Edition 1

VxWorks’

Programmer’s Guide

53.1

Edition 1

=2 WindRwver

Copyright © 1984 - 1997 Wind River Systems, Inc.

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy,
microfilm, retrieval system, or by any other means now known or hereafter invented without the
prior written permission of Wind River Systems, Inc.

VxWorks, Wind River Systems, the Wind River Systems logo, and wind are registered trademarks of
Wind River Systems, Inc. CrossWind, iWorks, Tornado, VxMP, VxSim, VxVMI, WindC++, WindConfig,

Wind Foundation Classes, WindNet, WindPower, WindSh, and WindView are trademarks of

Wind River Systems, Inc.

All other trademarks used in this document are the property of their respective owners.

Corporate Headquarters Europe Japan
Wind River Systems, Inc. Wind River Systems, S.ARL. Wind River Systems Japan
1010 Atlantic Avenue 19, Avenue de Norvege Pola Ebisu Bldg. 11F
Alameda, CA 94501-1153 Immeuble B4, Bitiment 3 3-9-19 Higashi
UsA Z.A. de Courtaboeuf 1 Shibuya-ku

91953 Les Ulis Cédex Tokyo 150

FRANCE JAPAN

toll free (US): 800/545-WIND
telephone: 510/748-4100

telephone: 33-1-60-92-63-00

telephone: 81-3-5467-5900

facsimile: 510/814-2010 facsimile: 33-1-60-92-63-15 facsimile: 81-3-5467-5877
" CUSTOMER SUPPORT
Telephone E-mail Fax
Corporate: 800/872-4977 toll free, US. & Canada support@wrs.com 510/814-2164
510/748-4100 direct
Europe: 33-1-69-07-78-78 support@wrsec.fr 33-1-69-07-08-26
Japan: 011-81-3-5467-5900 support@kk.wrs.com 011-81-3-5467-5877

If you purchased your Wind River Systems product from a distributor, please contact your
distributor to determine how to reach your technical support organization.

Please provide your license number when contacting Customer Support.

VxWorks Programmer’s Guide, 5.3.1

Edition 1
4 Mar 97
Part #: DOC-12067-ZD-00

10

Overviewccoceeevnrennene
Basic OSccocevviennnns
I/0 Systemc...cc.eee.
Local File Systems

Networkcccceveeevrninnn.

Shared-Memory Objects

Virtual Memory Interface

Configuration
Target Shell

C++ Development

Contents

fii

VxWorks 5.3.1
Programmer’s Guide

Appendices
A Motorola MCB8BOX0covvveeiieeererreerrenreeerveenseresressnennes 487
B Sun SPARC, SPARCIIecovovvmievieeieeeeeee e 505
€ INERIITB0 ...t e e eeeene 525
D INEEI X8O ...ttt enraene 539
E MIPS R3000, R4000, R4650c.ccoovvvmevrerriinreneireenninnens 579
F'OPOWEIPC ...ttt ettt sate s 593
INABX ..ottt e e s aes 609

iv

1.1

1.2

13

1.4

1.5

1.6

Overview

INTrOdUCTION ...ttt s e e e 3
Getting Started with the Tornado Development Systemccccocercennne. 3
VxWorks: A Partner in the Real-time Development Cyclec.cccoeuueeeeee. 4
VxWorks Facilities: AN OVErVIeWccccoovieviriirieninicnienieneeenieesecneene 5
Multitasking and Intertask Communicationscccecceeiiinnee 7
POSIX INtErfacescocvveemrmerereruiieerierinieeesiniesesreereteseneeseessrseeesenerses 8
I/ O SYSLEIM .ttt s emene 8
Local File Systemscccoceuvcuevvimiiiiiniineieieceseescce e 9
INEEWOTK ...ttt et et es 11
Virtual Memory (Including VXVMI Option)cccoevvveinniinenrenn 13
Shared-Memory Objects (VXMP Option)ccccoeeerverrinicmcnnnnenn. 14
Target-Resident TOOLSccovivriiiiiiiiinniiiniciennen 14
C++ Development (including Wind Foundation Classes Option) 15
Utility Libraries ...t 15
Performance Evaluationocccoeeieeeeennisinereesnennnenseeseresesenees 17
Target Aent ... 18
Board Support Packages (BSPS)ccccceeuiieinnneiinneiiiciieiins 18
VxWorks Simulator (VXSim Option) ... 19
CUSIOMEY SEIVICEScocoveuiiiiiiriiiieiieieteteee et ettt see et et e 20
Documentation Conventionsccocevieriiiniicniciiiincreereees e 21

VxWorks 5.3.1
Programmer’s Guide

List of Tables

Table 1-1 Font Usage for Special Termsccococvvuveinneiniicincnnnns 21
List of Figures

Figure 1-1 Interaction Between Target Server and Target Agent 18

1
Overview

1.1 Introduction

This manual describes VxWorks, the high-performance real-time operating system
component of the Tornado development system. This manual includes the
following information:

= How to use VxWorks facilities in the development of real-time applications.
* How to use the target-resident tools included in VxWorks.

= How to use the optional components VxVMI, VxMP, and Wind Foundation
Classes.

This chapter begins by providing pointers to information on how to set up and
start using VxWorks as part of the Tornado development system. It then provides
an overview of the role of VxWorks in the development of real-time applications,
an overview of VxWorks facilities, a summary of Wind River Systems customer
services, and a summary of the document conventions followed in this manual.

1.2 Getting Started with the Tornado Development System

See the following documents for information on installing and configuring the
Tornado development system, including VxWorks. Information on configuration
differs depending on whether your development host is UNIX or Windows; thus,
the Tornado User’s Guide is host specific.

* The Wind River Products Installation Guide provides information on installing
all components of the Tornado Development System.

VxWorks 5.3.1
Programmer’s Guide

* The Tornado User’s Guide provides information on configuring and connecting
the host and target environments, building your VxWorks application, booting
VxWorks, and running Tornado.

For either host, 8. Configuration in this manual provides advanced VxWorks
configuration information.

For a complete overview of Tornado documentation, see the documentation guide
in the Tornado User’s Guide.

1.3 VxWorks: A Partner in the Real-time Development Cycle

UNIX and Windows hosts are excellent systems for program development and for
many interactive applications. However, they are not appropriate for real-time
applications. On the other hand, traditional real-time operating systems provide
poor environments for application development or for non-real-time components
of an application, such as graphical user interfaces (GUIs).

Rather than trying to create a single operating system that “does it all,” the Wind
River philosophy is to utilize two complementary and cooperating operating
systems (VxWorks and UNIX, or VxWorks and Windows) and let each do what it
does best. VxWorks handles the critical real-time chores, while the host machine is
used for program development and for applications that are not time-critical.

You can scale VxWorks to include exactly the feature combinations your
application requires. During development, you can include additional features to
speed your work (such as the networking facilities), then exclude them to save
resources in the final version of your application.

You can use the cross-development host machine to edit, compile, link, and store
real-time code, but then run and debug that real-time code on VxWorks. The
resulting VxWorks application can run standalone—either in ROM or disk-
based—with no further need for the network or the host system.

However, the host machine and VxWorks can also work together in a hybrid
application, with the host machine using VxWorks systems as real-time “servers”
in a networked environment. For instance, a VxWorks system controlling a robot
might itself be controlled by a host machine that runs an expert system, or several
VxWorks systems running factory equipment might be connected to host
machines that track inventory or generate reports.

1
Overview

1.4 VxWorks Facilities: An Overview

This section provides a summary of VxWorks facilities; they are described in more
detail in the following subsections. For details on any of these facilities, see the
appropriate chapters in this manual.

= High-Performance Real-time Kernel Facilities
The VxWorks kernel, wind, includes multitasking with preemptive priority

scheduling, intertask synchronization and communications facilities, interrupt
handling support, watchdog timers, and memory management.

= POSIX Compatibility

VxWorks provides most interfaces specified by the 1003.1b standard (formerly
the 1003.4 standard), simplifying your ports from other conforming systems.

= /O System

VxWorks provides a fast and flexible ANSI C-compatible I/O system,
including UNIX standard buffered I/0 and POSIX standard asynchronous
I/0. VxWorks includes the following drivers:

Network driver — for network devices (Ethernet, shared memory)
Pipe driver - for intertask communication

RAM “disk” driver — for memory-resident files

SCSI driver — for SCSI hard disks, diskettes, and tape drives
Keyboard driver - for PC x86 keyboards (x86 BSP only)

Display driver — for PC x86 VGA displays (x86 BSP only)

Disk driver - for IDE and floppy disk drives (x86 BSP only)
Parallel port driver for PC-style target hardware

= Local File Systems

VxWorks provides fast file systems tailored to real-time applications. One file
system is compatible with the MS-DOS® file system, another with the RT-11 file
system, a third is a “raw disk” file system, and a fourth supports SCSI tape
devices.

» Network Facilities

VxWorks provides “transparent” access to other VxWorks and TCP/IP-
networked systems, a BSD! Sockets-compliant programming interface, remote
procedure calls (RPC), SNMP (optional), remote file access (including NFS
client and server facilities and a non-NFS facility utilizing RSH, FTP, or TFTP),

1. BSD stands for Berkeley Software Distribution, and refers to a version of UNIX.

VxWorks 5.3.1
Programmer’s Guide

BOOTP, and proxy ARP. All VxWorks network facilities comply with standard
Internet protocols, both loosely coupled over serial lines or standard Ethernet
connections and tightly coupled over a backplane bus using shared memory.

= Virtual Memory (Including VxVMI Option)

VxWorks provides both bundled and unbundled (VxVMI) virtual memory
support for boards with an MMU, including the ability to make portions of
memory noncacheable or read-only, as well as a set of routines for virtual-
memory management.

* Shared-Memory Objects (VxMP Option)

The VxMP option provides facilities for sharing semaphores, message queues,
and memory regions between tasks on different processors.

* Target-resident Tools

In the Tornado development system, the development tools reside on the host
system; see the Tornado User’s Guide for details. However, a target-resident
shell, module loader and unloader, and symbol table can be configured into
the VxWorks system if necessary.

* Wind Foundation Classes

In addition to general C++ support including the Iostreams library from
AT&T, the optional component Wind Foundation Classes adds the following
C++ object libraries:

- VxWorks Wrapper Class library
— Tools.h++ library from Rogue Wave
- Booch Components library from Rogue Wave

= Utility Libraries

VxWorks provides an extensive set of utility routines, including interrupt
handling, watchdog timers, message logging, memory allocation, string
formatting and scanning, linear and ring buffer manipulations, linked-list
manipulations, and ANSI C libraries.

= Performance Evaluation Tools

VxWorks performance evaluation tools include an execution timer for timing
aroutine or group of routines, and utilities to show CPU utilization percentage
by task.

1
Overview

= Target Agent

The target agent allows a VxWorks application to be remotely debugged using
the Tornado development tools.

» Board Support Packages

Board Support Packages (BSPs) are available for a variety of boards and
provide routines for hardware initialization, interrupt setup, timers, memory
mapping, and so on.

= VxWorks Simulator (VxSim)

The optional component VxWorks Simulator, available for UNIX
environments only, simulates a VxWorks target for use as a prototyping and
testing environment.

Multitasking and Intertask Communications

Modern real-time systems are based on the complementary concepts of
multitasking and intertask communications. A multitasking environment allows
real-time applications to be constructed as a set of independent tasks, each with a
separate thread of execution and its own set of system resources. The intertask
communication facilities allow these tasks to synchronize and coordinate their
activity.

The VxWorks multitasking kernel, wind, uses interrupt-driven, priority-based task
scheduling. It features fast context switch times and low interrupt latency. Under
VxWorks, any subroutine can be spawned as a separate task, with its own context

and stack. Other basic task control facilities allow tasks to be suspended, resumed,
deleted, delayed, and moved in priority. See 2.3 Tasks, p.30 and the reference entry
for taskLib.

The wind kernel supplies semaphores as the basic task synchronization and
mutual-exclusion mechanism. There are several kinds of semaphores in wind,
specialized for different application needs: binary semaphores, counting
semaphores, mutual-exclusion semaphores, and POSIX semaphores. All of these
semaphore types are fast and efficient. In addition to being available to application
developers, they have also been used extensively in building higher-level facilities
in VxWorks.

For intertask communications, the wind kernel also supplies message queues,
pipes, sockets, and signals. The optional component VxMP provides shared-
memory objects as a communication mechanism for tasks executing on different
CPUs. For information on all these facilities, see 6. Shared-Memory Objects and

VxWorks 5.3.1
Programmer’s Guide

2.4 Intertask Communications, p.54. In addition, semaphores are described in the
semLib and semPxLib reference entries; message queues are described in the
msgQLib and mqPxLib reference entries; pipes are described in the pipeDrv
reference entry and 2.4.5 Pipes, p.88; sockets are described in the sockLib reference
entry and 2.4.6 Network Intertask Communication, p.89; and signals are described in
the sigLib reference entry and 2.4.7 Signals, p.90.

POSIX Interfaces

I/O System

POSIX (the Portable Operating System Interface) is a set of standards under
development by representatives of the software community, working under an
ISO/IEEE charter. The purpose of this effort is to support application portability at
the source level across operating systems. This effort has yielded a set of interfaces
(POSIX standard 1003.1b, formerly called 1003.4) for real-time operating system
services. Using these interfaces makes it easier to move applications from one
operating system to another.

For a list of POSIX facilities, look under POSIX in the keyword index in the
VxWorks Reference Manual or in the Tornado Online Manuals. Nearly all POSIX
1003.1b interfaces are available in VxWorks, including POSIX interfaces for:

- asynchronous I/O

- semaphores

— message queues

— memory management
- queued signals

- scheduling

- clocks and timers

In addition, several interfaces from the traditional POSIX 1003.1 standard are also
supported.

The VxWorks I/O system provides uniform device-independent access to many
kinds of devices. You can call seven basic I/O routines: creat(), remove(), open(),
close(), read(), write(), and ioctl(). Higher-level I/O routines (such as ANSI C-
compatible printf() and scanf() routines) are also provided.

VxWorks also provides a standard buffered I/ O package (stdio) that includes ANSI
C-compatible routines such as fopen(), fclose(), fread(), fwrite(), getc(), and
putc(). These routines increase I/O performance in many cases.

1
Overview

The VxWorks I/O system also includes POSIX-compliant asynchronous I/O: a
library of routines that perform input and output operations concurrently with a
task’s other activities.

VxWorks includes device drivers for serial communication, disks, RAM disks,
SCSI tape devices, intertask communication devices (called pipes), and devices on
a network. Application developers can easily write additional drivers, if needed.
VxWorks allows dynamic installation and removal of drivers without rebooting
the system.

Internally, the VxWorks I/O system allows individual drivers complete control
over how the user requests are serviced. Drivers can easily implement different
protocols, unique device-specific routines, and even different file systems, without
interference from the I/O system itself. VxWorks also supplies several high-level
packages that make it easy for drivers to implement common device protocols and
file systems.

For a detailed discussion of the I/O system, see 3. I/O System. Relevant reference
entries include ioLib for basic I/O routines available to tasks, fioLib and ansiStdio
for various format-driven I/O routines, aioPxLib for asynchronous I/0, and
iosLib and tyLib for routines available to driver writers. Also see the reference
entries for the supplied drivers.

Local File Systems

VxWorks includes several local file systems for use with block devices (disks).
These devices all use a standard interface so that file systems can be freely mixed
with device drivers. A local file system for SCSI tape devices is also included. The
VxWorks I/O architecture makes it possible to have several different file systems
on a single VxWorks system, even at the same time.

MS-DOS Compatible File System: dosFs

VxWorks provides the dosFs file system, which is compatible with the MS-DOS file
system (for MS-DOS versions up to and including 6.2). The capabilities of dosFs
offer considerable flexibility appropriate to the varying demands of real-time
applications. Major features include:

* Ahierarchical arrangement of files and directories, allowing efficient
organization and permitting an arbitrary number of files to be created on a
volume.

VxWorks 5.3.1
Programmer’s Guide

» The ability to specify contiguous file allocation on a per-file basis. Contiguous
files offer enhanced performance, while non-contiguous files result in more
efficient use of disk space.

» Compatibility with widely available storage and retrieval media. Diskettes
created with dosFs and on MS-DOS personal computers can be freely
interchanged and hard drives created with MS-DOS can be read by dosFs if it
is correctly configured.

* Optional case-sensitive file names, with name lengths not restricted to the MS-
DOS eight-character + extension convention.

Services for file-oriented device drivers using dosFs are implemented in dosFsLib.

RT-11 Compatible File System: rt11Fs

VxWorks provides the r¢11Fs file system, which is compatible with that of the RT-
11 operating system. This file system has been used for real-time applications
because all files are contiguous. However, rt11Fs does have some drawbacks. It
lacks a hierarchical file organization that is particularly useful on large disks. Also,
the rigid contiguous allocation scheme may result in fragmented disk space. For
these reasons, dosFs is preferable to rt11Fs.

The VxWorks implementation of the RT-11 file system includes byte-addressable
random access (seeking) to all files. Each open file has a block buffer for optimized
reading and writing.

Services for file-oriented device drivers using rt11Fs are implemented in rt11FsLib.

Raw Disk File System: rawFs

VxWorks provides rawFs, a simple “raw disk file system” for use with disk devices.
rawFs treats the entire disk much like a single large file. The rawFs file system
permits reading and writing portions of the disk, specified by byte offset, and it
performs simple buffering. When only simple, low-level disk I/O is required,
rawFs has the advantages of size and speed.

Services for file-oriented device drivers using rawFs are implemented in
rawFsLib.

SCSI Sequential File System: tapeFs

VxWorks provides a file system for tape devices that do not use a standard file or
directory structure on tape. The tape volume is treated much like a raw device
where the entire volume is a large file. Any data organization on this large file is
the responsibility of a higher-level layer.

10

1
Overview

Services for SCSI sequential device drivers using tapeFs are implemented in
tapeFsLib.

Alternative File Systems

In VxWorks, the file system is not tied to the device or its driver. A device can be
associated with any file system. Alternatively, you can supply your own file
systems that use standard drivers in the same way, by following the same standard
interfaces between the file system, the driver, and the VxWorks I/O system.

Network

One key to VxWorks's effective relationship with host development machines is its
extensive networking facilities. By providing a fast, easy-to-use connection
between the target and host systems, the network allows full use of the host
machine as a development system, as a debugging host, and as a provider of non-
real-time services in a final system.

VxWorks currently supports loosely coupled network connections over serial lines
(using SLIP, CSLIP, or PPP) or Ethernet networks (IEEE 802.3). It also supports
tightly coupled connections over a backplane bus using shared memory. VxWorks
uses the Internet protocols as implemented in BSD 4.3 for all network
communications.

In addition to the remote access provided by Tornado, VxWorks supports remote
command execution, remote login, and remote source-level debugging. VxWorks
also supports standard BSD socket calls, remote procedure calls, SNMP, remote file
access, boot parameter access from a host, and proxy ARP networks.

Sockets

VxWorks provides standard BSD socket calls, which allow real-time VxWorks
tasks and other processes to communicate in any combination with each other over
the network. There are two sets of VxWorks socket calls: you can use sockets that
are source-compatible with BSD 4.3 UNIX, or you can use the zbuf socket interface
to streamline throughput. (The TCP subset of the zbuf interface is sometimes called
“zero-copy TCP.”)

Any task can open one or more sockets, to which other sockets can be connected.
Data written to one socket of a connected pair is read, transparently, from the other
socket. Because of this transparency, the two tasks do not necessarily know
whether they are communicating with another process or VxWorks task on the
same CPU or on another CPU, or with a process running under some other host

11

VxWorks 5.3.1
Programmer’s Guide

operating system. Similarly, tasks using the zbuf socket interface are not aware of
whether their communications partners are using standard sockets, or are also
using the zbuf interface.

For information on sockets, see 5.2.6 Sockets, p.251 and 5.2.7 The Zbuf Socket
Interface, p.264 and the reference entries for sockLib and zbufSockLib.

Remote Procedure Calls (RPC)

Originally designed by Sun Microsystems using the Sun ONC standard and
available in the public domain, Remote Procedure Call (RPC) is a protocol that
allows a process on one machine to call a procedure that is executed by another
process on another machine. Thus with RPC, a VxWorks task or host machine
process can invoke routines that are executed on other VxWorks or host machines,
in any combination. See the RPC documentation (publicly and commercially
available) and the reference entry for rpcLib.

Simple Network Management Protocol (WindNet SNMP Option)

The WindNet SNMPv1/v2c optional component allows VxWorks targets to be
managed and configured remotely through SNMP (the Simple Network
Management Protocol). Application developers can customize the SNMP
management information base to include information specific to each application
and environment.

For detailed information about WindNet SNMP, see the WindNet SNMPv1/v2¢
VxWorks Component Release Supplement.

Remote File Access: NFS, RSH, FTP, TFTP

Remote file access across the network is also available. A program running on
VxWorks can use the host machine as a virtual file system. Files on any host
machine can be accessed through the network exactly as if they were local to the
VxWorks system. A program running under VxWorks does not need to know
where that file is, or how to access it. For example, /dk/file might be a file local to
the VxWorks system, while host:file might be a file located on another machine
entirely.

Conversely, VxWorks can allow host machines to use files maintained on VxWorks
just as transparently: programs running on the host need not know that the files
they use are maintained on the VxWorks real-time system.

VxWorks includes the Sun Microsystems standard Network File System (NFS).
VxWorks systems can run NFS clients, using files from other systems that export

12

1
Overview

files over NFS, or run NFS servers, exporting files to other systems. Alternatively,
VxWorks can use the following protocols to provide transparent remote file access:

* The Remote Shell protocol (RSH) can be used as a client, accessing files on
UNIX host systems running an RSH server.

» The File Transfer Protocol (FTP) provides remote access to VxWorks files from
other systems using FTP.

* The Trivial File Transfer Protocol (TFTP) provides read / write capability to and
from a remote server.

See the reference entries for nfsLib, remLib, ftpLib, ftpdLib, tftpLib, and
tftpdLib, and the following sections: 3.7.4 Network File System (NFS) Devices, p.137,
5.3.4 Remote File Transfer Using TFTP, p.291, and 3.7.5 Non-NFS Network Devices,
p.138.

Boot Parameter Access from Host

BOOTP is a basic bootstrap protocol which allows a booting target to configure
itself dynamically by obtaining the required parameters from the host via the
network, instead of using information encoded in the target’s non-volatile RAM or
ROM. The actual transfer of the boot image is performed by a file transfer program.
BOOTP and TFTP are commonly used together for network booting.

Proxy ARP Networks

Proxy ARP provides transparent network access by using Address Resolution
Protocol (ARP) to make distinct networks appear as one logical network. The
proxy ARP scheme implemented in VxWorks provides an alternative to the use of
explicit subnets for access to the shared memory network.

With proxy ARP, nodes on different subnetworks are assigned addresses with the
same subnet number. Because they appear to reside on the same network, and
because they can communicate directly, they use ARP to resolve each other’s
hardware address. The gateway node that responds to ARP requests is called the
proxy server.

Virtual Memory (Including VxVMI Option)

Virtual memory support is provided for boards with Memory Management Units
(MMU). Bundled virtual memory support provides the ability to mark buffers
noncacheable. This is useful for multiprocessor environments where memory is
shared across processors or where DMA transfers take place. For information on

13

VxWorks 5.3.1
Programmer’s Guide

bundled virtual memory support, see 7. Virtual Memory Interface and the reference
entries for vimBaseLib and cacheLib.

Unbundled virtual memory support is available as the optional component
VxVMI. VxVMI provides the ability to make text segments and the exception
vector table read-only, and includes a set of routines for developers to manage their
own virtual memory contexts. For information on VxVMI, see 7. Virtual Memory
Interface and the reference entry for vmLib.

Shared-Memory Objects (VxMP Option)

The following shared-memory objects (available with VxWorks as the optional
component, VxMP) are used for communication and synchronization between
tasks on different CPUs:

* Shared semaphores can be used to synchronize tasks on different CPUs as well
as provide mutual exclusion to shared data structures.

» Shared message queues allow tasks on multiple processors to exchange
messages.

* Shared memory management is available to allocate common data buffers for
tasks on different processors.

For information on VxMP, see 6. Shared-Memory Objects and the reference entries
for smObjLib, smObjShow, semSmLib, msgQSmLib, smMemLib, and
smNameLib.

Target-Resident Tools

In the Tornado development system, a full suite of development tools reside and
execute on the host machine; see the Tornado User’s Guide for details. However, a
target-resident shell, symbol table, and module loader/unloader can be
configured into the VxWorks system if necessary, for example, to create a
dynamically configured run-time system.

For information on these target-resident tools, see 9. Target Shell and the reference
_entries for shellLib, usrLib, dbgLib, loadLib, unldLib, and symLib.

14

1
Overview

C++ Development (including Wind Foundation Classes Option)

Utility Libraries

VxWorks supports C++ development. The GNU C++ compiler is shipped with
Tornado. The Iostreams library provides support for formatted I/O in C++. The
standard Tornado interactive development tools such as the debugger, the shell,
and the incremental loader include C++ support.

In addition, you can order the Wind Foundation Classes optional component to
add the following libraries:

- VxWorks Wrapper Class library
— Tools.h++ library from Rogue Wave
- Booch Components library from Rogue Wave

For more information on these libraries, see 10. C++ Development.

VxWorks supplies many subroutines of general utility to application developers.
These routines are organized as a set of subroutine libraries, which are described
below. We urge you to use these libraries wherever possible. Using library utilities
reduces both development time and memory requirements for the application.

Interrupt Handling Support

VxWorks supplies routines for handling hardware interrupts and software traps
without having to resort to assembly language coding. Routines are provided to
connect C routines to hardware interrupt vectors, and to manipulate the processor
interrupt level.

For information on interrupt handling, see the intLib and intArchLib reference
entries. Also see 2. Basic OS for information about the context where interrupt-
level code runs and for special restrictions that apply to interrupt service routines.

Watchdog Timers

A watchdog facility allows callers to schedule execution of their own routines after
specified time delays. As soon as the specified number of ticks have elapsed, the
specified “timeout” routine is called at the interrupt level of the system clock,
unless the watchdog is canceled first. This mechanism is entirely different from the
kernel’s task delay facility. For information on watchdog timers, see 2.6 Watchdog
Timers, p.99 and the reference entry for wdLib.

15

VxWorks 5.3.1
Programmer’s Guide

Message Logging

A simple message logging facility allows applications to send error or status
messages to a logging task, which then formats and outputs the messages to a
system-wide logging device (such as the system console, disk, or accessible
memory). The message logging facility can be used from either interrupt level or
task level. For information on this facility, see 3.5.3 Message Logging, p.122 and the
reference entry for logLib.

Memory Allocation

VxWorks supplies a memory management facility useful for dynamically
allocating, freeing, and reallocating blocks of memory from a memory pool. Blocks
of arbitrary size can be allocated, and you can specify the size of the memory pool.
This memory scheme is built on a much more general mechanism that allows
VxWorks to manage several separate memory pools.

String Formatting and Scanning

VxWorks includes a complete set of ANSI C library string formatting and scanning
subroutines that implement printf()/scanf() format-driven encoding and
decoding and associated routines. See the reference entries for fioLib and
ansiStdio.

Linear and Ring Buffer Manipulations

The library bLib contains buffer manipulation routines such as copying, filling,
comparing, and so on, that have been optimized for speed. The library rngLib
provides a set of general ring buffer routines that manage first-in-first-out (FIFO)
circular buffers. Additionally, these ring buffers have the property that a single
writer and a single reader can access a ring buffer “simultaneously” without being
required to interlock their accesses explicitly.

Linked-List Manipulations

The library IstLib contains a complete set of routines for creating and
manipulating doubly-linked lists.

ANSI C Libraries

VxWorks provides all C libraries specified by ANSI X3.159-1989. The ANSI C
specification includes the following libraries: assert, ctype, errno, float, limits,
locale, math, setjmp, signal, stdarg, stdio, stddef, stdlib, string, and time.

16

1
Overview

The header files float.h, limits.h, errno.h, and stddef.h provide ANSI-specified
definitions and declarations. The more commonly used libraries are described in
the following reference entries:

ansiCtype routines for character manipulation.
ansiMath trigonometric, exponential, and logarithmic routines.

ansiSetjmp routines for implementing a non-local goto.

ansiStdarg routines for traversing a variable-length argument list.
ansiStdio routines for manipulating streams for input/output.
ansiStdlib a variety of routines, including those for type translation, memory
allocation, and random number generation.
sigLib signal-manipulation routines.
Performance Evaluation

To understand and optimize the performance of a real-time system, it can be useful
to time some of the VxWorks or application routines. VxWorks provides various
timing facilities to help with this task.

The VxWorks execution timer can time any subroutine or group of subroutines.
Because the system clock is too slow to provide the resolution necessary to time
especially fast routines, the timer can also repeatedly execute a group of routines
until the time of a single iteration is known to a reasonable accuracy. For
information on the execution timer, see the timexLib reference entry.

VxWorks also provides the spy utility, which provides CPU utilization information
for each task: the CPU time consumed, the time spent at interrupt level, and the
amount of idle time. Time is displayed in ticks and in percentages. For information
on this utility, see the spyLib reference entry.2

Even more powerful monitoring of the VxWorks system is available using the
optional product WindView; for more information, see the WindView User’s Guide.

2. You can also use this utility through the Tornado browser; see the Tornado User’s Guide:
Browser for details.

17

VxWorks 5.3.1
Programmer’s Guide

Target Agent

The target agent follows the WDB (Wind DeBug) protocol, allowing a VxWorks
target to be connected to the Tornado development tools. In the target agent’s
default configuration, shown in Figure 1-1, the agent runs as the VxWorks task
tWdbTask. The Tornado target server sends debugging requests to the target
agent. The debugging requests often result in the target agent controlling or
manipulating other tasks in the system.

Figure 1-1 Interaction Between Target Server and Target Agent

HOST

_ tWdbTask
Communications (Target Agent)

Driver

Target Server

NETWORK (Ethernet, SLIP, etc.)

By default, the target server and agent communicate using the network. However,
you can use alternative communication paths. For more information on the default
configuration or alternative configurations of the target agent, see the Tornado
User’s Guide: Getting Started. For information on the Tornado target server, see the
Tornado User’s Guide: Overview.

Board Support Packages (BSPs)

Two target-specific libraries, sysLib and sysALib, are included with each port of
VxWorks. These libraries are the heart of VxWorks portability; they provide an
identical software interface to the hardware functions of all boards. They include
facilities for hardware initialization, interrupt handling and generation, hardware
clock and timer management, mapping of local and bus memory spaces, memory
sizing, and so on.

18

1
Overview

Each BSP also includes a boot ROM or other boot mechanism. Many of these
import the run-time image from the development host. For information on boot
ROMs and other booting mechanisms see the Tornado User’s Guide: Getting Started.

For information on target-specific libraries, see 8.2 The Board Support Package (BSP),
p-427 and the target-specific reference entries for your board type.

VxWorks Simulator (VxSim Option)

VxSim, the VxWorks Simulator, is a UNIX program that simulates a VxWorks
target for use as a prototyping and testing environment. This optional product is
available for UNIX environments only.

VxSim is essentially a port of VxWorks to UNIX. In most regards, its capabilities
are identical to a true VxWorks system running on remote target hardware. You
can link in an application and rebuild the VxWorks image exactly the same way as
in any other VxWorks cross-development environment. All Tornado development
tools can be used with VxSim.

The difference between VxSim and a remote VxWorks target environment is that
in VxSim, the image executes on the UNIX machine itself as a UNIX process. There
is no emulation of instructions, because the code is in the host’s own CPU
architecture. VxSim includes a User Level IP (ULIP) driver, allowing it to obtain an
Internet address and communicate with the host (or other nodes on the network)
using the VxWorks networking tools.

Because target hardware interaction is not possible, device-driver development
may not be suitable for simulation. However, the VxWorks scheduler is
implemented in the VxSim UNIX process, maintaining true tasking interaction
with respect to priorities and preemption. This means that any application that is
written in a portable style and with minimal hardware interaction should be
portable between VxSim and VxWorks.

For more information on VxSim, see the VxSim User’s Guide.

19

VxWorks 5.3.1
Programmer’s Guide

1.5 Customer Services

A full range of support services is available from Wind River Systems to ensure
that you have the opportunity to make optimal use of the extensive features of
VxWorks.

This section summarizes the major services available. For more detailed
information, consult the Tornado User’s Guide: Customer Service.

Training

In the United States, Wind River Systems holds regularly scheduled classes on
Tornado and VxWorks. Customers can also arrange to have Tornado classes held
at their facility. The easiest way to learn about WRS training services, schedules,
and prices is through the World Wide Web. Point your site’s Web browser at the
following URL: :

http://www.wrs.com/trainmain.html

You can also receive the training schedule from an automatic e-mail server. Send
e-mail with the following text in the header:

To: server@wxrs.com
Subject: training

You can contact the Training Department at:

Phone: 510/748-4100
800/545-WIND

Fax: 510/814-2010

E-mail: training@wrs.com

Outside of the United States, call your local distributor or nearest Wind River
Systems office for training information. See the back cover of this manual for a list
of Wind River Systems offices.

Customer Support

Direct contact with a staff of software engineers experienced in VxWorks is
available through the Wind River Systems Customer Support program. For
information on how to contact WRS Customer Support, see the copyright page at
the front of this manual.

20

1
Overview

1.6 Documentation Conventions

Typographical Conventions

VxWorks documentation uses the conventions shown in Table 1-1 to differentiate
various elements. Parentheses are always included to indicate a subroutine name,
as in printf().

Table 1-1 Font Usage for Special Terms

Term Example

files, pathnames letc/hosts
libraries, drivers memlLib, nfsDrv
host tools more, chkdsk
subroutines semTake()

boot commands P

code display main ();
keyboard input make CPU=MC68040 ...
display output value = 0
user-supplied parameters name

constants INCLUDE_NFS

C keywords, cpp directives #define

named key on keyboard RETURN
control characters CTRL+C
lower-case acronyms fa

Cross-References

Cross-references in this guide to a reference entry for a tool or module refer to an
entry in the VxWorks Reference Manual (for target libraries or subroutines) or to the
reference appendix in the Tornado User’s Guide (for host tools). These references are
also provided in the Tornado Online Manuals. For more information about how to
access online documentation, see the Tornado User’s Guide: Documentation Guide.

Other references from one book to another are always at the chapter level, and take
the form Book Title: Chapter Name.

21

VxWorks 5.3.1
Programmer’s Guide

Pathnames

The top-level Tornado directory structure includes three major directories (see the
Tornado User’s Guide: Directories and Files). Because all VxWorks files reside in the
target directory, this manual uses relative pathnames starting below that directory.
For example, if you install Tornado in /usr/wind, the full pathname for the file
shown as config/all/configAllh is /ust/wind/target/config/all/configAlLh.

A NOTE: In this manual, forward slashes are used as pathname delimiters for both
UNIX and Windows filenames.

22

2.1

2.2

23

Basic OS

INTFOAUCHION ..o 29
Wind Features and POSIX Featurescccccoevvenniiinccnceienens 29
TASKS .o bbb 30
231 Multitaskingcccoovveiviriiriiii e 30
2.3.2 Task State Transition ... 30
233 Wind Task Schedulingccccocoviviiinininiiinicie e 32
Preemptive Priority Schedulingcccoovvviiirieeiniiiiinnns 32
Round-Robin Scheduling ... 33
Preemption LOCKScococuiviiiiiiiiniceiiiiccieisccicee e 34
234 Tasking COntrol ... reeeenene 35
Task Creation and Activation ... 35
Task Names and IDscccoviiininiiiincn e 35
Task OPIONS ..ottt asesenenes 36
Task INformation ... s 37
Task Deletion and Deletion Safetycccccovvivinerniirniiiiininiiian, 38
Task CONtIol ..o e 39
2.3.5 Tasking EXtENSIONSc.cccoveueimimriireiiieiirenreeniiieniseneesieesesessesesenanes 40
2.3.6 POSIX Scheduling Interface ... 41
Differences Between POSIX and Wind Scheduling 41
Getting and Setting POSIX Task Prioritiesc.ccccoveovcurinrienunnen. 43
Getting and Displaying the Current Scheduling Policy 44

23

24

VxWorks 5.3.1
Programmer’s Guide

Getting Scheduling Parameters: Priority Limits and Time Slice ~ 45

2.3.7 Task Error Status: €Irno ... 45
Layered Definitions of €rrnococvvivveveneeenvercneieiceeennns 46
A Separate errno Value for Each Task ..o, 46
Error Return Convention ... 46
Assignment of Error Status Valuesc.ieivieccinieiinennnnen, 47
2.3.8 Task Exception Handlingcccceceveerviieeincrnenicicincieicnen 48
239 Shared Code and Reentrancyccccoeveeinenesnieeissssisnnncennnns 48
Dynamic Stack Variables ... 49
Guarded Global and Static Variablesccecinviiiinicninnnn, 50
Task Variables ... 50
Multiple Tasks with the Same Main Routinecoceeirivevninnnnene 51
2.3.10 VxWorks System Taskscceviveriiveieiminienriinininiininsssnenescnnns 52
The Root Task: tUSIROOLcccevremmiverirvirirerereneiinerie e 52
The Logging Task: tLOGTaskcccccovvurreremreinieiriieiincrcisnen 53
The Exception Task: tEXCTaskccccocoiievinriiiiienencreneiirerenee 53
The Network Task: tNetTask ..o, 53
The Target Agent Task: tWdbTaskccccoovvirvernirnieiiiininniannns 53
Tasks for Optional COMPONENtSccccocvvvevernirieeriesnsiniessisieienees 53
Intertask CommuUNICAtIONS ..ot 54
2.4.1 Shared Data Structures ..., 55
242 Mutual EXCIUSIONoocveiiiicrciiiiriiiiiins e 55
Interrupt Locks and Latencyccceeeevereevcnieeiesieisieieisisisinens 56
Preemptive Locks and Latencycccoevereeineinenininnsinnsinsnninnnes 56
243 SEMAPNOTESoovoveicriite s 57
Semaphore Control ... 57
Binary Semaphores ...ttt 58
Mutual-Exclusion Semaphoresccieieiiniinieiinnniinsneeenns 62
Counting SEMAPNOTLEScccovuivivirnrieiniiiiieise et ssnes 65
Special Semaphore Optionsccoceveeninieiiieniscsenneisenens 66
POSIX SEmMAPROTEScvvinirinriinireiiieiiiersetsis s 67
244 Message QUEUEScoivirivieireetieneetee sttt 74
Wind Message QUEUESccuvvvevvrniereeiiieieierceei e 75
POSIX Message QUEUESccciuiiiiiriniisiiiscnsissesesssssssseesinens 77

24

25

2.6

2.7

2.8

2

Basic OS
Comparison of POSIX and Wind Message Queuescccu.... 86
Displaying Message Queue Attributescccooviieieciinninnna, 87
Servers and Clients with Message QUeUescccocveireveincnniiiee 87
245 PIPES it 88
24.6 Network Intertask Communicationcccovevivienneiniieenniniinns 89
SOCKELS ettt 89
Remote Procedure Calls (RPC)c.ccoveerureerrieneeireeniiieieestsieeenes 90
247 SIGNAIS coeriiitit s 90
Basic Signal ROUHNESccoovviviviiiniiiiiiiiiccins 91
POSIX Queued Signalscocciiviiiveveierninineinisenisenens 92
Signal CONAGUIAtIONcceveveeriieiiimriicnerrinceetneneereeessestsecnenenesesenene 93
INterrupt Service Codecccoviiuieierieeniiciiieitesteer et eeaes s ebesbaessaessesas 93
251 Connecting Application Code to Interruptsccoecvvvreirerrennene. 94
252 Interrupt Stack .. 95
2.5.3 Special Limitations of ISRSccovevvrivniriniiiiiicniennes 95
254 Exceptions at Interrupt Level ... 97
255 Reserving High Interrupt Levelsccvvviiniiveenviniinininnns 98
25.6 Additional Restrictions for ISRs at High Interrupt Levels 98
2.5.7 Interrupt-to-Task Communication ..., 98
Watchdog Timers ... 99
POSIX Clocks and TIMErsc.coooeeieieiiiniiiicrrense e 100
POSIX Memory-Locking Interfacecccccoevrvnneniiiinenninencnecee e 101

25

VxWorks 5.3.1

Programmer’s Guide

List of Tables

Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8
Table 2-9
Table 2-10
Table 2-11
Table 2-12
Table 2-13
Table 2-14
Table 2-15
Table 2-16
Table 2-17
Table 2-18
Table 2-19
Table 2-20
Table 2-21
Table 2-22
Table 2-23

Table 2-24
Table 2-25

List of Figures

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9

26

Task State Transitionsccocoeveeeeveieieieicivneicneriicnes 31
Task Scheduler Control Routinesccccooviivivnneninnnnns 32
Task Creation ROUINEScccovuirerviiriniiniiiiennnenienns 35
Task Name and ID Routinesccccovvvvvicvniciniinnininns 36
Task Optionscoveveriieriiiiniin s 37
Task Option ROULINESccvvvivirirerenieneiiiiee e 37
Task Information ROUtINEScccoeevivivimniieciiieiiiienens 37
Task-Deletion Routinesccoocovveniirirniciiniinnneneinnnenns 38
Task Control ROULINEScccccvviiiiiiiviriiicccniceniincnnes 39
Task Create, Switch, and Delete Hookscccceevereneee. 40
Routines that Can Be Called by Task Switch Hooks 41
POSIX Scheduling Callscccocvvemvereriiriiiniieiinereeneninnn 42
Semaphore Control Routinescccoevveiivincrininvrinenas 58
Counting Semaphore Example ..., 65
POSIX Semaphore RoOUtinescoovvvvvverrisriciicrinenenes 68
Possible Outcomes of Calling sem_open() 71
Wind Message Queue Controlcceiveecrrerceennnenn, 75
POSIX Message Quete Routinesceevvvvivviiriinnnns 77
Message Queue Feature Comparisonceveennnees 86
Basic Signal Calls (BSD and POSIX 1003.1b)cc........ 91
POSIX 1003.1b Queued Signal Callsccccvuvinninrinenas 93
Interrupt ROULINEScoovevvviieriieiiiieere 94
Routines that Can Be Called by Interrupt Service

ROULINES ..ottt 96
Watchdog Timer Callscccoocvvviirivinciinciieecscnens 99
POSIX Memory Management Callscoocvvcvniinniinines 102
Task State Transitionsc.c.cccevvrviiriececrcececeneeerennrennes 31
Priority Preemption ... 33
Round-Robin Schedulingcc.cccoevvmrivivvnvcivninnineencnnnns 34
Shared Code ...t 49
Stack Variables and Shared Codecccceiviineiiininiinnes 50
Task Variables and Context Switchescccocvvrvirnnnne. 51
Multiple Tasks Utilizing Same Codec.coovieviniririnnne. 52
Shared Data Structurescoeveveierineiiiieeneereeennn, 55
Taking a Semaphorecoveveiirevnnniniieies 59

Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13
Figure 2-14
Figure 2-15
Figure 2-16

List of Examples

Example 2-1
Example 2-2
Example 2-3
Example 2-4
Example 2-5
Example 2-6
Example 2-7
Example 2-8
Example 2-9
Example 2-10
Example 2-11
Example 2-12
Example 2-13

2

Basic OS
Giving a Semaphore ..., 59
Priority INVErSion ..., 63
Priority Inheritancecococveineininnereicneees 63
Task Queue TYPESccovvevrvcrerircieni et 67

Full Duplex Communication Using Message Queues ... 74
Client-Server Communications Using Message Queues 88

Routine Built by intConnect()cooeveeeinieiennnne 95
Getting and Setting POSIX Task Prioritiesc.ccceuun.. 43
Getting POSIX Scheduling Policyc.ccccovmvnneiniiinne 44
Getting the POSIX Round-Robin Time Sliceccocu..... 45
Using Semaphores for Task Synchronization 61
Recursive Use of a Mutual-Exclusion Semaphore 64
POSIX Unnamed Semaphorescccociiieirvcnnnnenininnnns 69
POSIX Named Semaphorescccocueivcuresivcinincnsnienes 72
Wind Message QUEUESccevrveirircirenerenisieneie s 76
POSIX Message QUEUEScoueeunuriniiineinieisisinniesseenennnn, 78
Notifying a Task that a Message Queue is Waiting 81
Setting and Getting Message Queue Attributes 85
Watchdog TImers ... 100
POSIX TIMELS ...cvvvirrreriiiinieicreestsise st 101

27

2
Basic OS

2.1 Introduction

Modern real-time systems are based on the complementary concepts of
multitasking and intertask communications. A multitasking environment allows a
real-time application to be constructed as a set of independent tasks, each with its
own thread of execution and set of system resources. The intertask communication
facilities allow these tasks to synchronize and communicate in order to coordinate
their activity. In VxWorks, the intertask communication facilities range from fast
semaphores to message queues and pipes to network-transparent sockets.

Another key facility in real-time systems is hardware interrupt handling, because
interrupts are the usual mechanism to inform a system of external events. To get
the fastest possible response to interrupts, interrupt service routines (ISRs) in
VxWorks run in a special context of their own, outside of any task’s context.

This chapter discusses the multitasking kernel, tasking facilities, intertask
communication, and interrupt handling facilities, which are at the heart of the
VxWorks run-time environment.

2.2 Wind Features and POSIX Features

The POSIX standard for real-time extensions (1003.1b) specifies a set of interfaces
to kernel facilities. To improve application portability, the VxWorks kernel, wind,
includes both POSIX interfaces and interfaces designed specifically for VxWorks.

This manual (especially in this chapter) uses the qualifier “Wind” to identify
facilities designed expressly for use with the VxWorks wind kernel. For example,
you can find a discussion of Wind semaphores contrasted to POSIX semaphores in
Comparison of POSIX and Wind Semaphores, p.68.

29

VxWorks 5.3.1
Programmer’s Guide

2.3 Tasks

It is often essential to organize applications into independent, though cooperating,
programs. Each of these independent programs, while executing, is called a task.
In VxWorks, tasks have immediate, shared access to most system resources, while
also maintaining enough separate context to maintain individual threads of
control.

2.3.1 Multitasking

Multitasking provides the fundamental mechanism for an application to control
and react to multiple, discrete real-world events. The VxWorks real-time kernel,
wind, provides the basic multitasking environment. Multitasking creates the
appearance of many threads of execution running concurrently when, in fact, the
kernel interleaves their execution on the basis of a scheduling algorithm. Each
apparently independent program is called a fask. Each task has its own context,
which is the CPU environment and system resources that the task sees each time it
is scheduled to run by the kernel. On a context switch, a task’s context is saved in
the task control block (TCB). A task’s context includes:

— athread of execution, that is, the task’s program counter
- the CPU registers and (optionally) floating-point registers
- astack for dynamic variables and function calls

- I/O assignments for standard input, output, and error

- adelay timer

- atimeslice timer

— kernel control structures

— signal handlers

- debugging and performance monitoring values

In VxWorks, one important resource that is not part of a task’s context is memory
address space: all code executes in a single common address space. Giving each
task its own memory space requires virtual-to-physical memory mapping, which
is available only with the optional product VxVMI; for more information, see

7. Virtual Memory Interface.

2.3.2 Task State Transition

The kernel maintains the current state of each task in the system. A task changes
from one state to another as the result of kernel function calls made by the

30

Basic OS

Figure 2-1 Task State Transitions

The highest-priority ready task is executing.

taskInit()
ready — —» pended semTake() / msgQReceive()
ready -———p delayed taskDelay()
ready ————p suspended taskSuspend()
pended ——p ready semGive() / msgQSend()
pended —) suspended taskSuspend()
delayed —— p ready expired delay
delayed ———p suspended taskSuspend()
suspended ———p ready taskResume() / taskActivate()
suspended ——p pended taskResume()
suspended ————p delayed taskResume()
Table 2-1 Task State Transitions
State Symbol Description
READY The state of a task that is not waiting for any resource other than the CPU.
PEND The state of a task that is blocked due to the unavailability of some resource.
DELAY The state of a task that is asleep for some duration.
SUSPEND The state of a task that is unavailable for execution. This state is used primarily for

debugging. Suspension does not inhibit state transition, only task execution. Thus
pended-suspended tasks can still unblock and delayed-suspended tasks can still awaken.

DELAY + S The state of a task that is both delayed and suspended.

PEND + S The state of a task that is both pended and suspended.

PEND + T The state of a task that is pended with a timeout value.

PEND+S+T The state of a task that is both pended with a timeout value and suspended.
state + 1 The state of task specified by state, plus an inherited priority.

31

VxWorks 5.3.1
Programmer’s Guide

application. When created, tasks enter the suspended state. Activation is necessary
for a created task to enter the ready state. The activation phase is extremely fast,
enabling applications to pre-create tasks and activate them in a timely manner. An
alternative is the spawning primitive, which allows a task to be created and
activated with a single function. Tasks can be deleted from any state.

The wind kernel states are shown in the state transition diagram in Figure 2-1, and
a summary of the corresponding state symbols you will see when working with
Tornado development tools is shown in Table 2-1.

2.3.3 Wind Task Scheduling

Table 2-2

Multitasking requires a scheduling algorithm to allocate the CPU to ready tasks.
Priority-based preemptive scheduling is the default algorithm in wind, but you can
select round-robin scheduling for your applications as well. The routines listed in
Table 2-2 control task scheduling.

Task Scheduler Control Routines

Call Description

kernelTimeSlice() Control round-robin scheduling.
taskPrioritySet() Change the priority of a task.
taskLock() Disable task rescheduling.
taskUnlock() Enable task rescheduling.

Preemptive Priority Scheduling

With a preemptive priority-based scheduler, each task has a priority and the kernel
ensures that the CPU is allocated to the highest priority task that is ready to run.
This scheduling method is preemptive in that if a task that has higher priority than
the current task becomes ready to run, the kernel immediately saves the current
task’s context and switches to the context of the higher priority task. In Figure 2-2,
task t1 is preempted by higher-priority task 2, which in turn is preempted by t3.
When t3 completes, t2 continues executing. When t2 completes execution, t1
continues executing.

The wind kernel has 256 priority levels, numbered 0 through 255. Priority 0 is the
highest and priority 255 is the lowest. Tasks are assigned a priority when created;

32

2
Basic OS

Figure 2-2 Priority Preemption

HIGH

priority ———

LOW

time

KEY: ;‘ = preemption | = task completion

however, while executing, a task can change its priority using taskPrioritySet().
The ability to change task priorities dynamically allows applications to track
precedence changes in the real world.

Round-Robin Scheduling

Preemptive priority scheduling can be augmented with round-robin scheduling. A
round-robin scheduling algorithm attempts to share the CPU fairly among all
ready tasks of the same priority. Without round-robin scheduling, when multiple
tasks of equal priority must share the processor, a single task can usurp the
processor by never blocking, thus never giving other equal-priority tasks a chance
to run.

Round-robin scheduling achieves fair allocation of the CPU to tasks of the same
priority by an approach known as time slicing. Each task of a group of tasks
executes for a defined interval, or time slice; then another task executes for an equal
interval, in rotation. The allocation is fair in that no task of a priority group gets a
second slice of time before the other tasks of a group are given a slice.

Round-robin scheduling can be enabled with the routine kernelTimeSlice(), which
takes a parameter for a time slice, or interval. This interval is the amount of time
each task is allowed to run before relinquishing the processor to another equal-
priority task.

More precisely, a run-time counter is kept for each task and incremented on every
clock tick. When the specified time-slice interval is completed, the counter is
cleared and the task is placed at the tail of the queue of tasks at its priority. New

33

VxWorks 5.3.1
Programmer’s Guide

tasks joining a priority group are placed at the tail of the group with a run-time
counter initialized to zero.

If a task is preempted by a higher priority task during its interval, its run-time
count is saved and then restored when the task is again eligible for execution.
Figure 2-3 shows round-robin scheduling for three tasks of the same priority: t1, t2,
and t3. Task t2 is preempted by a higher priority task t4 but resumes at the count
where it left off when t4 is finished.

Figure 2-3 Round-Robin Scheduling

HIGH T
o i time slice |
£ <>
8 ! !
LOW
time
KEY: 7 = preemption I = task completion

Preemption Locks

The wind scheduler can be explicitly disabled and enabled on a per-task basis with
the routines taskLock() and taskUnlock(). When a task disables the scheduler by
calling taskLock(), no priority-based preemption can take place while that task is
running. _

However, if the task explicitly blocks or suspends, the scheduler selects the next
highest-priority eligible task to execute. When the preemption-locked task
unblocks and begins running again, preemption is again disabled.

Note that preemption locks prevent task context switching but do not lock out
interrupt handling,.

Preemption locks can be used to achieve mutual exclusion; however, keep the
duration of preemption locking to a minimum. For more information, see
2.4.2 Mutual Exclusion, p.55.

34

2
Basic OS

2.3.4 Tasking Control
The following sections give an overview of the basic VxWorks tasking routines,
which are found in the VxWorks library taskLib. These routines provide the means
for task creation, control, and information. See the reference entry for taskLib for

further discussion. For interactive use, you can control VxWorks tasks from the
host-resident shell; see the Tornado User’s Guide: Shell.

Task Creation and Activation

The routines listed in Table 2-3 are used to create tasks.

Table 2-3 Task Creation Routines

Call Description

taskSpawn() Spawn (create and activate) a new task.
taskInit() Initialize a new task.

taskActivate() Activate an initialized task.

The arguments to taskSpawn() are the new task’s name (an ASCII string), priority,
an “options” word, stack size, main routine address, and 10 arguments to be
passed to the main routine as startup parameters:

id = taskSpawn (name, priority, options, stacksize, main, argl, ...argl0);

The taskSpawn() routine creates the new task context, which includes allocating
the stack and setting up the task environment to call the main routine (an ordinary
subroutine) with the specified arguments. The new task begins execution at the
entry to the specified routine.

The taskSpawn() routine embodies the lower-level steps of allocation,
initialization, and activation. The initialization and activation functions are
provided by the routines taskInit() and taskActivate(); however, we recommend
you use these routines only when you need greater control over allocation or
activation.

Task Names and IDs

When a task is spawned, you can specify an ASCII string of any length to be the
task name. VxWorks returns a task ID, which is a 4-byte handle to the task’s data

35

A

Table 2-4

Task Options

VxWorks 5.3.1
Programmer’s Guide

structures. Most VxWorks task routines take a task ID as the argument specifying
a task. VxWorks uses a convention that a task ID of 0 (zero) always implies the
calling task.

A task name should not conflict with any existing task name. Furthermore, to use
the Tornado development tools to their best advantage, task names should not
conflict with globally visible routine or variable names. To avoid name conflicts,
VxWorks uses a convention of prefixing all task names started from the target with
the letter ¢ and task names started from the host with the letter u.

You may not want to name some or all of your application’s tasks. If a NULL
pointer is supplied for the name argument of taskSpawn(), then VxWorks assigns
a unique name. The name is of the form tN, where N is a decimal integer that
increases by one for each unnamed task that is spawned.

NOTE: In the shell, task names are resolved to their corresponding task IDs to
simplify interaction with existing tasks; see the Tornado User’s Guide: Shell.

The taskLib routines listed in Table 2-4 manage task IDs and names.

Task Name and ID Routines

Call Description

taskName() Get the task name associated with a task ID.
taskNameTold() Look up the task ID associated with a task name.
taskIdSelf() Get the calling task’s ID.

taskIdVerify() Verify the existence of a specified task.

When a task is spawned, an option parameter is specified by performing a logical
OR operation on the desired options, listed in the following table. Note that
VX_FP_TASK must be specified if the task performs any floating-point operations.

To create a task that includes floating-point operations, use:

tid = taskSpawn ("tMyTask", 90, VX _FP_TASK, 20000, myFunc, 2387, 0, 0,
o, 0, 0, 0, 0, 0, 0);

Task options can also be examined and altered after a task is spawned by means of
the routines listed in Table 2-6. Currently, only the VX_UNBREAKABLE option can
be altered.

36

Table 2-5

Table 2-6

2

Basic OS
Task Options
Name Hex Value Description
VX_FP_TASK 0x8 Execute with the floating-point coprocessor.
VX_NO_STACK_FILL 0x100 Do not fill stack with Oxee.
VX_PRIVATE_ENV 0x80 Execute task with a private environment.
VX_UNBREAKABLE 0x2 Disable breakpoints for the task.

Task Option Routines

Call Description
taskOptionsGet() Examine task options.
taskOptionsSet() Set task options.

Task Information

Table 2-7

The routines listed in Table 2-7 get information about a task by taking a snapshot
of a task’s context when called. The state of a task is dynamic, and the information
may not be current unless the task is known to be dormant (that is, suspended).

Task Information Routines

Call Description

taskIdListGet() Fill an array with the IDs of all active tasks.
taskInfoGet() Get information about a task.
taskPriorityGet() Examine the priority of a task.
taskRegsGet() Examine a task’s registers.

taskRegsSet() Set a task’s registers.

taskIsSuspended() Check if a task is suspended.
taskIsReady() Check if a task is ready to run.

taskTch() Get a pointer to task’s control block.

37

VxWorks 5.3.1
Programmer’s Guide

Task Deletion and Deletion Safety

A

Table 2-8

Tasks can be dynamically deleted from the system. VxWorks includes the routines
listed in Table 2-8 to delete tasks and protect tasks from unexpected deletion.

WARNING: Make sure that tasks are not deleted at inappropriate times: a task
must release all shared resources it holds before an application deletes the task.

Task-Deletion Routines

Call Description

exit() Terminate the calling task and free memory (task stacks
and task control blocks only).”

taskDelete() Terminate a specified task and free memory (task stacks
and task control blocks only)."

taskSafe() Protect the calling task from deletion.

taskUnsafe() Undo a taskSafe() (make the calling task available for
deletion).

* Memory that is allocated by the task during its execution is not freed when the
task is terminated.

Tasks implicitly call exit() if the entry routine specified during task creation
returns. Alternatively, a task can explicitly call exit() at any point to kill itself. A
task can kill another task by calling taskDelete().

When a task is deleted, no other task is notified of this deletion. The routines
taskSafe() and taskUnsafe() address problems that stem from unexpected
deletion of tasks. The routine taskSafe() protects a task from deletion by other
tasks. This protection is often needed when a task executes in a critical region or
engages a critical resource.

For example, a task might take a semaphore for exclusive access to some data
structure. While executing inside the critical region, the task might be deleted by
another task. Because the task is unable to complete the critical region, the data
structure might be left in a corrupt or inconsistent state. Furthermore, because the
semaphore can never be released by the task, the critical resource is now
unavailable for use by any other task and is essentially frozen.

Using taskSafe() to protect the task that took the semaphore prevents such an
outcome. Any task that tries to delete a task protected with taskSafe() is blocked.
When finished with its critical resource, the protected task can makeitself available

38

Task Control

Table 2-9

2
Basic OS

for deletion by calling taskUnsafe(), which readies any deleting task. To support
nested deletion-safe regions, a count is kept of the number of times taskSafe() and
taskUnsafe() are called. Deletion is allowed only when the count is zero, that is,
there are as many “unsafes” as “safes.” Protection operates only on the calling task.
A task cannot make another task safe or unsafe from deletion.

The following code fragment shows how to use taskSafe() and taskUnsafe() to
protect a critical region of code:

tasksafe ();
semTake (semId, WAIT FOREVER); /* Block until semaphore available */

critical region

semGive (semId); /* Release semaphore */
taskUnsafe ();

Deletion safety is often coupled closely with mutual exclusion, as in this example.
For convenience and efficiency, a special kind of semaphore, the mutual-exclusion
semaphore, offers an option for deletion safety. For more information, see Mutual-
Exclusion Semaphores, p.62.

The routines listed in Table 2-9 provide direct control over a task’s execution.

Task Control Routines

Call Description

taskSuspend() Suspend a task.

taskResume() Resume a task.

taskRestart() Restart a task.

taskDelay() Delay a task; delay units are ticks.
nanosleep() Delay a task; delay units are nanoseconds.

VxWorks debugging facilities require routines for suspending and resuming a
task. They are used to freeze a task’s state for examination.

Tasks may require restarting during execution in response to some catastrophic
error. The restart mechanism, taskRestart(), recreates a task with the original
creation arguments. The Tornado shell also uses this mechanism to restart itself in

response to a task-abort request; for information, see the Tornado User’s Guide: Shell.

39

VxWorks 5.3.1
Programmer’s Guide

Delay operations provide a simple mechanism for a task to sleep for a fixed
duration. Task delays are often used for polling applications. For example, to delay
a task for half a second without making assumptions about the clock rate, call:

taskDelay (sysClkRateGet () / 2);

The routine sysClkRateGet() returns the speed of the system clock in ticks per
second. Instead of taskDelay(), you can use the POSIX routine nanosleep() to
specify a delay directly in time units. Only the units are different; the resolution of
both delay routines is the same, and depends on the system clock. For details, see
2.7 POSIX Clocks and Timers, p.100.

As a side effect, taskDelay() moves the calling task to the end of the ready queue
for tasks of the same priority. In particular, you can yield the CPU to any other
tasks of the same priority by “delaying” for zero clock ticks:

taskDelay (NO_WAIT); /* allow other tasks of same priority to run */

A “delay” of zero duration is only possible with taskDelay(); nanosleep()
considers it an error.

2.3.5 Tasking Extensions

Table 2-10

To allow additional task-related facilities to be added to the system without
modifying the kernel, wind provides task create, switch, and delete hooks, which allow
additional routines to be invoked whenever a task is created, a task context switch
occurs, or a task is deleted. There are spare fields in the task control block (TCB)
available for application extension of a task’s context. These hook routines are
listed in Table 2-10; for more information, see the reference entry for taskHookLib.

Task Create, Switch, and Delete Hooks

Call Description

taskCreateHookAdd() Add a routine to be called at every task create.
taskCreateHookDelete() Delete a previously added task create routine.
taskSwitchHookAdd() — Add a routine to be called at every task switch.
taskSwitchHookDelete() Delete a previously added task switch routine.
taskDeleteHookAdd() Add a routine to be called at every task delete.
taskDeleteHookDelete() Delete a previously added task delete routine.

40

2
Basic OS

User-installed switch hooks are called within the kernel context. Thus, switch
hooks do not have access to all VxWorks facilities. Table 2-11 summarizes the
routines that can be called from a task switch hook; in general, any routine that
does not involve the kernel can be called.

Table 2-11 Routines that Can Be Called by Task Switch Hooks

Library Routines

bLib All routines

fppArchLib fppSave(), fppRestore()

intLib intContext(), intCount(), intVecSet(), intVecGet(), intLock(), intUnlock()
IstLib All routines except IstFree()

mathALib All are callable if fppSave()/fppRestore() are used

rngLib All routines except rngCreate() and roundlet()

taskLib taskIdVerify(), taskIdDefault(), taskIsReady(), taskIsSuspended(),
taskTeb()

vxLib vxTas()

2.3.6 POSIX Scheduling Interface

The POSIX 1003.1b scheduling routines, provided by schedPxLib, are shown in
Table 2-12. These routines let you use a portable interface to get and set task
priority, get the scheduling policy, get the maximum and minimum priority for
tasks, and if round-robin scheduling is in effect, get the length of a time slice. To
understand how to use the routines in this alternative interface, be aware of the
minor differences between the POSIX and Wind methods of scheduling.

Differences Between POSIX and Wind Scheduling

POSIX and Wind scheduling routines differ in the following ways:

* POSIX scheduling is based on processes, while Wind scheduling is based on
tasks. Tasks and processes differ in several ways. Most notably, tasks can
address memory directly while processes cannot; and processes inherit only
some specific attributes from their parent process, while tasks operate in
exactly the same environment as the parent task.

41

Table 2-12

VxWorks 5.3.1
Programmer’s Guide

Tasks and processes are alike in that they can be scheduled independently.

» VxWorks documentation uses the term preemptive priority scheduling, while
the POSIX standard uses the term FIFO. This difference is purely one of
nomenclature: both describe the same priority-based policy.

» The POSIX scheduling algorithms are applied on a process-by-process basis.
The Wind methodology, on the other hand, applies scheduling algorithms on
a system-wide basis—either all tasks use a round-robin scheme, or all use a
preemptive priority scheme.

» The POSIX priority numbering scheme is the inverse of the Wind scheme. In

POSIX, the higher the number, the higher the priority; in the Wind scheme, the

lower the number, the higher the priority, where 0 is the highest priority.
Accordingly, the priority numbers used with the POSIX scheduling library
(schedPxLib) do not match those used and reported by all other components
of VxWorks. You can override this default by setting the global variable
posixPriorityNumbering to FALSE. If you do this, the Wind numbering
scheme (smaller number = higher priority) is used by schedPxLib, and its
priority numbers match those used by the other components of VxWorks.

The POSIX scheduling routines are included when INCLUDE_POSIX_SCHED is
defined in configAllh; see 8. Configuration for information on configuring
VxWorks.

POSIX Scheduling Calls

Call Description

sched_setparam() Set a task’s priority.

sched_getparam() Get the scheduling parameters for a specified task.
sched_setscheduler() Set scheduling policy and parameters for a task.
sched_yield() Relinquish the CPU.

sched_getscheduler() Get the current scheduling policy.
sched_get_priority_max() Get the maximum priority.
sched_get_priority_min() Get the minimum priority.

sched_rr_get_interval() If round-robin scheduling, get the time slice length.

42

2
Basic OS

Getting and Setting POSIX Task Priorities

Example 2-1

The routines sched_setparam() and sched_getparam() set and get a task’s priority,
respectively. Both routines take a task ID and a sched_param structure (defined in
h/sched.h). A task ID of O sets or gets the priority for the calling task. The
sched_priority member of the sched_param structure specifies the new task
priority when sched_setparam() is called. The routine sched_getparam() fills in
the sched_priority with the specified task’s current priority.

Getting and Setting POSIX Task Priorities

/* This example sets the calling task’s priority to 150, then verifies
* that priority. To run from the shell, spawn as a task:

* -> sp priorityTest

*/

/* includes */
#include "vxWorks.h"
#include "sched.h"

/* defines */
#define PX NEW PRIORITY 150

STATUS priorityTest (void)
{
struct sched_param myParam;

/* initialize param structure to desired priority */
myParam.sched priority = PX_NEW_PRIORITY;
if (sched_setparam (0, &myParam) == ERROR)

{

printf ("error setting priority\n");

return (ERROR);

}

/* demonstrate getting a task priority as a sanity check; ensure it
* ig the same value that we just set.
*/

if (sched_getparam (0, &myParam) == ERROR)
{
printf ("error getting priority\n");
return (ERROR);
}

if (myParam.sched priority != PX NEW _PRIORITY)
{
printf ("error - priorities do not match\n");
return (ERROR);
}
else
printf ("task priority = %d\n", myParam.sched priority);

return (OK);

}

43

VxWorks 5.3.1
Programmer’s Guide

The routine sched_setscheduler() is designed to set both scheduling policy and
priority for a single POSIX process (which corresponds in most other cases to a
single Wind task). In the VxWorks kernel, sched_setscheduler() controls only task
priority, because the kernel does not allow tasks to have scheduling policies that
differ from one another. If its policy specification matches the current system-wide
scheduling policy, sched_setscheduler() sets only the priority, thus acting like
sched_setparam(). If its policy specification does not match the current one,
sched_setscheduler() returns an error.

The only way to change the scheduling policy is to change it for all tasks; there is
no POSIX routine for this purpose. To set a system-wide scheduling policy, use the
Wind function kernelTimeSlice() described in Round-Robin Scheduling, p.33.

Getting and Displaying the Current Scheduling Policy

Example 2-2

The POSIX routine sched_getscheduler() returns the current scheduling policy.
There are two valid scheduling policies in VxWorks: preemptive priority
scheduling (in POSIX terms, SCHED_FIFO) and round-robin scheduling by
priority (SCHED_RR).

Getting POSIX Scheduling Policy
/* This example gets the scheduling policy and displays it. */

/* includes */

#include "vxWorks.h"
#include "sched.h"

STATUS schedulerTest (void)
{
int policy;

if ((policy = sched_getscheduler (0)) == ERROR)
{
printf ("getting scheduler failed\n");
return (ERROR);
}

/* sched_getscheduler returns either SCHED FIFO or SCHED _RR */

if (policy == SCHED_FIFO)
printf ("current scheduling policy is FIFO\n");
else
printf ("current scheduling policy is round robin\n");

return (OK);
}

44

2
Basic OS

Getting Scheduling Parameters: Priority Limits and Time Slice

Example 2-3

The routines sched_get_priority_max() and sched_get_priority_min() return the
maximum and minimum possible POSIX priority values, respectively.

If round-robin scheduling is enabled, you can use sched_rr_get_interval() to
determine the length of the current time-slice interval. This routine takes as an
argument a pointer to a timespec structure (defined in time.h), and writes the
number of seconds and nanoseconds per time slice to the appropriate elements of
that structure.

Getting the POSIX Round-Robin Time Slice

/* The following example checks that round-robin scheduling is enabled,
* gets the length of the time slice, and then displays the time slice.
*/

/* includes */

#include "vxWorks.h"
#include "sched.h"

STATUS rrgetintervalTest (void)
{
struct timespec slice;

/* turn on round robin */
kernelTimeSlice (30);

if (sched_rr get_interval (0, &slice) == ERROR)
{
printf ("get-interval test failed\n");
return (ERROR);
}

printf ("time slice is %1 seconds and %1 nanoseconds\n",
slice.tv_sec, slice.tv_nsec);
return (OK);

}

2.3.7 Task Error Status: errno

By convention, C library functions set a single global integer variable errno to an
appropriate error number whenever the function encounters an error. This
convention is specified as part of the ANSI C standard.

45

VxWorks 5.3.1
Programmer’s Guide

Layered Definitions of errno

In VxWorks, errno is simultaneously defined in two different ways. There is, as in
ANSI C, an underlying global variable called errno, which you can display by
name using Tornado development tools; see the Tornado User’s Guide. However,
errno is also defined as a macro in errno.h; this is the definition visible to all of
VxWorks except for one function. The macro is defined as a call to a function
__errno() that returns the address of the global variable, errno (as you might
guess, this is the single function that does not itself use the macro definition for
errno). This subterfuge yields a useful feature: because __errno() is a function, you
can place breakpoints on it while debugging, to determine where a particular error
occurs. Nevertheless, because the result of the macro errno is the address of the
global variable errno, C programs can set the value of errno in the standard way:

errno = someErrorNumber;

As with any other errno implementation, take care not to have a local variable of
the same name.

A Separate errno Value for Each Task

In VxWorks, the underlying global errno is a single predefined global variable that
can be referenced directly by application code that is linked with VxWorks (either
statically on the host or dynamically at load time). However, for errno to be useful
in the multitasking environment of VxWorks, each task must see its own version
of errno. Therefore errno is saved and restored by the kernel as part of each task’s
context every time a context switch occurs. Similarly, interrupt service routines
(ISRs) see their own versions of errno.

This is accomplished by saving and restoring errno on the interrupt stack as part
of the interrupt enter and exit code provided automatically by the kernel (see
2.5.1 Connecting Application Code to Interrupts, p.94). Thus, regardless of the
VxWorks context, an error code can be stored or consulted with direct
manipulation of the global variable errno.

Error Return Convention

Almost all VxWorks functions follow a convention that indicates simple success or
failure of their operation by the actual return value of the function. Many functions
return only the status values OK (0) or ERROR (-1). Some functions that normally
return a nonnegative number (for example, open() returns a file descriptor) also

46

2
Basic OS

return ERROR to indicate an error. Functions that return a pointer usually return
NULL (0) to indicate an error. In most cases, a function returning such an error
indication also sets errno to the specific error code.

The global variable errno is never cleared by VxWorks routines. Thus, its value
always indicates the last error status set. When a VxWorks subroutine gets an error
indication from a call to another routine, it usually returns its own error indication
without modifying errno. Thus, the value of errno that is set in the lower-level
routine remains available as the indication of error type.

For example, the VxWorks routine intConnect(), which connects a user routine to
a hardware interrupt, allocates memory by calling malloc() and builds the
interrupt driver in this allocated memory. If malloc() fails because insufficient
memory remains in the pool, it sets errno to a code indicating an insufficient-
memory error was encountered in the memory allocation library, memLib. The
malloc() routine then returns NULL to indicate the failure. The intConnect()
routine, receiving the NULL from malloc(), then returns its own error indication of
ERROR. However, it does not alter errno, leaving it at the “insufficient memory”
code set by malloc(). For example:

if ((pNew = malloc (CHUNK_SIZE)) == NULL)

return (ERROR);

We recommend that you use this mechanism in your own subroutines, setting and
examining errno as a debugging technique. A string constant associated with
errno can be displayed using printErrno() if the errno value has a corresponding
string entered in the error-status symbol table, statSymTbl. See the reference entry
errnoLib for details on error-status values and building statSymTbl.

Assignment of Error Status Values

VxWorks errno values encode the module that issues an error, in the most
significant two bytes, and use the least significant two bytes for individual error
numbers. All VxWorks module numbers are in the range 1-500; errno values with
a “module” number of zero are used for source compatibility.

All other errno values (that is, positive values greater than or equal to 501<<16,
and all negative values) are available for application use.

See the reference entry on errnoLib for more information about defining and
decoding errno values with this convention.

47

VxWorks 5.3.1
Programmer’s Guide

2.3.8 Task Exception Handling

Errors in program code or data can cause hardware exception conditions such as
illegal instructions, bus or address errors, divide by zero, and so forth. The
VxWorks exception handling package takes care of all such exceptions. The default
exception handler suspends the task that caused the exception, and saves the state
of the task at the point of the exception. The kernel and other tasks continue
uninterrupted. A description of the exception is transmitted to the Tornado
development tools, which can be used to examine the suspended task; see the
Tornado User’s Guide: Shell for details.

Tasks can also attach their own handlers for certain hardware exceptions through
the signal facility. If a task has supplied a signal handler for an exception, the
default exception handling described above is not performed. Signals are also used
for signaling software exceptions as well as hardware exceptions. They are
described in more detail in 2.4.7 Signals, p.90 and in the reference entry for sigLib.

2.3.9 Shared Code and Reentrancy

In VxWorks, it is common for a single copy of a subroutine or subroutine library to
be invoked by many different tasks. For example, many tasks may call printf(), but
there is only a single copy of the subroutine in the system. A single copy of code
executed by multiple tasks is called shared code. VxWorks dynamic linking facilities
make this particularly easy. Shared code also makes the system more efficient and
easier to maintain; see Figure 2-4.

Shared code must be reentrant. A subroutine is reentrant if a single copy of the
routine can be called from several task contexts simultaneously without conflict.
Such conflict typically occurs when a subroutine modifies global or static

. variables, because there is only a single copy of the data and code. A routine’s
references to such variables can overlap and interfere in invocations from different
task contexts.

Most routines in VxWorks are reentrant. However, all routines which have a
corresponding name_r() routine should be assumed non-reentrant. For example,
because Idiv() has a corresponding routine Idiv_r(), you can assume that Idiv() is
not reentrant.

VxWorks I/O and driver routines are reentrant, but require careful application
design. For buffered I/O, we recommend using file-pointer buffers on a per-task
basis. At the driver level, it is possible to load buffers with streams from different
tasks, due to the global file descriptor table in VxWorks. This may or may not be
desirable, depending on the nature of the application. For example, a packet driver

48

2

Basic OS
Figure 2-4 Shared Code
TASKS SHARED CODE
taskOne (void)
{
..ﬁunc();
} myFunc (void)
{

4 .o

taskTwo (void) ¥
{
myFunc() ;

}

can mix streams from different tasks because the packet header identifies the
destination of each packet.

The majority of VxWorks routines use the following reentrancy techniques:
- dynamic stack variables
- global and static variables guarded by semaphores
— task variables

We recommend applying these same techniques when writing application code
that can be called from several task contexts simultaneously.

Dynamic Stack Variables

Many subroutines are pure code, having no data of their own except dynamic stack
variables. They work exclusively on data provided by the caller as parameters. The
linked-list library, 1stLib, is a good example of this. Its routines operate on lists and
nodes provided by the caller in each subroutine call.

Subroutines of this kind are inherently reentrant. Multiple tasks can use such
routines simultaneously without interfering with each other, because each task
does indeed have its own stack. See Figure 2-5.

49

VxWorks 5.3.1
Programmer’s Guide

Figure 2-5 Stack Variables and Shared Code

TASKS TASK STACKS COMMON SUBROUTINE

taskOne () o

{ myDataOne

comFunc () (myDataOne) | RS
taSkT"{VO) . comFunc (yourbata)

myDataTwo {
comFunc() (myDataTwo) {
}

Guarded Global and Static Variables

Some libraries encapsulate access to common data. One example is the memory
allocation library, memLib, which manages pools of memory to be used by many
tasks. This library declares and uses its own static data variables to keep track of
pool allocation.

This kind of library requires some caution because the routines are not inherently
reentrant. Multiple tasks simultaneously invoking the routines in the library might
interfere with access to common variables. Such libraries must be made explicitly
reentrant by providing a mutual-exclusion mechanism to prohibit tasks from
simultaneously executing critical sections of code. The usual mutual-exclusion
mechanism is the semaphore facility provided by semLib and described in

2.4.3 Semaphores, p.57.

Task Variables

Some routines that can be called by multiple tasks simultaneously may require
global or static variables with a distinct value for each calling task. For example,
several tasks may reference a private buffer of memory and yet refer to it with the
same global variable.

50

2
Basic OS

To accommodate this, VxWorks provides a facility called task variables that allows
4-byte variables to be added to a task’s context, so that the value of such a variable
is switched every time a task switch occurs to or from its owner task. Typically,
several tasks declare the same variable (4-byte memory location) as a task variable.
Each of those tasks can then treat that single memory location as its own private
variable; see Figure 2-6. This facility is provided by the routines taskVarAdd(),
taskVarDelete(), taskVarSet(), and taskVarGet(), which are described in the
reference entry for taskVarLib.

Figure 2-6 Task Variables and Context Switches

OLD TCB NEW TCB

pTaskVar -

globDat pTaskVar -

value saved value restored
in old from new
task’'s TCB task’'s TCB

current value of
globDat

Use this mechanism sparingly. Each task variable adds a few microseconds to the
context switching time for its task, because the value of the variable must be saved
and restored as part of the task’s context. Consider collecting all of a module’s task
variables into a single dynamically allocated structure, and then making all
accesses to that structure indirectly through a single pointer. This pointer can then
be the task variable for all tasks using that module.

Muitiple Tasks with the Same Main Routine

With VxWorks, it is possible to spawn several tasks with the same main routine.
Each spawn creates a new task with its own stack and context. Each spawn can also
pass the main routine different parameters to the new task. In this case, the same
rules of reentrancy described in Task Variables, p.50 apply to the entire task.

51 /

VxWorks 5.3.1
Programmer’s Guide

This is useful when the same function needs to be performed concurrently with
different sets of parameters. For example, a routine that monitors a particular kind
of equipment might be spawned several times to monitor several different pieces
of that equipment. The arguments to the main routine could indicate which
particular piece of equipment the task is to monitor.

In Figure 2-7, multiple joints of the mechanical arm use the same code. The tasks
manipulating the joints invoke joint(). The joint number (jointNum) is used to
indicate which joint on the arm to manipulate.

Figure 2-7 Multiple Tasks Utilizing Same Code

joint_2
S~ joint_3

joint_1 e

joint
(
int jointNum
)
{
/* joint code here */
}

2.3.10 VxWorks System Tasks

VxWorks includes several system tasks, described in the following sections.

The Root Task: tUsrRoot

The root task, tUsrRoot, is the first task executed by the kernel. The entry point of
the root task is #usrRoot() in config/all/usrConfig.c and initializes most VxWorks
facilities. It spawns such tasks as the logging task, the exception task, the network
task, and the tRlogind daemon. Normally, the root task terminates and is deleted
after all initialization has occurred. You are free to add any necessary initialization
to the root task. For more information, see 8.3 Configuring VxWorks, p.430.

52

2
Basic OS

The Logging Task: tLogTask

The log task, tLogTask, is used by VxWorks modules to log system messages
without having to perform I/O in the current task context. For more information,
see 3.5.3 Message Logging, p.122 and the reference entry for logLib.

The Exception Task: tExcTask

The exception task, tExcTask, supports the VxWorks exception handling package
by performing functions that cannot occur at interrupt level. It must have the

. highest priority in the system. Do not suspend, delete, or change the priority of this
task. For more information, see the reference entry for excLib.

The Network Task: tNetTask

The tNetTask daemon handles the task-level functions required by the VxWorks
network.

The Target Agent Task: tWdbTask

The target agent task, tWdbTask, is created if the target agent is set to run in task
mode; see 8.4.1 Scaling Down VxWorks, p.447. It services requests from the Tornado
target server; for information on this server, see the Tornado User’s Guide: Overview.

Tasks for Optional Components

The following VxWorks system tasks are created if their associated configuration
constants are defined; for more information, see 8.3 Configuring VxWorks, p.430.

tShell If you have included the target shell in the VxWorks configuration, it
is spawned as this task. Any routine or task that is invoked from the
target shell, rather than spawned, runs in the tShell context. For more
information, see 9. Target Shell.

tRlogind If you have included the target shell and the rlogin facility in the
VxWorks configuration, this daemon allows remote users to log in to
VxWorks. It accepts a remote login request from another VxWorks or
host system and spawns tRlogInTask and tRlogOutTask. These tasks
exist as long as the remote user is logged on. During the remote

53

VxWorks 5.3.1
Programmer’s Guide

session, the shell’s (and any other task’s) input and output are
redirected to the remote user. A tty-like interface is provided to the
remote user through the use of the VxWorks pseudo-terminal driver,
ptyDrv. For more information, see 3.7.1 Serial I/O Devices (Terminal and
Pseudo-Terminal Devices), p.131 and the reference entry for ptyDrv.

tTelnetd If you have included the target shell and the telnet facility in the
VxWorks configuration, this daemon allows remote users to log in to
VxWorks with telnet. It accepts a remote login request from another
VxWorks or host system and spawns the input task tTelnetInTask and
output task tTelnetOutTask. These tasks exist as long as the remote
user is logged on. During the remote session, the shell’s (and any other
task’s) input and output are redirected to the remote user. A tty-like
interface is provided to the remote user through the use of the
VxWorks pseudo-terminal driver, ptyDrv. See 3.7.1 Serial I/O Devices
(Terminal and Pseudo-Terminal Devices), p.131 and the reference entry
for ptyDrv for further explanation.

tPortmapd If you have included the RPC facility in the VxWorks configuration,
this daemon is an RPC server that acts as a central registrar for RPC
servers running on the same machine. RPC clients query the
tPortmapd daemon to find out how to contact the various servers.

tRdbTask If you have included the RDB facility in the VxWorks configuration,
this daemon services requests made by remote source-level
debuggers. The RDB modules fill a role roughly analogous to that of
the target agent, except that the RDB connection relies on VxWorks
facilities, such as the target-resident symbol table and the target-
resident dynamic linker. For more information on remote debugging,
see the Tornado User’s Guide: Debugger.

2.4 Intertask Communications

The complement to the multitasking routines described in the 2.3 Tasks, p.30 is the
intertask communication facilities. These facilities permit independent tasks to
coordinate their actions.

VxWorks supplies a rich set of intertask communication mechanisms, including;:

= Shared memory, for simple sharing of data.

54

2
Basic OS

= Semaphores, for basic mutual exclusion and synchronization.
= Message queues and pipes, for intertask message passing within a CPU.

» Sockets and remote procedure calls, for network-transparent intertask
communication.

= Signals, for exception handling.

The optional product, VXMP, provides intertask communication over the
backplane for tasks running on different CPUs. This includes shared semaphores,
shared message queues, shared memory, and the shared name database.

2.4.1 Shared Data Structures

Figure 2-8

The most obvious way for tasks to communicate is by accessing shared data
structures. Because all tasks in VxWorks exist in a single linear address space,
sharing data structures between tasks is trivial; see Figure 2-8. Global variables,
linear buffers, ring buffers, linked lists, and pointers can be referenced directly by
code running in different contexts.

Shared Data Structures

TASKS MEMORY

task 1 access
as sharedData

sharedData
K2 access
tas sharedData

access
task 3 sharedData

2.4.2 Mutual Exclusion

While a shared address space simplifies exchange of data, interlocking access to
memory is crucial to avoid contention. Many methods exist for obtaining exclusive
access to resources, and vary only in the scope of the exclusion. Such methods
include disabling interrupts, disabling preemption, and resource locking with
semaphores.

55

VxWorks 5.3.1
Programmer’s Guide

Interrupt Locks and Latency

The most powerful method available for mutual exclusion is the disabling of
interrupts. Such a lock guarantees exclusive access to the CPU:

funca ()
{
int lock = intLock();

critical region that cannot be interrupted

intUnlock (lock);

}
While this solves problems involving mutual exclusion with ISRs, it is
inappropriate as a general-purpose mutual-exclusion method for most real-time
systems, because it prevents the system from responding to external events for the
duration of these locks. Interrupt latency is unacceptable whenever an immediate
response to an external event is required. However, interrupt locking can
sometimes be necessary where mutual exclusion involves ISRs. In any situation,
keep the duration of interrupt lockouts short.

Preemptive Locks and Latency

Disabling preemption offers a somewhat less restrictive form of mutual exclusion.
While no other task is allowed to preempt the current executing task, ISRs are able
to execute:

funcA ()
{
taskLock ();

critical region that cannot be interrupted

éaskunlock ();

}
However, this method can lead to unacceptable real-time response. Tasks of higher
priority are unable to execute until the locking task leaves the critical region, even
though the higher-priority task is not itself involved with the critical region. While
this kind of mutual exclusion is simple, if you use it, make sure to keep the
duration short. A better mechanism is provided by semaphores, discussed in
2.4.3 Semaphores, p.57.

56

2
Basic OS

2.4.3 Semaphores

VxWorks semaphores are highly optimized and provide the fastest intertask l
communication mechanism in VxWorks. Semaphores are the primary means for
addressing the requirements of both mutual exclusion and task synchronization:

= For mutual exclusion, semaphores interlock access to shared resources. They
provide mutual exclusion with finer granularity than either interrupt
disabling or preemptive locks, discussed in 2.4.2 Mutual Exclusion, p.55.

= For synchronization, semaphores coordinate a task’s execution with external
events.

There are three types of Wind semaphores, optimized to address different classes
of problems:

binary The fastest, most general-purpose semaphore. Optimized for
synchronization or mutual exclusion.

mutual exclusion A special binary semaphore optimized for problems inherent
in mutual exclusion: priority inheritance, deletion safety, and
recursion.

counting Like the binary semaphore, but keeps track of the number of
times a semaphore is given. Optimized for guarding multiple
instances of a resource.

VxWorks provides not only the Wind semaphores, designed expressly for
VxWorks, but also POSIX semaphores, designed for portability. An alternate
semaphore library provides the POSIX-compatible semaphore interface; see
POSIX Semaphores, p.67.

The semaphores described here are for use on a single CPU. The optional product
VxMP provides semaphores that can be used across processors; see 6. Shared-
Memory Objects.

Semaphore Control

Instead of defining a full set of semaphore control routines for each type of
semaphore, the Wind semaphores provide a single uniform interface for
semaphore control. Only the creation routines are specific to the semaphore type.
Table 2-13 lists the semaphore control routines.

The semBCreate(), semMCreate(), and semCCreate() routines return a
semaphore ID that serves as a handle on the semaphore during subsequent use by

57

VxWorks 5.3.1
Programmer’s Guide

Table 2-13 Semaphore Control Routines

Call Description

semBCreate() Allocate and initialize a binary semaphore.
semMCreate() Allocate and initialize a mutual-exclusion semaphore.
semCCreate() Allocate and initialize a counting semaphore.
semDelete() Terminate and free a semaphore.

semTake() Take a semaphore.

semGive() Give a semaphore.

semFlush() Unblock all tasks that are waiting for a semaphore.

the other semaphore-control routines. When a semaphore is created, the queue
type is specified. Tasks pending on a semaphore can be queued in priority order
(SEM_Q_PRIORITY) or in first-in first-out order (SEM_Q_FIFO).

A WARNING: The semDelete() call terminates a semaphore and deallocates any
associated memory. Take care when deleting semaphores, particularly those used
for mutual exclusion, to avoid deleting a semaphore that another task still requires.
Do not delete a semaphore unless the same task first succeeds in taking it.

Binary Semaphores

The general-purpose binary semaphore is capable of addressing the requirements
of both forms of task coordination: mutual exclusion and synchronization. The
binary semaphore has the least overhead associated with it, making it particularly
applicable to high-performance requirements. The mutual-exclusion semaphore
described in Mutual-Exclusion Semaphores, p.62 is also a binary semaphore, but it
has been optimized to address problems inherent to mutual exclusion.
Alternatively, the binary semaphore can be used for mutual exclusion if the
advanced features of the mutual-exclusion semaphore are deemed unnecessary.

A binary semaphore can be viewed as a flag that is available (full) or unavailable
(empty). When a task takes a binary semaphore, with semTake(), the outcome
depends on whether the semaphore is available (full) or unavailable (empty) at the
time of the call; see Figure 2-9. If the semaphore is available (full), the semaphore
becomes unavailable (empty) and the task continues executing immediately. If the
semaphore is unavailable (empty), the task is put on a queue of blocked tasks and
enters a state of pending on the availability of the semaphore.

58

2
Basic OS

Figure 2-9 Taking a Semaphore

task is
no

semaphore timeout = p?irr;?:guff r
available? NO_WAIT value

task continues; task continues;
semaphore semaphore
taken not taken

Figure 2-10 Giving a Semaphore

task continues,
semaphore
made available

semaphore
available?

task continues; task at front of
semaphore queue made ready;
remains semaphore remains
unchanged unavailable

When a task gives a binary semaphore, using semGive(), the outcome also
depends on whether the semaphore is available (full) or unavailable (empty) at the
time of the call; see Figure 2-10. If the semaphore is already available (full), giving
the semaphore has no effect at all. If the semaphore is unavailable (empty) and no
task is waiting to take it, then the semaphore becomes available (full). If the
semaphore is unavailable (empty) and one or more tasks are pending on its
availability, then the first task in the queue of blocked tasks is unblocked, and the
semaphore is left unavailable (empty).

59

VxWorks 5.3.1
Programmer’s Guide

Mutual Exclusion

Binary semaphores interlock access to a shared resource efficiently. Unlike
disabling interrupts or preemptive locks, binary semaphores limit the scope of the
mutual exclusion to only the associated resource. In this technique, a semaphore is
created to guard the resource. Initially the semaphore is available (full).

/* includes */

#include "vxWorks.h"

#include "semLib.h"

SEM TID semMutex;

/* Create a binary semaphore that is initially full. Tasks *
* blocked on semaphore wait in priority order. */

semMutex = semBCreate (SEM _Q PRIORITY, SEM FULL):;

When a task wants to access the resource, it must first take that semaphore. As long
as the task keeps the semaphore, all other tasks seeking access to the resource are
blocked from execution. When the task is finished with the resource, it gives back
the semaphore, allowing another task to use the resource.

Thus all accesses to a resource requiring mutual exclusion are bracketed with
semTake() and semGive() pairs:

semTake (semMutex, WAIT FOREVER);
critical region, only accessible by a single task at a time

semGive (semMutex);

Synchronization

When used for task synchronization, a semaphore can represent a condition or
event that a task is waiting for. Initially the semaphore is unavailable (empty). A
task or ISR signals the occurrence of the event by giving the semaphore (see

2.5 Interrupt Service Code, p.93 for a complete discussion of ISRs). Another task
waits for the semaphore by calling semTake(). The waiting task blocks until the
event occurs and the semaphore is given.

Note the difference in sequence between semaphores used for mutual exclusion
and those used for synchronization. For mutual exclusion, the semaphore is
initially full, and each task first takes, then gives back the semaphore. For
synchronization, the semaphore is initially empty, and one task waits to take the
semaphore given by another task.

In Example 2-4, the init() routine creates the binary semaphore, attaches an ISR to
an event, and spawns a task to process the event. The routine task1() runs until it

60

Example 2-4

Basic OS

calls semTake(). It remains blocked at that point until an event causes the ISR to
call semGive(). When the ISR completes, fask1() executes to process the event.
There is an advantage of handling event processing within the context of a
dedicated task: less processing takes place at interrupt level, thereby reducing
interrupt latency. This model of event processing is recommended for real-time
applications.

Using Semaphores for Task Synchronization
/* This example shows the use of semaphores for task synchronization. */

/* includes */

#include "vxWorks.h"

#include "semLib.h"

#include "axch/arch/ivarch.h" /* replace arch with architecture type */

SEM_ID syncSem; /* ID of sync semaphore */

init (
int someIntNum
)
{
/* connect interrupt service routine */
intConnect (INUM _TO IVEC (someIntNum), eventInterruptSvcRout, 0);

/* create semaphore */
syncSem = semBCreate (SEM Q FIFO, SEM EMPTY);

/* spawn task used for synchronization. */
taskSpawn ("sample", 100, 0, 20000, taski, 0,0,0,0,0,0,0,0,0,0);
}

taskl (void)
{

vee

semTake (syncSem, WAIT FOREVER); /* wait for event to occur */
printf ("task 1 got the semaphore\n");
... /* process event */

}

eventInterruptSvcRout (void)
{

semGive (syncSem); /* let task 1 process event */

}

Broadcast synchronization allows all processes that are blocked on the same
semaphore to be unblocked atomically. Correct application behavior often requires
a set of tasks to process an event before any task of the set has the opportunity to
process further events. The routine semFlush() addresses this class of
synchronization problem by unblocking all tasks pended on a semaphore.

61

VxWorks 5.3.1
Programmer’s Guide

Mutual-Exclusion Semaphores

The mutual-exclusion semaphore is a specialized binary semaphore designed to
address issues inherent in mutual exclusion, including priority inversion, deletion
safety, and recursive access to resources.

The fundamental behavior of the mutual-exclusion semaphore is identical to the
binary semaphore, with the following exceptions:

= It can be used only for mutual exclusion.

* It canbe given only by the task that took it.
= It cannot be given from an ISR.

= The semFlush() operation is illegal.

Priority Inversion

Priority inversion arises when a higher-priority task is forced to wait an indefinite
period of time for a lower-priority task to complete. Consider the scenario in
Figure 2-11: t1, t2, and t3 are tasks of high, medium, and low priority, respectively.
t3 has acquired some resource by taking its associated binary guard semaphore.
When t1 preempts t3 and contends for the resource by taking the same semaphore,
itbecomes blocked. If we could be assured that t1 would be blocked no longer than
the time it normally takes 3 to finish with the resource, there would be no problem
because the resource cannot be preempted. However, the low-priority task is
vulnerable to preemption by medium-priority tasks (like t2), which could inhibit
t3 from relinquishing the resource. This condition could persist, blocking t1 for an
indefinite period of time.

The mutual-exclusion semaphore has the option SEM_INVERSION_SAFE, which
enables a priority-inheritance algorithm. The priority-inheritance protocol assures
that a task that owns a resource executes at the priority of the highest-priority task
blocked on that resource. Once the task priority has been elevated, it remains at the
higher level until all mutual-exclusion semaphores that the task owns are released;
then the task returns to its normal, or standard, priority. Hence, the “inheriting”
task is protected from preemption by any intermediate-priority tasks. This option
must be used in conjunction with a priority queue (SEM_Q_PRIORITY).

In Figure 2-12, priority inheritance solves the problem of priority inversion by
elevating the priority of t3 to the priority of t1 during the time t1 is blocked on the
semaphore. This protects t3, and indirectly t1, from preemption by t2.

The following example creates a mutual-exclusion semaphore that uses the
priority inheritance algorithm:

semId = semMCreate (SEM_Q PRIORITY | SEM INVERSION_SAFE);

62

2
Basic OS

Figure 2-11 Priority Inversion

\J

HIGH

2 I

5 771 | 2 |

e v]ﬂ v
LOW 5

time .-
KEY: V¥V =take semaphore 7‘ = preemption
YV = give semaphore T¢ = priority inheritance/release
= own semaphore I = block

Figure 2-12 Priority Inheritance

HIGH

2

priority —

LOW

time

63

VxWorks 5.3.1
Programmer’s Guide

Deletion Safety

Another problem of mutual exclusion involves task deletion. Within a critical
region guarded by semaphores, it is often desirable to protect the executing task
from unexpected deletion. Deleting a task executing in a critical region can be
catastrophic. The resource might be left in a corrupted state and the semaphore
guarding the resource left unavailable, effectively preventing all access to the
resource.

The primitives taskSafe() and taskUnsafe() provide one solution to task deletion.
However, the mutual-exclusion semaphore offers the option SEM_DELETE_SAFE,
which enables an implicit taskSafe() with each semTake(), and a taskUnsafe()
with each semGive(). In this way, a task can be protected from deletion while it has
the semaphore. This option is more efficient than the primitives taskSafe() and
taskUnsafe(), as the resulting code requires fewer entrances to the kernel.

semTd = semMCreate (SEM Q FIFO | SEM DELETE_SAFE);

Recursive Resource Access

Example 2-5

Mutual-exclusion semaphores can be taken recursively. This means that the
semaphore can be taken more than once by the task that owns it before finally
being released. Recursion is useful for a set of routines that must call each other but
that also require mutually exclusive access to a resource. This is possible because
the system keeps track of which task currently owns the mutual-exclusion
semaphore.

Before being released, a mutual-exclusion semaphore taken recursively must be
given the same number of times it is taken. This is tracked by a count that
increments with each semTake() and decrements with each semGive().

Recursive Use of a Mutual-Exclusion Semaphore

/* Function A requires access to a resource which it acquires by taking
* mySem; function A may also need to call function B, which also

* requires mySem:

*/

/* includes */
#include "vxWorks.h"
#include "semLib.h"
SEM_ID mySem;

/* Create a mutual-exclusion semaphore. */
init ()
{

mySem = semMCreate (SEM Q PRIORITY);
}

64

2
Basic OS

funcA ()
{
semTake (mySem, WAIT FOREVER);
printf ("funcA: Got mutual-exclusion semaphore\n");
funcB ();
semGive (mySem);
printf ("funcA: Released mutual-exclusion semaphore\n");
}
funcB ()
{
semTake (mySem, WAIT FOREVER);
printf ("funcB: Got mutual-exclusion semaphore\n");
semGive (mySem);
printf ("funcB: Releases mutual-exclusion semaphore\n");

}

Counting Semaphores

Table 2-14

Counting semaphores are another means to implement task synchronization and
mutual exclusion. The counting semaphore works like the binary semaphore
except that it keeps track of the number of times a semaphore is given. Every time
a semaphore is given, the count is incremented; every time a semaphore is taken,
the count is decremented. When the count reaches zero, a task that tries to take the
semaphore is blocked. As with the binary semaphore, if a semaphore is given and
a task is blocked, it becomes unblocked. However, unlike the binary semaphore, if
a semaphore is given and no tasks are blocked, then the count is incremented. This
means that a semaphore that is given twice can be taken twice without blocking.
Table 2-14 shows an example time sequence of tasks taking and giving a counting
semaphore that was initialized to a count of 3.

Counting Semaphore Example

Semaphore Call Count after Call Resulting Behavior

semCCreate() 3 Semaphore initialized with initial count of 3.
semTake() 2 Semaphore taken.

semTake() 1 Semaphore taken.

semTake() 0 Semaphore taken.

semTake() 0 Task blocks waiting for semaphore to be available.
semGive() 0 Task waiting is given semaphore.

semGive() 1 No task waiting for semaphore; count incremented.

65

VxWorks 5.3.1
Programmer's Guide

Counting semaphores are useful for guarding multiple copies of resources. For
example, the use of five tape drives might be coordinated using a counting
semaphore with an initial count of 5, or a ring buffer with 256 entries might be
implemented using a counting semaphore with an initial count of 256. The initial
count is specified as an argument to the semCCreate() routine.

Special Semaphore Options

The uniform Wind semaphore interface includes two special options. These
options are not available for the POSIX-compatible semaphores described in
POSIX Semaphores, p.67.

Timeouts

Queues

Wind semaphores include the ability to time out from the pended state. This is
controlled by a parameter to semTake() that specifies the amount of time in ticks
that the task is willing to wait in the pended state. If the task succeeds in taking the
semaphore within the allotted time, semTake() returns OK. The errno set when a
semTake() returns ERROR due to timing out before successfully taking the
semaphore depends upon the timeout value passed. A semTake() with NO_WAIT
(0), which means do not wait at all, sets errno to S_objLib_OBJ_UNAVAILABLE. A
semTuake() with a positive timeout value returns S_objLib_OBJ_TIMEOUT. A
timeout value of WAIT_FOREVER (-1) means wait indefinitely.

Wind semaphores include the ability to select the queuing mechanism employed
for tasks blocked on a semaphore. They can be queued based on either of two
criteria: first-in first-out (FIFO) order, or priority order; see Figure 2-13.

Priority ordering better preserves the intended priority structure of the system at
the expense of some overhead in semTake() in sorting the tasks by priority. A FIFO
queue requires no priority sorting overhead and leads to constant-time
performance. The selection of queue type is specified during semaphore creation
with semBCreate(), semMCreate(), or semCCreate(). Semaphores using the
priority inheritance option (SEM_INVERSION_SAFE) must select priority-order
queuing.

66

2

Basic OS
Figure 2-13 Task Queue Types
PRIORITY QUEUE FIFO QUEUE
TCE : '
TCEf S \ TCH
200 : TC
120 TCB ‘4 -] 90 TCB
—— 100
<---180 140
TCB TCB
110 <« priority 110

POSIX Semaphores

POSIX defines both named and unnamed semaphores, which have the same
properties, but use slightly different interfaces. The POSIX semaphore library
provides routines for creating, opening, and destroying both named and unnamed
semaphores. The POSIX semaphore routines provided by semPxLib are shown in
Table 2-15.

With named semaphores, you assign a symbolic name! when opening the
semaphore; the other named-semaphore routines accept this name as an
argument.

The POSIX terms wait (or lock) and post (or unlock) correspond to the VxWorks
terms take and give, respectively.

The initialization routine semPxLibInit() is called by default when
INCLUDE_POSIX_SEM is defined in configAll.h. The routines sem_open(),
sem_unlink(), and sem_close() are for opening and closing/destroying named

1. Some host operating systems, such as UNIX, require symbolic names for objects that are to
be shared among processes. This is because processes do not normally share memory in
such operating systems. In VxWorks, there is no requirement for named semaphores,
because all objects are located within a single address space, and reference to shared objects
by memory location is standard practice.

67

Table 2-15

VxWorks 5.3.1
Programmer’s Guide

semaphores only; sem_init() and sem_destroy() are for initializing and destroying
unnamed semaphores only. The routines for locking, unlocking, and getting the
value of semaphores are used for both named and unnamed semaphores.

POSIX Semaphore Routines

Call Description

semPxLibInit() Initialize the POSIX semaphore library (non-POSIX).
sem_init() Initialize an unnamed semaphore.
sem_destroy() Destroy an unnamed semaphore.

sem_open() Initialize/open a named semaphore.
sem_close() Close a named semaphore.

sem_unlink() Remove a named semaphore.

sem_wait() Lock a semaphore.

sem_trywait() Lock a semaphore only if it is not already locked.
sem_post() Unlock a semaphore.

sem_getvalue() Get the value of a semaphore.

WARNING: The sem_destroy() call terminates an unnamed semaphore and
deallocates any associated memory; the combination of sem_close() and
sem_unlink() has the same effect for named semaphores. Take care when deleting
semaphores, particularly mutual exclusion semaphores, to avoid deleting a
semaphore still required by another task. Do not delete a semaphore unless the
deleting task first succeeds in locking that semaphore. (Likewise, for named
semaphores, close semaphores only from the same task that opens them.)

Comparison of POSIX and Wind Semaphores

POSIX semaphores are counting semaphores; that is, they keep track of the number
of times they are given.

The Wind semaphore mechanism is similar to that specified by POSIX, except that
Wind semaphores offer additional features: priority inheritance, task-deletion

safety, the ability for a single task to take a semaphore multiple times, ownership
of mutual-exclusion semaphores, semaphore timeouts, and the choice of queuing
mechanism. When these features are important, Wind semaphores are preferable.

68

2
Basic OS

Using Unnamed Semaphores

Example 2-6

In using unnamed semaphores, normally one task allocates memory for the
semaphore and initializes it. A semaphore is represented with the data structure
sem_t, defined in semaphore.h. The semaphore initialization routine, sem_init(),
allows you to specify the initial value.

Once the semaphore is initialized, any task can use the semaphore by locking it
with sem_wait() (blocking) or sem_trywait() (non-blocking), and unlocking it
with sem_post().

As noted earlier, semaphores can be used for both synchronization and mutual
exclusion. When a semaphore is used for synchronization, it is typically initialized
to zero (locked). The task waiting to be synchronized blocks on a sem_wait(). The
task doing the synchronizing unlocks the semaphore using sem_post(). If the task
blocked on the semaphore is the only one waiting for that semaphore, the task
unblocks and becomes ready to run. If other tasks are blocked on the semaphore,
the task with the highest priority is unblocked.

When a semaphore is used for mutual exclusion, it is typically initialized to a value
greater than zero (meaning that the resource is available). Therefore, the first task
to lock the semaphore does so without blocking; subsequent tasks block (if the
semaphore value was initialized to 1).
POSIX Unnamed Semaphores
/* This example uses unnamed semaphores to synchronize an action between

* the calling task and a task that it spawns (tSyncTask). To run from

* the shell, spawn as a task:

* -> sp unnameSem

*/

/* includes */

#include "vxWorks.h"
#include "semaphore.h"

/* forward declarations */
void syncTask (sem_t * pSem):;
void unnameSem (void)

;em_t * pSem;

/* reserve memory for semaphore */

pSem = (sem_t *) malloc (sizeof (sem t));

69

VxWorks 5.3.1
Programmer’s Guide

/* initialize semaphore to unavailable */

if (sem init (pSem, 0, 0) == -1)
{
printf ("unnameSem: sem_init failed\n");
return;
}

/* create sync task */

printf ("unnameSem: spawning task...\n");
taskSpawn ("tSyncTask", 90, 0, 2000, syncTask, pSem):;:

/* do something useful to synchronize with syncTask */

/* unlock sem */

printf ("unnameSem: posting semaphore - synchronizing action\n");
if (sem_post (pSem) == -1)

{

printf ("unnameSem: posting semaphore failed\n");

return;

}

/* all done - destroy semaphore */

if (sem_destroy (pSem) == -1)
{
printf ("unnameSem: sem destroy failed\n");
return;
}
}

void syncTask

70

(
sem_t * pSem
)

{
/* wait for synchronization from unnameSem */
if (sem_wait (pSem) == -~1)
{
printf ("syncTask: sem wait failed \n");
return;
}
else

printf ("syncTask:sem locked; doing sync’ed action...\n");

/* do something useful here */
}

2
Basic OS

Using Named Semaphores

Table 2-16

The sem_open() routine either opens a named semaphore that already exists, or, as
an option, creates a new semaphore. You can specify which of these possibilities
you want by combining the following flag values:

O_CREAT Create the semaphore if it does not already exist (if it exists, either fail
or open the semaphore, depending on whether O_EXCL is also
specified).

O_EXCL Open the semaphore only if newly created; fail if the semaphore exists
already.

The possible effects of a call to sem_open(), depending on which flags are set and
on whether the semaphore accessed already exists, are shown in Table 2-16. There
is no entry for O_EXCL alone, because using that flag alone is not meaningful.

Possible Outcomes of Calling sem_open()

Flag Settings Semaphore Exists Semaphore Does Not Exist
None Semaphore is opened Routine fails

O_CREAT Semaphore is opened Semaphore is created
O_CREAT and O_EXCL Routine fails Semaphore is created

A POSIX named semaphore, once initialized, remains usable until explicitly
destroyed. Tasks can explicitly mark a semaphore for destruction at any time, but
the semaphore remains in the system until no task has the semaphore open.

If INCLUDE_SHOW_ROUTINES is defined in the VxWorks configuration (for
details, see 8. Configuration), you can use show() from the Tornado shell to display
information about a POSIX semaphore:?

-> show semId

value = 0 = 0x0
The output is sent to the standard output device, and provides information about
the POSIX semaphore mySem with two tasks blocked waiting for it:

Semaphore name :mySen
sem_open () count :3
Semaphore value :0

No. of blocked tasks 12

. This is not a POSIX routine, nor is it designed for use from programs; use it from the

Tornado shell (see the Tornado User’s Guide: Shell for details).

71

Example 2-7

VxWorks 5.3.1
Programmer’s Guide

For a group of collaborating tasks to use a named semaphore, one of the tasks first
creates and initializes the semaphore (by calling sem_open() with the O_CREAT
flag). Any task that needs to use the semaphore thereafter opens it by calling
sem_open() with the same name (but without setting O_CREAT). Any task that has
opened the semaphore can use it by locking it with sem_wait() (blocking) or
sem_trywait() (non-blocking) and unlocking it with sem_post().

To remove a semaphore, all tasks using it must first close it with sem_close(), and
one of the tasks must also unlink it. Unlinking a semaphore with sem_unlink()
removes the semaphore name from the name table. After the name is removed
from the name table, tasks that currently have the semaphore open can still use it,
but no new tasks can open this semaphore. The next time a task tries to open the
semaphore without the O_CREAT flag, the operation fails. The semaphore vanishes
when the last task closes it.

POSIX Named Semaphores

/* In this example, nameSem() creates a task for synchronization. The
new task, tSyncSemTask, blocks on the semaphore created in nameSem().
Once the synchronization takes place, both tasks close the semaphore,
and nameSem() unlinks it. To run this task from the shell, spawn
nameSem as a task:

-> sp nameSem, "myTest"

* ¥ ¥ ¥ ¥

*/

/* includes */
#include "vxWorks.h"
#include "semaphore.h"
#include "fcntl.h"

/* forward declaration */
int syncSemTask (char * name);

int nameSem
(
char * name
)
{

sem_t * semId;

/* create a named semaphore, initialize to 0%/

printf ("nameSem: creating semaphore\n");

if ((semId = sem open (name, O_CREAT, 0, 0)) == (sem_t *) -1)
{
printf ("nameSem: sem_open failed\n");
return;

}
printf ("nameSem: spawning sync task\n"):;

taskSpawn ("tSyncSemTask", 90, 0, 2000, syncSemTask, name);

72

int

2
Basic OS

/* do something useful to synchronize with syncSemTask */

/* give semaphore */
printf ("nameSem: posting semaphore - synchronizing action\n");
if (sem_post (semId) == -1)

{

printf ("nameSem: sem post failed\n");

return;

}

/* all done */

if (sem_close (semId) == -1)
{
printf ("nameSem: sem close failed\n");
return;

}

if (sem unlink (name) == -1)
{
printf ("nameSem: sem unlink failed\n");
return;
}

printf ("nameSem: closed and unlinked semaphore\n");
}

syncSemTask

(

char * name

)

{

sem_t * semId;

/* open semaphore */
printf ("syncSemTask: opening semaphore\n");

if ((semId = sem_open (name, 0)) == (sem t *) -1)
{
printf ("syncSemTask: sem open failed\n");
return;
}

/* block waiting for synchronization from nameSem */
printf ("syncSemTask: attempting to take semaphore...\n");
if (gsem wait (semId) == -1)

{

printf ("syncSemTask: taking sem failed\n");

return;

}

printf ("syncSemTask: has semaphore, doing sync’ed action ...\n");

/* do something useful here */

if (sem_close (semId) == ~1)
{
printf ("syncSemTask: sem close failed\n");
return;
}
}

73

VxWorks 5.3.1
Programmer’s Guide

2.4.4 Message Queues

Figure 2-14

Modern real-time applications are constructed as a set of independent but
cooperating tasks. While semaphores provide a high-speed mechanism for the
synchronization and interlocking of tasks, often a higher-level mechanism is
necessary to allow cooperating tasks to communicate with each other. In VxWorks,
the primary intertask communication mechanism within a single CPU is message
queues. The optional product, VXMP, provides global message queues that can be
used across processors; for more information, see 6. Shared-Memory Objects.

Message queues allow a variable number of messages, each of variable length, to
be queued. Any task or ISR can send messages to a message queue. Any task can
receive messages from a message queue. Multiple tasks can send to and receive
from the same message queue. Full-duplex communication between two tasks
generally requires two message queues, one for each direction; see Figure 2-14.

Full Duplex Communication Using Message Queues

message queue 1

‘ messag

message queue 2

There are two message-queue subroutine libraries in VxWorks. The first of these,
msgQLib, provides Wind message queues, designed expressly for VxWorks; the
second, mqPxLib, is compatible with the POSIX standard (1003.1b) for real-time
extensions. See Comparison of POSIX and Wind Message Queues, p.86 for a
discussion of the differences between the two message-queue designs.

74

2
Basic OS

Wind Message Queues

Table 2-17

Wind message queues are created and deleted with the routines shown in

Table 2-17. This library provides messages that are queued in FIFO order, with a
single exception: there are two priority levels, and messages marked as high
priority are attached to the head of the queue.

Wind Message Queue Control

Call Description

msgQCreate() Allocate and initialize a message queue.
msgQDelete() Terminate and free a message queue.
msgQSend() Send a message to a message queue.

msgQReceive() Receive a message from a message queue.

A message queue is created with msgQCreate(). Its parameters specify the
maximum number of messages that can be queued in the message queue and the
maximum length in bytes of each message. Enough buffer space is preallocated for
the specified number and length of messages.

A task or ISR sends a message to a message queue with msgQSend(). If no tasks
are waiting for messages on that queue, the message is added to the queue’s buffer
of messages. If any tasks are already waiting for a message from that message
queue, the message is immediately delivered to the first waiting task.

A task receives a message from a message queue with msgQReceive(). If messages
are already available in the message queue’s buffer, the first message is
immediately dequeued and returned to the caller. If no messages are available,
then the calling task blocks and is added to a queue of tasks waiting for messages.
This queue of waiting tasks can be ordered either by task priority or FIFO, as
specified in an option parameter when the queue is created.

Timeouts

Both msgQSend() and msgQReceive() take timeout parameters. When sending a
message, the timeout specifies how many ticks to wait for buffer space to become
available, if no space is available to queue the message. When receiving a message,
the timeout specifies how many ticks to wait for a message to become available, if
no message is immediately available. As with semaphores, the value of the timeout
parameter can have the special values of NO_WAIT (0), meaning always return
immediately, or WAIT_FOREVER (-1), meaning never time out the routine.

75

VxWorks 5.3.1
Programmer’s Guide

Urgent Messages

Example 2-8

The msgQSend() function allows specification of the priority of the message as
either normal (MSG_PRI_NORMAL) or urgent (MSG_PRI_URGENT). Normal
priority messages are added to the tail of the list of queued messages, while urgent
priority messages are added to the head of the list.

Wind Message Queues

/* In this example, task tl creates the message queue and sends a message
* to task t2. Task t2 receives the message from the queue and simply

* displays the message.

*/

/* includes */
#include "vxWorks.h"
#include "msgQLib.h"

/* defines */
f#idefine MAX_MSGS (10)
#define MAX_ MSG LEN (100)

MSG_Q _ID myMsgQId;

task2 (void)
{
char msgBuf [MAX MSG_LEN] ;

/* get message from queue; if necessary wait until msg is available */
if (msgQReceive (myMsgQId, msgBuf, MAX MSG_LEN, WAIT FOREVER) == ERROR)
return (ERROR);

/* display message */
printf ("Message from task 1:\n%s\n", msgBuf); -
}

#define MESSAGE "Greetings from Task 1"
taskl (void)
{
/* create message queue */
if ((myMsgQId = msgQCreate (MAX MSGS, MAX MSG_LEN, MSG_Q PRIORITY))
== NULL)
return (ERROR);

/* send a normal priority message, blocking if queue is full */
if (msgQSend (myMsgQId, MESSAGE, sizeof (MESSAGE), WAIT FOREVER,
MSG_PRI_NORMAIL) == ERROR)
return (ERROR);

76

2
Basic OS

POSIX Message Queues

Table 2-18

The POSIX message queue routines, provided by mqPxLib, are shown in
Table 2-18. These routines are similar to Wind message queues, except that POSIX
message queues provide named queues and messages with a range of priorities.

POSIX Message Queue Routines

Call Description

mgPxLibInit() Initialize the POSIX message queue library (non-POSIX).
mq_open() Open a message queue.

mq_close() Close a message queue.

mg_unlink() Remove a message queue.

mgq_send() Send a message to a queue.

mg_receive() Get a message from a queue.

mgq_notify() Signal a task that a message is waiting on a queue.
mq_setattr() Set a queue attribute.

mq_getattr() Get a queue attribute.

The initialization routine mqPxLibInit() makes the POSIX message queue
routines available; the system initialization code must call it before any tasks use
POSIX message queues. As shipped, usrlnit() calls mgPxLibInit() when
INCLUDE_POSIX_MQ is defined in configAlLh.

Before a set of tasks can communicate through a POSIX message queue, one of the
tasks must create the message queue by calling mq_open() with the O_CREAT flag
set. Once a message queue is created, other tasks can open that queue by name to
send and receive messages on it. Only the first task opens the queue with the
O_CREAT flag; subsequent tasks can open the queue for receiving only
(O_RDONLY), sending only (O_WRONLY), or both sending and receiving
(O_RDWR).

To put messages on a queue, use mq_send(). If a task attempts to put a message on
the queue when the queue is full, the task blocks until some other task reads a
message from the queue, making space available. To avoid blocking on mg_send(),
set O_NONBLOCK when you open the message queue. In that case, when the

77

Example 2-9

VxWorks 5.3.1
Programmer’s Guide

queue is full, mq_send() returns -1 and sets errno to EAGAIN instead of pending,
allowing you to try again or take other action as appropriate.

One of the arguments to mq_send() specifies a message priority. Priorities range
from 0 (lowest priority) to 31 (highest priority).

When a task receives a message using mq_receive(), the task receives the highest-
priority message currently on the queue. Among multiple messages with the same
priority, the first message placed on the queue is the first received (FIFO order). If
the queue is empty, the task blocks until a message is placed on the queue. To avoid
pending on mq_receive(), open the message queue with O_NONBLOCK; in that
case, when a task attempts to read from an empty queue, mq_receive() returns -1
and sets errno to EAGAIN.

To close a message queue, call mq_close(). Closing the queue does not destroy it,
but only asserts that your task is no longer using the queue. To request that the
queue be destroyed, call mg_unlink(). Unlinking a message queue does not destroy
the queue immediately, but it does prevent any further tasks from opening that
queue, by removing the queue name from the name table. Tasks that currently
have the queue open can continue to use it. When the last task closes an unlinked
queue, the queue is destroyed.

POSIX Message Queues

/* In this example, the mgExInit() routine spawns two tasks that
* communicate using the message queue.
*/

/* mgEx.h - message example header */

/* defines */
fidefine MQ NAME "exampleMessageQueue"

/* forward declarations */
void receiveTask (void);
void sendTask (void);

/* testMQ.c - example using POSIX message queues */

/* includes */
#include "vxWorks.h"
#include "mgueue.h”
#include "fcntl.h"
#include "errno.h"
#include "mgEx.h"

/* defines */

#define HI_PRIO 31
f#define MSG_SIZE 16

78

2
Basic OS

int mgExInit (void)

{

/* create two tasks */

if (taskSpawn ("tRcvTask", 95, 0, 4000, receiveTask, 0, 0, 0, O,

0, 0, 0, 0, 0, 0) == ERROR)

{
printf ("taskSpawn of tRcvTask failed\n");
return (ERROR) ;
}

if (taskSpawn ("tSndTask", 100, 0, 4000, sendTask, O, 0, 0, O,
0, 0, 0, 0, 0, 0) == ERROR)
{
printf ("taskSpawn of tSendTask failed\n"):;
return (ERROR);

}
}
void receiveTask (void)
{
mgd_t mgPXId; /* msg queue descriptor */
char msg [MSG_SIZE]; /* msg buffer */
int prio; /* priority of message */

/* open message queue using default attributes */
if ((mgPXId = mg open (MQ_NAME, O _RDWR | O_CREAT, 0, NULL))

== (mgd t) -1)
{
printf ("receiveTask: mg open failed\n"):;
return;
}
/* try reading from queue */
if (mg_receive (mgPXId, msg, MSG_SIZE, &prio) == -1)
{
printf ("receiveTask: mg receive failed\n");
return;
}
else
{

printf ("receiveTask: Msg of priority %d received:\n\t\t%s\n",
prio, msg);
}
}

/* sendTask.c - mq sending example */

/* includes */
#include "vxWorks.h"
#include "mqueue.h"
#include "fcntl.h"
#include "mgEx.h"

/* defines */

#define MSG "greetings"
#define HI_PRIO 30

79

VxWorks 5.3.1
Programmer's Guide

void sendTask (void)
{
mgd_t ngPXId; /* msg queue descriptor */

/* open msg queue; should already exist with default attributes */
if ((mgPXId = mg open (MQ NAME, O_RDWR, 0, NULL)) == (mgd_t) -1)

{

printf ("sendTask: mg open failed\n");

return;

}

/* try writing to queue */
if (mg send (mgPXId, MSG, sizeof (MSG), HI_PRIO) == -1)
{
printf ("sendTask: mg send failed\n");
return;
}
else
printf ("sendTask: mg send succeeded\n");
}

Notifying a Task that a Message is Waiting

A task can use the mq_notify() routine to request notification when a message for
itarrives at an empty queue. The advantage of this is that a task can avoid blocking
or polling to wait for a message.

The mq_notify() call specifies a signal to be sent to the task when a message is
placed on an empty queue. This mechanism uses the POSIX data-carrying
extension to signaling, which allows you, for example, to carry a queue identifier
with the signal (see POSIX Queued Signals, p.92).

The mgq_notify() mechanism is designed to alert the task only for new messages
that are actually available. If the message queue already contains messages, no
notification is sent when more messages arrive. If there is another task that is
blocked on the queue with mq_receive(), that other task unblocks, and no
notification is sent to the task registered with mq_notify().

Notification is exclusive to a single task: each queue can register only one task for
notification at a time. Once a queue has a task to notify, no attempts to register with
mq_notify() can succeed until the notification request is satisfied or cancelled.

Once a queue sends notification to a task, the notification request is satisfied, and
the queue has no further special relationship with that particular task; that is, the
queue sends a notification signal only once per mq_notify() request. To arrange for
one particular task to continue receiving notification signals, the best approach is
to call mq_notify() from the same signal handler that receives the notification
signals. This reinstalls the notification request as soon as possible.

80

Example 2-10

2
Basic OS

To cancel a notification request, specify NULL instead of a notification signal. Only
the currently registered task can cancel its notification request.

Notifying a Task that a Message Queue is Waiting

/* In this example, a task uses mqg notify() to discover when a message
* is waiting for it on a previously empty queue.
*/

/* includes */
#include "vxWorks.h"
#include "signal.h"
#include "mqueue.h"
#include "fcntl.h"
#include "errno.h"

/* defines */
#define QNAM "PxQ1"
#define MSG_SIZE 64 /* limit on message sizes */

/* forward declarations */
static void exNotificationHandle (int, siginfo_t *, void *);
static void exMgRead (mgd_t);

[REEh Rk hkkdhhhhhkhhhhkhhhhkhhhhhhhhhkhhhhkhhhhhhhhhhkhkkhhhhhhhkhdhhhkhhhhkhhhkik

exMgNotify - example of how to use mg notify()

This routine illustrates the use of mg notify() to request notification
via signal of new messages in a queue. To simplify the example, a
single task both sends and receives a message.

/

* ¥ * ¥ ¥ ¥ *

int exMgNotify
(

char * pMess /* text for message to self */

)

{

struct mqg attr attr; /* queue attribute structure */
struct sigevent sigNotify; /* to attach notification */
struct sigaction mySigAction; /* to attach signal handler */
mgd_t exMqId; /* id of message queue */

/* Minor sanity check; avoid exceeding msg buffer */
if (MSG_SIZE <= strlen (pMess))
{
printf ("exMgNotify: message too long\n");
return (-1);
}

/* Install signal handler for the notify signal - £ill in a

* gigaction structure and pass it to sigaction(). Because the
+* handler needs the siginfo structure as an argument, the

* SA_SIGINFO flag is set in sa_flags.

81

VxWorks 5.3.1
Programmer’s Guide

82

mySigAction.sa_sigaction = exNotificationHandle;
mySigAction.sa_flags = SA_SIGINFO;
sigemptyset (&mySigAction.sa_mask);

if (sigaction (SIGUSR1l, &mySigAction, NULL) == -1)
{
printf ("sigaction failed\n"):;
return (-1);
}

/* Create a message queue - fill in a mg attr structure with the
* gize and no. of messages required, and pass it to mg open().
*/

attr.mg flags = O_NONBLOCK; /* make nonblocking */

attr.mg maxmsg = 2;

attr.mqg msgsize = MSG_SIZE;

if ((exMqId = mg open (QNAM, O_CREAT | O_RDWR, 0, &attr)) ==
(mgd_t) - 1)
{
printf ("mq open failed\n");
return (-1);
}

/* Set up notification: fill in a sigevent structure and pass it
* to mgq notify(). The queue ID is passed as an argument to the
* gignal handler.

*/
sigNotify.sigev_signo = SIGUSR1;
sigNotify.sigev notify = SIGEV_SIGNAL;

sigNotify.sigev_value.sival_int = (int) exMqId;

if (mg notify (exMgId, &sigNotify) == -1)
{
printf ("mg notify failed\n");
return (-1);
}

/* We just created the message queue, but it may not be empty;
* a higher-priority task may have placed a message there while
* we were requesting notification. mg notify() does nothing if
* messages are already in the queue; therefore we try to
* retrieve any messages already in the queue.

*/
exMgRead (exMqId);

/* Now we know the queue is empty, so we will receive a signal

* the next time a message arrives.

*

* We send a message, which causes the notify handler to be

* invoked. It is a little silly to have the task that gets the
* notification be the one that puts the messages on the queue,
* but we do it here to simplify the example.

*

* A real application would do other work instead at this point.
*/

2
Basic OS

i1f (mq send (exMqId, pMess, 1 + strlen (pMess), 0) == -1)
{
printf ("mq send failed\n");
return (-1);

}

/* Cleanup */
if (mg _close (exMgqId) == -1)
{
printf ("'mg _close failed\n");
return (-1);
}

/* More cleanup */
if (mg unlink (QNAM) == =~1)
{
printf ("mg unlink failed\n");
return (-1);
}

return (0);

}

[REhhkkhhhkkhhhhhhkhhkkhhhhhddhhhhhhdhhhhhhhhhhhhhkkhhhhhkhhhdkhhhhhdhdhdhhhn

exNotificationHandle - handler to read in messages

* ¥ ¥ ¥ ¥

This routine is a signal handler; it reads in messages from a message
queue.
*/

static void exNotificationHandle
(

int sig, /* signal number */

siginfo_t * pInfo, /* signal information */

void * pSigContext /* unused (required by posix) */
)

{

struct sigevent sigNotify;

mgd_t exMqId;

/* Get the Id of the message queue out of the siginfo structure.
*/
exMqgId = (mgd _t) pInfo->si_ value.sival_int;

/* Request notification again; it resets each time a notification
* gignal goes out.

*/

sigNotify.sigev_signo = pInfo->si_signo;

sigNotify.sigev_value = pInfo->si_value;

sigNotify.sigev_notify = SIGEV_SIGNAL;

"if (mg _notify (exMqId, &sigNotify) == -1)

{
printf ("mg notify failed\n");

83

VxWorks 5.3.1
Programmer’s Guide

return;
}

/* Read in the messages
*/

exMgRead (exMqId);

}

/**

exMgqRead - read in messages

This small utility routine receives and displays all messages
currently in a POSIX message queue; assumes queue has O_NONBLOCK.

* ¥ ¥ ¥ #

*/

static void exMgRead
(

mgd_t exMgId

)

{

char msg [MSG_SIZE];
int prio;

/* Read in the messages - uses a loop to read in the messages
because a notification is sent ONLY when a message is sent on
an EMPTY message queue. There could be multiple msgs if, for
example, a higher-~priority task was sending them. Because the
message queue was opened with the O_NONBLOCK flag, eventually
this loop exits with errno set to EAGAIN (meaning we did an
mg _receive() on an empty message queue).

* ¥ ¥ ¥ ¥ *

*/

while (mg_receive (exMgId, msg, MSG_SIZE, &prio) != -1)
{
printf ("exMgRead: received message: %s\n",msg);
}

if (errno != EAGAIN)

{
printf ("mg receive: errno = %d\n", errno);

}

Message Queue Attributes
A POSIX message queue has the following attributes:

- anoptional O_NONBLOCK flag

~ the maximum number of messages in the message queue
- the maximum message size

— the number of messages currently on the queue

Tasks can set or clear the O_NONBLOCK flag (but not the other attributes) using
mgq_setattr(), and get the values of all the attributes using mg_getattr().

84

2
Basic OS

Example 2-11 Setting and Getting Message Queue Attributes

/* This example sets the O_NONBLOCK flag, and examines message queue
* attributes.
*/

/* includes */
#include "vxWorks.h"
#include "mgueue.h"
#include "fcntl.h"
#include "errno.h"

/* defines */
#define MSG_SIZE 16

int attrEx
(

char * name

)

{

mgd_t mgPXId; /* mq descriptor */

struct mg attr attr; /* queue attribute structure */
struct mg _attr oldAattr; /* old queue attributes */

char buffer [MSG_SIZE];

int prio;

/* create read write queue that is blocking */
attr.mq flags = 0;
attr.mg maxmsg = 1;
attr.mqg msgsize = 16;
if ((mgPXId = mg open (name, O_CREAT | O_RDWR , 0, &attr))
== (mgd_t) -1)
return (ERROR);
else
printf ("mg open with non-block succeeded\n");

/* change attributes on queue - turn on non-blocking */
attr.mgq flags = O_NONBLOCK;
if (mg_setattr (mgPXId, &attr, &oldAttr) == -1)
return (ERROR);
else
{
/* paranoia check - oldAttr should not include non-blocking.
*/
if (oldattr.mg flags & O_NONBLOCK)
return (ERROR);
else
printf ("mg setattr turning on non-blocking succeeded\n");

}
/* try receiving -~ there are no messages but this shouldn't block */
if (mg receive (mgPXId, buffer, MSG_SIZE, &prio) == -1)

{

if (errno != EAGAIN)

return (ERROR);
else

printf ("mq receive with non-blocking didn’t block on empty gueue\n');
}

85

VxWorks 5.3.1
Programmer’s Guide

else

return (ERROR);

/* use mg getattr to verify success */
if (mg getattr (mgPXId, &oldattr) == -1)

return (ERROR);

else
{

/* test that we got the values we think we should */
if (!(oldAttr.mqg flags & O_NONBLOCK) || (oldAttr.mq curmsgs != 0))
return (ERROR);

else

printf ("queue attributes are:\n\tblocking is %s\n\t
message size is: %d\n\t

max messages in queue: %d\n\t

no. of current msgs in queue: %d\n",
oldattr.mg flags & O_NONBLOCK ? "on" : "off",
oldAttr.mqg msgsize, oldAttr.mg maxmsg,
oldAttr.mg_curmsgs) ;

}

/* clean up - close and unlink mg */

if (mg unlink (name) == -1)

return (ERROR);

if (mg_close (mgPXId) == -1)

return (ERROR);

return (OK);

}

Comparison of POSIX and Wind Message Queues

Table 2-19

The two forms of message queues solve many of the same problems, but there are
some significant differences. Table 2-19 summarizes the main differences between
the two forms of message queues.

Message Queue Feature Comparison

Feature Wind Message Queues POSIX Message Queues
Message Priority Levels 1 32

Blocked Task Queues FIFO or priority-based Priority-based

Receive with Timeout Optional Not available

Task Notification Not available Optional (one task)
Close/Unlink Semantics No Yes

86

2
Basic OS

Another feature of POSIX message queues is, of course, portability: if you are
migrating to VxWorks from another 1003.1b-compliant system, using POSIX
message queues enables you to leave that part of the code unchanged, reducing the
porting effort.

Displaying Message Queue Attributes

The VxWorks show() command produces a display of the key message queue
attributes, for either kind of message queue®. For example, if mqPXId is a POSIX
message queue:

-> show mgPXId
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

Message queue name : MyQueue
No. of messages in queue 1
Maximum no. of messages : 16
Maximum message size : 16

Compare this to the output when myMsgQId is a Wind message queue:*

-> show myMsgQId

Message Queue Id : 0x3adaf0
Task Queuing : FIFO
Message Byte Len : 4
Messages Max : 30
Messages Queued - 14
Receivers Blocked : 0

Send timeouts : 0

Receive timeouts : 0

Servers and Clients with Message Queues

Real-time systems are often structured using a client-server model of tasks. In this
model, server tasks accept requests from client tasks to perform some service, and
usually return a reply. The requests and replies are usually made in the form of
intertask messages. In VxWorks, message queues or pipes (see 2.4.5 Pipes, p.88) are
a natural way to implement this.

3. However, to get information on POSIX message queues, INCLUDE_SHOW_ROUTINES
must be defined in the VxWorks configuration; for information, see 8. Configuration.

4. The built-in show() routine handles Wind message queues; see the Tornado User’s Guide:
Shell for information on built-in routines. You can also use the Tornado browser to get infor-
mation on Wind message queues; see the Tornado User’s Guide: Browser for details.

87

Figure 2-15

2.4.5 Pipes

VxWorks 5.3.1
Programmer’s Guide

For example, client-server communications might be implemented as shown in
Figure 2-15. Each server task creates a message queue to receive request messages
from clients. Each client task creates a message queue to receive reply messages
from servers. Each request message includes a field containing the msgQId of the
client’s reply message queue. A server task’s “main loop” consists of reading
request messages from its request message queue, performing the request, and
sending a reply to the client’s reply message queue.

Client-Server Communications Using Message Queues

reply queue 1

nessage|

request queue

nessage|

reply queue 2

The same architecture can be achieved with pipes instead of message queues, or by
other means that are tailored to the needs of the particular application.

Pipes provide an alternative interface to the message queue facility that goes
through the VxWorks I/O system. Pipes are virtual I/O devices managed by the
driver pipeDrv. The routine pipeDevCreate() creates a pipe device and the
underlying message queue associated with that pipe. The call specifies the name

88

2
Basic OS

of the created pipe, the maximum number of messages that can be queued to it,
and the maximum length of each message:

status = pipeDevCreate ("/pipe/name", max_msgs, max_length):

The created pipe is a normally named I/O device. Tasks can use the standard I/O
routines to open, read, and write pipes, and invoke ioct! routines. As they do with
other I/O devices, tasks block when they read from an empty pipe until data is
available, and block when they write to a full pipe until there is space available.
Like message queues, ISRs can write to a pipe, but cannot read from a pipe.

As1/0 devices, pipes provide one important feature that message queues
cannot—the ability to be used with select(). This routine allows a task to wait for
data to be available on any of a set of I/O devices. The select() routine also works
with other asynchronous 1/0O devices including network sockets and serial
devices. Thus, by using select(), a task can wait for data on a combination of
several pipes, sockets, and serial devices; see 3.3.8 Pending on Multiple File
Descriptors: The Select Facility, p.117.

Pipes allow you to implement a client-server model of intertask communications;
see Servers and Clients with Message Queues, p.87.

2.4.6 Network Intertask Communication

Sockets

In VxWorks, the basis of intertask communications across the network is sockets. A
socket is an endpoint for communications between tasks; data is sent from one
socket to another. When you create a socket, you specify the Internet
communications protocol that is to transmit the data. VxWorks supports the
Internet protocols TCP and UDP. VxWorks socket facilities are source compatible
with BSD 4.3 UNIX.

TCP provides reliable, guaranteed, two-way transmission of data with stream
sockets. In a stream-socket communication, two sockets are “connected,” allowing
areliable byte-stream to flow between them in each direction as in a circuit. For this
reason TCP is often referred to as a virtual circuit protocol.

UDP provides a simpler but less robust form of communication. In UDP
communications, data is sent between sockets in separate, unconnected,
individually addressed packets called datagrams. A process creates a datagram
socket and binds it to a particular port. There is no notion of a UDP “connection.”

89

VxWorks 5.3.1
Programmer’s Guide

Any UDP socket, on any host in the network, can send messages to any other UDP
socket by specifying its Internet address and port number.

One of the biggest advantages of socket communications is that it is
“homogeneous.” Socket communications among processes are exactly the same
regardless of the location of the processes in the network, or the operating system
under which they are running. Processes can communicate within a single CPU,
across a backplane, across an Ethernet, or across any connected combination of
networks. Socket communications can occur between VxWorks tasks and host
system processes in any combination. In all cases, the communications look
identical to the application, except, of course, for their speed.

For more information, see 5.2.6 Sockets, p.251 and the reference entry for sockLib.

Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC) is a facility that allows a process on one machine to
call a procedure that is executed by another process on either the same machine or
a remote machine. Internally, RPC uses sockets as the underlying communication
mechanism. Thus with RPC, VxWorks tasks and host system processes can invoke
routines that execute on other VxWorks or host machines, in any combination.

As discussed in the previous sections on message queues and pipes, many real-
time systems are structured with a client-server model of tasks. In this model,
client tasks request services of server tasks, and then wait for their reply. RPC
formalizes this model and provides a standard protocol for passing requests and
returning replies. Also, RPC includes tools to help generate the client interface
routines and the server skeleton.

For more information on RPC, see 5.2.8 Remote Procedure Calls, p.278.

2.4.7 Signals

VxWorks supports a software signal facility. Signals asynchronously alter the
control flow of a task. Any task or ISR can raise a signal for a particular task. The
task being signaled immediately suspends its current thread of execution and the
task-specified signal handler routine is executed the next time the task is scheduled
to run. Note that the signal handler gets invoked even if the task is blocked. Signals
are more appropriate for error and exception handling than as a general-purpose
intertask communication mechanism.

90

2
Basic OS

The wind kernel supports two types of signal interface: UNIX BSD-style signals
and POSIX-compatible signals. The POSIX-compatible signal interface, in turn,
includes both the fundamental signaling interface specified in the POSIX standard
1003.1, and the queued-signals extension from POSIX 1003.1b. For the sake of
simplicity, we recommend that you use only one interface type in a given
application, rather than mixing routines from different interfaces.

For more information on signals, see the reference entry for sigLib.

Basic Signal Routines

Table 2-20

Table 2-20 shows the basic signal routines. To make these facilities available, the
signal library initialization routine sigInit() must be called, normally from
usrInit() in usrConfig.c, before interrupts are enabled.

Basic Signal Calls (BSD and POSIX 1003.1b)

POSIX 1003.1b UNIX BSD

Compatible Compatible Description

Call Call

signal() signal() Specify the handler associated with a signal.
Kill() kill() Send a signal to a task.

raise() N/A Send a signal to yourself.

sigaction() sigvec() Examine or set the signal handler for a signal.
sigsuspend() pause() Suspend a task until a signal is delivered.
sigpending() N/A Retrieve a set of pending signals blocked from delivery.
sigemptyset() sigmask() Manipulate a signal mask.

sigfillset()

sigaddset()

sigdelset()

sigismember()

sigprocmask() sigsetmask() Set the mask of blocked signals.

sigprocmask() sigblock() Add to a set of blocked signals.

The colorful name kill() harks back to the origin of these interfaces in UNIX BSD.
Although the interfaces vary, the functionality of BSD-style signals and basic
POSIX signals is similar.

91

VxWorks 5.3.1
Programmer’s Guide

In many ways, signals are analogous to hardware interrupts. The basic signal
facility provides a set of 31 distinct signals. A signal handler binds to a particular
signal with sigvec() or sigaction() in much the same way that an ISR is connected
to an interrupt vector with intConnect(). A signal can be asserted by calling kill().
This is analogous to the occurrence of an interrupt. The routines sigsetmask() and
sigblock() or sigprocmask() let signals be selectively inhibited.

Certain signals are associated with hardware exceptions. For example, bus errors,
illegal instructions, and floating-point exceptions raise specific signals.

POSIX Queued Signals

The sigqueue() routine provides an alternative to kill() for sending signals to a
task. The important differences between the two are:

» sigqueue() includes an application-specified value that is sent as part of the
signal. You can use this value to supply whatever context your signal handler
finds useful. This value is of type sigval (defined in signal.h); the signal
handler finds it in the si_value field of one of its arguments, a structure
siginfo_t. An extension to the POSIX sigaction() routine allows you to register
signal handlers that accept this additional argument.

» sigqueue() enables the queueing of multiple signals for any task. The kill()
routine, by contrast, delivers only a single signal, even if multiple signals
arrive before the handler runs.

VxWorks includes eight signals reserved for application use, numbered
consecutively from RTSIGMIN. The presence of these eight reserved signals is
required by POSIX 1003.1b, but the specific signal values are not; for portability,
specify these signals as offsets from RTSIGMIN (for example, write RTSIGMIN+2
to refer to the third reserved signal number). All signals delivered with sigqueue()
are queued by numeric order, with lower-numbered signals queuing ahead of
higher-numbered signals.

POSIX 1003.1b also introduced an alternative means of receiving signals. The
routine sigwaitinfo() differs from sigsuspend() or pause() in that it allows your
application to respond to a signal without going through the mechanism of a
registered signal handler: when a signal is available, sigwaitinfo() returns the
value of that signal as a result, and does not invoke a signal handler even if one is
registered. The routine sigtimedwait() is similar, except that it can time out.

For detailed information on signals, see the reference entry for sigLib.

92

2
Basic OS

Table 2-21 POSIX 1003.1b Queued Signal Calls

Call Description

sigqueune() Send a queued signal.

sigwaitinfo() Wait for a signal.

sigtimedwait() Wait for a signal with a timeout.
Signal Configuration

The basic signal facility is included in VxWorks by default with
INCLUDE_SIGNALS (defined in configAILh).

Before your application can use POSIX queued signals, they must be initialized
separately with sigqueuelnit(). Like the basic signals initialization function
siglnit(), this function is normally called from usrInit() in usrConfig.c, after
sysInit() runs.

To initialize the queued signal functionality, also define
INCLUDE_POSIX_SIGNALS in configAll.h: with that definition, sigqueuelnit() is
called automatically.

The constant NUM_SIGNAL_QUEUES in configAlLh specifies the number of
signals that can be simultaneously queued for a specific task. The routine
sigqueuelnit() allocates that number of buffers for use by sigqueue(), which
requires a buffer for each currently queued signal. A call to sigqueue() fails if no
buffer is available.

2.5 Interrupt Service Code

Hardware interrupt handling is of key significance in real-time systems, because it
is usually through interrupts that the system is informed of external events. For the
fastest possible response to interrupts, interrupt service routines (ISRs) in VxWorks
run in a special context outside of any task’s context. Thus, interrupt handling
involves no task context switch. The interrupt routines, listed in Table 2-22, are
provided in intLib and intArchLib.

93

VxWorks 5.3.1
Programmer’s Guide

Table 2-22 Interrupt Routines

Call Description

intConnect() Connect a C routine to an interrupt vector.
intContext() Return TRUE if called from interrupt level.
intCount() Get the current interrupt nesting depth.
intLevelSet() Set the processor interrupt mask level.
intLock() Disable interrupts.

intUnlock() Re-enable interrupts.

intVecBaseSet() Set the vector base address.
intVecBaseGet() Get the vector base address.

intVecSet() Set an exception vector.

intVecGet() Get an exception vector.

For boards with an MMU, the optional product VxVMI provides write protection
for the interrupt vector table; see 7. Virtual Memory Interface.

2.5.1 Connecting Application Code to Interrupts

You can use system hardware interrupts other than those used by VxWorks.
VxWorks provides the routine intConnect(), which allows C functions to be
connected to any interrupt. The arguments to this routine are the byte offset of the
interrupt vector to connect to, the address of the C function to be connected, and
an argument to pass to the function. When an interrupt occurs with a vector
established in this way, the connected C function is called at interrupt level with
the specified argument. When the interrupt handling is finished, the connected
function returns. A routine connected to an interrupt in this way is called an
interrupt service routine (ISR).

Interrupts cannot actually vector directly to C functions. Instead, intConnect()
builds a small amount of code that saves the necessary registers, sets up a stack
entry (either on a special interrupt stack, or on the current task’s stack) with the
argument to be passed, and calls the connected function. On return from the
function it restores the registers and stack, and exits the interrupt; see Figure 2-16.

94

Basic OS
Figure 2-16 Routine Built by intConnect()
Wrapper built by intConnect() Interrupt Service Routine
save registers my:Sl(z
-set up stack int val;
invoke routine -)(
restore registers and stack /* deal with hardware*/
exit)

intConnect (INUM TO IVEC (someIntNum), myISR, someVal);

For target boards with VME backplanes, the BSP provides two standard routines
for controlling VME bus interrupts, sysIntEnable() and sysIntDisable().

2.5.2 Interrupt Stack

Whenever the architecture allows it, all ISRs use the same interrupt stack. This stack
is allocated and initialized by the system at start-up according to specified
configuration parameters. It must be large enough to handle the worst possible
combination of nested interrupts.

Some architectures, however, do not permit using a separate interrupt stack. On
such architectures, ISRs use the stack of the interrupted task. If you have such an
architecture, you must create tasks with enough stack space to handle the worst
possible combination of nested interrupts and the worst possible combination of
ordinary nested calls. See the reference entry for your BSP to determine whether
your architecture supports a separate interrupt stack.

Use the checkStack() facility during development to see how close your tasks and
ISRs have come to exhausting the available stack space.

2.5.3 Special Limitations of ISRs

Many VxWorks facilities are available to ISRs, but there are some important
limitations. These limitations stem from the fact that an ISR does not run in a
regular task context: it has no task control block, for example, and all ISRs share a
single stack.

95

Table 2-23

VxWorks 5.3.1

Programmer’s Guide

Routines that Can Be Called by Interrupt Service Routines

Library Routines

bLib All routines

errnoLib errnoGet(), errnoSet()

fppArchLib frpSave(), fopRestore()

intLib intContext(), intCount(), intVecSet(), intVecGet()

intArchLib intLock(), intUnlock()

logLib logMsg()

IstLib All routines except IstFree()

mathALib All routines, if fppSave() / fppRestore() are used

msgQLib msgQSend()

pipeDrv write()

rngLib All routines except rngCreate() and rngDelete()

selectLib selWakeup(), selWakeupAll()

semLib semGive() except mutual-exclusion semaphores, semFlush()

sigLib kill()

taskLib taskSuspend(), taskResume(), taskPrioritySet(), taskPriorityGet(),
taskIdVerify(), taskIdDefault(), taskIsReady(), taskIsSuspended(),
taskTeb()

tickLib tickAnnounce(), tickSet(), tickGet()

tyLib tyIRd(), tyITx()

vxLib vxTas(), vxMemProbe()

wdLib wdStart(), wdCancel()

For this reason, the basic restriction on ISRs is that they must not invoke routines
that might cause the caller to block. For example, they must not try to take a
semaphore, because if the semaphore is unavailable, the kernel tries to switch the

caller to the pended state. However, ISRs can give semaphores, releasing any tasks

waiting on them.

Because the memory facilities malloc() and free() take a semaphore, they cannot
be called by ISRs, and neither can routines that make calls to malloc() and free().
For example, ISRs cannot call any creation or deletion routines.

96

2
Basic OS

ISRs also must not perform I/0 through VxWorks drivers. Although there are no
inherent restrictions in the I/O system, most device drivers require a task context
because they might block the caller to wait for the device. An important exception
is the VxWorks pipe driver, which is designed to permit writes by ISRs.

VxWorks supplies a logging facility, in which a logging task prints text messages
to the system console. This mechanism was specifically designed so that ISRs
could use it, and is the most common way to print messages from ISRs. For more
information, see the reference entry for logLib.

An ISR also must not call routines that use a floating-point coprocessor. In
VxWorks, the interrupt driver code created by intConnect() does not save and
restore floating-point registers; thus, ISRs must not include floating-point
instructions. If an ISR requires floating-point instructions, it must explicitly save
and restore the registers of the floating-point coprocessor using routines in
fppArchLib.

All VxWorks utility libraries, such as the linked-list and ring-buffer libraries, can
be used by ISRs. As discussed earlier (2.3.7 Task Error Status: errno, p.45), the global
variable errno is saved and restored as a part of the interrupt enter and exit code
generated by the intConnect() facility. Thus errno can be referenced and modified

by ISRs as in any other code. Table 2-23 lists routines that can be called from ISRs.

2.5.4 Exceptions at Interrupt Level

When a task causes a hardware exception such as illegal instruction or bus error,
the task is suspended and the rest of the system continues uninterrupted.
However, when an ISR causes such an exception, there is no safe recourse for the
system to handle the exception. The ISR has no context that can be suspended.
Instead, VxWorks stores the description of the exception in a special location in low
memory and executes a system restart.

The VxWorks boot ROMs test for the presence of the exception description in low
memory and if it is detected, display it on the system console. The e command in
the boot ROMs re-displays the exception description; see the Tornado User’s Guide:
Getting Started.

One example of such an exception is the message:
workQPanic: Kernel work queue overflow.

This exception usually occurs when kernel calls are made from interrupt level ata
very high rate. It generally indicates a problem with clearing the interrupt signal
or a similar driver problem.

97

VxWorks 5.3.1
Programmer’s Guide

2.5.5 Reserving High Interrupt Levels

The VxWorks interrupt support described earlier in this section is acceptable for
most applications. However, on occasion, low-level control is required for events
such as critical motion control or system failure response. In such cases it is
desirable to reserve the highest interrupt levels to ensure zero-latency response to
these events. To achieve zero-latency response, VxWorks provides the routine
intLockLevelSet(), which sets the system-wide interrupt-lockout level to the
specified level. If you do not specify a level, the default is the highest level
supported by the processor architecture.

A NOTE: Some hardware prevents masking certain interrupt levels; check the
hardware manufacturer’s documentation. For example, on MC680x0 chips,
interruptlevel 7 is non-maskable. Because level 7 is also the highest interrupt level
on this architecture, VxWorks uses 7 as the default lockout level—but this is in fact
equivalent to a lockout level of 6, since the hardware prevents locking out level 7.

2.5.6 Additional Restrictions for ISRs at High Interrupt Levels

ISRs connected to interrupt levels that are not locked out (either an interrupt level
higher than that set by intLockLevelSet(), or an interrupt level defined in
hardware as non-maskable) have special restrictions:

= The ISR can be connected only with intVecSet().

» The ISR cannot use any VxWorks operating system facilities that depend on
interrupt locks for correct operation.

2.5.7 Interrupt-to-Task Communication

While it is important that VxWorks support direct connection of ISRs that run at
interrupt level, interrupt events usually propagate to task-level code. Many
VxWorks facilities are not available to interrupt-level code, including I/O to any
device other than pipes. The following techniques can be used to communicate
from ISRs to task-level code:

* Shared Memory and Ring Buffers. ISRs can share variables, buffers, and ring
buffers with task-level code.

* Semaphores. ISRs can give semaphores (except for mutual-exclusion
semaphores and VxMP shared semaphores) that tasks can take and wait for.

98

2
Basic OS

= Message Queues. ISRs can send messages to message queues for tasks to
receive (except for shared message queues using VxMP). If the queue is full,
the message is discarded.

= Pipes. ISRs can write messages to pipes that tasks can read. Tasks and ISRs can
write to the same pipes. However, if the pipe is full, the message written is
discarded because the ISR cannot block. ISRs must not invoke any I/O routine
on pipes other than write().

= Signals. ISRs can “signal” tasks, causing asynchronous scheduling of their
signal handlers.

2.6 Watchdog Timers

Table 2-24

VxWorks includes a watchdog-timer mechanism that allows any C function to be
connected to a specified time delay. Watchdog timers are maintained as part of the
system clock ISR. Normally, functions invoked by watchdog timers execute as
interrupt service code at the interrupt level of the system clock. However, if the
kernel is unable to execute the function immediately for any reason (such as a
previous interrupt or kernel state), the function is placed on the tExcTask work
queue. Functions on the tExcTask work queue execute at the priority level of the
tExcTask (usually 0). Restrictions on ISRs apply to routines connected to watchdog
timers. The functions in Table 2-24 are provided by the wdLib library.

Watchdog Timer Calls

Call Description

wdCreate() Allocate and initialize a watchdog timer.
wdDelete() Terminate and deallocate a watchdog timer.
wdStart() Start a watchdog timer.

wdCancel() Cancel a currently counting watchdog timer.

A watchdog timer is first created by calling wdCreate(). Then the timer can be
started by calling wdStart(), which takes as arguments the number of ticks to
delay, the C function to call, and an argument to be passed to that function. After
the specified number of ticks have elapsed, the function is called with the specified

99

VxWorks 5.3.1
Programmer’s Guide

argument. The watchdog timer can be canceled any time before the delay has
elapsed by calling wdCancel().

Example 2-12 Watchdog Timers

/* This example creates a watchdog timer and sets it to go off in
* 3 seconds.
*/

/* includes */
#include "vxWorks.h"
#include "logLib.h"
#include "wdLib.h"

/* defines */
#define SECONDS (3)

WDOG_ID myWatchDogId;
task (void)

{

/* Create watchdog */

if ((myWatchDogId = wdCreate()) == NULL)
return (ERROR);

/* Set timer to go off in SECONDS - printing a message to stdout */

if (wdStart (myWatchDogId, sysClkRateGet() * SECONDS, logMsg,
"Watchdog timer just expired\n") == ERROR)
return (ERROR);

2.7 POSIX Clocks and Timers

A clock is a software construct (struct timespec, defined in time.h) that keeps time
in seconds and nanoseconds. The software clock is updated by system-clock ticks.
VxWorks provides a POSIX 1003.1b standard clock and timer interface.

The POSIX standard provides for identifying multiple virtual clocks, but only one
clock is required—the system-wide real-time clock, identified in the clock and
timer routines as CLOCK_REALTIME (also defined in time.h). VxWorks provides
routines to access the system-wide real-time clock; see the reference entry for
clockLib. (No virtual clocks are supported in VxWorks.)

100

Example 2-13

2
Basic OS

The POSIX timer facility provides routines for tasks to signal themselves at some
time in the future. Routines are provided to create, set, and delete a timer; see the
reference entry for timerLib. When a timer goes off, the default signal (SIGALRM)
is sent to the task. Use sigaction() to install a signal handler that executes when the
timer expires (see 2.4.7 Signals, p.90).

POSIX Timers
/* This example creates a new timer and stores it in timerid. */

/* includes */
#include "vxWorks.h"
#include "time.h"

int createTimer (void)
{
timer_t timerid;

/* create timer */

if (timer create (CLOCK_REALTIME, NULL, &timerid) == ERROR)
{
printf ("create FAILED\n"):;
return (ERROR);
}

return (OK);

}
An additional POSIX function, nanosleep(), allows specification of sleep or delay
time in units of seconds and nanoseconds, as opposed to the ticks used by the
Wind taskDelay() function. Only the units are different, however, not the
precision: both delay routines have the same precision, determined by the system
clock rate.

2.8 POSIX Memory-Locking Interface

Many operating systems perform memory paging and swapping. These techniques
allow the use of more virtual memory than there is physical memory on a system,
by copying blocks of memory out to disk and back. These techniques impose
severe and unpredictable delays in execution time; they are therefore undesirable
in real-time systems.

101

Table 2-25

VxWorks 5.3.1
Programmer’s Guide

Because the wind kernel is designed specifically for real-time applications, it never
performs paging or swapping. However, the POSIX 1003.1b standard for real-time
extensions also covers operating systems that perform paging or swapping. On
such systems, applications that attempt real-time performance can use the POSIX
page-locking facilities to declare that certain blocks of memory must not be paged
or swapped.

To help maximize portability, VxWorks includes the POSIX page-locking routines.
Executing these routines makes no difference in VxWorks, because all memory is,
in effect, always locked. They are included only to make it easier to port programs
between other POSIX-conforming systems and VxWorks.

The POSIX page-locking routines are in mmanPxLib (the name reflects the fact
that these routines are part of the POSIX “memory-management” routines).
Because in VxWorks all pages are always kept in memory, the routines listed in
Table 2-25 always return a value of OK (0), and have no further effect.

The mmanPxLib library is included automatically when the configuration
constant INCLUDE_POSIX_MEM is defined in configAllLh.

POSIX Memory Management Calls

Call Purpose on Systems with Paging or Swapping
mlockall() Lock into memory all pages used by a task.
munlockall() Unlock all pages used by a task.

mlock() Lock a specified page.

munlock() Unlock a specified page.

102

3.1

3.2

33

34

/O System

INtroductionccoiiiiii 109
Files, Devices, aNAd DIVErSc.cccuvvveiiieiieeeeeeeeee et eesrate e e e vaeeeveaas 109
32.1 File Names and the Default Devicecccoeeveveecrnrrrernenereecencnce 111
BASIC IO ...ttt b e 112
3.3.1 File DeSCriptorsccovuiuriimrmiirireicininiin s snend s 113
3.3.2 Standard Input, Standard Output, and Standard Error 113

Global REITeCtiOncccvveeceieenirirernireeeneereeeenneseeneseseenesaesesneneneenens 113

Task-Specific Redirectionccceeeiniicinninivcncenicnicceieenans 114
333 Openand ClOSE ...t 114
3.3.4 Create and REMOVEc.oveeevreremirereciienieeeeireeieeevsnenessieseissenens 115
335 Read and WIILEcooveeurreieirrieierriceceneeriet et neeeeseeesenens 116
3.3.6 File Truncation ...c.c.coccerreccrenireeienieeeeeeresieretieesesseeesestesesesosnsessosens 116
337 T/O CONIOL vttt sttt esereeseseeetsbensssasens 117
3.3.8 Pending on Multiple File Descriptors: The Select Facility 117
Buffered I/O: S0 ..o 120
341 USING SEAIO wvvvriieieiiiiiiiiiiiicc e s 120
3.4.2 Standard Input, Standard Output, and Standard Error 121

103

3.5

3.6

3.7

VxWorks 5.3.1
Programmer’s Guide

Other Formatted [/Occocooviiirieiiiii e 121
3.5.1 Special Cases: printf(), sprintf(), and sscanf()ccocuucnec. 121
3,52 Additional Routines: printErr() and fdprintf() ... 122
3.5.3 Message LOGEING ..ot 122
Asynchronous INput/Output ..o 122
3.6.1 The POSIX AIO ROUHNEScccoteuemmreermerericecerereneneneineeneseecnersennees 123
3.6.2 AIO COontrol BIOCKc.cooeureireiriceirrcnnerernininicseseeressneseseesasesesesnenes 124
3.6.3 USING AIO ..ottt sesse e 125

AIO with Periodic Checks for Completionc.cceueuvivucuenne. 126

Alternatives for Testing AIO Completioncccoeuervirmviivininnnnnne 128
Devices in VXWOIKS ..o 131

3.7.1 Serial I/O Devices (Terminal and Pseudo-Terminal Devices) 131

Tty OPHONS ..ot s ssraenes 132
Raw Mode and Line Mode ...t 132
Tty Special Characterscocmveiimiiiiieiieerenninneeceseessees 133
I/0 Control FUNCHONS ..ovvevvieeirieieeeeeeteereeetceeevesssenesssee s esnesasennons 134
3.72 PIPe DEVICES ..ottt sssessasesnnne 135
Creating Pipes ... 135
Writing to Pipes from ISRS ...t 135
I/0 Control FUNCHONSovvvecieiecririiiiir e, 136
3.73 Pseudo Memory DeviCes ...t 136
Installing the Memory DIivVer ...t 136
I/O COontrol FUNCHONS ..vcoeveieeiieieiereetecreeevesseeesneeseessessnesssessseensees 137
3.74 Network File System (INFS) DeViCescccoeririverrimrurcrniruercurinines 137
Mounting a Remote NFS File System from VxWorks 137
I/0 Control Functions for NFS CHentsccccoeveeveeveeeicneseenens 138
3.7.5 NON-NFS Network DEvVICEScoeurerereerrccmereneeneeererenenerenseennennes 138
Creating Network Devices ..o, 139
I/0 Control FUNCHONS ...cocvvviiereriniincniiiiinieinincesiiieesssse s ssescsane 140
3.7.6 Block Devices ... s 140

104

3.8

3.9

3

/O System
File SYstems ..ot 140
RAM Disk DIIVELS ...cvccveieeeeirerieneesesreenrerrese st seessesassassssssessessnsnnes 140
SCSI DIIVELS ..cvvevinrieieiietesieeerneneeeesestessessenessesssessssessessessessssessessesesses 141
377 SOCKELS ..ottt ettt r e nes 152
Differences Between VxWorks and Host System I/Occ.ccccevvieiennnnnee. 152
INternal STrUCTUNEcc.oocviieeeeececereeecte ettt en e s seesians 153
3,91 DIIVELS .oicviiiiiirieieiecietee st e este et et et eane st s bebass et estnasssasaassessessensas 155
The Driver Table and Installing Driversccccoeveeveneeennnins 156
Example of Installing a DIiverccooovviennrnninicinccceinee, 157
3.9.2 DEVICES vttt 158
The Device List and Adding Devicescocvirirniviiiniiiinenins 158
Example of Adding Devicescocvccciniiiininicinnenes 158
3.9.3 File DeSCriptors ..ottt 159
The Fd TabIe ..oovviieceee ettt sa e eanenas 160
Example of Opening a File ..o 160
Example of Reading Data from the Filec.ccccevivirviiinninnnnn, 163
Example of Closing a File ..., 163
Implementing select()cccovemvirieininicieinieinete e, 163
Cache COREIency ... 168
3.9.4 BlOCK DEVICES ..ocoveririiierieicierieieisesessesiessessesseresessessassessessessesassessenses 171
General Implementation ... 171
Low-Level Driver Initialization Routineccoeevvvueeinerveenvennenns 173
Device Creation ROUHNEccovveereieiiicieinirceecnteienre e 174
Read Routine (Direct-Access DeviCes)coevvverereeenireeeenenerieserienens 176
Read Routine (Sequential Devices)ccocveiicinncncricceininenne. 177
Write Routine (Direct-Access Devices)cccoovvvecinnencrereninrennne 178
Write Routine (Sequential Devices)cccocevviveivinriininiieiininnnes 178
I/O Control ROULINEGcceoeeeeeeicieeeeeeeeeteeteee et ee s 179
Device-Reset ROULINEcccvcviveeieierieniinteinneeesresesiessesieseeseseessensessenss 180
Status-Check ROULINEccoveeviinviiiieinrcieiresieeee s sesseeessenaennes 180
Write-Protected Mediacoveveeeveceeiereee et 181
Change in Ready Statusccooeveerievniiiciciiecinec i 181
Write-File-Marks Routine (Sequential Devices)ccccoeueinenens 182
Rewind Routine (Sequential Devices)ccouurirecccriiiiininennas 182
Reserve Routine (Sequential Devices)ccovvemivicieiniinenniniinns 183

105

VxWorks 5.3.1
Programmer’s Guide

Release Routine (Sequential Devices)cccccocovurieririeiirincecicnnnnn. 183

Read-Block-Limits Routine (Sequential Devices)cccocoeuruunnee 183

Load/Unload Routine (Sequential Devices)ccoeverveviirciiiernnnns 184

Space Routine (Sequential Devices)ccocvievviimnnncnciiniscninnnns 185

Erase Routine (Sequential Devices)ccovniminiiiniiiiiiiennnnnnn, 185
3.9.5 Driver Support Librariesccovcevviviiniiiiccnncnnniniieceensnns 186

List of Tables

Table 3-1 Basic I/ O ROULINES ..ooovvvevineeeeerreeieeiseeeeveessseessaieesereessesans 112
Table 3-2 File Access FIagsccovuveivemrvnirniniiniisee i 114
Table 3-3 SeleCt MACTOSceceimeeriecmerreecremeeeeiseseisesirereneeenesesessesencnen 118
Table 3-4 Asynchronous Input/Output Routinesccccceveneveee. 123
Table 3-5 AIO Initialization Functions and Related Constants 124
Table 3-6 Drivers Provided with VXWOIKSc.ccocoevvmvevcnuncerninnnns 131
Table 3-7 Tty OptioNS ...cvvieriee s 132
Table 3-8 Tty Special Characters ..., 134
Table 3-9 1/0 Control Functions Supported by tyLib 135
Table 3-10 1/0 Control Functions Supported by pipeDrv 136
Table 3-11 1/0 Control Functions Supported by memDrv 137
Table 3-12 I/0 Control Functions Supported by nfsDrv 139
Table 3-13 SCSI CONSLANLScoovrvriiiiierie ittt berenes 142
Table 3-14 Fields in the BLK_DEV Structureccccoceeevvvereererereenens 175
Table 3-15 Fields in the SEQ_DEV Structureccceeeeveeveecveeeeruennen 175
Table 3-16 VxWorks Driver Support Routinescoocvvivcrcrrinnnnnn. 186

106

List of Figures

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8

List of Examples

Example 3-1
Example 3-2
Example 3-3
Example 3-4
Example 3-5

Example 3-6
Example 3-7

Example 3-8
Example 3-9
Example 3-10
Example 3-11
Example 3-12

3

/O System

Overview of the VxWorks I/O Systemc..cccouvvvinnnnes 110
Example — Driver Initialization for Non-Block Devices 157
Example — Addition of Devices to I/O System 159
Example: Call to I/O Routine open() [Part 1] 161
Example: Call to I/O Routine open() [Part 2] 162
Example: Call to I/O Routine read()c.ccooevvvvurerceenen. 164
Cache CONETency ...t 168
Non-Block Devices vs. Block Devicescccocoevviinennacn. 172
The Select Facility ..o 118
Asynchronous I/O ..., 126
Asynchronous I/O with Signals ..., 128
Configuring SCSI DIIVerScccevmvrreereicrreeeieinicieneen. 147
Configuring a SCSI Disk Drive with Asynchronous

Data Transfer and No Tagged Command Queuing 148
Working with Tape Devicescccoeervniiireenniinieiiiennnes 149
Configuring a SCSI Disk for Synchronous Data Transfer
with Non-Default Offset and Period Values 150
Changing the Bus ID of the SCSI Controller 150
Hypothetical Driver ... 154
Driver Code Using the Select Facilitycccccouvvuriverenen 166
DMA Transfer ROULINEcccoivevimimnnsiviinininieccceiiennes 169
Address-Translation Driver ... 170

107

3
/O System

3.1 Introduction

The VxWorks I/O system is designed to present a simple, uniform, device-
independent interface to any kind of device, including:

— character-oriented devices such as terminals or communications lines
- random-access block devices such as disks

- virtual devices such as intertask pipes and sockets

- monitor and control devices such as digital/analog I/O devices

- network devices that give access to remote devices

The VxWorks 1/O system provides standard C libraries for both basic and buffered
I/0. The basic I/O libraries are UNIX-compatible; the buffered 1/O libraries are
ANSI C-compatible. Internally, the VxWorks I/O system has a unique design that
makes it faster and more flexible than most other I/O systems. These are important
attributes in a real-time system.

This chapter first describes the nature of files and devices, and the user view of basic
and buffered I/O. The middle section discusses the details of some specific
devices. The final section is a detailed discussion of the internal structure of the
VxWorks 1/0 system.

Figure 3-1 diagrams the relationships between the different pieces of the VxWorks
I/O system. All the elements of the I/ O system are discussed in this chapter, except
for file system routines, which are presented in 4. Local File Systems in this manual.

3.2 Files, Devices, and Drivers

In VxWorks, applications access I/O devices by opening named files. A file can
refer to one of two things:

109

Figure 3-1

VxWorks 5.3.1
Programmer’s Guide

Overview of the VxWorks I/O System

(device independent)

write()

v

Driver Routines

xxRead()
xxWrite()

N

!

read() -

File System Routines

xxRead()
xxWrite()

Application \
Buffered 1/O: stdio fioLib
fioRead()
L fread() printf()
Basic I/O Routines furite() sprintf()

/

L Library Routines
Hardware Devices
Network tyLib
Disk Drive

Serial Device

= An unstructured “raw” device such as a serial communications channel or an
intertask pipe.

= Alogical file on a structured, random-access device containing a file system.
Consider the following named files:
Ipipe/mypipe

The first refers to a file called myfile, on a disk device called /usr. The second is a
named pipe (by convention, pipe names begin with /pipe). The third refers to a
physical serial channel. However, I/O can be done to or from any of these in the
same way. Within VxWorks, they are all called files, even though they refer to very
different physical objects.

fusr/myfile /tyCol0

Devices are handled by program modules called drivers. In general, using the I/O
system does not require any further understanding of the implementation of

110

3
/O System

devices and drivers. Note, however, that the VxWorks I/O system gives drivers
considerable flexibility in the way they handle each specific device. Drivers strive
to follow the conventional user view presented here, but can differ in the specifics.
See 3.7 Devices in VxWorks, p.131.

Although all I/O is directed at named files, it can be done at two different levels:
basic and buffered. The two differ in the way data is buffered and in the types of calls
that can be made. These two levels are discussed in later sections.

3.2.1 File Names and the Default Device

A file name is specified as a character string. An unstructured device is specified
with the device name. In the case of file system devices, the device name is
followed by a file name. Thus the name /tyCo/0 might name a particular serial I/O
channel, and the name DEV1:/filel probably indicates the file filel on the DEV1:
device.

When a file name is specified in an I/O call, the I/O system searches for a device
with a name that matches at least an initial substring of the file name. The I/O
function is then directed at this device.

If a matching device name cannot be found, then the I/O function is directed at a
default device. You can set this default device to be any device in the system,
including no device at all, in which case failure to match a device name returns an
error.

Non-block devices are named when they are added to the I/O system, usually at
system initialization time. Block devices are named when they are initialized for
use with a specific file system. The VxWorks I/O system imposes no restrictions on
the names given to devices. The I/ O system does not interpret device or file names
in any way, other than during the search for matching device and file names.

It is useful to adopt some naming conventions for device and file names: most
device names begin with a slash (/), except non-NFS network devices and
VxWorks DOS devices (dosFs).

By convention, NFS-based network devices are mounted with names that begin
with a slash. For example:

/usxr

Non-NFS network devices are named with the remote machine name followed by
a colon. For example:

host:

111

VxWorks 5.3.1
Programmer’s Guide

The remainder of the name is the file name in the remote directory on the remote
system.

File system devices using dosFs are often named with uppercase letters and/or
digits followed by a colon. For example:

DEV1:

File names and directory names on dosFs devices are often separated by
backslashes (\). These can be used interchangeably with forward slashes (/).

A NOTE: Because device names are recognized by the I/O system using simple
substring matching, a slash (/) should not be used alone as a device name.

3.3 Basic I/O

Basic I/0 is the lowest level of I/O in VxWorks. The basic I/O interface is source-
compatible with the I/O primitives in the standard C library. There are seven basic
I/0 calls, shown in the following table.

Table 3-1 Basic /O Routines

Call Description

creat() Create a file.

remove() Remove a file.

open() Open a file. (Optionally, create a file.)

close() Close a file.

read() Read a previously created or opened file.

write() Write a previously created or opened file.

ioctl() Perform special control functions on files or devices.

112

3
/O System

3.3.1 File Descriptors

At the basic I/0 level, files are referred to by a file descriptor, or fd. An fd is a small
integer returned by a call to open() or creat(). The other basic I/O calls take an fd
as a parameter to specify the intended file. An fd has no meaning discernible to the
user; it is only a handle for the I/O system.

When a file is opened, an fd is allocated and returned. When the file is closed, the
fd is deallocated. There are a finite number of fds available in VxWorks. To avoid
exceeding the system limit, it is important to close fds that are no longer in use. The
number of available fds is specified in the initialization of the I/O system.

3.3.2 Standard Input, Standard Output, and Standard Error

Three file descriptors are reserved and have special meanings:

0 = standard input
1 = standard output
2 = standard error output

These fds are never returned as the result of an open() or creat(), but serve rather
as indirect references that can be redirected to any other open fd.

These standard fds are used to make tasks and modules independent of their actual
I/0 assignments. If a module sends its output to standard output (fd = 1), then its
output can be redirected to any file or device, without altering the module.

VxWorks allows two levels of redirection. First, there is a global assignment of the
three standard fds. Second, individual tasks can override the global assignment of
these fds with their own assignments that apply only to that task.

Global Redirection

When VxWorks is initialized, the global assignments of the standard fds are
directed, by default, to the system console. When tasks are spawned, they initially
have no task-specific fd assignments; instead, they use the global assignments.

The global assignments can be redirected using ioGlobalStdSet(). The parameters
to this routine are the global standard fd to be redirected, and the fd to direct it to.

For example, the following call sets global standard output (fd = 1) to be the open
file with a file descriptor of fileFd:

ioGlobalstdset (1, fileFd);

113

VxWorks 5.3.1
Programmer’s Guide

All tasks in the system that do not have their own task-specific redirection write
standard output to that file thereafter. For example, the task tRlogind calls
i0GlobalStdSet() to redirect I/O across the network during an rlogin session.

Task-Specific Redirection

The assignments for a specific task can be redirected using the routine
ioTaskStdSet(). The parameters to this routine are the task ID (0 = self) of the task
with the assignments to be redirected, the standard fd to be redirected, and the fd
to direct it to. For example, a task can make the following call to write standard
output to fileFd:

ioTasksStdset (0, 1, fileFd);

All other tasks are unaffected by this redirection, and subsequent global
redirections of standard output do not affect this task.

3.3.3 Open and Close

Table 3-2

Before I/O can be performed to a device, an fd must be opened to that device by
invoking the open() routine (or creat(), as discussed in the next section). The
arguments to open() are the file name, the type of access, and, when necessary, the
mode:

fd = open ("name", flags, mode);

The possible access flags are shown in Table 3-2.

File Access Flags

Flag Hex Value Description

O_RDONLY 0 Open for reading only.
O_WRONLY 1 Open for writing only.
O_RDWR 2 Open for reading and writing.
O_CREAT 200 Create a new file.

O_TRUNC 400 Truncate the file.

The mode parameter is used in the following special cases to specify the mode
(permission bits) of a file or to create subdirectories:

114

3
/O System

» In general, you can open only preexisting devices and files with open().
However, with NEFS network, dosFs, and rt11Fs devices, you can also create
files with open() by or’ing O_CREAT with one of the access flags. In the case of
NEFS devices, open() requires the third parameter specifying the mode of the
file:

fd = open ("“name™, O_CREAT | O_RDWR, 0644);

= With both dosFs and NFS devices, you can use the O_CREAT option to create
a subdirectory by setting mode to FSTAT_DIR. Other uses of the mode
parameter with dosFs devices are ignored.

The open() routine, if successful, returns an fd (a small integer). This fd is then used
in subsequent I/O calls to specify that file. The fd is a global identifier that is not task
specific. One task can open a file, and then any other tasks can use the resulting fd
(for example, pipes). The fd remains valid until close() is invoked with that fd:

close (fd);

At that point, I/O to the file is flushed (completely written out) and the fd can no
longer be used by any task. However, the same fd number can again be assigned
by the I/O system in any subsequent open().

When a task exits or is deleted, the files opened by that task are not automatically
closed, because fds are not task specific. Thus, it is recommended that tasks
explicitly close all files when they are no longer required. As stated previously,
there is a limit to the number of files that can be open at one time.

3.3.4 Create and Remove

File-oriented devices must be able to create and remove files as well as open
existing files. The creat() routine directs a file-oriented device to make a new file
on the device and return a file descriptor for it. The arguments to creat() are
similar to those of open() except that the file name specifies the name of the new
file rather than an existing one; the creat() routine returns an fd identifying the
new file.

fd = creat ("name», flag);

The remove() routine removes a named file on a file-oriented device:
remove ("name");

Do not remove files while they are open.

With non-file-system oriented device names, creat() acts exactly like open();
however, remove() has no effect.

115

VxWorks 5.3.1
Programmer’s Guide

3.3.5 Read and Write

After an fd is obtained by invoking open() or creat(), tasks can read bytes from a
file with read() and write bytes to a file with write(). The arguments to read() are
the fd, the address of the buffer to receive input, and the maximum number of bytes
to read:

nBytes = read (fd, &buffer, maxBytes);

The read() routine waits for input to be available from the specified file, and
returns the number of bytes actually read. For file-system devices, if the number of
bytes read is less than the number requested, a subsequent read() returns 0 (zero),
indicating end-of-file. For non-file-system devices, the number of bytes read can be
less than the number requested even if more bytes are available; a subsequent
read() may or may not return 0. In the case of serial devices and TCP sockets,
repeated calls to read() are sometimes necessary to read a specific number of bytes.
(See the reference entry for fioRead() in fioLib). A return value of ERROR (-1)
indicates an unsuccessful read.

The arguments to write() are the fd, the address of the buffer that contains the data
to be output, and the number of bytes to be written:

actualBytes = write (fd, &buffer, nBytes);

The write() routine ensures that all specified data is at least queued for output

before returning to the caller, though the data may not yet have been written to the
device (this is driver dependent). write() returns the number of bytes written; if
the number returned is not equal to the number requested, an error has occurred.

3.3.6 File Truncation

It is sometimes convenient to discard part of the data in a file. After a file is open
for writing, you can use the ftruncate() routine to truncate a file to a specified size.
Its arguments are an fd and the desired length of the file:

status = ftruncate (fd, length);

If it succeeds in truncating the file, firuncate() returns OK. If the size specified is
larger than the actual size of the file, or if the fd refers to a device that cannot be
truncated, ftruncate() returns ERROR, and sets errno to EINVAL.

The ftruncate() routine is part of the POSIX 1003.1b standard, but this
implementation is only partially POSIX-compliant: creation and modification
times are not updated. This call is supported only by dosFsLib, the DOS-
compatible file system library.

116

3
/O System

3.3.7 I/0 Control

The ioctl() routine is an open-ended mechanism for performing any I/O functions
that do not fit the other basic I/O calls. Examples include determining how many
bytes are currently available for input, setting device-specific options, obtaining
information about a file system, and positioning random-access files to specific
byte positions. The arguments to the ioctl() routine are the fd, a code that identifies
the control function requested, and an optional function-dependent argument:

result = ioctl (fd, function, arg);

For example, the following call uses the FIOBAUDRATE function to set the baud
rate of a tty device to 9600:

status = ioctl (fd, FIOBAUDRATE, 9600);

The discussion of specific devices in 3.7 Devices in VxWorks, p.131 summarizes the
ioctl() functions available for each device. The ioctl() control codes are defined in
ioLib.h. For more information, see the reference entries for specific device drivers.

3.3.8 Pending on Multiple File Descriptors: The Select Facility

The VxWorks select facility provides a UNIX- and Windows-compatible method
for pending on multiple file descriptors. The library selectLib provides both task-
level support, allowing tasks to wait for multiple devices to become active, and
device driver support, giving drivers the ability to detect tasks that are pended
while waiting for I/O on the device. To use this facility, the header file selectLib.h
must be included in your application code.

Task-level support not only gives tasks the ability to simultaneously wait for I/O
on multiple devices, but it also allows tasks to specify the maximum time to wait
for I/0 to become available. For an example of using the select facility to pend on
multiple file descriptors, consider a client-server model in which the server is
servicing both local and remote clients. The server task uses a pipe to communicate
with local clients and a socket to communicate with remote clients. The server task
must respond to clients as quickly as possible. If the server blocks waiting for a
request on only one of the communication streams, it cannot service requests that
come in on the other stream until it gets a request on the first stream. For example,
if the server blocks waiting for a request to arrive in the socket, it cannot service
requests that arrive in the pipe until a request arrives in the socket to unblock it.
This can delay local tasks waiting to get their requests serviced. The select facility
solves this problem by giving the server task the ability to monitor both the socket
and the pipe and service requests as they come in, regardless of the communication
stream used.

117

Table 3-3

Example 3-1

VxWorks 5.3.1
Programmer’s Guide

Tasks can block until data becomes available or the device is ready for writing. The
select() routine returns when one or more file descriptors are ready or a timeout
has occurred. Using the select() routine, a task specifies the file descriptors on
which to wait for activity. Bit fields are used in the select() call to specify the read
and write file descriptors of interest. When select() returns, the bit fields are
modified to reflect the file descriptors that have become available. The macros for
building and manipulating these bit fields are listed in Table 3-3.

Select Macros

Macro Function

FD_ZERO Zeros all bits.

FD_SET Sets bit corresponding to a specified file descriptor.
FD_CLR Clears a specified bit.

FD_ISSET Returns 1 if specified bit is set, otherwise returns 0.

Applications can use select() with any character I/O devices that provide support
for this facility (for example, pipes, serial devices, and sockets). For information on
writing a device driver that supports select(), see Implementing select(), p.163.

The Select Facility

/* selServer.c - select example

* In this example, a server task uses two pipes: one for normal-priority
* requests, the other for high-priority requests. The server opens both

* pipes and blocks while waiting for data to be available in at least ome
* of the pipes.

*/

#include "vxWorks.h"
#include "selectLib.h"
#include "fcntl.h"

#define MAX FDS 2

#define MAX DATA 1024

#define PIPEHI "/pipe/highPriority"
#define PIPENORM "/pipe/normalPriority"

/**
selServer - reads data as it becomes available from two different pipes

*
*
* Opens two pipe fds, reading from whichever becomes available. The

* gerver code assumes the pipes have been created from either another
* task or the shell. To test this code from the shell do the following:
* -> 1d < selServer.o

* -> pipeDevCreate ("/pipe/highPriority", 5, 1024)

118

3
/O System

-> pipeDevCreate ("/pipe/normalPriority”, 5, 1024)
~> £fdHi = open ("/pipe/highPriority", 1, 0)

-> fdNorm = open ("/pipe/normalPriority", 1, 0)

~-> iosFdShow

-> sp selServer
-> i 3

* At this point you should see selServer’s state as pended. You can now
* write to either pipe to make the selServer digplay your message.

* => write fdNorm, "Howdy", 6

* => write £dHi, "Urgent", 7

* ¥ * ¥ * ¥

*/

STATUS selServer (void)
{
struct f£d_set readFds; /* bit mask of fds to read from */
int fds [MAX_FDS]; /* array of £ds on which to pend */
int width; /* number of £ds on which to pend */
int i; /* index for fd array */
char buffer[MAX DATA]; /* buffer for data that is read */

/* open file descriptors */

if ((£ds[0] = open (PIPEHI, O_RDONLY, 0)) == ERROR)
return (ERROR);

if ((fds[1] = open (PIPENORM, O RDONLY, 0)) == ERROR)
return (ERROR);

/* loop forever reading data and servicing clients */
FOREVER

{

/* clear bits in read bit mask */

FD_ZERO (&readFds);

/* initialize bit mask */

FD SET (£ds[0], &readFds):;

FD_SET (fds[l1l], &readFrds);

width = (£ds([0] > fds[1]) ? £ds[0] : fds[1];
width++;

/* pend, waiting for one or more fds to become ready */
if (select (width, &readFds, NULL, NULL, NULL) == ERROR)
return (ERROR);

/* step through array and read from fds that are ready */
for (i=0; i< MAX FDS; i++)
{
/* check if this f£d has data to read */
if (FD_ISSET (fds[i], &readFds))
{
/* typically read from f£d now that it is ready */
read (fds[i], buffer, MAX DATA);
/* normally service request, for this example print it */
printf ("SELSERVER Reading from %s: %s\n",
(i == 0) ? PIPEHI : PIPENORM, buffer);
}
}
}

119

VxWorks 5.3.1
Programmer’s Guide

3.4 Buffered I/O: Stdio

The VxWorks 1/0O library provides a buffered 1/O package that is compatible with
the UNIX and Windows stdio package and provides full ANSI C support. To
include the stdio package in the VxWorks system, define INCLUDE_ANSI_STDIO
in configAlLh.

Note that the implementation of printf(), sprintf(), and sscanf(), traditionally
considered part of the stdio package, is part of a different package in VxWorks.
These routines are discussed in 3.5 Other Formatted 1/O, p.121.

3.4.1 Using Stdio

Although the VxWorks I/O system is efficient, some overhead is associated with
each low-level call. First, the I/O system must dispatch from the device-
independent user call (read(), write(), and so on) to the driver-specific routine for
that function. Second, most drivers invoke a mutual exclusion or queuing
mechanism to prevent simultaneous requests by multiple users from interfering
with each other.

Because the VxWorks primitives are fast, this overhead is quite small. However, an
application processing a single character at a time from a file incurs that overhead
for each character if it reads each character with a separate read() call:

n = read (fd, &char, 1);

To make this type of I/O more efficient and flexible, the stdio package implements
a buffering scheme in which data is read and written in large chunks and buffered
privately. This buffering is transparent to the application; it is handled
automatically by the stdio routines and macros. To access a file with stdio, a file is
opened with fopen() instead of open() (many stdio calls begin with the letter f):

fr = fopen ("/usr/foo", "x");

The returned value, a file pointer (or fp) is a handle for the opened file and its
associated buffers and pointers. An fp is actually a pointer to the associated data
structure of type FILE (that s, it is declared as FILE *). By contrast, the low-level I/O
routines identify a file with a file descriptor (fd), which is a small integer. In fact, the
FILE structure pointed to by the fp contains the underlying fd of the open file.

An already open fd can be associated belatedly with a FILE buffer by calling
fdopen():

fr = fdopen (fd, "r");

120

3
/O System

After a file is opened with fopen(), data can be read with fread(), or a character at
a time with getc(), and data can be written with fwrite(), or a character at a time
with putc().

The routines and macros to get data into or out of a file are extremely efficient. They
access the buffer with direct pointers that are incremented as data is read or written
by the user. They pause to call the low-level read or write routines only when a
read buffer is empty or a write buffer is full.

A WARNING: The stdio buffers and pointers are private to a particular task. They are
not interlocked with semaphores or any other mutual exclusion mechanism,
because this defeats the point of an efficient private buffering scheme. Therefore,
multiple tasks must not perform I/O to the same stdio FILE pointer at the same
time.

3.4.2 Standard Input, Standard Output, and Standard Error

As discussed earlier in 3.3 Basic I/O, p. 112, there are three special file descriptors (0,
1, and 2) reserved for standard input, standard output, and standard error. There
are three corresponding stdio FILE buffers that are automatically created when
required; they are then associated with those file descriptors: stdin, stdout, and
stderr. These can be used to do buffered I/O to the standard fis.

3.5 Other Formatted I/O

3.5.1 Special Cases: printf(), sprintf(), and sscanf()

The routines printf(), sprintf(), and sscanf() are generally considered to be part of
the standard stdio package. However, the VxWorks implementation of these
routines, while functionally the same, does not use the stdio package. Instead, it
uses a self-contained, formatted, non-buffered interface to the I/O system in the
library fioLib. Note that these routines provide the functionality specified by
ANSI; however, printf() is not buffered.

Because these routines are implemented in this way, the full stdio package, which
is optional, can be omitted from a VxWorks configuration without sacrificing their

121

VxWorks 5.3.1
Programmer’s Guide

availability. Applications requiring printf-style output that is buffered can still
accomplish this by calling fprintf() explicitly to stdout.

While sscanf() is implemented in fioLib and can be used even if stdio is omitted,
the same is not true of scanf(), which is implemented in the usual way in stdio.

3.5.2 Additional Routines: printErr() and fdprintf()

Additional routines in fioLib provide formatted but unbuffered output. The
routine printErr() is analogous to printf() but outputs formatted strings to the
standard error fd (2). The routine fdprintf() outputs formatted strings to a
specified fd.

3.5.3 Message Logging

Another higher-level I/O facility is provided by the library logLib, which allows
formatted messages to be logged without having to do I/0O in the current task’s
context, or when there is no task context. The message format and parameters are
sent on a message queue to a logging task, which then formats and outputs the
message. This is useful when messages must be logged from interrupt level, or
when it is desirable not to delay the current task for I/O or use the current task’s
stack for message formatting (which can take up significant stack space). The
message is displayed on the console unless otherwise redirected at system startup
using loglnit() or dynamically using logFdSet().

3.6 Asynchronous Input/Output

Asynchronous Input/Output (AIO) is the ability to perform input and output
operations concurrently with ordinary internal processing. AIO enables you to
decouple I/O operations from the activities of a particular task when these are
logically independent.

The benefit of AIO is greater processing efficiency: it permits I/O operations to
take place whenever resources are available, rather than making them await
arbitrary events such as the completion of independent operations. AIO eliminates
some of the unnecessary blocking of tasks that is caused by ordinary synchronous

122

3
l/O System

1/0; this decreases contention for resources between input/output and internal
processing, and expedites throughput.

The VxWorks AIO implementation meets the specification in the POSIX 1003.1b
standard. To include AIO in your VxWorks configuration, define
INCLUDE_POSIX_AIO and INCLUDE_POSIX_AIO_SYSDRYV in configAlLh. The
second configuration constant enables the auxiliary AIO system driver, required
for asynchronous I/0 on all current VxWorks devices.

3.6.1 The POSIX AlO Routines

Table 3-4

The VxWorks library aioPxLib provides the POSIX AIO routines. To access a file
asynchronously, open it with the open() routine, like any other file. Thereafter, use
the file descriptor returned by open() in calls to the AIO routines. The POSIX AIO
routines (and two associated non-POSIX routines) are listed in Table 3-4.

Asynchronous Input/Output Routines

Function Description

aioPxLibInit() Initialize the AIO library (non-POSIX).

aioShow() Display the outstanding AIO requests (non-POSIX).”
aio_read() Initiate an asynchronous read operation.

aio_write() Initiate an asynchronous write operation.

aio_listio() Initiate a list of up to LIO_MAX asynchronous I/O requests.
aio_error() Retrieve the error status of an AIO operation.

aio_return() Retrieve the return status of a completed AIO operation.
aio_cancel() Cancel a previously submitted AIO operation.

aio_suspend() Wait until an AIO operation is done, interrupted, or timed out.

* This function is not built into the Tornado shell. To use it from the Tornado
shell, you must define INCLUDE_SHOW_ROUTINES in your VxWorks
configuration; see 8. Configuration in this manual. When you invoke the
function, its output is sent to the standard output device.

The default VxWorks initialization code calls aioPxLibInit() automatically when
INCLUDE_POSIX_AIO is defined in configAllL.h. This routine takes one parameter,
the maximum number of lio_listio() calls that can be outstanding at one time. By

123

VxWorks 5.3.1
Programmer’s Guide

default this parameter is MAX_LIO_CALLS (defined in configAllL.h). When the
parameter is 0, the default value is taken from AIO_CLUST_MAX (defined in
h/private/aioPxLibP.h).

The AIO system driver, aioSysDryv, is initialized by default with the routine
aioSysInit() when both INCLUDE_POSIX_AIO and
INCLUDE_POSIX_AIO_SYSDRYV are defined. The purpose of aioSysDrv is to
provide request queues independent of any particular device driver, so that you
can use any VxWorks device driver with AIO.

The routine aioSysInit() takes three parameters: the number of AIO system tasks
to spawn, and the priority and stack size for these system tasks. The number of
AIO system tasks spawned equals the number of AIO requests that can be handled
in parallel. The default initialization call uses three constants, all defined in
configAlLh:

aioSysInit(MAX AIO_SYS TASKS, AIO_TASK PRIORITY, AIO_TASK STACK_SIZE)

When any of the parameters passed to aioSysInit() is 0, the corresponding value
is taken from AIO_IO_TASKS_DFLT, AIO_IO_PRIO_DFLT, and
AIO_IO_STACK_DFLT (all defined in h/aioSysDrv.h).

Table 3-5 lists the names of the constants defined in configAllh for initialization
routines called from usrConfig.c. It also shows the constants used within
injtialization routines when the parameters are 0, and where these constants are
defined.

Table 3-5 AIlO Initialization Functions and Related Constants

e O L —

aioPxLibInit() MAX_LIO_CALLS 0 AIO_CLUST MAX 100 h/private/aioPxLibP.h

aioSysInit() MAX_AIO_SYS_TASKS 0 AIO_IO_TASKS_DFLT 2 h/aioSysDrv.h
AIO_TASK_PRIORITY 0 AIO_IO_PRIO_DFLT 50 h/aioSysDrv.h

AIO_TASK_STACK_SIZE 0 AJO_IO_STACK DFLT 0x7000 h/aioSysDrv.h

3.6.2 AIO Control Block
Each of the AIO calls takes an AIO control block (aiocb) as an argument to describe

the AIO operation. The calling routine must allocate space for the control block,
which is associated with a single AIO operation. No two concurrent AIO

124

3
I/O System

operations can use the same control block; an attempt to do so yields undefined
results.

The aiocb and the data buffers it references are used by the system while

performing the associated request. Therefore, after you request an AIO operation,
you must not modify the corresponding aiocb before calling aio_return(); this

function frees the aiocb for modification or reuse.

A NOTE: If a routine allocates stack space for the aiocb, that routine must call
aio_return() to free the aiocb before returning.

The aiocb structure is defined in aio.h. It contains the following fields:

aio_fildes file descriptor for I/O

aio_offset offset from the beginning of the file

aio_buf address of the buffer from/to which AIO is requested
aio_nbytes number of bytes to read or write

aio_reqprio priority reduction for this AIO request

aio_sigevent signal to return on completion of an operation (optional)
aio_lio_opcode operation to be performed by a lio_listio() call

aio_sys VxWorks-specific data (non-POSIX)

For full definitions and important additional information, see the reference entry
for aioPxLib.

3.6.3 Using AIO

The routines aio_read(), aio_write(), or lio_listio() initiate AIO operations. The
last of these, lio_listio(), allows you to submit a number of asynchronous requests
(read and/or write) at one time. In general, the actual I/O (reads and writes)
initiated by these routines does not happen immediately after the AIO request. For
that reason, their return values do not reflect the outcome of the actual I/O
operation, but only whether a request is successful—that is, whether the AIO
routine is able to put the operation on a queue for eventual execution.

After the I/O operations themselves execute, they also generate return values that
reflect the success or failure of the I/O. There are two routines that you can use to
get information about the success or failure of the I/O operation: aio_error() and
aio_return(). You can use aio_error() to get the status of an AIO operation

125

VxWorks 5.3.1
Programmer’s Guide

(success, failure, or in progress), and aio_return() to obtain the return values from
the individual I/O operations. Until an AIO operation completes, its error status
is EINPROGRESS. To cancel an AIO operation, call aio_cancel().

AlO with Periodic Checks for Completion

Example 3-2

The following code uses a pipe for the asynchronous I/O operations. The example
creates the pipe, submits an AIO read request, verifies that the read request is still
in progress, and submits an AIO write request. Under normal circumstances, a
synchronous read to an empty pipe blocks and the task does not execute the write,
but in the case of AIO, we initiate the read request and continue. After the write
request is submitted, the example task loops, checking the status of the AIO
requests periodically until both the read and write complete. Because the AIO
control blocks are on the stack, we must call aio_return() before returning from
aioExample().

Asynchronous I/O

/* aioEx.c - example code for using asynchronous I/0 */
/* includes */

#include "vxWorks.h"

#include "aio.h"

#include "errno.h"

/* defines */

#define BUFFER_SIZE 200

hhkhkkkkhkhkhkhkhhkkhhkhkhkhkkkhhhhhkrhhhohhdhhrhhhhkdhhrhdhdbhihhbbdhrhddhbhkhhd

aioExample - use AIO library

/
*
*
*
* This example shows the basic functions of the AIO library.
*

* RETURNS: OK if successful, otherwise ERROR.

*/

STATUS aioExample (void)
{
int £4;
static char exFile [] = "/pipe/lstPipe”;
struct aiocb aiocb_read; /* read aiocb */
struct aiocbhb aiocb_write; /* write aiocb */
static char * test_string = "testing 1 2 3";
char buffer [BUFFER_SIZE]; /* buffer for read aiocb */

pipeDevCreate (exFile, 50, 100);

126

3
/O System

if ((fd = open (exFile, O_CREAT | O_TRUNC | O_RDWR, 0666)) ==
ERROR)
{
printf ("aioExample: cannot open %8 errno 0x%x\n", exFile, errno);
return (ERROR);
}

printf ("aioExample: Example file = %s\tFile descriptor = %d\n",
exFile, fd);

/* initialize read and write aiocbs */

bzero ((char *) &aiocb_read, sizeof (struct aiocb));
bzero ((char *) buffer, sizeof (buffer));
ajocb_read.aio_fildes = £4;

aiocb_read.aio_buf = buffer;

aiocbh_read.aio_nbytes = BUFFER_SIZE;

aiocb _read.aio_regprio = 0;

bzero ((char *) &aiocb_write, sizeof (struct aiocb));
aiocb_write.aio fildes = £d4;

aiocb_write.aio_buf = test_string;
aiocb_write.aio_nbytes = strlen (test_string);
aiocb_write.aio _reqgprio = 0;

/* initiate the read */
if (aio_read (&aiocb_read) == -1)
printf ("aioExample: aio read failed\n");

/* verify that it is in progress */
if (aio_error (&aiocb_read) == EINPROGRESS)
printf ("aioExample: read is still in progress\n");

/* write to pipe - the read should be able to complete */
printf ("aioExample: getting ready to initiate the write\n");
if (aio _write (&aiocb_write) == -1)

printf ("aioExample: aio_write failed\n");

/* wait til both read and write are complete */
while ((aio_error (&aiocb_read) == EINPROGRESS) ||
(aio_error (&aiocb_write) == EINPROGRESS))

taskDelay (1);

/* print out what was read */
printf ("aioExample: message = %s\n", buffer);

/* clean up */

if (aio_return (&aiocb_read) == -1)
printf ("aioExample: aio_return for aiocb_read failed\n");
if (aio_return (&aiocb_write) == =~1)

printf ("aioExample: aio_return for aiocb_write failed\n");
close (£d);

return (OK);
}

127

VxWorks 5.3.1
Programmer’s Guide

Alternatives for Testing AIO Completion

Example 3-3

A task can determine whether an AIO request is complete in any of the following
ways:

= Check the result of aio_error() periodically, as in the previous example, until
the status of an AIO request is no longer EINPROGRESS.

* Use aio_suspend() to suspend the task until the AIO request is complete.
* Use signals to be informed when the AIO request is complete.

The following example is similar to the preceding aioExample(), except that it uses
signals to be notified when the write is complete. If you test this from the shell,
spawn the routine to run at a lower priority than the AIO system tasks to assure
that the test routine does not block completion of the AIO request. (For details on
the shell, see the Tornado User’s Guide: Shell.)

Asynchronous I/0 with Signals

/* aioExSig.c - example code for using signals with asynchronous I/O */
/* includes */

#include "vxWorks.h"

#include "aio.h"

#include "errno.h"

/* defines */

#define BUFFER_SIZE 200

#define LIST SIZE 1

#define EXAMPLE_SIG_NO 25 /* signal number */

/* forward declarations */

void mySigHandler (int sig, struct siginfo * info, void * pContext);
/**
aioExampleSig - use AIO library.

This example shows the basic functions of the AIO library.

Note if this is run from the shell it must be spawned. Use:
-> sp aioExampleSig

* Ok ¥ ¥ ¥ ¥ ¥ ¥

RETURNS: OK if successful, otherwise ERROR.
*/

STATUS aioExampleSig (void)

{
int £4;

128

3

/O System
static char exFile [] = "/pipe/lstPipe";
struct aiocb aiocb_read; /* read aiocb */
static struct aiocb aiocb_write; /* write aiocb */
struct sigaction action; /* signal info */
static char * test_string = "testing 1 2 3";
char buffer [BUFFER_SIZE]; /* aiocb read buffer */

pipeDevCreate (exFile, 50, 100);

if ((fd = open (exFile, O_CREAT | O_TRUNC| O _RDWR, 0666)) == ERROR)
{
printf ("aioExample: cannot open %s errno 0x%x\n", exFile, errno):;
return (ERROR);
}

printf ("aioExampleSig: Example file = %s\tFile descriptor = %d\n",
exFile, £d);

/* set up signal handler for EXAMPLE_ SIG_NO */

action.sa_sigaction = mySigHandler;
action.sa_ flags = SA_SIGINFO;

sigemptyset (&action.sa_mask);

sigaction (EXAMPLE_SIG_NO, &action, NULL);

/* initialize read and write aiocbs */

bzero ((char *) &aiocb_read, sizeof (struct aiocb));
bzero ((char *) buffer, sizeof (buffer));
aiocb_read.aio fildes = fd;

aiocb_read.aio_buf = buffer;

aiocb_read.aio_nbytes = BUFFER_SIZE;
aiocb_read.aio_reqprio = 0;

bzero ((char *) &aiocb_write, sizeof (struct aiocb));
aiocb_write.aio_fildes = f£d4;

aiocb_write.aio buf = test_string;
alocb_write.aio_nbytes = strlen (test_string);

aiocb _write.aio_regprio = 0;

/* set up signal info */
aiocb_write.aio_sigevent.sigev signo = EXAMPLE_SIG_NO;
alocb_write.aio_sigevent.sigev notify = SIGEV_SIGNAL;
alocb_write.aio sigevent.sigev value.sival_ptr =

(void *) &aiocb_write;

/* initiate the read */

if (aio_read (&aiocb_read) == -1)
printf ("aioExampleSig: aio_read failed\n");

/* verify that it is in progress */

if (aio_error (&aiocb_read) == EINPROGRESS)
printf ("aioExampleSig: read is still in progress\n");

129

VxWorks 5.3.1
Programmer’s Guide

/* write to pipe - the read should be able to complete */

printf ("aioExampleSig: getting ready to initiate the write\n");
if (aio_write (&aiocb_write) == -1)
printf ("aioExampleSig: aio_write failed\n");

/* clean up */

if (aio_return (&aiocb_read) == -1)
printf ("aioExampleSig: aio_return for aiocb_read failed\n");
else
printf ("aioExampleSig: aio read message = %s\n",
aiocb_read.aio_buf);

close (£4);
return (OK);

}

void mySigHandler
(

int sig,

struct siginfo * info,
void * pContext

)

{

/* print out what was read */
printf ("mySigHandler: Got signal for aio write\n");
/* write is complete so let’s do cleanup for it here */

if (aio_return (info->si_value.sival ptr) == -1)
{
printf ("mySigHandler: aio_return for aiocb write failed\n");
printErrno (0);
}
}

130

3
/O System

3.7 Devices in VxWorks

The VxWorks I/0O system is flexible, allowing specific device drivers to handle the
seven I/0O functions. All VxWorks device drivers follow the basic conventions
outlined previously, but differ in specifics; this section describes those specifics.

Table 3-6 Drivers Provided with VxWorks

Module Driver Description

ttyDrv Terminal driver

ptyDrv Pseudo-terminal driver

pipeDrv Pipe driver

memDrv Pseudo memory device driver
nfsDrv NFS client driver

netDrv Network driver for remote file access
ramDrv RAM driver for creating a RAM disk
scsiLib SCSI interface library

- Other hardware-specific drivers

3.7.1 Serial I/O Devices (Terminal and Pseudo-Terminal Devices)

VxWorks provides terminal and pseudo-terminal device drivers (tty and pty
drivers). The tty driver is for actual terminals; the pty driver is for processes that
simulate terminals. These pseudo terminals are useful in applications such as
remote login facilities.

VxWorks serial I/ O devices are buffered serial byte streams. Each device has a ring
buffer (circular buffer) for both input and output. Reading from a tty device
extracts bytes from the input ring. Writing to a tty device adds bytes to the output
ring. The size of each ring buffer is specified when the device is created during
system initialization.

1. For the remainder of this section, the term #ty is used to indicate both tty and pty devices.

131

VxWorks 5.3.1
Programmer’s Guide

Tty Options

The tty devices have a full range of options that affect the behavior of the device.
These options are selected by setting bits in the device option word using the
ioctl() routine with the FIOSETOPTIONS function (see I/O Control Functions,
p-134). For example, to set all the tty options except OPT_MON_TRAP:

status = ioctl (fd, FIOSETOPTIONS, OPT_TERMINAL & ~OPT_MON_TRAP);

Table 3-7 is a summary of the available options. The listed names are defined in the
header file ioLib.h. For more detailed information, see the reféerence entry for
tyLib.

Table 3-7 Tty Options

Library Description

OPT_LINE Select line mode. (See Raw Mode and Line Mode, p.132.)

OPT_ECHO Echo input characters to the output of the same channel.
OPT_CRMOD Translate input RETURN characters into NEWLINE (\n); translate

output NEWLINE into RETURN-LINEFEED.
OPT_TANDEM Respond to X-on/X-off protocol (CTRL+Q and CTRL+S).
OPT_7_BIT Strip the most significant bit from all input bytes.
OPT_MON_TRAP Enable the special ROM monitor trap character, CTRL+X by default.

OPT_ABORT Enable the special target shell abort character, CTRL+C by default.
(Only useful if the target shell is configured into the system; see
9. Target Shell in this manual for details.)

OPT_TERMINAL Set all of the above option bits.

OPT_RAW Set none of the above option bits.

Raw Mode and Line Mode

A tty device operates in one of two modes: raw mode (unbuffered) or line mode. Raw
mode is the default. Line mode is selected by the OPT_LINE bit of the device option
word (see Tty Options, p.132).

In raw mode, each input character is available to readers as soon as it is input from
the device. Reading from a tty device in raw mode causes as many characters as

132

3
/O System

possible to be extracted from the input ring, up to the limit of the user’s read buffer.
Input cannot be modified except as directed by other tty option bits.

In line mode, all input characters are saved until a NEWLINE character is input; then
the entire line of characters, including the NEWLINE, is made available in the ring
at one time. Reading from a tty device in line mode causes characters up to the end
of the next line to be extracted from the input ring, up to the limit of the user’s read
buffer. Input can be modified by the special characters CTRL+H (backspace),
CTRL+U (line-delete), and CTRL+D (end-of-file), which are discussed in Tty Special
Characters, p.133.

Tty Special Characters

The following special characters are enabled if the tty device operates in line mode,
that is, with the OPT_LINE bit set:

* The backspace character, by default CTRL+H, causes successive previous
characters to be deleted from the current line, up to the start of the line. It does
this by echoing a backspace followed by a space, and then another backspace.

= The line-delete character, by default CTRL+U, deletes all the characters of the
current line.

» The end-of-file (EOF) character, by default CTRL+D, causes the current line to
become available in the input ring without a NEWLINE and without entering
the EOF character itself. Thus if the EOF character is the first character typed
on a line, reading that line returns a zero byte count, which is the usual
indication of end-of-file.

The following characters have special effects if the tty device is operating with the
corresponding option bit set:

* The flow control characters, CTRL+Q and CTRL+S, commonly known as
X-on/X-off protocol. Receipt of a CTRL+S input character suspends output to
that channel. Subsequent receipt of a CTRL+Q resumes the output. Conversely,
when the VxWorks input buffer is almost full, a CTRL+S is output to signal the
other side to suspend transmission. When the input buffer is empty enough, a
CTRL+Q is output to signal the other side to resume transmission. X-on/X-off
protocol is enabled by OPT_TANDEM.

= The ROM monitor trap character, by default CTRL+X. This character traps to the
ROM-resident monitor program. Note that this is drastic. All normal VxWorks
functioning is suspended, and the computer system is controlled entirely by
the monitor. Depending on the particular monitor, it may or may not be

133

Table 3-8

VxWorks 5.3.1
Programmer’s Guide

possible to restart VxWorks from the point of interruption. The monitor trap
character is enabled by OPT_MON_TRAP.

* The special target shell abort character, by default CTRL+C. This character
restarts the target shell if it gets stuck in an unfriendly routine, such as one that
has taken an unavailable semaphore or is caught in an infinite loop. The target
shell abort character is enabled by OPT_ABORT.

The characters for most of these functions can be changed using the tyLib routines
shown in Table 3-8.

Tty Special Characters

Character Description Modifier

CTRL+H backspace (character delete) tyBackspaceSet()
CTRL+U line delete tyDeleteLineSet()
CTRL+D EOF (end of file) tyEOFSet()
CTRL+C target shell abort tyAbortSet()
CTRL+X trap to boot ROMs tyMonitorTrapSet()
CTRL+S output suspend N/A

CTRL+Q output resume N/A

I/O Control Functions

A

The tty devices respond to the ioctl() functions in Table 3-9, defined in ioLib.h. For
more information, see the reference entries for tyLib, ttyDrv, and ioctl().

NOTE: To change the driver’s hardware options (for example, the number of stop
bits or parity bits), use the ioctl() function SIO_HW_OPTS_SET. Because this
command is not implemented in most drivers, you may need to add it to your BSP
serial driver, which resides in src/drv/sio. The details of how to implement this
command depend on your board’s serial chip. The constants defined in the header
file h/sioLib.h provide the POSIX definitions for setting the hardware options.

134

Table 3-9

3

/O System
1/O Control Functions Supported by tyLib
Function Description
FIOBAUDRATE Set the baud rate to the specified argument.
FIOCANCEL Cancel a read or write.
FIOFLUSH Discard all bytes in the input and output buffers.
FIOGETNAME Get the file name of the fd.
FIOGETOPTIONS Return the current device option word.
FIONREAD Get the number of unread bytes in the input buffer.
FIONWRITE Get the number of bytes in the output buffer.
FIOSETOPTIONS Set the device option word.

3.7.2 Pipe Devices

Creating Pipes

Pipes are virtual devices by which tasks communicate with each other through the
1/0 system. Tasks write messages to pipes; these messages can then be read by
other tasks. Pipe devices are managed by pipeDrv and use the kernel message
queue facility to bear the actual message traffic.

Pipes are created by calling the pipe create routine:
status = pipeDevCreate ("/pipe/name", maxMsgs, maxLength) ;

The new pipe can have at most maxMsgs messages queued at a time. Tasks that
write to a pipe that already has the maximum number of messages queued are
delayed until a message is dequeued. Each message in the pipe can be at most
maxLength bytes long; attempts to write longer messages result in an error.

Writing to Pipes from ISRs

VxWorks pipes are designed to allow ISRs to write to pipes in the same way as
task-level code. Many VxWorks facilities cannot be used from ISRs, including I/O
to devices other than pipes. However, ISRs can use pipes to communicate with
tasks, which can then invoke such facilities.

135

VxWorks 5.3.1
Programmer’s Guide

ISRs write to a pipe using the write() call. Tasks and ISRs can write to the same
pipes. However, if the pipe is full, the message is discarded because the ISRs
cannot pend. ISRs must not invoke any I/O function on pipes other than write().

I/O Control Functions

Table 3-10

Pipe devices respond to the ioctl() functions summarized in Table 3-10. The
functions listed are defined in the header file ioLib.h. For more information, see
the reference entries for pipeDrv and for ioctl() in ioLib.

I/0 Control Functions Supported by pipeDrv

Function Description

FIOFLUSH Discard all messages in the pipe.

FIOGETNAME Get the pipe name of the fd.

FIONMSGS Get the number of messages remaining in the pipe.
FIONREAD Get the size in bytes of the first message in the pipe.

3.7.3 Pseudo Memory Devices

The memDrv driver allows the I/O system to access memory directly as a pseudo-
I/O device. Memory location and size are specified when the device is created.
This feature is useful when data must be preserved between boots of VxWorks or
when sharing data between CPUs. This driver does not implement a file system as
does ramDrv. The ramDrv driver must be given memory over which it has
absolute control; whereas memDrv provides a high-level method of reading and
writing bytes in absolute memory locations through I/O calls.

Installing the Memory Driver

The driver is first initialized and then the device is created:

STATUS memDrv
(void)
STATUS memDevCreate
(char * name, char * base, int length)

136

3
/O System

Memory for the device is an absolute memory location beginning at base. The
length parameter indicates the size of the memory. For additional information on
the memory driver, see the reference entries for memDrv, memDevCreate(), and
memDru().

I/0 Control Functions

The memory driver responds to the ioctl() functions summarized in Table 3-11.
The functions listed are defined in the header file ioLib.h. For more information,
see the reference entries for memDrv and for ioctl() in ioLib.

Table 3-11 I/O Control Functions Supported by memDrv

Function Description
FIOSEEK Set the current byte offset in the file.
FIOWHERE Return the current byte position in the file.

3.7.4 Network File System (NFS) Devices

Network File System (NFS) devices allow files on remote hosts to be accessed with
the NFS protocol. The NFS protocol specifies both client software, to read files from
remote machines, and server software, to export files to remote machines.

The driver nfsDrv acts as a VxWorks NFS client to access files on any NFS server
on the network. VxWorks also allows you to run an NFS server to export files to
other systems; see Allowing Remote Access to VxWorks Files through NFS, p.288 in
this manual.

Using NFS devices, you can create, open, and access remote files exactly as though
they were on a file system on a local disk. This is called network transparency.

Mounting a Remote NFS File System from VxWorks

Access to a remote NFS file system is established by mounting that file system
locally and creating an I/O device for it using nfsMount(). Its arguments are

(1) the host name of the NFS server, (2) the name of the host file system, and (3) the
local name for the file system.

137

VxWorks 5.3.1
Programmer’s Guide

For example, the following call mounts /usr of the host mars as /vxusr locally:
nfsMount ("mars", "/usr", "/viusr");

This creates a VxWorks I/O device with the specified local name (/vxus, in this
example). If the local name is specified as NULL, the local name is the same as the
remote name.

After a remote file system is mounted, the files are accessed as though the file
system were local. Thus, after the previous example, opening the file /vxust/foo
opens the file /usr/foo on the host mars.

The remote file system must be exported by the system on which it actually resides.
However, NFS servers can export only local file systems. Use the appropriate
command on the server to see which file systems are local. NFS requires
authentication parameters to identify the user making the remote access. To set
these parameters, use the routines nfsAuthUnixSet() and nfsAuthUnixPrompt().

Define INCLUDE_NFS in configAll.h to include NFS client support in your
VxWorks configuration.

The subject of exporting and mounting NFS file systems and authenticating access
permissions is discussed in more detail in Transparent Remote File Access with NFS,
p-286. See also the reference entries nfsLib and nfsDrv, and the NFS
documentation from Sun Microsystems.

I/O Control Functions for NFS Clients

NFS client devices respond to the ioctl() functions summarized in Table 3-12. The
functions listed are defined in ioLib.h. For more information, see the reference
entries for nfsDrv and for ioctl() in ioLib.

3.7.5 Non-NFS Network Devices

VxWorks also supports network access to files on the remote host through the
Remote Shell protocol (RSH) or the File Transfer Protocol (FTP). These
implementations of network devices use the driver netDrv. When a remote file is
opened using RSH or FTP, the entire file is copied into local memory. As a result,
the largest file that can be opened is restricted by the available memory. Read and
write operations are performed on the in-memory copy of the file. When closed,
the file is copied back to the original remote file if it was modified.

138

3

/O System

Table 3-12 O Control Functions Supported by nfsDrv

Function Description

FIOFSTATGET Get file status information (directory entry data).

FIOGETNAME Get the file name of the fd.

FIONREAD Get the number of unread bytes in the file.

FIOREADDIR Read the next directory entry.

FIOSEEK Set the current byte offset in the file.

FIOSYNC Flush data to a remote NFS file.

FIOWHERE Return the current byte position in the file.

In general, NFS devices are preferable to RSH and FTP devices for performance
and flexibility, because NFS does not copy the entire file into local memory.
However, NFS is not supported by all host systems.

Creating Network Devices

To access files on a remote host using either RSH or FTP, a network device must
first be created by calling the routine netDevCreate(). The arguments to
netDevCreate() are (1) the name of the device, (2) the name of the host the device
accesses, and (3) which protocol to use: 0 (RSH) or 1 (FTP).

For example, the following call creates an RSH device called mars: that accesses the
host mars. By convention, the name for a network device is the remote machine’s
name followed by a colon (:).

netDevCreate ("mars:", "mars", 0);

Files on a network device can be created, opened, and manipulated as if on a local
disk. Thus, opening the file mars:/usr/foo actually opens /ust/foo on host mars.

Note that creating a network device allows access to any file or device on the
remote system, while mounting an NFS file system allows access only to a
specified file system.

For the files of a remote host to be accessible with RSH or FTP, permissions and
user identification must be established on both the remote and local systems.
Creating and configuring network devices is discussed in detail in Transparent
Remote File Access with RSH and FTP, p.283 and in the reference entry for netDrv.

139

VxWorks 5.3.1
Programmer’s Guide

I/0 Control Functions

RSH and FTP devices respond to the same ioctl() functions as NFS devices except
for FIOSYNC and FIOREADDIR. The functions are defined in the header file
ioLib.h. For more information, see the reference entries for netDrv and ioctI().

3.7.6 Block Devices

File Systems

A block device is a device that is organized as a sequence of individually accessible
blocks of data. The most common type of block device is a disk. In VxWorks, the
term block refers to the smallest addressable unit on the device. For most disk
devices, a VxWorks block corresponds to a sector, although terminology varies.

Block devices in VxWorks have a slightly different interface than other I/O
devices. Rather than interacting directly with the I/O system, block device support
consists of low-level drivers that interact with a file system. The file system, in turn,
interacts with the I/O system. This arrangement allows a single low-level driver
to be used with various different file systems and reduces the number of I/O
functions that must be supported in the driver. The internal implementation of
low-level drivers for block devices is discussed in 3.9.4 Block Devices, p.171.

For use with block devices, VxWorks is supplied with file system libraries
compatible with the MS-DOS (dosFs) and RT-11 (rt11Fs) file systems. In addition,
there is a library for a simple raw disk file system (rawFs), which treats an entire
disk much like a single large file. Also supplied is a file system that supports SCSI
tape devices, which are organized so that individual blocks of data are read and
written sequentially. Use of these file systems is discussed in 4. Local File Systems in
this manual. Also see the reference entries for dosFsLib, rt11FsLib, rawFsLib, and
tapeFsLib.

RAM Disk Drivers

RAM drivers, as implemented in ramDrv, emulate disk devices but actually keep
all data in memory. Memory location and “disk” size are specified when a RAM
device is created by calling ramDevCreate(). This routine can be called repeatedly
to create multiple RAM disks.

140

SCSI Drivers

3
/O System

Memory for the RAM disk can be preallocated and the address passed to
ramDevCreate(), or memory can be automatically allocated from the system
memory pool using malloc().

After the device is created, a name and file system (dosFs, rt11Fs, or rawFs) must
be associated with it using the file system’s device initialization routine or file
system’s make routine, for example, dosFsDevInit() or dosFsMkfs(). Information
describing the device is passed to the file system in a BLK_DEV structure. A pointer
to this structure is returned by the RAM disk creation routine.

In the following example, a 200KB RAM disk is created with automatically
allocated memory, 512-byte sections, a single track, and no sector offset. The device
is assigned the name DEV1: and initialized for use with dosFs.

BLK_DEV *pBlkDev;

DOS_VOL_DESC *pVolDesc;

pBlkDev = ramDevCreate (0, 512, 400, 400, 0);

pVolDesc = dosFsMkfs ("DEV1:", pBlkDev);
The dosFsMkfs() routine calls dosFsDevInit() with default parameters and
initializes the file system on the disk by calling ioctl() with the FIODISKINIT.

If the RAM disk memory already contains a disk image, the first argument to
ramDevCreate() is the address in memory, and the formatting arguments must be
identical to those used when the image was created. For example:

PBlkDev = ramDevCreate (0xc0000, 512, 400, 400, 0);

pVolDesc = dosFsDevInit ("DEV1:", pBlkDev, NULL);
In this case, dosFsDevInit() must be used instead, because the file system already
exists on the disk and does not require re-initialization. This procedure is useful if
a RAM disk is to be created at the same address used in a previous boot of
VxWorks. The contents of the RAM disk are then preserved. Creating a RAM disk
with rt11Fs using r¢11FsMkfs() and rt11FsDevInit() follows these same
procedures. For more information on RAM disk drivers, see the reference entry for
ramDrv. For more information on file systems, see 4. Local File Systems.

SCSl is a standard peripheral interface that allows connection with a wide variety
of hard disks, optical disks, floppy disks, and tape drives. SCSI block drivers are
compatible with the dosFs and rt11Fs libraries, and offer several advantages for
target configurations. They provide:

- local mass storage in non-networked environments
- faster I/O throughput than Ethernet networks

141

VxWorks 5.3.1
Programmer’s Guide

The SCSI-2 support in VxWorks supersedes previous SCSI support, although it
offers the option of configuring the original SCSI functionality, now known as
SCSI-1. With SCSI-2 enabled, the VxWorks environment can still handle SCSI-1
applications, such as file systems created under SCSI-1. However, applications that
directly used SCSI-1 data structures defined in scsiLib.h may require
modifications and recompilation for SCSI-2 compatibility.

The VxWorks SCSI implementation consists of two modules, one for the device-
independent SCSI interface and one to support a specific SCSI controller. The
scsiLib library provides routines that support the device-independent interface;
device-specific libraries provide configuration routines that support specific
controllers (for example, wd33c¢93Lib for the Western Digital WD33C93 device or
mb87030Lib for the Fujitsu MB87030 device). There are also additional support
routines for individual targets in sysLib.c.

Configuring SCSI Drivers

Table 3-13

Constants associated with SCSI drivers are listed in Table 3-13. Define these in
config.h.

SCSI Constants

Constant Description
INCLUDE_SCSI Include SCSI interface.
INCLUDE_SCSI2 SCSI-2 extensions.

INCLUDE_SCSI_DMA Enable DMA for SCSI.
INCLUDE_SCSI_BOOT Allow booting from a SCSI device.

SCSI_AUTO_CONFIG Auto-configure and locate all targets on a SCSI bus.
INCLUDE_DOSEFS Include the DOS file system.
INCLUDE_TAPEFS Include the tape file system.

To enable SCSI functionality, define INCLUDE_SCSI in config.h. This enables SCSI-
1. To enable SCSI-2, you must define, in addition to SCSI-1, the constants
INCLUDE_SCSI2 and (if you plan to use SCSI tape support) INCLUDE_TAPEFS. To
enable automatic configuration of drivers, define SCSI_AUTO_CONFIG in
config.h.

NOTE: Including SCSI-2 in your VxWorks image can significantly increase the
image size. If you receive a warning from vxsize when building VxWorks, or if the

142

3
I/O System

size of your image becomes greater than that supported by the current setting of
RAM_HIGH_ADRS, be sure to see 8.4.1 Scaling Down VxWorks, p.447 and Creating
Bootable Applications in the Tornado User’s Guide: Cross-Development for information
on how to resolve the problem.

Configuring the SCSI Bus ID

Each board in a SCSI-2 environment must define a unique SCSI bus ID for the SCSI
initiator. SCSI-1 drivers, which support only a single initiator at a time, assume an
initiator SCSIbus ID of 7. However, SCSI-2 supports multiple initiators, up to eight
initiators and targets at one time. Therefore, to ensure a unique ID, choose a value
in the range 0-7 to be passed as a parameter to the driver’s initialization routine
(for example, ncr710CtrlInitScsi2()) by the sysScsilnit() routine in sysScsi.c. For
more information, see the reference entry for the relevant driver initialization
routine. If there are multiple boards on one SCSI bus, and all of these boards use
the same BSP, then different versions of the BSP must be compiled for each board
by assigning unique SCSI bus IDs.

ROM Size Adjustment for SCSI Boot

If INCLUDE_SCSI_BOOT is defined in config.h, larger ROMs may be required for
some boards. If this is the case, the definition of ROM_SIZE in Makefile and in
config.h should be changed to a size that suits the capabilities of the target
hardware.

Structure of the SCSI Subsystem

The SCSI subsystem supports libraries and drivers for both SCSI-1 and SCSI-2. It
consists of the following six libraries which are independent of any SCSI controller:

scsiLib routines that provide the mechanism for switching SCSI
requests to either the SCSI-1 library (scsilLib) or the SCSI-2
library (scsi2Lib), as configured by the board support

package (BSP).

scsilLib SCSI-1 library routines and interface, used when only
INCLUDE_SCSI is defined (see Configuring SCSI Drivers,
p.142.)

scsi2Lib SCSI-2 library routines and all physical device creation and

deletion routines.
scsiCommonLib commands common to all types of SCSI devices.

scsiDirectLib routines and commands for direct access devices (disks).

143

VxWorks 5.3.1
Programmer’s Guide

scsiSeqLib routines and commands for sequential access block devices
(tapes).

Controller-independent support for the SCSI-2 functionality is divided into
scsi2Lib, scsiCommonlLib, scsiDirectLib, and scsiSeqLib. The interface to any of
these SCSI-2 libraries can be accessed directly. However, scsiSeqLib is designed to
be used in conjunction with tapeFs, while scsiDirectLib works with dosFs, rt11Fs,
and rawFs. Applications written for SCSI-1 can be used with SCSI-2; however,
SCSI-1 device drivers cannot.

VxWorks targets using SCSI interface controllers require a controller-specific
device driver. These device drivers work in conjunction with the controller-
independent SCSI libraries, and they provide controller configuration and
initialization routines contained in controller-specific libraries. For example, the
Western Digital WD33C93 SCSI controller is supported by the device driver
libraries wd33¢93Lib, wd33c¢93Lib1, and wd33¢93Lib2. Routines tied to SCSI-1
(such as wd33c93CtriCreate()) and SCSI-2 (such as wd33c93CtriCreateScsi2()) are
segregated into separate libraries to simplify configuration. There are also
additional support routines for individual targets in sysLib.c.

Booting and Initialization

To boot from a SCSI device, see 4.2.21 Booting from a Local dosFs File System Using
SCSI, p.218.

After VxWorks is built with SCSI support, the system startup code initializes the
SCSI interface by executing sysScsilnit() and usrScsiConfig() when the constant
INCLUDE_SCSI is defined. The call to sysSesilnit() initializes the SCSI controller
and sets up interrupt handling. The physical device configuration is specified in
usrScsiConfig(), which is in src/config/usrScsi.c. The routine contains an example
of the calling sequence to declare a hypothetical configuration, including:

- definition of physical devices with scsiPhysDevCreate()
- creation of logical partitions with scsiBlkDevCreate()
- specification of a file system with either dosFsDevInit() or rt11FsDevInit()

If you are not using SCSI_AUTO_CONFIG, modify usrScsiConfig() to reflect your
actual configuration. For more information on the calls used in this routine, see the
reference entries for scsiPhysDevCreate(), scsiBlkDevCreate(), dosFsDevInit(),
rt11FsDevInit(), dosFsMkfs(), and rt11FsMkfs().

Device-Specific Configuration Options
The SCSI libraries have the following default behaviors enabled:
— SCSI messages

144

3
/O System

— disconnects

- minimum period and maximum REQ/ACK offset
- tagged command queuing

— wide data transfer

Device-specific options do not need to be set if the device shares this default
behavior. However, if you need to configure a device that diverges from these
default characteristics, use scsiTargetOptionsSet() to modify option values. These
options are fields in the SCSI_OPTIONS structure, shown below. SCSI_OPTIONS is
declared in scsi2Lib.h. You can choose to set some or all of these option values to
suit your particular SCSI device and application.

typedef struct /* SCSI_OPTIONS - programmable options */
{
UINT selTimeOut; /* device selection time-out (us) */
BOOL messages; /* FALSE => do not use SCSI messages */
BOOL disconnect; /* FALSE => do not use disconnect */
UINTS maxOffget; /* max sync xfer offset (0 => async.) */
UINTS minPeriod; /* min sync xfer period (x 4 ns) */
SCSI_TAG _TYPE tagType; /* default tag type */
UINT maxTags; /* max cmd tags available (0 => untag */
UINTS8 xferwidth; /* wide data trnsfr width in SCSI units */

} SCSI_OPTIONS;

There are numerous types of SCSI devices, each supporting its own mix of SCSI-2
features. To set device-specific options, define a SCSI_OPTIONS structure and
assign the desired values to the structure’s fields. After setting the appropriate
fields, call scsiTargetOptionsSet() to effect your selections. Example 3-5 illustrates
one possible device configuration using SCSI_OPTIONS.

Call scsiTargetOptionsSet() after initializing the SCSI subsystem, but before
initializing the SCSI physical device. For more information about setting and
implementing options, see the reference entry for scsiTargetOptionsSet().

WARNING: Calling scsiTargetOptionsSet() after the physical device has been
initialized may lead to undefined behavior.

The SCSI subsystem performs each SCSI command request as a SCSI transaction.
This requires the SCSI subsystem to select a device. Different SCSI devices require
different amounts of time to respond to a selection; in some cases, the selTimeOut
field may need to be altered from the default.

If a device does not support SCSI messages, the boolean field messages can be set
to FALSE. Similarly, if a device does not support disconnect/reconnect, the
boolean field disconnect can be set to FALSE.

The SCSI subsystem automatically tries to negotiate synchronous data transfer
parameters. However, if a SCSI device does not support synchronous data transfer,

145

VxWorks 5.3.1
Programmer's Guide

set the maxOffset field to 0. By default, the SCSI subsystem tries to negotiate the
maximum possible REQ/ACK offset and the minimum possible data transfer
period supported by the SCSI controller on the VxWorks target. This is done to
maximize the speed of transfers between two devices. However, speed depends
upon electrical characteristics, like cable length, cable quality, and device
termination; therefore, it may be necessary to reduce the values of maxOffset or
minPeriod for fast transfers.

The tagType field defines the type of tagged command queuing desired, using one
of the following macros:

— SCSI_TAG_UNTAGGED

— SCSI_TAG_SIMPLE

— SCSI_TAG_ORDERED

- SCSI_TAG_HEAD_OF_QUEUE

For more information about the types of tagged command queuing available, see
the ANSI X3T9-1/0O Interface Specification Small Computer System Interface (SCSI-
2).

The maxTags field sets the maximum number of command tags available for a
particular SCSI device.

Wide data transfers with a SCSI target device are automatically negotiated upon
initialization by the SCSI subsystem. Wide data transfer parameters are always
negotiated before synchronous data transfer parameters, as specified by the SCSI
ANSI specification, because a wide negotiation resets any prior negotiation of
synchronous parameters. However, if a SCSI device does not support wide
parameters and there are problems initializing that device, you must set the
xferWidth field to 0. By default, the SCSI subsystem tries to negotiate the
maximum possible transfer width supported by the SCSI controller on the
VxWorks target in order to maximize the default transfer speed between the two
devices. For more information on the actual routine call, see the reference entry for
scsiTargetOptionsSet().

SCSI Configuration Examples

The following examples show some possible configurations for different SCSI
devices. Example 3-4 is a simple block device configuration setup. Example 3-5
involves selecting special options and demonstrates the use of
scsiTargetOptionsSet(). Example 3-6 configures a tape device and a tape file
system. Example 3-7 configures a SCSI device for synchronous data transfer.
Example 3-8 shows how to configure the SCSI bus ID. These examples can be
embedded either in the usrScsiConfig() routine or in a user-defined SCSI
configuration function.

146

3
/O System

Example 3-4 Configuring SCSI Drivers

In the following example, usrScsiConfig() was modified to reflect a new system
configuration. The new configuration has a SCSI disk with a bus ID of 4 and a
Logical Unit Number (LUN) of 0 (zero). The disk is configured with a dosFs file
system (with a total size of 0x20000 blocks) and a rawFs file system (spanning the
remainder of the disk). The following usrScsiConfig() code reflects this
modification.

/* configure Winchester at busid = 4, LUN = 0 */

if ((pSpdd0 = scsiPhysDevCreate (pSysScsictrl, 4, 0, 0, NONE, 0, 0, 0))
== (SCSI_PHYS DEV *) NULL)
{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n");
}

else
{
/* create block devices - one for dosFs and one for rawFs */
if (((pSbd0 = scsiBlkDevCreate (pSpdd0, 0x20000, 0)) == NULL) ||
((pSbdl = scsiBlkDevCreate (pSpd40, 0, 0x20000)) == NULL))
{

return (ERROR);
}

/* initialize both dosFs and rawFs file systems */

if ((dosFsDevInit ("/sd0/", pSbd0, NULL) == NULL) ||
(rawFsDevInit ("/sdl/", pSbdl) == NULL))
{
return (ERROR);
}
}

If problems with your configuration occur, insert the following lines at the
beginning of usrScsiConfig() to obtain further information on SCSI bus activity.

#if FALSE

scsiDebug = TRUE;

scsiIntsDebug = TRUE;

#tendif
Do not declare the global variables scsiDebug and scsilntsDebug locally. They can
be set or reset from the shell; see the Tornado User’s Guide: Shell for details.

147

Example 3-5

VxWorks 5.3.1
Programmer’s Guide

Configuring a SCSI Disk Drive with Asynchronous Data Transfer and No Tagged Command Queuing

In this example, a SCSI disk device is configured without support for synchronous
data transfer and tagged command queuing. The scsiTargetOptionsSet() routine
is used to turn off these features. The SCSI ID of this disk device is 2, and the LUN

is 0:

int which;
SCSI_OPTIONS option;
int devBusId;

devBusld = 2;
which = SCSI_SET OPT_ XFER PARAMS I SCSI_SET_OPT_TAG_PARAMS;
option.maxOffset = SCSI_SYNC_XFER ASYNC_OFFSET;

/* => 0 defined in scsi2Lib.h */
option.minPeriod = SCSI_SYNC_XFER MIN PERIOD; /* defined in scsi2Lib.h */
option.tagType = SCSI_TAG UNTAGGED; /* defined in scsi2Lib.h */
option.maxTag = SCSI_MAX_TAGS;

if (scsiTargetOptionsSet (pSysScsiCtrl, devBusId, &option, which) == ERROR)
{
SCSI_DEBUG_MSG ("usrScsiConfig: could not set optiomns\n", 0, 0, 0, O,
0, 0);
return (ERROR);
}

/* configure SCSI disk drive at busId = devBusId, LUN = 0 */

if ((pSpd20 = scsiPhysDevCreate (pSysScsiCtrl, devBusId, 0, 0, NONE, 0, O,
0)) == (SCSI_PHYS DEV *) NULL)
{
SCSI_DEBUG MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n");
return (ERROR);
}

148

3
/O System

Example 3-6 Working with Tape Devices

SCSI tape devices can be controlled using common commands from
scsiCommonlLib and sequential commands from scsiSeqLib. These commands
use a pointer to a SCSI sequential device structure, SEQ_DEYV, defined in seqlo.h.
For more information on controlling SCSI tape devices, see the reference entries for
these libraries.

This example configures a SCSI tape device whose bus ID is 5 and whose LUN is
0. It includes commands to create a physical device pointer, set up a sequential
device, and initialize a tapeFs device.

/* configure Exabyte 8mm tape drive at busId = 5, LUN = 0 */

if ((pSpd50 = scsiPhysDevCreate (pSysScsiCtrl, 5, 0, 0, NONE, 0, 0, 0))
== (SCSI_PHYS DEV *) NULL)
{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n");
return (ERROR);
}

/* configure the sequential device for this physical device */

if ((pSd0 = scsiSegDevCreate (pSpd50)) == (SEQ_DEV *) NULL)
{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiSegDevCreate failed.\n");
return (ERROR);
}

/* setup the tape device configuration */

pTapeConfig = (TAPE_CONFIG *) calloc (sizeof (TAPE_CONFIG), 1);
pTapeConfig->rewind = TRUE; /* this is a rewind device */
pTapeConfig->blkSize = 512; /* uses 512 byte fixed blocks */

/* initialize a tapeFs device */

if (tapeFsDevInit ("/tapel", pSd0, pTapeConfig) == NULL)
{
return (ERROR);
}

/* rewind the physical device using scsiSeqLib interface directly*/
if (scsiRewind (pSd0) == ERROR)
{

return (ERROR);
}

149

Example 3-7

VxWorks 5.3.1
Programmer's Guide

Configuring a SCSI Disk for Synchronous Data Transfer with Non-Default Offset and Period Values

In this example, a SCSI disk drive is configured with support for synchronous data
transfer. The offset and period values are user-defined and differ from the driver
default values.The chosen period is 25, defined in SCSI units of 4 ns. Thus the
period is actually 4 * 25 = 100 ns. The synchronous offset is chosen to be 2. Note
that you may need to adjust the values depending on your hardware environment.

int which;
SCSI_OPTIONS option;
int devBusId;

devBusId = 2;

which = SCSI_SET IPT XFER_PARAMS;
option.maxOffset = 2;
option.minPeriod = 25;

if (scsiTargetOptionsSet (pSysScsiCtrl, devBusId &option, which) ==
ERROR)

{
SCSI_DEBUG_MSG ("usrScsiConfig: could not set options\n",

o, o, 0, 0, 0, 0)
return (ERROR);
}

/* configure SCSI disk drive at busId = devBusId, LUN = 0 */

if ((pSpd20 = scsiPhysDevCreate (pSysScsiCtrl, devBusId, 0, 0, NONE,
0, 0, 0)) == (SCSI_PHYS DEV *) NULL)
{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n")
return (ERROR);
}

Example 3-8 Changing the Bus ID of the SCSI Controller

To change the bus ID of the SCSI controller, modify sysScsilnit() in sysScsi.c. Set
the SCSIbus ID to a value between 0 and 7 in the call to xxxCirlInitScsi2() (where
xxx is the controller name); the default bus ID for the SCSI controller is 7.

150

3
I/O System

Troubleshooting

Incompatibilities Between SCSI-1 and SCSI-2

Applications written for SCSI-1 may not execute for SCSI-2 because data
structures in scsi2Lib.h, such as SCSI_TRANSACTION and SCSI_PHYS_DEYV,

have changed. This applies only if the application used these structures

directly.

If this is the case, you can choose to configure only the SCSI-1 level of support,
or you can modify your application according to the data structures in
scsi2Lib.h. In order to set new fields in the modified structure, some
applications may simply need to be recompiled, and some applications will
have to be modified and then recompiled.

SCSI Bus Failure

If your SCSI bus hangs, it could be for a variety of reasons. Some of the more
common are:

— Your cable has a defect. This is the most common cause of failure.

- The cable exceeds the cumulative maximum length of 6 meters specified
in the SCSI-2 standard, thus changing the electrical characteristics of the
SCSl signals.

— Thebus is not terminated correctly. Consider providing termination
power at both ends of the cable, as defined in the SCSI-2 ANSI
specification.

- The minimum transfer period is insufficient or the REQ/ACK offset is too
great. Use scsiTargetOptionsSet() to set appropriate values for these
options.

— Thedriver is trying to negotiate wide data transfers on a device that does
not support them. In rejecting wide transfers, the device-specific driver
cannot handle this phase mismatch. Use scsiTargetOptionsSet() to set the
appropriate value for the xferWidth field for that particular SCSI device.

151

VxWorks 5.3.1
Programmer's Guide

3.7.7 Sockets

In VxWorks, the underlying basis of network communications is sockets. A socket
is an endpoint for communication between tasks; data is sent from one socket to
another. Sockets are not created or opened using the standard I/O functions.
Instead they are created by calling socket(), and connected and accessed using
other routines in sockLib. However, after a stream socket (using TCP) is created
and connected, it can be accessed as a standard I/O device, using read(), write(),
ioctl(), and close(). The value returned by socket() as the socket handle is in fact
an I/O system fd.

VxWorks socket routines are source-compatible with the BSD 4.3 UNIX socket
functions and the Windows Sockets (Winsock 1.1) networking standard. Use of
these routines is discussed in 5.2.6 Sockets, p.251.

3.8 Differences Between VxWorks and Host System I/O

Most commonplace uses of I/O in VxWorks are completely source-compatible
with I/0 in UNIX and Windows. However, note the following differences:

= Device Configuration. In VxWorks, device drivers can be installed and
removed dynamically.

* File Descriptors. In UNIX and Windows, fds are unique to each process. In
VxWorks, fds are global entities, accessible by any task, except for standard
input, standard output, and standard error (0, 1, and 2), which can be task
specific.

= /O Control. The specific parameters passed to ioctl() functions can differ
between UNIX and VxWorks.

= Driver Routines. In UNIX, device drivers execute in system mode and are not
preemptible. In VxWorks, driver routines are in fact preemptible because they
execute within the context of the task that invoked them.

152

3
I/O System

3.9 Internal Structure

The VxWorks I/O system is different from most in the way the work of performing
user I/O requests is apportioned between the device-independent I/O system and
the device drivers themselves.

In many systems, the device driver supplies a few routines to perform low-level
I/0 functions such as inputting or outputting a sequence of bytes to character-
oriented devices. The higher-level protocols, such as communications protocols on
character-oriented devices, are implemented in the device-independent part of the
1/0 system. The user requests are heavily processed by the 1/O system before the
driver routines get control.

While this approach is designed to make it easy to implement drivers and to
ensure that devices behave as much alike as possible, it has several drawbacks. The
driver writer is often seriously hampered in implementing alternative protocols
that are not provided by the existing I/O system. In a real-time system, it is
sometimes desirable to bypass the standard protocols altogether for certain
devices where throughput is critical, or where the device does not fit the standard
model. ‘

In the VxWorks I/0 system, minimal processing is done on user I/O requests
before control is given to the device driver. Instead, the VxWorks I/0O system acts
as a switch to route user requests to appropriate driver-supplied routines. Each
driver can then process the raw user requests as appropriate to its devices. In
addition, however, several high-level subroutine libraries are available to driver
writers that implement standard protocols for both character- and block-oriented
devices. Thus the VxWorks I/O system gives you the best of both worlds: while it
is easy to write a standard driver for most devices with only a few pages of device-
specific code, driver writers are free to execute the user requests in nonstandard
ways where appropriate.

There are two fundamental types of device: block and character (or non-block; see
Figure 3-8). Block devices are used for storing file systems. They are random access
devices where data is transferred in blocks. Examples of block devices include
hard and floppy disks. Character devices are any device that does not fall in the
block category. Examples of character devices include serial and graphical input
devices, for example, terminals and graphics tablets.

As discussed in earlier sections, the three main elements of the VxWorks I/0
system are drivers, devices, and files. The following sections describe these
elements in detail. The discussion focuses on character drivers; however, much of
it is applicable for block devices. Because block drivers must interact with

153

VxWorks 5.3.1
Programmer’s Guide

VxWorks file systems, they use a slightly different organization; see 3.9.4 Block
Devices, p.171.

Example 3-9 shows the abbreviated code for a hypothetical driver that is used as
an example throughout the following discussions. This example driver is typical
of drivers for character-oriented devices.

In VxWorks, each driver has a short, unique abbreviation, such as net or tty, which
is used as a prefix for each of its routines. The abbreviation for the example driver
is xx.

Example 3-9 Hypothetical Driver

/***
* xxDrv - driver initialization routine

*

* xxDrv() initializes the driver. It installs the driver via iosDrvInstall.
* It may allocate data structures, connect ISRs, and initialize hardware.
*/

STATUS xxDrv ()
{
xxDrvNum = iosDrvInstall (xxCreat, 0, xxOpen, 0, xxRead, xxWrite, xxIoctl);
(void) intConnect (intvec, xxInterrupt, ...);

s

[RFRrhhkkkhhhkkkhhhkhhhhkhhhhhhhhkhhhhhhhhhhhhhhhhkhkkhkhhhhhhhhhdhkhhhhhhhkhn

xxDevCreate - device creation routine

*

*

* Called to add a device called <name> to be serviced by this driver. Other
* driver-dependent arguments may include buffer sizes, device addresses...
* The routine adds the device to the I/0 system by calling iosDevAdd.

* It may also allocate and initialize data structures for the device,

* initialize semaphores, initialize device hardware, and so on.

*/

STATUS xxDevCreate (name, ...)
char * name;

{
status = iosDevAdd (xxDev, name, xxDrvNum);

oo

/***
* The following routines implement the basic I/0 functions. The xxOpen()

* return value is meaningful only to this driver, and is passed back as an
* argument to the other I/O routines.

*/

154

3.9.1 Drivers

3
/O System

int xxOpen (xxDev, remainder, mode)
XXDEV * xxDev;
char * remainder;
int mode;
{
/* serial devices should have no file name part */

if (remainder[0] != 0)
return (ERROR);

else
return ((int) xxDev);

}

int xxRead (xxDev, buffer, nBytes)
XXDEV * xxDev;
char * buffer;
int nBytes;
int xxWrite (xxDev, buffer, nBytes)
int xxIoctl (xxDev, reguestCode, arg)

esn

/***

xxInterrupt - interrupt service routine

Most drivers have routines that handle interrupts from the devices
serviced by the driver. These routines are connected to the interrupts
by calling intConnect (usually in xxDrv above). They can receive a
single argument, specified in the call to intConnect (see intLib).

* ¥ * ¥ ¥ *

*/

VOID xxInterrupt (arg)

A driver for a non-block device implements the seven basic I/O functions—
creat(), remove(), open(), close(), read(), write(), and ioctl()—for a particular
kind of device. In general, this type of driver has routines that implement each of
these functions, although some of the routines can be omitted if the functions are
not operative with that device.

Drivers can optionally allow tasks to wait for activity on multiple file descriptors.
This is implemented using the driver’s ioctl() routine; see Implementing select(),
p-163.

A driver for a block device interfaces with a file system, rather than directly with
the I/O system. The file system in turn implements most I/ O functions. The driver

155

VxWorks 5.3.1
Programmer’s Guide

need only supply routines to read and write blocks, reset the device, perform I/O
control, and check device status. Drivers for block devices have a number of
special requirements that are discussed in 3.9.4 Block Devices, p.171.

When the user invokes one of the basic I/O functions, the I/O system routes the
request to the appropriate routine of a specific driver, as detailed in the following
sections. The driver’s routine runs in the calling task’s context, as though it were
called directly from the application. Thus, the driver is free to use any facilities
normally available to tasks, including I/O to other devices. This means that most
drivers have to use some mechanism to provide mutual exclusion to critical
regions of code. The usual mechanism is the semaphore facility provided in
semLib.

In addition to the routines that implement the seven basic I/O functions, drivers
also have three other routines:

* Aninitialization routine that installs the driver in the I/O system, connects to
any interrupts used by the devices serviced by the driver, and performs any
necessary hardware initialization (typically named xxDrv()).

* Aroutine to add devices that are to be serviced by the driver (typically named
xxDevCreate()) to the I/O system.

» Interrupt-level routines that are connected to the interrupts of the devices
serviced by the driver.

The Driver Table and Installing Drivers

The function of the I/O system is to route user I/O requests to the appropriate
routine of the appropriate driver. The I/O system does this by maintaining a table
that contains the address of each routine for each driver. Drivers are installed
dynamically by calling the I/O system internal routine iosDrvInstall(). The
arguments to this routine are the addresses of the seven I/O routines for the new
driver. The iosDrvInstall() routine enters these addresses in a free slot in the
driver table and returns the index of this slot. This index is known as the driver
number and is used subsequently to associate particular devices with the driver.

Null (0) addresses can be specified for some of the seven routines. This indicates
that the driver does not process those functions. For non-file-system drivers,
close() and remove() often do nothing as far as the driver is concerned.

VxWorks file systems (dosFsLib, rt11FsLib, and rawFsLib) contain their own
entries in the driver table, which are created when the file system library is
initialized.

156

3
/O System

Example of Installing a Driver

Figure 3-2 shows the actions taken by the example driver and by the I/O system
when the initialization routine xxDrv() runs.

[1] The driver calls iosDrvInstall(), specifying the addresses of the driver’s
routines for the seven basic I/O functions.

The I/O system:
[2] Locates the next available slot in the driver table, in this case slot 2.
[3] Enters the addresses of the driver routines in the driver table.

[4] Returns the slot number as the driver number of the newly installed driver.

Figure 3-2 Example - Driver Initialization for Non-Block Devices

DRIVER CALL:

drvnum = iosDrvInstall (xxCreat, 0, xxOpen, 0, xxRead, xxWrite, xxIoctl);

[1] Driver’s install routine specifies driver
routines for seven I/O functions.

[2] I/O system locates next

[4] 1/0 system returns available slot in driver table.

driver number
(drvnum = 2).

create remove open close read write ioctl

DRIVER TABLE:

A WOMN=O

[3] I/O system enters driver
routines in driver table.

157

VxWorks 5.3.1
Programmer’s Guide

3.9.2 Devices

Some drivers are capable of servicing many instances of a particular kind of device.
For example, a single driver for a serial communications device can often handle
many separate channels that differ only in a few parameters, such as device
address.

In the VxWorks I/O system, devices are defined by a data structure called a device
header (DEV_HDR). This data structure contains the device name string and the
driver number for the driver that services this device. The device headers for all
the devices in the system are kept in a memory-resident linked list called the device
list. The device header is the initial part of a larger structure determined by the
individual drivers. This larger structure, called a device descriptor, contains
additional device-specific data such as device addresses, buffers, and semaphores.

The Device List and Adding Devices

Non-block devices are added to the I/O system dynamically by calling the internal
I/0 routine iosDevAdd(). The arguments to iosDevAdd() are the address of the
device descriptor for the new device, the device’s name, and the driver number of
the driver that services the device. The device descriptor specified by the driver
can contain any necessary device-dependent information, as long as it begins with
a device header. The driver does not need to fill in the device header, only the
device-dependent information. The iosDevAdd() routine enters the specified
device name and the driver number in the device header and adds it to the system
device list.

To add a block device to the I/O system, call the device initialization routine for
the file system required on that device (dosFsDevInit(), rt11FsDevInit(), or
rawFsDevInit()). The device initialization routine then calls iosDevAdd()
automatically.

Example of Adding Devices

In Figure 3-3, the example driver’s device creation routine xxDevCreate() adds
devices to the I/O system by calling iosDevAdd().

158

3
/O System

Figure 3-3 Example — Addition of Devices to I/O System

DRIVER CALLS: status

status = iosDevAdd (devl, "/xx1", drvnum);

iosDevAdd (dev0, "/xx0", drvnum);

I/0 system adds device descriptors

to device list. Each descriptor contains
device name and driver number (in this
case 2) and any device-specific data.

DEVICE LIST: C
"/dk0/"
1
DRIVER TABLE: create remove open close read write ioctl
0
1
2
3
4

3.9.3 File Descriptors

Several fds can be open to a single device at one time. A device driver can maintain
additional information associated with an fd beyond the I/O system’s device
information. In particular, devices on which multiple files can be open at one time
have file-specific information (for example, file offset) associated with each fd. You
can also have several fds open to a non-block device, such as a tty; typically there
is no additional information, and thus writing on any of the fds produces identical
results.

159

VxWorks 5.3.1
Programmer's Guide

The Fd Table

Files are opened with open() (or creat()). The I/O system searches the device list
for a device name that matches the file name (or an initial substring) specified by
the caller. If a match is found, the I/ O system uses the driver number contained in
the corresponding device header to locate and call the driver’s open routine in the
driver table.

The I/O system must establish an association between the file descriptor used by
the caller in subsequent I/O calls, and the driver that services it. Additionally, the
driver must associate some data structure per descriptor. In the case of non-block
devices, this is usually the device descriptor that was located by the I/O system.

The I/O system maintains these associations in a table called the fd table. This table
contains the driver number and an additional driver-determined 4-byte value. The
driver value is the internal descriptor returned by the driver’s open routine, and
canbe any nonnegative value the driver requires to identify the file. In subsequent
calls to the driver’s other I/O functions (read(), write(), ioctl(), and close()), this
value is supplied to the driver in place of the fd in the application-level I/O call.

Example of Opening a File

In Figure 3-4 and Figure 3-5, a user calls open() to open the file /xx0. The I/O
system takes the following series of actions:

[1] Itsearches the device listfor a device name that matches the specified file name
(or an initial substring). In this case, a complete device name matches.

[2] It reserves aslot in the fd table, which is used if the open is successful.

[3] It then looks up the address of the driver’s open routine, xxOpen(), and calls
that routine. Note that the arguments to xxOpen() are transformed by the I/O
system from the user’s original arguments to open(). The first argument to
xxOpen() is a pointer to the device descriptor the I/O system located in the full
file name search. The next parameter is the remainder of the file name specified
by the user, after removing the initial substring that matched the device name.
In this case, because the device name matched the entire file name, the
remainder passed to the driver is a null string. The driver is free to interpret
this remainder in any way it wants. In the case of block devices, this remainder
is the name of a file on the device. In the case of non-block devices like this one,
it is usually an error for the remainder to be anything but the null string. The
last parameter is the file access flag, in this case O_RDONLY; that is, the file is
opened for reading only.

160

3
/O System

Figure 3-4 Example: Call to /O Routine open() [Part 1]

USER CALL: DRIVER CALL:

fd = open ("/xx0", O_RDONLY); xxdev = xxOpen (xxdev, "", O_RDONLY);

[1] 1/0O system finds [2] I/0O system reserves [3] 1/O system calls
name in device list. a slotin the fd table. driver’s open routine

with pointer to

device descriptor.

drvnum value
FD TABLE:
DEVICE LIST: L L
"/dk0/" “/xx1"
1 2
DRIVER TABLE: create remove open close read write ioctl

A WN 2O

161

VxWorks 5.3.1
Programmer’s Guide

Figure 3-5 Example: Call to I/O Routine Open() [Part 2]

USER CALL: DRIVER CALL:
fd = open ("/xx0", O_RDONLY); xxdev = xxOpen (xxdev, "", O_RDONLY);
[6]1/0O system returns [5]1/0 system enters [4] Driver returns any
index in fd table of driver number and identifying value, in
new open file (£d = 3). identifying value in this case the pointer to
reserved fd table slot. the device descriptor.
FD TABLE: . drvnum value
1
2
3
4

DEVICE LIST: = = e g
"/dk0/" "/xx1"
1 2
DRIVER TABLE: create remove open close read write ioctl

S ON = O

162

3
/O System

[4] It executes xxOpen(), which returns a value that subsequently identifies the
newly opened file. In this case, the value is the pointer to the device descriptor.
This value is supplied to the driver in subsequent /O calls that refer to the file
being opened. Note that if the driver returns only the device descriptor, the
driver cannot distinguish multiple files opened to the same device. In the case
of non-block device drivers, this is usually appropriate.

[5] TheI/O system then enters the driver number and the value returned by
xxOpen() in the reserved slot in the fd table. Again, the value entered in the fd
table has meaning only for the driver, and is arbitrary as far as the I/O system
is concerned.

[6] Finally, it returns to the user the index of the slot in the fd table, in this case 3.

Example of Reading Data from the File

In Figure 3-6, the user calls read() to obtain input data from the file. The specified
fd is the index into the fd table for this file. The I/O system uses the driver number
contained in the table to locate the driver’s read routine, xxRead(). The I/ O system
calls xxRead(), passing it the identifying value in the fd table that was returned by
the driver’s open routine, xxOpen(). Again, in this case the value is the pointer to
the device descriptor. The driver’s read routine then does whatever is necessary to
read data from the device.

The process for user calls to write() and ioctl() follow the same procedure.

Example of Closing a File

The user terminates the use of a file by calling close(). As in the case of read(), the
I/0 system uses the driver number contained in the fd table to locate the driver’s
close routine. In the example driver, no close routine is specified; thus no driver
routines are called. Instead, the I/O system marks the slot in the fd table as being
available. Any subsequent references to that fd cause an error. However,
subsequent calls to open() can reuse that slot.

Implementing select()
Supporting select() in your driver allows tasks to wait for input from multiple

devices or to specify a maximum time to wait for the device to become ready for
I/0. Writing a driver that supports select() is simple, because most of the

163

VxWorks 5.3.1
Programmer’s Guide

Figure 3-6 Example: Call to I/O Routine read()

USER CALL: ' DRIVER CALL:

n = read (f4, buf, len); n = xxRead (xxdev, buf, len);

I/0 system transforms the user’s I/O
routine calls into driver routine calls

replacing the fd with the value returned
by the driver’s open routine, xxOpen().

drvn.um value

FD TABLE: 0

1

2

3

4
DEVICE LIST: <« % %L =+

"/dko/" "/xx1"
1 2

DRIVER TABLE: create remove open close rgad write ioctl

S ON-=O

164

3
/O System

functionality is provided in selectLib. You might want your driver to support
select() if any of the following is appropriate for the device:

» The tasks want to specify a timeout to wait for I/O from the device. For
example, a task might want to time out on a UDP socket if the packet never
arrives.

» The driver supports multiple devices, and the tasks want to wait
simultaneously for any number of them. For example, multiple pipes might be
used for different data priorities.

* The tasks want to wait for I/O from the device while also waiting for I/O from
another device. For example, a server task might use both pipes and sockets.

To implement select(), the driver must keep a list of tasks waiting for device
activity. When the device becomes ready, the driver unblocks all the tasks waiting
on the device.

For a device driver to support select(), it must declare a SEL_WAKEUP_LIST
structure (typically declared as part of the device descriptor structure) and
initialize it by calling selWakeupListInit(). This is done in the driver’s
xxDevCreate() routine. When a task calls select(), selectLib calls the driver’s
ioctl() routine with the function FIOSELECT or FIOUNSELECT. If ioctl() is called
with FIOSELECT, the driver must do the following;:

1. Add the SEL_WAKEUP_NODE (provided as the third argument of ioctl()) to
the SEL_WAKEUP_LIST by calling seINodeAdd().

2. Use the routine sel WakeupType() to check whether the task is waiting for data
to read from the device (SELREAD) or if the device is ready to be written
(SELWRITE).

3. If the device is ready (for reading or writing as determined by
selWakeupType()), the driver calls the routine sel Wakeup() to make sure that
the select() call in the task does not pend. This avoids the situation where the
task is blocked but the device is ready.

If ioctl() is called with FIOUNSELECT, the driver calls seINodeDelete() to remove
the provided SEL_WAKEUP_NODE from the wakeup list.

When the device becomes available, selWakeupAll() is used to unblock all the
tasks waiting on this device. Although this typically occurs in the driver’s ISR, it
can also occur elsewhere. For example, a pipe driver might call selWakeupAll()
from its xxRead() routine to unblock all the tasks waiting to write, now that there
is room in the pipe to store the data. Similarly the pipe’s xxWrite() routine might
call selWakeupAll() to unblock all the tasks waiting to read, now that there is data
in the pipe.

165

Example 3-10

VxWorks 5.3.1

Programmer’s Guide

Driver Code Using the Select Facility

/* This code fragment shows how a driver might support select(). In this
* example, the driver unblocks tasks waiting for the device to become ready
* in its interrupt service routine.

*/

/* arkLib.h - header file for ark driver */

typedef struct /* ARK_DEV */
{
DEV_HDR devHdr; /* ark device header */
BOOL arkDataAvailable; /* data is available to read */
BOOL arkRAyForWriting; /* device is ready to write */
SEL_WAKEUP_LIST selWakeupList; /* list of tasks pended in select */
} ARK_DEV;

/* arkDrv.c - code fragments for supporting select() in a driver */

#include "vxWorks.h"
#include "selectLib.h"

STATUS arkDevCreate

(

char * name, /* name of ark to create */

int number, /* number of arks to create */

int aCount /* number of animals to live on ark */
)

{

ARK_DEV * pArkDev; /* pointer to ark device descriptor */

.+« Yyourdriver code ...

/* allocate memory for ARK_DEV */

pArkDev = (ARK DEV *) malloc ((unsigned) sizeof (ARK DEV + number * aCount));
««. Yyourdriver code ...

/* initialize wakeup list */

selWakeupListInit (&pArkDev->selWakeuplList);

... yourdriver code ...

}

STATUS arkIoctl

166

(

ARK_DEV * pArkDev, /* pointer to ark device descriptor */
int request, /* ioctl function */
int * arg /* where to send answer */

)

3
/O System

{

.+« yourdrivercode ...

switch (request)
{

«« . Yourdriver code ...
case FIOSELECT:
/* add node to wakeup list */
selNodeAdd (&pArkDev->selWakeupList, (SEL WAKEUP NODE *) arg):;

if (selWakeupType ((SEL_WAKEUP NODE *) arg) == SELREAD
&& pArkDev->arkDataAvailable)

/* data available, make sure task does not pend */
selWakeup ((SEL_WAKEUP_NODE *) arg);

if (selWakeupType ((SEL WAKEUP NODE *) arg) == SELWRITE
&& pArkDev->arkRdyForWriting)

/* device ready for writing, make sure task does not pend */
selWakeup ((SEL_WAKEUP_NODE *) arg):
case FIOUNSELECT:

/* delete node from wakeup list */
selNodeDelete (&pArkDev->selWakeupList, (SEL WAKEUP_NODE *) arg);
.-« your driver code ...

}

void arkIsSR
;RK_DEV *pArkDev;

)

{
... your driver code ...

/* if there ig data available to read, wake up all pending tasks */

if (pArkDev->arkDataAvailable)
selWakeupAll (&pArkDev->selWakeupList, SELREAD);

/* if the device is ready to write, wake up all pending tasks */
if (pArkDev->arkRdyForWriting)

selWakeupAll (&pArkDev->selWakeuplList, SELWRITE);
}

167

VxWorks 5.3.1
Programmer’s Guide

Cache Coherency

Figure 3-7

Drivers written for boards with caches must guarantee cache coherency. Cache
coherency means data in the cache must be in sync, or coherent, with data in RAM.
The data cache and RAM can get out of sync any time there is asynchronous access
to RAM (for example, DMA device access or VMEbus access). Data caches are used
to increase performance by reducing the number of memory accesses. Figure 3-7
shows the relationships between the CPU, data cache, RAM, and a DMA device.

Data caches can operate in one of two modes: writethrough and copyback. Write-
through mode writes data to both the cache and RAM,; this guarantees cache
coherency on output but not input. Copyback mode writes the data only to the
cache; this makes cache coherency an issue for both input and output of data.

Cache Coherency

Data Cache

DMA
Device

If a CPU writes data to RAM that is destined for a DMA device, the data can first
be written to the data cache. When the DMA device transfers the data from RAM,
there is no guarantee that the data in RAM was updated with the data in the cache.
Thus, the data output to the device may not be the most recent—the new data may
still be sitting in the cache. This data incoherency can be solved by making sure the
data cache is flushed to RAM before the data is transferred to the DMA device.

If a CPU reads data from RAM that originated from a DMA device, the data read
can be from the cache buffer (if the cache buffer for this data is not marked invalid)
and not the data just transferred from the device to RAM. The solution to this data
incoherency is to make sure that the cache buffer is marked invalid so that the data
is read from RAM and not from the cache.

Drivers can solve the cache coherency problem either by allocating cache-safe
buffers (buffers that are marked non-cacheable) or flushing and invalidating cache

168

Example 3-11

3
/O System

entries any time the data is written to or read from the device. Allocating cache-
safe buffers is useful for static buffers; however, this typically requires MMU
support. Non-cacheable buffers that are allocated and freed frequently (dynamic
buffers) can result in large amounts of memory being marked non-cacheable. An
alternative to using non-cacheable buffers is to flush and invalidate cache entries
manually; this allows dynamic buffers to be kept coherent.

The routines cacheFlush() and cachelnvalidate() are used to manually flush and
invalidate cache buffers. Before a device reads the data, flush the data from the
cache to RAM using cacheFlush() to ensure the devicereads current data. After the
device has written the data into RAM, invalidate the cache entry with
cachelnvalidate(). This guarantees that when the data is read by the CPU, the
cache is updated with the new data in RAM.

DMA Transfer Routine

/* This a sample DMA transfer routine. Before programming the device to

* output the data to the device, it flushes the cache by calling

* cacheFlush(). On a read, after the device has transferred the data, the
* cache entry must be invalidated using cacheInvalidate().

*/

#include "vxWorks.h"
#include "cacheLib.h"
#include "fcntl.h"
#include "example.h"
void exampleDmaTransfer /* 1 = READ, 0 = WRITE */
(
UINT8 *pExampleBuf,
int exampleBufLen,
int xferDirection
)
{
if (xferDirection == 1)
{
myDevToBuf (pExampleBuf);
cacheInvalidate (DATA_CACHE, pExampleBuf, exampleBufLen);
}
else
{
cacheFlush (DATA_CACHE, pExampleBuf, exampleBufLen);
myBufToDev (pExampleBuf);
}
}

It is possible to make a driver more efficient by combining cache-safe buffer
allocation and cache-entry flushing or invalidation. The idea is to flush or
invalidate a cache entry only when absolutely necessary. To address issues of cache
coherency for static buffers, use cacheDmaMalloc(). This routine initializes a
CACHE_FUNCS structure (defined in cacheLib.h) to point to flush and invalidate

169

Example 3-12

VxWorks 5.3.1
Programmer’s Guide

routines that can be used to keep the cache coherent. The macros
CACHE_DMA_FLUSH and CACHE_DMA_INVALIDATE use this structure to
o