�) – send an advertisement to one location
	sendAdvertAll(�) – send an advertisement to all active locations
	sendmsg(�) – send a message to a socket
	sendto(�) – send a message to a socket
	set_new_handler(�) – set new_handler to user-defined function (C++)
	set_terminate(�) – set terminate to user-defined function (C++)
	setbuf(�) – specify the buffering for a stream (ANSI)
	setbuffer(�) – specify buffering for a stream
	sethostname(�) – set the symbolic name of this machine
	setjmp(�) – save the calling environment in a jmp_buf argument (ANSI)
	setlinebuf(�) – set line buffering for standard output or standard error
	setlocale(�) – set the appropriate locale (ANSI)
	setsockopt(�) – set socket options
	setvbuf(�) – specify buffering for a stream (ANSI)
	shell(�) – the shell entry point
	shellHistory(�) – display or set the size of shell history
	shellInit(�) – start the shell
	shellLock(�) – lock access to the shell
	shellOrigStdSet(�) – set the shell’s default input/output/error file descriptors
	shellPromptSet(�) – change the shell prompt
	shellScriptAbort(�) – signal the shell to stop processing a script
	show(�) – print information on a specified object
	shutdown(�) – shut down a network connection
	sigaction(�) – examine and/or specify the action associated with a signal (POSIX)
	sigaddset(�) – add a signal to a signal set (POSIX)
	sigblock(�) – add to a set of blocked signals
	sigdelset(�) – delete a signal from a signal set (POSIX)
	sigemptyset(�) – initialize a signal set with no signals included (POSIX)
	sigfillset(�) – initialize a signal set with all signals included (POSIX)
	sigInit(�) – initialize the signal facilities
	sigismember(�) – test to see if a signal is in a signal set (POSIX)
	signal(�) – specify the handler associated with a signal
	sigpending(�) – retrieve the set of pending signals blocked from delivery (POSIX)
	sigprocmask(�) – examine and/or change the signal mask (POSIX)
	sigqueue(�) – send a queued signal to a task
	sigqueueInit(�) – initialize the queued signal facilities
	sigsetmask(�) – set the signal mask
	sigsuspend(�) – suspend the task until delivery of a signal (POSIX)
	sigtimedwait(�) – wait for a signal
	sigvec(�) – install a signal handler
	sigwait(�) – wait for a signal to be delivered (POSIX)
	sigwaitinfo(�) – wait for real-time signals
	sin(�) – compute a sine (ANSI)
	sincos(�) – compute both a sine and cosine
	sincosf(�) – compute both a sine and cosine
	sinf(�) – compute a sine (ANSI)
	sinh(�) – compute a hyperbolic sine (ANSI)
	sinhf(�) – compute a hyperbolic sine (ANSI)
	sleep(�) – delay for a specified amount of time
	smMemAddToPool(�) – add memory to shared memory system partition (VxMP Opt.)
	smMemCalloc(�) – allocate memory for array from shared memory system partition (VxMP Opt.)
	smMemFindMax(�) – find largest free block in shared memory system partition (VxMP)
	smMemFree(�) – free a shared memory system partition block of memory (VxMP Opt.)
	smMemMalloc(�) – allocate block of memory from shared memory system partition (VxMP Opt.)
	smMemOptionsSet(�) – set debug options for shared memory system partition (VxMP Opt.)
	smMemRealloc(�) – reallocate block of memory from shared memory system partition (VxMP Opt.)
	smMemShow(�) – show the shared memory system partition blocks and statistics (VxMP Opt.)
	smNameAdd(�) – add a name to the shared memory name database (VxMP Opt.)
	smNameFind(�) – look up a shared memory object by name (VxMP Opt.)
	smNameFindByValue(�) – look up a shared memory object by value (VxMP Opt.)
	smNameRemove(�) – remove an object from the shared memory objects name database (VxMP Opt.)
	smNameShow(�) – show the contents of the shared memory objects name database (VxMP Opt.)
	smNetShow(�) – show information about a shared memory network
	smObjAttach(�) – attach the calling CPU to the shared memory objects facility (VxMP Opt.)
	smObjGlobalToLocal(�) – convert a global address to a local address (VxMP Opt.)
	smObjInit(�) – initialize a shared memory objects descriptor (VxMP Opt.)
	smObjLibInit(�) – install the shared memory objects facility (VxMP Opt.)
	smObjLocalToGlobal(�) – convert a local address to a global address (VxMP Opt.)
	smObjSetup(�) – initialize the shared memory objects facility (VxMP Opt.)
	smObjShow(�) – display the current status of shared memory objects (VxMP Opt.)
	smObjTimeoutLogEnable(�) – control logging of failed attempts to take a spin-lock (VxMP Opt.)
	sntpcTimeGet(�) – retrieve the current time from a remote source
	sntpsClockSet(�) – assign a routine to access the reference clock
	sntpsConfigSet(�) – change SNTP server broadcast settings
	sntpsNsecToFraction(�) – convert portions of a second to NTP format
	so(�) – single-step, but step over a subroutine
	socket(�) – open a socket
	sockUploadPathClose(�) – close the socket upload path (Windview)
	sockUploadPathCreate(�) – establish an upload path to the host using a socket (Windview)
	sockUploadPathLibInit(�) – initialize wvSockUploadPathLib library (Windview)
	sockUploadPathWrite(�) – write to the socket upload path (Windview)
	sp(�) – spawn a task with default parameters
	sprintf(�) – write a formatted string to a buffer (ANSI)
	spy(�) – begin periodic task activity reports
	spyClkStart(�) – start collecting task activity data
	spyClkStop(�) – stop collecting task activity data
	spyHelp(�) – display task monitoring help menu
	spyLibInit(�) – initialize task CPU utilization tool package
	spyReport(�) – display task activity data
	spyStop(�) – stop spying and reporting
	spyTask(�) – run periodic task activity reports
	sqrt(�) – compute a non-negative square root (ANSI)
	sqrtf(�) – compute a non-negative square root (ANSI)
	sr(�) – return the contents of the status register (68K, SH)
	srand(�) – reset the value of the seed used to generate random numbers (ANSI)
	sscanf(�) – read and convert characters from an ASCII string (ANSI)
	stackEntryIsBottom(�) – test if an interface has no layers beneath it
	stackEntryIsTop(�) – test if an ifStackTable interface has no layers above
	stat(�) – get file status information using a pathname (POSIX)
	statfs(�) – get file status information using a pathname (POSIX)
	stdioFp(�) – return the standard input/output/error FILE of the current task
	stdioInit(�) – initialize standard I/O support
	stdioShow(�) – display file pointer internals
	stdioShowInit(�) – initialize the standard I/O show facility
	strcat(�) – concatenate one string to another (ANSI)
	strchr(�) – find the first occurrence of a character in a string (ANSI)
	strcmp(�) – compare two strings lexicographically (ANSI)
	strcoll(�) – compare two strings as appropriate to LC_COLLATE (ANSI)
	strcpy(�) – copy one string to another (ANSI)
	strcspn(�) – return the string length up to the first character from a given set (ANSI)
	strerror(�) – map an error number to an error string (ANSI)
	strerror_r(�) – map an error number to an error string (POSIX)
	strftime(�) – convert broken-down time into a formatted string (ANSI)
	strlen(�) – determine the length of a string (ANSI)
	strncat(�) – concatenate characters from one string to another (ANSI)
	strncmp(�) – compare the first n characters of two strings (ANSI)
	strncpy(�) – copy characters from one string to another (ANSI)
	strpbrk(�) – find the first occurrence in a string of a character from a given set (ANSI)
	strrchr(�) – find the last occurrence of a character in a string (ANSI)
	strspn(�) – return the string length up to the first character not in a given set (ANSI)
	strstr(�) – find the first occurrence of a substring in a string (ANSI)
	strtod(�) – convert the initial portion of a string to a double (ANSI)
	strtok(�) – break down a string into tokens (ANSI)
	strtok_r(�) – break down a string into tokens (reentrant) (POSIX)
	strtol(�) – convert a string to a long integer (ANSI)
	strtoul(�) – convert a string to an unsigned long integer (ANSI)
	strxfrm(�) – transform up to n characters of s2 into s1 (ANSI)
	swab(�) – swap bytes
	symAdd(�) – create and add a symbol to a symbol table, including a group number
	symByValueAndTypeFind(�) – look up a symbol by value and type
	symByValueFind(�) – look up a symbol by value
	symEach(�) – call a routine to examine each entry in a symbol table
	symFindByName(�) – look up a symbol by name
	symFindByNameAndType(�) – look up a symbol by name and type
	symFindByValue(�) – look up a symbol by value
	symFindByValueAndType(�) – look up a symbol by value and type
	symLibInit(�) – initialize the symbol table library
	symRemove(�) – remove a symbol from a symbol table
	symSyncLibInit(�) – initialize host/target symbol table synchronization
	symSyncTimeoutSet(�) – set WTX timeout
	symTblCreate(�) – create a symbol table
	symTblDelete(�) – delete a symbol table
	sysAuxClkConnect(�) – connect a routine to the auxiliary clock interrupt
	sysAuxClkDisable(�) – turn off auxiliary clock interrupts
	sysAuxClkEnable(�) – turn on auxiliary clock interrupts
	sysAuxClkRateGet(�) – get the auxiliary clock rate
	sysAuxClkRateSet(�) – set the auxiliary clock rate
	sysBspRev(�) – return the BSP version and revision number
	sysBusIntAck(�) – acknowledge a bus interrupt
	sysBusIntGen(�) – generate a bus interrupt
	sysBusTas(�) – test and set a location across the bus
	sysBusToLocalAdrs(�) – convert a bus address to a local address
	sysClkConnect(�) – connect a routine to the system clock interrupt
	sysClkDisable(�) – turn off system clock interrupts
	sysClkEnable(�) – turn on system clock interrupts
	sysClkRateGet(�) – get the system clock rate
	sysClkRateSet(�) – set the system clock rate
	sysHwInit(�) – initialize the system hardware
	sysIntDisable(�) – disable a bus interrupt level
	sysIntEnable(�) – enable a bus interrupt level
	sysLocalToBusAdrs(�) – convert a local address to a bus address
	sysMailboxConnect(�) – connect a routine to the mailbox interrupt
	sysMailboxEnable(�) – enable the mailbox interrupt
	sysMemTop(�) – get the address of the top of logical memory
	sysModel(�) – return the model name of the CPU board
	sysNanoDelay(�) – delay for specified number of nanoseconds
	sysNvRamGet(�) – get the contents of non-volatile RAM
	sysNvRamSet(�) – write to non-volatile RAM
	sysPhysMemTop(�) – get the address of the top of memory
	sysProcNumGet(�) – get the processor number
	sysProcNumSet(�) – set the processor number
	sysScsiBusReset(�) – assert the RST line on the SCSI bus (Western Digital WD33C93 only)
	sysScsiConfig(�) – system SCSI configuration
	sysScsiInit(�) – initialize an on-board SCSI port
	sysSerialChanGet(�) – get the SIO_CHAN device associated with a serial channel
	sysSerialHwInit(�) – initialize the BSP serial devices to a quiescent state
	sysSerialHwInit2(�) – connect BSP serial device interrupts
	sysSerialReset(�) – reset all SIO devices to a quiet state
	system(�) – pass a string to a command processor (Unimplemented) (ANSI)
	sysToMonitor(�) – transfer control to the ROM monitor
	tan(�) – compute a tangent (ANSI)
	tanf(�) – compute a tangent (ANSI)
	tanh(�) – compute a hyperbolic tangent (ANSI)
	tanhf(�) – compute a hyperbolic tangent (ANSI)
	tapeFsDevInit(�) – associate a sequential device with tape volume functions
	tapeFsInit(�) – initialize the tape volume library
	tapeFsReadyChange(�) – notify tapeFsLib of a change in ready status
	tapeFsVolUnmount(�) – disable a tape device volume
	tarArchive(�) – archive named file/dir onto tape in tar format
	tarExtract(�) – extract all files from a tar formatted tape
	tarToc(�) – display all contents of a tar formatted tape
	taskActivate(�) – activate a task that has been initialized
	taskCreateHookAdd(�) – add a routine to be called at every task create
	taskCreateHookDelete(�) – delete a previously added task create routine
	taskCreateHookShow(�) – show the list of task create routines
	taskDelay(�) – delay a task from executing
	taskDelete(�) – delete a task
	taskDeleteForce(�) – delete a task without restriction
	taskDeleteHookAdd(�) – add a routine to be called at every task delete
	taskDeleteHookDelete(�) – delete a previously added task delete routine
	taskDeleteHookShow(�) – show the list of task delete routines
	taskHookInit(�) – initialize task hook facilities
	taskHookShowInit(�) – initialize the task hook show facility
	taskIdDefault(�) – set the default task ID
	taskIdListGet(�) – get a list of active task IDs
	taskIdSelf(�) – get the task ID of a running task
	taskIdVerify(�) – verify the existence of a task
	taskInfoGet(�) – get information about a task
	taskInit(�) – initialize a task with a stack at a specified address
	taskIsReady(�) – check if a task is ready to run
	taskIsSuspended(�) – check if a task is suspended
	taskLock(�) – disable task rescheduling
	taskName(�) – get the name associated with a task ID
	taskNameToId(�) – look up the task ID associated with a task name
	taskOptionsGet(�) – examine task options
	taskOptionsSet(�) – change task options
	taskPriorityGet(�) – examine the priority of a task
	taskPrioritySet(�) – change the priority of a task
	taskRegsGet(�) – get a task’s registers from the TCB
	taskRegsSet(�) – set a task’s registers
	taskRegsShow(�) – display the contents of a task’s registers
	taskRestart(�) – restart a task
	taskResume(�) – resume a task
	taskSafe(�) – make the calling task safe from deletion
	taskShow(�) – display task information from TCBs
	taskShowInit(�) – initialize the task show routine facility
	taskSpawn(�) – spawn a task
	taskSRInit(�) – initialize the default task status register (MIPS)
	taskSRSet(�) – set the task status register (68K, MIPS, x86)
	taskStatusString(�) – get a task’s status as a string
	taskSuspend(�) – suspend a task
	taskSwitchHookAdd(�) – add a routine to be called at every task switch
	taskSwitchHookDelete(�) – delete a previously added task switch routine
	taskSwitchHookShow(�) – show the list of task switch routines
	taskTcb(�) – get the task control block for a task ID
	taskUnlock(�) – enable task rescheduling
	taskUnsafe(�) – make the calling task unsafe from deletion
	taskVarAdd(�) – add a task variable to a task
	taskVarDelete(�) – remove a task variable from a task
	taskVarGet(�) – get the value of a task variable
	taskVarInfo(�) – get a list of task variables of a task
	taskVarInit(�) – initialize the task variables facility
	taskVarSet(�) – set the value of a task variable
	tcpDebugShow(�) – display debugging information for the TCP protocol
	tcpShowInit(�) – initialize TCP show routines
	tcpstatShow(�) – display all statistics for the TCP protocol
	td(�) – delete a task
	telnetdExit(�) – close an active telnet session
	telnetdInit(�) – initialize the telnet services
	telnetdParserSet(�) – specify a command interpreter for telnet sessions
	telnetdStart(�) – initialize the telnet services
	telnetdStaticTaskInitializationGet(�) – report whether tasks were pre-started by telnetd
	tffsBootImagePut(�) – write to the boot-image region of the flash device
	tffsDevCreate(�) – create a TrueFFS block device suitable for use with dosFs
	tffsDevFormat(�) – format a flash device for use with TrueFFS
	tffsDevOptionsSet(�) – set TrueFFS volume options
	tffsDrv(�) – initialize the TrueFFS system
	tffsRawio(�) – low level I/O access to flash components
	tffsShow(�) – show device information on a specific socket interface
	tffsShowAll(�) – show device information on all socket interfaces
	tftpCopy(�) – transfer a file via TFTP
	tftpdDirectoryAdd(�) – add a directory to the access list
	tftpdDirectoryRemove(�) – delete a directory from the access list
	tftpdInit(�) – initialize the TFTP server task
	tftpdTask(�) – TFTP server daemon task
	tftpGet(�) – get a file from a remote system
	tftpInfoShow(�) – get TFTP status information
	tftpInit(�) – initialize a TFTP session
	tftpModeSet(�) – set the TFTP transfer mode
	tftpPeerSet(�) – set the TFTP server address
	tftpPut(�) – put a file to a remote system
	tftpQuit(�) – quit a TFTP session
	tftpSend(�) – send a TFTP message to the remote system
	tftpXfer(�) – transfer a file via TFTP using a stream interface
	ti(�) – print complete information from a task’s TCB
	tickAnnounce(�) – announce a clock tick to the kernel
	tickGet(�) – get the value of the kernel’s tick counter
	tickSet(�) – set the value of the kernel’s tick counter
	time(�) – determine the current calendar time (ANSI)
	timer_cancel(�) – cancel a timer
	timer_connect(�) – connect a user routine to the timer signal
	timer_create(�) – allocate a timer using the specified clock for a timing base (POSIX)
	timer_delete(�) – remove a previously created timer (POSIX)
	timer_getoverrun(�) – return the timer expiration overrun (POSIX)
	timer_gettime(�) – get the remaining time before expiration and the reload value (POSIX)
	timer_settime(�) – set the time until the next expiration and arm timer (POSIX)
	timex(�) – time a single execution of a function or functions
	timexClear(�) – clear the list of function calls to be timed
	timexFunc(�) – specify functions to be timed
	timexHelp(�) – display synopsis of execution timer facilities
	timexInit(�) – include the execution timer library
	timexN(�) – time repeated executions of a function or group of functions
	timexPost(�) – specify functions to be called after timing
	timexPre(�) – specify functions to be called prior to timing
	timexShow(�) – display the list of function calls to be timed
	tmpfile(�) – create a temporary binary file (Unimplemented) (ANSI)
	tmpnam(�) – generate a temporary file name (ANSI)
	tolower(�) – convert an upper-case letter to its lower-case equivalent (ANSI)
	toupper(�) – convert a lower-case letter to its upper-case equivalent (ANSI)
	tr(�) – resume a task
	trgAdd(�) – add a new trigger to the trigger list
	trgChainSet(�) – chains two triggers
	trgDelete(�) – delete a trigger from the trigger list
	trgDisable(�) – turn a trigger off
	trgEnable(�) – enable a trigger
	trgEvent(�) – trigger a user-defined event
	trgLibInit(�) – initialize the triggering library
	trgOff(�) – set triggering off
	trgOn(�) – set triggering on
	trgShow(�) – show trigger information
	trgShowInit(�) – initialize the trigger show facility
	trgWorkQReset(�) – reset the trigger work queue task and queue
	trunc(�) – truncate to integer
	truncf(�) – truncate to integer
	ts(�) – suspend a task
	tsfsUploadPathClose(�) – close the TSFS-socket upload path (Windview)
	tsfsUploadPathCreate(�) – open an upload path to the host using a TSFS socket (Windview)
	tsfsUploadPathLibInit(�) – initialize wvTsfsUploadPathLib library (Windview)
	tsfsUploadPathWrite(�) – write to the TSFS upload path (Windview)
	tt(�) – display a stack trace of a task
	ttyDevCreate(�) – create a VxWorks device for a serial channel
	ttyDrv(�) – initialize the tty driver
	tyAbortFuncSet(�) – set the abort function
	tyAbortSet(�) – change the abort character
	tyBackspaceSet(�) – change the backspace character
	tyDeleteLineSet(�) – change the line-delete character
	tyDevInit(�) – initialize the tty device descriptor
	tyDevRemove(�) – remove the tty device descriptor
	tyEOFSet(�) – change the end-of-file character
	tyIoctl(�) – handle device control requests
	tyIRd(�) – interrupt-level input
	tyITx(�) – interrupt-level output
	tyMonitorTrapSet(�) – change the trap-to-monitor character
	tyRead(�) – do a task-level read for a tty device
	tyWrite(�) – do a task-level write for a tty device
	udpShowInit(�) – initialize UDP show routines
	udpstatShow(�) – display statistics for the UDP protocol
	ungetc(�) – push a character back into an input stream (ANSI)
	unixDiskDevCreate(�) – create a UNIX disk device
	unixDiskInit(�) – initialize a dosFs disk on top of UNIX
	unixDrv(�) – install UNIX disk driver
	unld(�) – unload an object module by specifying a file name or module ID
	unldByGroup(�) – unload an object module by specifying a group number
	unldByModuleId(�) – unload an object module by specifying a module ID
	unldByNameAndPath(�) – unload an object module by specifying a name and path
	unlink(�) – delete a file (POSIX)
	usrAtaConfig(�) – mount a DOS file system from an ATA hard disk or a CDROM
	usrAtaInit(�) – initialize the hard disk driver
	usrClock(�) – user-defined system clock interrupt routine
	usrFdConfig(�) – mount a DOS file system from a floppy disk
	usrFdiskPartCreate(�) – create an FDISK-like partition table on a disk
	usrFdiskPartRead(�) – read an FDISK-style partition table
	usrFdiskPartShow(�) – parse and display partition data
	usrIdeConfig(�) – mount a DOS file system from an IDE hard disk
	usrInit(�) – user-defined system initialization routine
	usrRoot(�) – the root task
	usrScsiConfig(�) – configure SCSI peripherals
	uswab(�) – swap bytes with buffers that are not necessarily aligned
	utime(�) – update time on a file
	va_arg(�) – expand to an expression having the type and value of the call’s next argument
	va_end(�) – facilitate a normal return from a routine using a va_list object
	va_start(�) – initialize a va_list object for use by va_arg(�) and va_end(�)
	valloc(�) – allocate memory on a page boundary
	version(�) – print VxWorks version information
	vfdprintf(�) – write a string formatted with a variable argument list to a file descriptor
	vfprintf(�) – write a formatted string to a stream (ANSI)
	vmBaseGlobalMapInit(�) – initialize global mapping
	vmBaseLibInit(�) – initialize base virtual memory support
	vmBasePageSizeGet(�) – return the page size
	vmBaseStateSet(�) – change the state of a block of virtual memory
	vmContextCreate(�) – create a new virtual memory context (VxVMI Opt.)
	vmContextDelete(�) – delete a virtual memory context (VxVMI Opt.)
	vmContextShow(�) – display the translation table for a context (VxVMI Opt.)
	vmCurrentGet(�) – get the current virtual memory context (VxVMI Opt.)
	vmCurrentSet(�) – set the current virtual memory context (VxVMI Opt.)
	vmEnable(�) – enable or disable virtual memory (VxVMI Opt.)
	vmGlobalInfoGet(�) – get global virtual memory information (VxVMI Opt.)
	vmGlobalMap(�) – map physical pages to virtual space in shared global virtual memory (VxVMI Opt.)
	vmGlobalMapInit(�) – initialize global mapping (VxVMI Opt.)
	vmLibInit(�) – initialize the virtual memory support module (VxVMI Opt.)
	vmMap(�) – map physical space into virtual space (VxVMI Opt.)
	vmPageBlockSizeGet(�) – get the architecture-dependent page block size (VxVMI Opt.)
	vmPageSizeGet(�) – return the page size (VxVMI Opt.)
	vmShowInit(�) – include virtual memory show facility (VxVMI Opt.)
	vmStateGet(�) – get the state of a page of virtual memory (VxVMI Opt.)
	vmStateSet(�) – change the state of a block of virtual memory (VxVMI Opt.)
	vmTextProtect(�) – write-protect a text segment (VxVMI Opt.)
	vmTranslate(�) – translate a virtual address to a physical address (VxVMI Opt.)
	vprintf(�) – write a string formatted with a variable argument list to standard output (ANSI)
	vsprintf(�) – write a string formatted with a variable argument list to a buffer (ANSI)
	vxCr2Get(�) – get a content of the Control Register 2 (x86)
	vxCr2Set(�) – set a value to the Control Register 2 (x86)
	vxCr3Get(�) – get a content of the Control Register 3 (x86)
	vxCr3Set(�) – set a value to the Control Register 3 (x86)
	vxCr4Get(�) – get a content of the Control Register 4 (x86)
	vxCr4Set(�) – set a value to the Control Register 4 (x86)
	vxCr0Get(�) – get a content of the Control Register 0 (x86)
	vxCr0Set(�) – set a value to the Control Register 0 (x86)
	vxDrGet(�) – get a content of the Debug Register 0 to 7 (x86)
	vxDrSet(�) – set a value to the Debug Register 0 to 7 (x86)
	vxEflagsGet(�) – get a content of the EFLAGS register (x86)
	vxEflagsSet(�) – set a value to the EFLAGS register (x86)
	vxGdtrGet(�) – get a content of the Global Descriptor Table Register (x86)
	vxIdtrGet(�) – get a content of the Interrupt Descriptor Table Register (x86)
	vxLdtrGet(�) – get a content of the Local Descriptor Table Register (x86)
	vxMemArchProbe(�) – architecture-specific part of vxMemProbe(�)
	vxMemProbe(�) – probe an address for a bus error
	vxPowerDown(�) – place the processor in reduced-power mode (PowerPC, SH)
	vxPowerModeGet(�) – get the power management mode (PowerPC, SH, x86)
	vxPowerModeSet(�) – set the power management mode (PowerPC, SH, x86)
	vxSSDisable(�) – disable the superscalar dispatch (MC68060)
	vxSSEnable(�) – enable the superscalar dispatch (MC68060)
	vxTas(�) – C-callable atomic test-and-set primitive
	vxTssGet(�) – get a content of the TASK register (x86)
	vxTssSet(�) – set a value to the TASK register (x86)
	wcstombs(�) – convert a series of wide char’s to multibyte char’s (Unimplemented) (ANSI)
	wctomb(�) – convert a wide character to a multibyte character (Unimplemented) (ANSI)
	wdbSystemSuspend(�) – suspend the system.
	wdbUserEvtLibInit(�) – include the WDB user event library
	wdbUserEvtPost(�) – post a user event string to host tools.
	wdCancel(�) – cancel a currently counting watchdog
	wdCreate(�) – create a watchdog timer
	wdDelete(�) – delete a watchdog timer
	wdShow(�) – show information about a watchdog
	wdShowInit(�) – initialize the watchdog show facility
	wdStart(�) – start a watchdog timer
	whoami(�) – display the current remote identity
	write(�) – write bytes to a file
	wvEvent(�) – log a user-defined event (WindView)
	wvEventInst(�) – instrument VxWorks Events (WindView)
	wvEvtBufferGet(�) – return the ID of the WindView event buffer (WindView)
	wvEvtClassClear(�) – clear a class of events from those being logged (WindView)
	wvEvtClassClearAll(�) – clear all classes of events from those logged (WindView)
	wvEvtClassGet(�) – get the current set of classes being logged (WindView)
	wvEvtClassSet(�) – set the class of events to log (WindView)
	wvEvtLogInit(�) – initialize an event log (WindView)
	wvEvtLogStart(�) – start logging events to the buffer (WindView)
	wvEvtLogStop(�) – stop logging events to the buffer (WindView)
	wvLibInit(�) – initialize wvLib - first step (WindView)
	wvLibInit2(�) – initialize wvLib - final step (WindView)
	wvLogHeaderCreate(�) – create the event-log header (WindView)
	wvLogHeaderUpload(�) – transfer the log header to the host (WindView)
	wvNetAddressFilterClear(�) – remove the address filter for events
	wvNetAddressFilterSet(�) – specify an address filter for events
	wvNetDisable(�) – end reporting of network events to WindView
	wvNetEnable(�) – begin reporting network events to WindView
	wvNetEventDisable(�) – deactivate specific network events
	wvNetEventEnable(�) – activate specific network events
	wvNetLevelAdd(�) – enable network events with specific priority level
	wvNetLevelRemove(�) – disable network events with specific priority level
	wvNetPortFilterClear(�) – remove the port number filter for events
	wvNetPortFilterSet(�) – specify an address filter for events
	wvObjInst(�) – instrument objects (WindView)
	wvObjInstModeSet(�) – set object instrumentation on/off (WindView)
	wvRBuffMgrPrioritySet(�) – set the priority of the WindView rBuff manager (WindView)
	wvSigInst(�) – instrument signals (WindView)
	wvTaskNamesPreserve(�) – preserve an extra copy of task name events (WindView)
	wvTaskNamesUpload(�) – upload preserved task name events (WindView)
	wvTmrRegister(�) – register a timestamp timer (WindView)
	wvUploadStart(�) – start upload of events to the host (WindView)
	wvUploadStop(�) – stop upload of events to host (WindView)
	wvUploadTaskConfig(�) – set priority and stack size of tWVUpload task (WindView)
	xattrib(�) – modify MS-DOS file attributes of many files
	xcopy(�) – copy a hierarchy of files with wildcards
	xdelete(�) – delete a hierarchy of files with wildcards
	zbufCreate(�) – create an empty zbuf
	zbufCut(�) – delete bytes from a zbuf
	zbufDelete(�) – delete a zbuf
	zbufDup(�) – duplicate a zbuf
	zbufExtractCopy(�) – copy data from a zbuf to a buffer
	zbufInsert(�) – insert a zbuf into another zbuf
	zbufInsertBuf(�) – create a zbuf segment from a buffer and insert into a zbuf
	zbufInsertCopy(�) – copy buffer data into a zbuf
	zbufLength(�) – determine the length in bytes of a zbuf
	zbufSegData(�) – determine the location of data in a zbuf segment
	zbufSegFind(�) – find the zbuf segment containing a specified byte location
	zbufSegLength(�) – determine the length of a zbuf segment
	zbufSegNext(�) – get the next segment in a zbuf
	zbufSegPrev(�) – get the previous segment in a zbuf
	zbufSockBufSend(�) – create a zbuf from user data and send it to a TCP socket
	zbufSockBufSendto(�) – create a zbuf from a user message and send it to a UDP socket
	zbufSockLibInit(�) – initialize the zbuf socket interface library
	zbufSockRecv(�) – receive data in a zbuf from a TCP socket
	zbufSockRecvfrom(�) – receive a message in a zbuf from a UDP socket
	zbufSockSend(�) – send zbuf data to a TCP socket
	zbufSockSendto(�) – send a zbuf message to a UDP socket
	zbufSplit(�) – split a zbuf into two separate zbufs

	Keyword Index

